1
|
Mohammed HE, El-Nekeety AA, Rashwan HM, Abdel-Aziem SH, Hassan NS, Hassan EE, Abdel-Wahhab MA. Screening of bioactive components in Ferula assafo dried oleo-gum resin and assessment of its protective function against cadmium-induced oxidative damage, genotoxicity, and cytotoxicity in rats. Toxicol Rep 2025; 14:101853. [PMID: 39758803 PMCID: PMC11699744 DOI: 10.1016/j.toxrep.2024.101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/20/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cadmium (Cd) is among the most ecologically harmful heavy metals. The purpose of this work was to identify the biologically active components in dried oleo-resin-gum of Ferula assafo extract (FAE) and assess their preventive efficacy against oxidative damage caused by Cd in rats. The biologically active components were identified using HPLC and GC-MS. Six groups of female Sprague-Dawley rats were randomly assigned and received oral treatment for two weeks. They consisted of the control group, the groups that got FAE at low or high doses (150 and 250 mg/kg b.w.), the group that received CdCl2 (2 mg/kg b.w.), and the groups that received CdCl2 + FAE at the low or high dose. Tissues and blood samples were collected for different assays and pathological examinations. The HPLC detected 11 polyphenol compounds, whereas the GC-MS identified 24 bioactive compounds. The in vivo study revealed that CdCl2 alone disrupted all biochemical indices, oxidative indicators, cytokines, antioxidant enzymes, pro and anti-apoptotic mRNA gene expression, increased DNA fragmentation percentage, and caused pathological alterations in hepatic and renal sections. FAE plus CdCl2 therapy considerably improved all indicators and the histological architecture of the kidney and liver, with the higher dose being more effective in improving all of the measured parameters. Therefore, FAE is a promising option for food and pharmaceutical applications to protect against oxidative damage caused by Cd exposure.
Collapse
Affiliation(s)
- Hagar E. Mohammed
- Zoology Dept., Faculty of Science, Al-Arish University, North Sinai, Egypt
| | - Aziza A. El-Nekeety
- Food Toxicology & Contaminants Dept., National Research Centre, Dokki, Cairo, Egypt
| | - Hanan M. Rashwan
- Zoology Dept., Faculty of Science, Al-Arish University, North Sinai, Egypt
| | | | | | - Entesar E. Hassan
- Genetics and Cytology Dept., National Research Centre, Dokki, Cairo, Egypt
| | | |
Collapse
|
2
|
Banerjee M, Pandey VP. Diet-induced Obesity: Pathophysiology, Consequences and Target Specific Therapeutic Strategies. Curr Protein Pept Sci 2025; 26:113-124. [PMID: 39225225 DOI: 10.2174/0113892037329528240827180820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Diet has emerged as a pivotal factor in the current time for diet-induced obesity (DIO). A diet overloaded with fats and carbohydrates and unhealthy dietary habits contribute to the development of DIO through several mechanisms. The prominent ones include the transition of normal gut microbiota to obese microbiota, under-expression of AMPK, and abnormally high levels of adipogenesis. DIO is the root of many diseases. The present review deals with various aspects of DIO and its target proteins that can be specifically used for its treatment. Also, the currently available treatment strategies have been explored. It was found that the expression of five proteins, namely, PPARγ, FTO, CDK4, 14-3-3 ζ protein, and Galectin-1, is upregulated in DIO. They can be used as potential targets for drug-designing studies. Thus, with these targets, the treatment strategy for DIO using natural bioactive compounds can be a safer alternative to medications and bariatric surgeries.
Collapse
Affiliation(s)
- Munmun Banerjee
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Veda P Pandey
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
- Institute of Food Processing and Technology, ONGC Centre for Advanced Studies, University of Lucknow, Lucknow 226007, India (Pesent Address)
| |
Collapse
|
3
|
Feng B, Tang P, He S, Peng Z, Mo Y, Zhu L, Wei Q. Associations between antimony exposure and glycated hemoglobin levels in adolescents aged 12-19 years: results from the NHANES 2013-2016. Front Public Health 2024; 12:1439034. [PMID: 39484344 PMCID: PMC11524935 DOI: 10.3389/fpubh.2024.1439034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Objective This study aimed to investigate the association between antimony (Sb) exposure and glycated hemoglobin (HbA1c) levels in adolescents. Methods A cross-sectional study of 751 adolescents aged 12-19 years was conducted via the National Health and Nutrition Examination Survey (NHANES, 2013-2016). Survey-weighted linear regression and restricted cubic spline (RCS) analyses were applied to evaluate the relationship of urinary Sb exposure with HbA1c. Results A significant relationship was observed between urinary Sb concentrations and HbA1c levels (percent change: 0.93; 95% CI: 0.42, 1.45) after full adjustment. After converting urinary Sb levels to a categorical variable by tertiles (T1-T3), the highest quantile was associated with a significant increase in HbA1c (percent change: 1.45; 95% CI: 0.38, 2.53) compared to T1. The RCS models showed a monotonically increasing relationship of urinary Sb with HbA1c. Subgroup analyses revealed a sex-specific relationship between urinary Sb exposure and HbA1c with a significant positive association in males and a non-significant positive association in females. Sensitivity analyses further confirmed the relationship between urinary Sb and HbA1c, even after excluding participants who were overweight or obese (percent change: 1.58%, 95% CI: 0.88, 2.28) and those with serum cotinine levels ≥ 1 ng/mL (percent change: 1.14%, 95% CI: 0.49, 1.80). Conclusion Our findings indicated that increased Sb exposure may correlate with higher HbA1c levels, especially in male adolescents. More studies are needed to further explore and validate the potential mechanisms.
Collapse
Affiliation(s)
- Baoying Feng
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Birth Defects Research Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Pediatric Disease, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Peng Tang
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Sheng He
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Birth Defects Research Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Pediatric Disease, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Birth Defects Research Laboratory, Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, Guangxi, China
| | - Zhenren Peng
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Birth Defects Research Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Pediatric Disease, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Birth Defects Research Laboratory, Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, Guangxi, China
| | - Yan Mo
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Birth Defects Research Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Pediatric Disease, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Liqiong Zhu
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Qiufen Wei
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Birth Defects Research Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Pediatric Disease, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| |
Collapse
|
4
|
Panghal A, Thakur A, Deore MS, Goyal M, Singh C, Kumar J. Multimetal exposure: Challenges in diagnostics, prevention, and treatment. J Biochem Mol Toxicol 2024; 38:e23745. [PMID: 38769715 DOI: 10.1002/jbt.23745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/20/2023] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Extensive use of heavy metals has posed a serious concern for ecosystem and human too. Heavy metals are toxic in nature and their accumulation in human body causes serious disorders such as neurological disease, cardiac disease, gastrointestinal problems, skin disorders, reproductive disease, lungs diseases, and so on. Furthermore, heavy metals not only affect the human health but also have a negative impact on the economy. In the current review, we have elaborated the impact of heavy metal exposure on human health and socioeconomics. We have discussed the molecular mechanism involved in the heavy metal-induced human disorders such as oxidative stress, neuroinflammation, and protein misfolding. Finally, we discussed the preventive measure and treatment strategy that could counter the negative effects of heavy metal intoxications. In conclusion, there is a substantial correlation between heavy metals and the onset and advancement of several health issues. Chelation treatment could be a useful tactic to lessen the toxic metal load and the difficulties that come with it.
Collapse
Affiliation(s)
- Archna Panghal
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, SAS Nagar, India
| | - Ashima Thakur
- Department of Pharmaceutical Sciences, ICFAI University, Solan, India
| | - Monika S Deore
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Raebareli, India
| | - Manoj Goyal
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar, India
| | - Jayant Kumar
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar, India
| |
Collapse
|
5
|
Wang Q, Wu J, Dong X, Niu W. Trends in urine lead and associated mortality in US adults: NHANES 1999-2018. Front Nutr 2024; 11:1411206. [PMID: 38873569 PMCID: PMC11169937 DOI: 10.3389/fnut.2024.1411206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Objectives This study aimed to describe the trends of urine lead among US adults aged ≥45 years and to explore its association with all-cause and disease-specific mortality. Methods This study enrolled 9,669 participants from the National Health and Nutrition Examination Survey, 1999-2018. Trends in urine lead were described by logistic regression analysis using the survey cycle as a continuous variable. Cox proportional hazard regression analyses were used to quantify the association between urine lead and mortality. Results There was an obvious decline in urine lead concentrations from 1.203 μg/L (95% confidence interval [CI]: 1.083-1.322) in 1999-2000 to 0.478 μg/L (95% CI: 0.433-0.523) in 2017-2018, and this decline was statistically significant (P < 0.001). Referring to the first tertile of urine lead concentrations, risk magnitude for all-cause mortality was significantly and linearly increased after adjustment (P = 0.026 and 0.020 for partially and fully adjusted models, respectively), and significance was attained for the comparison of the third vs. first tertile after full adjustment (hazard ratio [HR]: 1.17, 95% CI: 1.01 to 1.35). Treating urine lead continuously, the risk for all-cause mortality was statistically significant (HR: 1.18 and 1.19, 95% CI: 1.01 to 1.39 and 1.00 to 1.40 for partially and fully adjusted models). For cardiovascular disease-specific and cancer-specific mortality, there was no hint of statistical significance. Conclusions Our findings indicated that urine lead exhibited a declining trend from 1999-2000 to 2017-2018 in US adults aged ≥45 years, and high urine lead was a significant and independent risk factor for all-cause mortality.
Collapse
Affiliation(s)
- Qiong Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Jing Wu
- Center for Evidence-Based Medicine, Capital Institute of Pediatrics, Beijing, China
| | - Xiaoqun Dong
- Department of Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Wenquan Niu
- Center for Evidence-Based Medicine, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
6
|
Zhang K, Han Y, Gao YX, Gu FM, Cai T, Gu ZX, Yu ZJ, Min G, Gao YF, Hu R, Huang MX. Association between the triglyceride glucose index and length of hospital stay in patients with heart failure and type 2 diabetes in the intensive care unit: a retrospective cohort study. Front Endocrinol (Lausanne) 2024; 15:1354614. [PMID: 38800470 PMCID: PMC11127565 DOI: 10.3389/fendo.2024.1354614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 05/29/2024] Open
Abstract
Background The coexistence of heart failure and diabetes is prevalent, particularly in Intensive Care Units (ICU). However, the relationship between the triglyceride-glucose (TyG) index, heart failure, diabetes, and the length of hospital stay (LHS) in patients with cerebrovascular disease in the ICU remains uncertain. This study aims to investigate the association between the TyG index and LHS in patients with heart failure and diabetes. Methods This retrospective study utilized the Medical Information Mart for Intensive Care (MIMIC)-IV database to analyze patients with diabetes and heart failure. Participants were categorized into quartiles based on the TyG index, and the primary outcome was LHS. The association between the TyG index at ICU admission and LHS was examined through multivariable logistic regression models, restricted cubic spline regression, and subgroup analysis. Results The study included 635 patients with concurrent diabetes and heart failure. The fully adjusted model demonstrated a positive association between the TyG index and LHS. As a tertile variable (Q2 and Q3 vs Q1), the beta (β) values were 0.88 and 2.04, with a 95% confidence interval (95%CI) of -0.68 to 2.44 and 0.33 to 3.74, respectively. As a continuous variable, per 1 unit increment, the β (95% CI) was 1.13 (0.18 to 2.08). The TyG index's relationship with LHS showed linearity (non-linear p = 0.751). Stratified analyses further confirmed the robustness of this correlation. Conclusion The TyG index exhibited a linearly positive association with the LHS in patients with both heart failure and diabetes. Nevertheless, prospective, randomized, controlled studies are imperative to substantiate and validate the findings presented in this investigation.
Collapse
Affiliation(s)
- Kai Zhang
- Cardiovascular Surgery Department, The Second Hospital of Jilin University, Changchun, China
| | - Yu Han
- Department of Ophthalmology, First Hospital of Jilin University, Changchun, China
| | - Yu Xuan Gao
- Cardiovascular Surgery Department, The Second Hospital of Jilin University, Changchun, China
| | - Fang Ming Gu
- Cardiovascular Surgery Department, The Second Hospital of Jilin University, Changchun, China
| | - Tianyi Cai
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Zhao Xuan Gu
- Cardiovascular Surgery Department, The Second Hospital of Jilin University, Changchun, China
| | - Zhao Jia Yu
- Cardiovascular Surgery Department, The Second Hospital of Jilin University, Changchun, China
| | - Gao Min
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Ya Fang Gao
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Rui Hu
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Mao Xun Huang
- Cardiovascular Surgery Department, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Shen T, Zhong L, Ji G, Chen B, Liao M, Li L, Huang H, Li J, Wei Y, Wu S, Chen Z, Ma W, Dong M, Wu B, Liu T, Chen Q. Associations between metal(loid) exposure with overweight and obesity and abdominal obesity in the general population: A cross-sectional study in China. CHEMOSPHERE 2024; 350:140963. [PMID: 38114022 DOI: 10.1016/j.chemosphere.2023.140963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Previous studies have revealed links between metal(loid)s and health problems; however, the link between metal(loid)s and obesity remains controversial. We evaluated the cross-sectional association between metal(loid) exposure in whole blood and obesity among the general population. Vanadium (V), chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), molybdenum (Mo), cadmium (Cd), antimony (Sb), thallium (T1), and lead (Pb) were measured in 3029 subjects in Guangdong Province (China) using ICP-MS. The prevalence of overweight and obesity (OWO) and abdominal obesity (AOB) was calculated according to body mass index (BMI) and waist circumference (WC), respectively. Multivariate analysis showed that elevated blood Cu, Cd, and Pb levels were inversely associated with the risk of OWO, and these associations were confirmed by a linear dose-response relationship. Elevated blood Co concentration was associated with a decreased risk of AOB. A quantile g-computation approach showed a significantly negative mixture-effect of 13 metal(loid)s on OWO (OR: 0.96; 95% CI: 0.92, 0.99). Two metals-Ni and Mo-were inversely associated with the risk of OWO but positively associated with AOB. We cross-grouped the two obesity measurement types and found that the extremes of metal content were present in people with AOB only. In conclusion, blood Cu, Mo, Ni, Cd, and Pb were inversely associated with the risk of OWO. The presence of blood Co may be protective, while Ni and Mo exposure might increase the risk of AOB. The association between metal(loid) exposure and obesity warrants further investigation in longitudinal cohort studies.
Collapse
Affiliation(s)
- Tianran Shen
- Guangdong Pharmaceutical University, Guangzhou, 510310, China; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Liling Zhong
- Guangdong Pharmaceutical University, Guangzhou, 510310, China; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Guiyuan Ji
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511530, China
| | - Baolan Chen
- Guangdong Pharmaceutical University, Guangzhou, 510310, China; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Mengfan Liao
- Guangdong Pharmaceutical University, Guangzhou, 510310, China; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Lvrong Li
- Guangdong Pharmaceutical University, Guangzhou, 510310, China; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Huiming Huang
- Guangdong Pharmaceutical University, Guangzhou, 510310, China; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Jiajie Li
- Guangdong Pharmaceutical University, Guangzhou, 510310, China; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Yuan Wei
- Guangdong Pharmaceutical University, Guangzhou, 510310, China; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Shan Wu
- Guangdong Pharmaceutical University, Guangzhou, 510310, China; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Zihui Chen
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511530, China
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Ming Dong
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510399, China
| | - Banghua Wu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510399, China.
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qingsong Chen
- Guangdong Pharmaceutical University, Guangzhou, 510310, China; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China; NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, 511400, China.
| |
Collapse
|
8
|
Wei R, Meng Z, Zerizghi T, Luo J, Guo Q. A comprehensive method of source apportionment and ecological risk assessment of soil heavy metals: A case study in Qingyuan city, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163555. [PMID: 37080314 DOI: 10.1016/j.scitotenv.2023.163555] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
The study combined multiple models to provide a deeper understanding to soil heavy metal contamination and source information, which are essential for controlling pollution and reducing human health risks. In this study, the agricultural soils were collected from the Qingyuan City of China as an example. The multiple models (APCS/MLR, PMF, and GDM) were used to identify and quantitatively apportion the main sources of heavy metal pollution in the area. The results showed that Cu (56.4 %), Ni (70.9 %), B (44.5 %), and Cr (72.8 %) were associated with natural sources, such as soil parent material and soil-forming processes. However, Pb (41.2 %), Zn (61.8 %), Hg (67.0 %), and Cd (69.6 %) were associated with agricultural activities, atmospheric deposition, vehicle exhaust emissions, and vehicle tires, while Mo, Se, and Mn were possibly derived from natural sources, including rock weathering and soil parent materials. Additionally, the network of environmental analysis revealed that soil microbes are far more sensitive to soil heavy metal pollution than herbivores, vegetation, and carnivores. This study can serve as a guideline for reducing the ecological and health risks associated with heavy metals in soil by controlling their preferential sources. Environmental implication Combining multiple models is more effective approach to wide understanding of heavy metal contamination and source information, which is essential for controlling pollution and reducing human health risks. Based on multiple models (APCS/MLR, PMF, and GDM) and network environ analysis, a comprehensive method for apportioning soil heavy metal sources and assessing ecological risk had been provided. Further, the present study can be a guideline for reducing ecological and health risks by heavy metals in soil by controlling preferential sources.
Collapse
Affiliation(s)
- Rongfei Wei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zirui Meng
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Teklit Zerizghi
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Qingjun Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
9
|
Wu S, Li L, Ji G, Xing X, Li J, Ma A, Wei Y, Zhao D, Huang H, Ma W, Wu B, Dong M, Liu T, Chen Q. Association of multi-metals with the risk of hypertension and the interaction with obesity: A cross-sectional study in China. Front Public Health 2023; 11:1090935. [PMID: 37006554 PMCID: PMC10063192 DOI: 10.3389/fpubh.2023.1090935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
BackgroundEnvironmental exposure to multiple metals have been inconsistently associated with hypertension. Obesity is an important independent risk factor for hypertension, and few studies have assessed the interaction between obesity and metals in this context. We aimed to clarify their association and interaction.MethodsThis cross-sectional study included 3,063 adults from 11 districts or counties, Guangdong. We measured the whole blood levels of 13 metals and used multipollutant-based statistical methods to analyze the association of metals with hypertension. The interaction between metals and obesity on hypertension was assessed on additive and multiplicative scales.ResultsFour metals (manganese, arsenic, cadmium, and lead) were significantly associated with hypertension risk, five metals (manganese, zinc, arsenic, cadmium, and lead) were related to elevated SBP levels, five metals (manganese, zinc, selenium, cadmium, and lead) were associated with elevated DBP levels in single-metal model. Manganese remained significantly related to hypertension risk [odds ratio, 1.35 (1.02–1.78)] after adjusting for these four metals. Significant positive dose-response relationships between manganese, arsenic, cadmium, lead and hypertension risk were observed (P for overall < 0.001, P for non-linearity > 0.05). Compared with those in the lowest quartile, participants in the highest manganese quartile had a 2.83 mmHg (95% Cl: 0.71–4.96) (PFDR = 0.040) higher level of SBP. Individuals in the highest quartiles of zinc and lead had a 1.45 mmHg (0.10–2.81) (PFDR = 0.033) and 2.06 mmHg (0.59–3.53) (PFDR = 0.020) higher level of DBP, respectively. The negative interactions between cadmium, lead and obesity influences hypertension risk. BKMR analysis showed a significant joint effect of manganese, arsenic, cadmium and lead on hypertension when the concentrations of four metals were at or above their 55th percentile compared to their median values.ConclusionsThe combined effect of four metals (manganese, arsenic, cadmium and lead) were associated with the prevalence of hypertension. Potential interaction effects of cadmium, lead and obesity on hypertension risk may exist. Further cohort studies in larger population are needed to clarify these findings.
Collapse
Affiliation(s)
- Shan Wu
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lvrong Li
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guiyuan Ji
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Xiaohui Xing
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
- Innovation Team of Environmental Health Assessment and Public Health Strategy, Guangzhou, China
| | - Jiajie Li
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Anping Ma
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Yuan Wei
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dongwei Zhao
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huimin Huang
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- Disease Control and Prevention Institute of Jinan University, Jinan University, Guangzhou, China
| | - Banghua Wu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Ming Dong
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
- Ming Dong
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- Disease Control and Prevention Institute of Jinan University, Jinan University, Guangzhou, China
- Tao Liu
| | - Qingsong Chen
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
- National Medical Products Administration (NMPA) Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Qingsong Chen
| |
Collapse
|
10
|
Critical Overview on Endocrine Disruptors in Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24054537. [PMID: 36901966 PMCID: PMC10003192 DOI: 10.3390/ijms24054537] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Diabetes mellitus is a major public health problem in all countries due to its high human and economic burden. Major metabolic alterations are associated with the chronic hyperglycemia that characterizes diabetes and causes devastating complications, including retinopathy, kidney failure, coronary disease and increased cardiovascular mortality. The most common form is type 2 diabetes (T2D) accounting for 90 to 95% of the cases. These chronic metabolic disorders are heterogeneous to which genetic factors contribute, but so do prenatal and postnatal life environmental factors including a sedentary lifestyle, overweight, and obesity. However, these classical risk factors alone cannot explain the rapid evolution of the prevalence of T2D and the high prevalence of type 1 diabetes in particular areas. Among environmental factors, we are in fact exposed to a growing amount of chemical molecules produced by our industries or by our way of life. In this narrative review, we aim to give a critical overview of the role of these pollutants that can interfere with our endocrine system, the so-called endocrine-disrupting chemicals (EDCs), in the pathophysiology of diabetes and metabolic disorders.
Collapse
|