1
|
Yurchenko SB. Panpsychism and dualism in the science of consciousness. Neurosci Biobehav Rev 2024; 165:105845. [PMID: 39106941 DOI: 10.1016/j.neubiorev.2024.105845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
A resurgence of panpsychism and dualism is a matter of ongoing debate in modern neuroscience. Although metaphysically hostile, panpsychism and dualism both persist in the science of consciousness because the former is proposed as a straightforward answer to the problem of integrating consciousness into the fabric of physical reality, whereas the latter proposes a simple solution to the problem of free will by endowing consciousness with causal power as a prerequisite for moral responsibility. I take the Integrated Information Theory (IIT) as a paradigmatic exemplar of a theory of consciousness (ToC) that makes its commitments to panpsychism and dualism within a unified framework. These features are not, however, unique for IIT. Many ToCs are implicitly prone to some degree of panpsychism whenever they strive to propose a universal definition of consciousness, associated with one or another known phenomenon. Yet, those ToCs that can be characterized as strongly emergent are at risk of being dualist. A remedy against both covert dualism and uncomfortable corollaries of panpsychism can be found in the evolutionary theory of life, called here "bioprotopsychism" and generalized in terms of autopoiesis and the free energy principle. Bioprotopsychism provides a biologically inspired basis for a minimalist approach to consciousness via the triad "chemotaxis-efference copy mechanism-counterfactual active inference" by associating the stream of weakly emergent conscious states with an amount of information (best guesses) of the brain, engaged in unconscious predictive processing.
Collapse
Affiliation(s)
- Sergey B Yurchenko
- Brain and Consciousness Independent Research Center, Andijan 710132, Uzbekistan.
| |
Collapse
|
2
|
Ruan Z, Li H. Two Levels of Integrated Information Theory: From Autonomous Systems to Conscious Life. ENTROPY (BASEL, SWITZERLAND) 2024; 26:761. [PMID: 39330094 PMCID: PMC11431274 DOI: 10.3390/e26090761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/03/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
Integrated Information Theory (IIT) is one of the most prominent candidates for a theory of consciousness, although it has received much criticism for trying to live up to expectations. Based on the relevance of three issues generalized from the developments of IITs, we have summarized the main ideas of IIT into two levels. At the second level, IIT claims to be strictly anchoring consciousness, but the first level on which it is based is more about autonomous systems or systems that have reached some other critical complexity. In this paper, we argue that the clear gap between the two levels of explanation of IIT has led to these criticisms and that its panpsychist tendency plays a crucial role in this. We suggest that the problems of IIT are far from being "pseudoscience", and by adding more necessary elements, when the first level is combined with the second level, IIT can genuinely move toward an appropriate theory of consciousness that can provide necessary and sufficient interpretations.
Collapse
Affiliation(s)
- Zenan Ruan
- Department of Public Administration, Hangzhou Institute of Administration, Hangzhou 310024, China
| | - Hengwei Li
- School of Philosophy, Zhejiang University, Hangzhou 310058, China
- Center for the Study of Language and Cognition, Zhejiang University, Hangzhou 310058, China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Sheikhbahaee Z, Safron A, Hesp C, Dumas G. From physics to sentience: Deciphering the semantics of the free-energy principle and evaluating its claims: Comment on "Path integrals, particular kinds, and strange things" by Karl Friston et al. Phys Life Rev 2023; 47:276-278. [PMID: 37992466 DOI: 10.1016/j.plrev.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Affiliation(s)
- Zahra Sheikhbahaee
- CHU Sainte-Justine Research Center, Department of Psychiatry, University of Montreal, Canada
| | - Adam Safron
- Center for Psychedelic & Consciousness Research, John Hopkins University, United States of America
| | - Casper Hesp
- Department for Developmental Psychology, University of Amsterdam, Netherlands
| | - Guillaume Dumas
- CHU Sainte-Justine Research Center, Department of Psychiatry, University of Montreal, Canada; Mila - Quebec AI Institute, Canada.
| |
Collapse
|
4
|
Liang J. Harmonizing minds and machines: survey on transformative power of machine learning in music. Front Neurorobot 2023; 17:1267561. [PMID: 38023456 PMCID: PMC10668594 DOI: 10.3389/fnbot.2023.1267561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
This survey explores the symbiotic relationship between Machine Learning (ML) and music, focusing on the transformative role of Artificial Intelligence (AI) in the musical sphere. Beginning with a historical contextualization of the intertwined trajectories of music and technology, the paper discusses the progressive use of ML in music analysis and creation. Emphasis is placed on present applications and future potential. A detailed examination of music information retrieval, automatic music transcription, music recommendation, and algorithmic composition presents state-of-the-art algorithms and their respective functionalities. The paper underscores recent advancements, including ML-assisted music production and emotion-driven music generation. The survey concludes with a prospective contemplation of future directions of ML within music, highlighting the ongoing growth, novel applications, and anticipation of deeper integration of ML across musical domains. This comprehensive study asserts the profound potential of ML to revolutionize the musical landscape and encourages further exploration and advancement in this emerging interdisciplinary field.
Collapse
Affiliation(s)
- Jing Liang
- Department of Music, Zhumadian Preschool Education College, Henan, China
| |
Collapse
|
5
|
Sanfey J. Simultaneity of consciousness with physical reality: the key that unlocks the mind-matter problem. Front Psychol 2023; 14:1173653. [PMID: 37842692 PMCID: PMC10568466 DOI: 10.3389/fpsyg.2023.1173653] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
The problem of explaining the relationship between subjective experience and physical reality remains difficult and unresolved. In most explanations, consciousness is epiphenomenal, without causal power. The most notable exception is Integrated Information Theory (IIT), which provides a causal explanation for consciousness. However, IIT relies on an identity between subjectivity and a particular type of physical structure, namely with an information structure that has intrinsic causal power greater than the sum of its parts. Any theory that relies on a psycho-phyiscal identity must eventually appeal to panpsychism, which undermines that theory's claim to be fundamental. IIT has recently pivoted towards a strong version of causal emergence, but macroscopic structures cannot be stronger causally than their microphysical parts without some new physical law or governing principle. The approach taken here is designed to uncover such a principle. The decisive argument is entirely deductive from initial premises that are phenomenologically certain. If correct, the arguments prove that conscious experience is sufficient to create additional degrees of causal freedom independently of the content of experience, and in a manner that is unpredictable and unobservable by any temporally sequential means. This provides a fundamental principle about consciousness, and a conceptual bridge between it and the physics describing what is experienced. The principle makes testable predictions about brain function, with notable differences from IIT, some of which are also empirically testable.
Collapse
|
6
|
Ruan Z. The necessary and sufficient mechanism of consciousness in a layered mind. Front Psychol 2023; 14:1280959. [PMID: 37842721 PMCID: PMC10568493 DOI: 10.3389/fpsyg.2023.1280959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Affiliation(s)
- Zenan Ruan
- Center for the Study of Language and Cognition, School of Philosophy, Zhejiang University, Hangzhou, China
- Department of Automation, School of Mechanical Engineering and Automation, Zhejiang SCI-TECH University, Hangzhou, China
| |
Collapse
|
7
|
Molina I, Molina-Perez E, Sobrino F, Tellez-Rojas MA, Zamora-Maldonado HC, Plaza-Ferreira M, Orozco Y, Espinoza-Juarez V, Serra-Barragán L, De Unanue A. Current research trends on cognition, integrative complexity, and decision-making: a systematic literature review using activity theory and neuroscience. Front Psychol 2023; 14:1156696. [PMID: 37794910 PMCID: PMC10546895 DOI: 10.3389/fpsyg.2023.1156696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/22/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction This article presents a systematic literature review that follows the PRISMA and PICOS guidelines to analyze current research trends on cognition, integrative complexity (IC) (a cognitive feature focusing on information processing in a person's response rather than its quantity or quality), and decision-making from the perspectives of activity theory and neuroscience. Methods The study examines 31 papers published between 2012 and 2022 and 19 articles specifically related to neuroscience. We performed a content analysis using six categories within activity theory: subjects, objects, rules, community, division of labor, and outcomes. Results The study investigates the relationship between decision-making outcomes and IC as a cognitive feature in various contexts. Additionally, content analysis on neuroscience and IC revealed significant research gaps, including understanding the nature of IC, challenges related to its measurement, and differentiation from other cognitive features. We also identify opportunities for investigating the brain's activity during decision-making in relation to IC. Discussion We address the need for a more precise categorization of IC in studies of cognition, IC, and decision-making. We discuss the implications of our analysis for understanding the cognitive nature of IC and the potential of neuroscience methods for studying this attribute.
Collapse
Affiliation(s)
- Isaac Molina
- School of Government and Public Transformation, Tecnologico de Monterrey, Mexico City, Mexico
| | - Edmundo Molina-Perez
- School of Government and Public Transformation, Tecnologico de Monterrey, Mexico City, Mexico
| | - Fernanda Sobrino
- School of Government and Public Transformation, Tecnologico de Monterrey, Mexico City, Mexico
| | | | | | - María Plaza-Ferreira
- School of Government and Public Transformation, Tecnologico de Monterrey, Mexico City, Mexico
| | - Yessica Orozco
- School of Government and Public Transformation, Tecnologico de Monterrey, Mexico City, Mexico
| | - Victor Espinoza-Juarez
- School of Government and Public Transformation, Tecnologico de Monterrey, Mexico City, Mexico
| | - Luis Serra-Barragán
- School of Government and Public Transformation, Tecnologico de Monterrey, Mexico City, Mexico
| | - Adolfo De Unanue
- School of Government and Public Transformation, Tecnologico de Monterrey, Mexico City, Mexico
| |
Collapse
|
8
|
Hunt T, Jones M. Fields or firings? Comparing the spike code and the electromagnetic field hypothesis. Front Psychol 2023; 14:1029715. [PMID: 37546464 PMCID: PMC10400444 DOI: 10.3389/fpsyg.2023.1029715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 06/09/2023] [Indexed: 08/08/2023] Open
Abstract
Where is consciousness? Neurobiological theories of consciousness look primarily to synaptic firing and "spike codes" as the physical substrate of consciousness, although the specific mechanisms of consciousness remain unknown. Synaptic firing results from electrochemical processes in neuron axons and dendrites. All neurons also produce electromagnetic (EM) fields due to various mechanisms, including the electric potential created by transmembrane ion flows, known as "local field potentials," but there are also more meso-scale and macro-scale EM fields present in the brain. The functional role of these EM fields has long been a source of debate. We suggest that these fields, in both their local and global forms, may be the primary seat of consciousness, working as a gestalt with synaptic firing and other aspects of neuroanatomy to produce the marvelous complexity of minds. We call this assertion the "electromagnetic field hypothesis." The neuroanatomy of the brain produces the local and global EM fields but these fields are not identical with the anatomy of the brain. These fields are produced by, but not identical with, the brain, in the same manner that twigs and leaves are produced by a tree's branches and trunk but are not the same as the branches and trunk. As such, the EM fields represent the more granular, both spatially and temporally, aspects of the brain's structure and functioning than the neuroanatomy of the brain. The brain's various EM fields seem to be more sensitive to small changes than the neuroanatomy of the brain. We discuss issues with the spike code approach as well as the various lines of evidence supporting our argument that the brain's EM fields may be the primary seat of consciousness. This evidence (which occupies most of the paper) suggests that oscillating neural EM fields may make firing in neural circuits oscillate, and these oscillating circuits may help unify and guide conscious cognition.
Collapse
Affiliation(s)
- Tam Hunt
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, United States
| | - Mostyn Jones
- Formerly of Washington and Jefferson College, Washington, PA, United States
| |
Collapse
|
9
|
Huang Z. Temporospatial Nestedness in Consciousness: An Updated Perspective on the Temporospatial Theory of Consciousness. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1074. [PMID: 37510023 PMCID: PMC10378228 DOI: 10.3390/e25071074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Time and space are fundamental elements that permeate the fabric of nature, and their significance in relation to neural activity and consciousness remains a compelling yet unexplored area of research. The Temporospatial Theory of Consciousness (TTC) provides a framework that links time, space, neural activity, and consciousness, shedding light on the intricate relationships among these dimensions. In this review, I revisit the fundamental concepts and mechanisms proposed by the TTC, with a particular focus on the central concept of temporospatial nestedness. I propose an extension of temporospatial nestedness by incorporating the nested relationship between the temporal circuit and functional geometry of the brain. To further unravel the complexities of temporospatial nestedness, future research directions should emphasize the characterization of functional geometry and the temporal circuit across multiple spatial and temporal scales. Investigating the links between these scales will yield a more comprehensive understanding of how spatial organization and temporal dynamics contribute to conscious states. This integrative approach holds the potential to uncover novel insights into the neural basis of consciousness and reshape our understanding of the world-brain dynamic.
Collapse
Affiliation(s)
- Zirui Huang
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Nemirovsky IE, Popiel NJM, Rudas J, Caius M, Naci L, Schiff ND, Owen AM, Soddu A. An implementation of integrated information theory in resting-state fMRI. Commun Biol 2023; 6:692. [PMID: 37407655 DOI: 10.1038/s42003-023-05063-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Integrated Information Theory was developed to explain and quantify consciousness, arguing that conscious systems consist of elements that are integrated through their causal properties. This study presents an implementation of Integrated Information Theory 3.0, the latest version of this framework, to functional MRI data. Data were acquired from 17 healthy subjects who underwent sedation with propofol, a short-acting anaesthetic. Using the PyPhi software package, we systematically analyze how Φmax, a measure of integrated information, is modulated by the sedative in different resting-state networks. We compare Φmax to other proposed measures of conscious level, including the previous version of integrated information, Granger causality, and correlation-based functional connectivity. Our results indicate that Φmax presents a variety of sedative-induced behaviours for different networks. Notably, changes to Φmax closely reflect changes to subjects' conscious level in the frontoparietal and dorsal attention networks, which are responsible for higher-order cognitive functions. In conclusion, our findings present important insight into different measures of conscious level that will be useful in future implementations to functional MRI and other forms of neuroimaging.
Collapse
Affiliation(s)
- Idan E Nemirovsky
- Western Institute for Neuroscience, Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada.
| | - Nicholas J M Popiel
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
| | - Jorge Rudas
- Institute of Biotechnology, Universidad Nacional de Colombia, Cra 45, Bogotá, Colombia
| | - Matthew Caius
- Western Institute for Neuroscience, Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
- Department of Medical Biophysics, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Nicholas D Schiff
- Feil Family Brain Mind Research Institute, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Adrian M Owen
- Department of Physiology and Pharmacology and Department of Psychology, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Andrea Soddu
- Western Institute for Neuroscience, Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| |
Collapse
|
11
|
G-Guzmán E, Perl YS, Vohryzek J, Escrichs A, Manasova D, Türker B, Tagliazucchi E, Kringelbach M, Sitt JD, Deco G. The lack of temporal brain dynamics asymmetry as a signature of impaired consciousness states. Interface Focus 2023; 13:20220086. [PMID: 37065259 PMCID: PMC10102727 DOI: 10.1098/rsfs.2022.0086] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/17/2023] [Indexed: 04/18/2023] Open
Abstract
Life is a constant battle against equilibrium. From the cellular level to the macroscopic scale, living organisms as dissipative systems require the violation of their detailed balance, i.e. metabolic enzymatic reactions, in order to survive. We present a framework based on temporal asymmetry as a measure of non-equilibrium. By means of statistical physics, it was discovered that temporal asymmetries establish an arrow of time useful for assessing the reversibility in human brain time series. Previous studies in human and non-human primates have shown that decreased consciousness states such as sleep and anaesthesia result in brain dynamics closer to the equilibrium. Furthermore, there is growing interest in the analysis of brain symmetry based on neuroimaging recordings and since it is a non-invasive technique, it can be extended to different brain imaging modalities and applied at different temporo-spatial scales. In the present study, we provide a detailed description of our methodological approach, paying special attention to the theories that motivated this work. We test, for the first time, the reversibility analysis in human functional magnetic resonance imaging data in patients suffering from disorder of consciousness. We verify that the tendency of a decrease in the asymmetry of the brain signal together with the decrease in non-stationarity are key characteristics of impaired consciousness states. We expect that this work will open the way for assessing biomarkers for patients' improvement and classification, as well as motivating further research on the mechanistic understanding underlying states of impaired consciousness.
Collapse
Affiliation(s)
- Elvira G-Guzmán
- Department of Information and Communication Technologies, Centre for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Yonatan Sanz Perl
- Department of Information and Communication Technologies, Centre for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm Physiological Investigation of Clinically Normal and Impaired Cognition Team, CNRS, 75013, Paris, France
| | - Jakub Vohryzek
- Department of Information and Communication Technologies, Centre for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
| | - Anira Escrichs
- Department of Information and Communication Technologies, Centre for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Dragana Manasova
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm Physiological Investigation of Clinically Normal and Impaired Cognition Team, CNRS, 75013, Paris, France
- Université Paris Cité, Paris, France
| | - Başak Türker
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm Physiological Investigation of Clinically Normal and Impaired Cognition Team, CNRS, 75013, Paris, France
| | - Enzo Tagliazucchi
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires, Argentina
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Morten Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Jutland, Denmark
| | - Jacobo D. Sitt
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm Physiological Investigation of Clinically Normal and Impaired Cognition Team, CNRS, 75013, Paris, France
| | - Gustavo Deco
- Department of Information and Communication Technologies, Centre for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Department of Neuropsychology, Max Planck Institute for human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
12
|
Northoff G, Klar P, Bein M, Safron A. As without, so within: how the brain's temporo-spatial alignment to the environment shapes consciousness. Interface Focus 2023; 13:20220076. [PMID: 37065263 PMCID: PMC10102730 DOI: 10.1098/rsfs.2022.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/02/2023] [Indexed: 04/18/2023] Open
Abstract
Consciousness is constituted by a structure that includes contents as foreground and the environment as background. This structural relation between the experiential foreground and background presupposes a relationship between the brain and the environment, often neglected in theories of consciousness. The temporo-spatial theory of consciousness addresses the brain-environment relation by a concept labelled 'temporo-spatial alignment'. Briefly, temporo-spatial alignment refers to the brain's neuronal activity's interaction with and adaption to interoceptive bodily and exteroceptive environmental stimuli, including their symmetry as key for consciousness. Combining theory and empirical data, this article attempts to demonstrate the yet unclear neuro-phenomenal mechanisms of temporo-spatial alignment. First, we suggest three neuronal layers of the brain's temporo-spatial alignment to the environment. These neuronal layers span across a continuum from longer to shorter timescales. (i) The background layer comprises longer and more powerful timescales mediating topographic-dynamic similarities between different subjects' brains. (ii) The intermediate layer includes a mixture of medium-scaled timescales allowing for stochastic matching between environmental inputs and neuronal activity through the brain's intrinsic neuronal timescales and temporal receptive windows. (iii) The foreground layer comprises shorter and less powerful timescales for neuronal entrainment of stimuli temporal onset through neuronal phase shifting and resetting. Second, we elaborate on how the three neuronal layers of temporo-spatial alignment correspond to their respective phenomenal layers of consciousness. (i) The inter-subjectively shared contextual background of consciousness. (ii) An intermediate layer that mediates the relationship between different contents of consciousness. (iii) A foreground layer that includes specific fast-changing contents of consciousness. Overall, temporo-spatial alignment may provide a mechanism whose different neuronal layers modulate corresponding phenomenal layers of consciousness. Temporo-spatial alignment can provide a bridging principle for linking physical-energetic (free energy), dynamic (symmetry), neuronal (three layers of distinct time-space scales) and phenomenal (form featured by background-intermediate-foreground) mechanisms of consciousness.
Collapse
Affiliation(s)
- Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, TheRoyal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada K1Z 7K4
- Mental Health Centre, Zhejiang University School of Medicine, Hangzhou 310053, People's Republic of China
- Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou 310053, People's Republic of China
| | - Philipp Klar
- Medical Faculty, C. & O. Vogt-Institute for Brain Research, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Magnus Bein
- Department of Biology and Department of Psychiatry, McGill University, Quebec, Canada H3A 0G4
| | - Adam Safron
- Center for Psychedelic and Consciousness Research, Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cognitive Science Program, Indiana University, Bloomington, IN 47405, USA
- Institute for Advanced Consciousness Studies, Santa Monica, CA 90403, USA
| |
Collapse
|
13
|
Yurchenko SB. A systematic approach to brain dynamics: cognitive evolution theory of consciousness. Cogn Neurodyn 2023; 17:575-603. [PMID: 37265655 PMCID: PMC10229528 DOI: 10.1007/s11571-022-09863-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 12/18/2022] Open
Abstract
The brain integrates volition, cognition, and consciousness seamlessly over three hierarchical (scale-dependent) levels of neural activity for their emergence: a causal or 'hard' level, a computational (unconscious) or 'soft' level, and a phenomenal (conscious) or 'psyche' level respectively. The cognitive evolution theory (CET) is based on three general prerequisites: physicalism, dynamism, and emergentism, which entail five consequences about the nature of consciousness: discreteness, passivity, uniqueness, integrity, and graduation. CET starts from the assumption that brains should have primarily evolved as volitional subsystems of organisms, not as prediction machines. This emphasizes the dynamical nature of consciousness in terms of critical dynamics to account for metastability, avalanches, and self-organized criticality of brain processes, then coupling it with volition and cognition in a framework unified over the levels. Consciousness emerges near critical points, and unfolds as a discrete stream of momentary states, each volitionally driven from oldest subcortical arousal systems. The stream is the brain's way of making a difference via predictive (Bayesian) processing. Its objective observables could be complexity measures reflecting levels of consciousness and its dynamical coherency to reveal how much knowledge (information gain) the brain acquires over the stream. CET also proposes a quantitative classification of both disorders of consciousness and mental disorders within that unified framework.
Collapse
|
14
|
Guerrero LE, Castillo LF, Arango-López J, Moreira F. A systematic review of integrated information theory: a perspective from artificial intelligence and the cognitive sciences. Neural Comput Appl 2023. [DOI: 10.1007/s00521-023-08328-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
15
|
Ruan Z. The fundamental challenge of a future theory of consciousness. Front Psychol 2023; 13:1029105. [PMID: 36710768 PMCID: PMC9878380 DOI: 10.3389/fpsyg.2022.1029105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023] Open
Affiliation(s)
- Zenan Ruan
- Zhejiang University—University of Luxembourg Joint Laboratory on AIs, Robotics and Reasoning (ZLAIRE), School of Philosophy, Zhejiang University, Hangzhou, China
- Department of Philosophy of Science and Technology, School of Philosophy, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Safron A. Integrated world modeling theory expanded: Implications for the future of consciousness. Front Comput Neurosci 2022; 16:642397. [PMID: 36507308 PMCID: PMC9730424 DOI: 10.3389/fncom.2022.642397] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 10/24/2022] [Indexed: 11/27/2022] Open
Abstract
Integrated world modeling theory (IWMT) is a synthetic theory of consciousness that uses the free energy principle and active inference (FEP-AI) framework to combine insights from integrated information theory (IIT) and global neuronal workspace theory (GNWT). Here, I first review philosophical principles and neural systems contributing to IWMT's integrative perspective. I then go on to describe predictive processing models of brains and their connections to machine learning architectures, with particular emphasis on autoencoders (perceptual and active inference), turbo-codes (establishment of shared latent spaces for multi-modal integration and inferential synergy), and graph neural networks (spatial and somatic modeling and control). Future directions for IIT and GNWT are considered by exploring ways in which modules and workspaces may be evaluated as both complexes of integrated information and arenas for iterated Bayesian model selection. Based on these considerations, I suggest novel ways in which integrated information might be estimated using concepts from probabilistic graphical models, flow networks, and game theory. Mechanistic and computational principles are also considered with respect to the ongoing debate between IIT and GNWT regarding the physical substrates of different kinds of conscious and unconscious phenomena. I further explore how these ideas might relate to the "Bayesian blur problem," or how it is that a seemingly discrete experience can be generated from probabilistic modeling, with some consideration of analogies from quantum mechanics as potentially revealing different varieties of inferential dynamics. I go on to describe potential means of addressing critiques of causal structure theories based on network unfolding, and the seeming absurdity of conscious expander graphs (without cybernetic symbol grounding). Finally, I discuss future directions for work centered on attentional selection and the evolutionary origins of consciousness as facilitated "unlimited associative learning." While not quite solving the Hard problem, this article expands on IWMT as a unifying model of consciousness and the potential future evolution of minds.
Collapse
Affiliation(s)
- Adam Safron
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Center for Psychedelic and Consciousness Research, Baltimore, MD, United States
- Cognitive Science Program, Indiana University, Bloomington, IN, United States
- Institute for Advanced Consciousness Studies (IACS), Santa Monica, CA, United States
| |
Collapse
|
17
|
Yurchenko SB. From the origins to the stream of consciousness and its neural correlates. Front Integr Neurosci 2022; 16:928978. [PMID: 36407293 PMCID: PMC9672924 DOI: 10.3389/fnint.2022.928978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/12/2022] [Indexed: 09/22/2023] Open
Abstract
There are now dozens of very different theories of consciousness, each somehow contributing to our understanding of its nature. The science of consciousness needs therefore not new theories but a general framework integrating insights from those, yet not making it a still-born "Frankenstein" theory. First, the framework must operate explicitly on the stream of consciousness, not on its static description. Second, this dynamical account must also be put on the evolutionary timeline to explain the origins of consciousness. The Cognitive Evolution Theory (CET), outlined here, proposes such a framework. This starts with the assumption that brains have primarily evolved as volitional subsystems of organisms, inherited from primitive (fast and random) reflexes of simplest neural networks, only then resembling error-minimizing prediction machines. CET adopts the tools of critical dynamics to account for metastability, scale-free avalanches, and self-organization which are all intrinsic to brain dynamics. This formalizes the stream of consciousness as a discrete (transitive, irreflexive) chain of momentary states derived from critical brain dynamics at points of phase transitions and mapped then onto a state space as neural correlates of a particular conscious state. The continuous/discrete dichotomy appears naturally between the brain dynamics at the causal level and conscious states at the phenomenal level, each volitionally triggered from arousal centers of the brainstem and cognitively modulated by thalamocortical systems. Their objective observables can be entropy-based complexity measures, reflecting the transient level or quantity of consciousness at that moment.
Collapse
|
18
|
Safron A, Çatal O, Verbelen T. Generalized Simultaneous Localization and Mapping (G-SLAM) as unification framework for natural and artificial intelligences: towards reverse engineering the hippocampal/entorhinal system and principles of high-level cognition. Front Syst Neurosci 2022; 16:787659. [PMID: 36246500 PMCID: PMC9563348 DOI: 10.3389/fnsys.2022.787659] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
Simultaneous localization and mapping (SLAM) represents a fundamental problem for autonomous embodied systems, for which the hippocampal/entorhinal system (H/E-S) has been optimized over the course of evolution. We have developed a biologically-inspired SLAM architecture based on latent variable generative modeling within the Free Energy Principle and Active Inference (FEP-AI) framework, which affords flexible navigation and planning in mobile robots. We have primarily focused on attempting to reverse engineer H/E-S "design" properties, but here we consider ways in which SLAM principles from robotics may help us better understand nervous systems and emergent minds. After reviewing LatentSLAM and notable features of this control architecture, we consider how the H/E-S may realize these functional properties not only for physical navigation, but also with respect to high-level cognition understood as generalized simultaneous localization and mapping (G-SLAM). We focus on loop-closure, graph-relaxation, and node duplication as particularly impactful architectural features, suggesting these computational phenomena may contribute to understanding cognitive insight (as proto-causal-inference), accommodation (as integration into existing schemas), and assimilation (as category formation). All these operations can similarly be describable in terms of structure/category learning on multiple levels of abstraction. However, here we adopt an ecological rationality perspective, framing H/E-S functions as orchestrating SLAM processes within both concrete and abstract hypothesis spaces. In this navigation/search process, adaptive cognitive equilibration between assimilation and accommodation involves balancing tradeoffs between exploration and exploitation; this dynamic equilibrium may be near optimally realized in FEP-AI, wherein control systems governed by expected free energy objective functions naturally balance model simplicity and accuracy. With respect to structure learning, such a balance would involve constructing models and categories that are neither too inclusive nor exclusive. We propose these (generalized) SLAM phenomena may represent some of the most impactful sources of variation in cognition both within and between individuals, suggesting that modulators of H/E-S functioning may potentially illuminate their adaptive significances as fundamental cybernetic control parameters. Finally, we discuss how understanding H/E-S contributions to G-SLAM may provide a unifying framework for high-level cognition and its potential realization in artificial intelligences.
Collapse
Affiliation(s)
- Adam Safron
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Cognitive Science Program, Indiana University, Bloomington, IN, United States
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
| | - Ozan Çatal
- IDLab, Department of Information Technology, Ghent University—imec, Ghent, Belgium
| | - Tim Verbelen
- IDLab, Department of Information Technology, Ghent University—imec, Ghent, Belgium
| |
Collapse
|
19
|
Volzhenin K, Changeux JP, Dumas G. Multilevel development of cognitive abilities in an artificial neural network. Proc Natl Acad Sci U S A 2022; 119:e2201304119. [PMID: 36122214 PMCID: PMC9522351 DOI: 10.1073/pnas.2201304119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
Several neuronal mechanisms have been proposed to account for the formation of cognitive abilities through postnatal interactions with the physical and sociocultural environment. Here, we introduce a three-level computational model of information processing and acquisition of cognitive abilities. We propose minimal architectural requirements to build these levels, and how the parameters affect their performance and relationships. The first sensorimotor level handles local nonconscious processing, here during a visual classification task. The second level or cognitive level globally integrates the information from multiple local processors via long-ranged connections and synthesizes it in a global, but still nonconscious, manner. The third and cognitively highest level handles the information globally and consciously. It is based on the global neuronal workspace (GNW) theory and is referred to as the conscious level. We use the trace and delay conditioning tasks to, respectively, challenge the second and third levels. Results first highlight the necessity of epigenesis through the selection and stabilization of synapses at both local and global scales to allow the network to solve the first two tasks. At the global scale, dopamine appears necessary to properly provide credit assignment despite the temporal delay between perception and reward. At the third level, the presence of interneurons becomes necessary to maintain a self-sustained representation within the GNW in the absence of sensory input. Finally, while balanced spontaneous intrinsic activity facilitates epigenesis at both local and global scales, the balanced excitatory/inhibitory ratio increases performance. We discuss the plausibility of the model in both neurodevelopmental and artificial intelligence terms.
Collapse
Affiliation(s)
- Konstantin Volzhenin
- Neuroscience Department, Institut Pasteur, 75015 Paris, France
- Laboratory of Computational and Quantitative Biology, Sorbonne Université, 75005 Paris, France
| | | | - Guillaume Dumas
- Neuroscience Department, Institut Pasteur, 75015 Paris, France
- Mila - Quebec Artificial Intelligence Institute, Centre Hospitalier Universitaire Sainte-Justine Research Center, Department of Psychiatry, Université de Montréal, Montréal, QC H3T 1C5, Canada
| |
Collapse
|
20
|
Candia-Rivera D. Brain-heart interactions in the neurobiology of consciousness. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100050. [PMID: 36685762 PMCID: PMC9846460 DOI: 10.1016/j.crneur.2022.100050] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 01/25/2023] Open
Abstract
Recent experimental evidence on patients with disorders of consciousness revealed that observing brain-heart interactions helps to detect residual consciousness, even in patients with absence of behavioral signs of consciousness. Those findings support hypotheses suggesting that visceral activity is involved in the neurobiology of consciousness, and sum to the existing evidence in healthy participants in which the neural responses to heartbeats reveal perceptual and self-consciousness. More evidence obtained through mathematical modeling of physiological dynamics revealed that emotion processing is prompted by an initial modulation from ascending vagal inputs to the brain, followed by sustained bidirectional brain-heart interactions. Those findings support long-lasting hypotheses on the causal role of bodily activity in emotions, feelings, and potentially consciousness. In this paper, the theoretical landscape on the potential role of heartbeats in cognition and consciousness is reviewed, as well as the experimental evidence supporting these hypotheses. I advocate for methodological developments on the estimation of brain-heart interactions to uncover the role of cardiac inputs in the origin, levels, and contents of consciousness. The ongoing evidence depicts interactions further than the cortical responses evoked by each heartbeat, suggesting the potential presence of non-linear, complex, and bidirectional communication between brain and heartbeat dynamics. Further developments on methodologies to analyze brain-heart interactions may contribute to a better understanding of the physiological dynamics involved in homeostatic-allostatic control, cognitive functions, and consciousness.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Bioengineering and Robotics Research Center E. Piaggio and the Department of Information Engineering, School of Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
21
|
Shafiei G, Baillet S, Misic B. Human electromagnetic and haemodynamic networks systematically converge in unimodal cortex and diverge in transmodal cortex. PLoS Biol 2022; 20:e3001735. [PMID: 35914002 PMCID: PMC9371256 DOI: 10.1371/journal.pbio.3001735] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/11/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Whole-brain neural communication is typically estimated from statistical associations among electromagnetic or haemodynamic time-series. The relationship between functional network architectures recovered from these 2 types of neural activity remains unknown. Here, we map electromagnetic networks (measured using magnetoencephalography (MEG)) to haemodynamic networks (measured using functional magnetic resonance imaging (fMRI)). We find that the relationship between the 2 modalities is regionally heterogeneous and systematically follows the cortical hierarchy, with close correspondence in unimodal cortex and poor correspondence in transmodal cortex. Comparison with the BigBrain histological atlas reveals that electromagnetic-haemodynamic coupling is driven by laminar differentiation and neuron density, suggesting that the mapping between the 2 modalities can be explained by cytoarchitectural variation. Importantly, haemodynamic connectivity cannot be explained by electromagnetic activity in a single frequency band, but rather arises from the mixing of multiple neurophysiological rhythms. Correspondence between the two is largely driven by MEG functional connectivity at the beta (15 to 29 Hz) frequency band. Collectively, these findings demonstrate highly organized but only partly overlapping patterns of connectivity in MEG and fMRI functional networks, opening fundamentally new avenues for studying the relationship between cortical microarchitecture and multimodal connectivity patterns.
Collapse
Affiliation(s)
- Golia Shafiei
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| |
Collapse
|
22
|
Marchetti G. The why of the phenomenal aspect of consciousness: Its main functions and the mechanisms underpinning it. Front Psychol 2022; 13:913309. [PMID: 35967722 PMCID: PMC9368316 DOI: 10.3389/fpsyg.2022.913309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/01/2022] [Indexed: 12/02/2022] Open
Abstract
What distinguishes conscious information processing from other kinds of information processing is its phenomenal aspect (PAC), the-what-it-is-like for an agent to experience something. The PAC supplies the agent with a sense of self, and informs the agent on how its self is affected by the agent's own operations. The PAC originates from the activity that attention performs to detect the state of what I define "the self" (S). S is centered and develops on a hierarchy of innate and acquired values, and is primarily expressed via the central and peripheral nervous systems; it maps the agent's body and cognitive capacities, and its interactions with the environment. The detection of the state of S by attention modulates the energy level of the organ of attention (OA), i.e., the neural substrate that underpins attention. This modulation generates the PAC. The PAC can be qualified according to five dimensions: qualitative, quantitative, hedonic, temporal and spatial. Each dimension can be traced back to a specific feature of the modulation of the energy level of the OA.
Collapse
Affiliation(s)
- Giorgio Marchetti
- Mind, Consciousness and Language Research Center, Alano di Piave, Italy
| |
Collapse
|
23
|
Ward LM, Guevara R. Qualia and Phenomenal Consciousness Arise From the Information Structure of an Electromagnetic Field in the Brain. Front Hum Neurosci 2022; 16:874241. [PMID: 35860400 PMCID: PMC9289677 DOI: 10.3389/fnhum.2022.874241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
In this paper we address the following problems and provide realistic answers to them: (1) What could be the physical substrate for subjective, phenomenal, consciousness (P-consciousness)? Our answer: the electromagnetic (EM) field generated by the movement and changes of electrical charges in the brain. (2) Is this substrate generated in some particular part of the brains of conscious entities or does it comprise the entirety of the brain/body? Our answer: a part of the thalamus in mammals, and homologous parts of other brains generates the critical EM field. (3) From whence arise the qualia experienced in P-consciousness? Our answer, the relevant EM field is “structured” by emulating in the brain the information in EM fields arising from both external (the environment) and internal (the body) sources. (4) What differentiates the P-conscious EM field from other EM fields, e.g., the flux of photons scattered from object surfaces, the EM field of an electro-magnet, or the EM fields generated in the brain that do not enter P-consciousness, such as those generated in the retina or occipital cortex, or those generated in brain areas that guide behavior through visual information in persons exhibiting “blindsight”? Our answer: living systems express a boundary between themselves and the environment, requiring them to model (coarsely emulate) information from their environment in order to control through actions, to the extent possible, the vast sea of variety in which they are immersed. This model, expressed in an EM field, is P-consciousness. The model is the best possible representation of the moment-to-moment niche-relevant (action-relevant: affordance) information an organism can generate (a Gestalt). Information that is at a lower level than niche-relevant, such as the unanalyzed retinal vector-field, is not represented in P-consciousness because it is not niche-relevant. Living organisms have sensory and other systems that have evolved to supply such information, albeit in a coarse form.
Collapse
Affiliation(s)
- Lawrence M. Ward
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Lawrence M. Ward,
| | - Ramón Guevara
- Department of Physics and Astronomy, University of Padua, Padua, Italy
- Department of Developmental Psychology and Socialization, Padova Neuroscience Center, University of Padua, Padua, Italy
| |
Collapse
|
24
|
Fields C, Friston K, Glazebrook JF, Levin M. A free energy principle for generic quantum systems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 173:36-59. [PMID: 35618044 DOI: 10.1016/j.pbiomolbio.2022.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/04/2022] [Accepted: 05/18/2022] [Indexed: 01/17/2023]
Abstract
The Free Energy Principle (FEP) states that under suitable conditions of weak coupling, random dynamical systems with sufficient degrees of freedom will behave so as to minimize an upper bound, formalized as a variational free energy, on surprisal (a.k.a., self-information). This upper bound can be read as a Bayesian prediction error. Equivalently, its negative is a lower bound on Bayesian model evidence (a.k.a., marginal likelihood). In short, certain random dynamical systems evince a kind of self-evidencing. Here, we reformulate the FEP in the formal setting of spacetime-background free, scale-free quantum information theory. We show how generic quantum systems can be regarded as observers, which with the standard freedom of choice assumption become agents capable of assigning semantics to observational outcomes. We show how such agents minimize Bayesian prediction error in environments characterized by uncertainty, insufficient learning, and quantum contextuality. We show that in its quantum-theoretic formulation, the FEP is asymptotically equivalent to the Principle of Unitarity. Based on these results, we suggest that biological systems employ quantum coherence as a computational resource and - implicitly - as a communication resource. We summarize a number of problems for future research, particularly involving the resources required for classical communication and for detecting and responding to quantum context switches.
Collapse
Affiliation(s)
- Chris Fields
- 23 Rue des Lavandières, 11160, Caunes Minervois, France.
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, University College London, London, WC1N 3AR, UK
| | - James F Glazebrook
- Department of Mathematics and Computer Science, Eastern Illinois University, Charleston, IL, 61920, USA; Adjunct Faculty, Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
25
|
Pepperell R. Does Machine Understanding Require Consciousness? Front Syst Neurosci 2022; 16:788486. [PMID: 35664685 PMCID: PMC9159796 DOI: 10.3389/fnsys.2022.788486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
This article addresses the question of whether machine understanding requires consciousness. Some researchers in the field of machine understanding have argued that it is not necessary for computers to be conscious as long as they can match or exceed human performance in certain tasks. But despite the remarkable recent success of machine learning systems in areas such as natural language processing and image classification, important questions remain about their limited performance and about whether their cognitive abilities entail genuine understanding or are the product of spurious correlations. Here I draw a distinction between natural, artificial, and machine understanding. I analyse some concrete examples of natural understanding and show that although it shares properties with the artificial understanding implemented in current machine learning systems it also has some essential differences, the main one being that natural understanding in humans entails consciousness. Moreover, evidence from psychology and neurobiology suggests that it is this capacity for consciousness that, in part at least, explains for the superior performance of humans in some cognitive tasks and may also account for the authenticity of semantic processing that seems to be the hallmark of natural understanding. I propose a hypothesis that might help to explain why consciousness is important to understanding. In closing, I suggest that progress toward implementing human-like understanding in machines—machine understanding—may benefit from a naturalistic approach in which natural processes are modelled as closely as possible in mechanical substrates.
Collapse
|
26
|
Badcock PB, Ramstead MJD, Sheikhbahaee Z, Constant A. Applying the Free Energy Principle to Complex Adaptive Systems. ENTROPY (BASEL, SWITZERLAND) 2022; 24:689. [PMID: 35626572 PMCID: PMC9141822 DOI: 10.3390/e24050689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
Abstract
The free energy principle (FEP) is a formulation of the adaptive, belief-driven behaviour of self-organizing systems that gained prominence in the early 2000s as a unified model of the brain [...].
Collapse
Affiliation(s)
- Paul B. Badcock
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC 3010, Australia
- Orygen, Parkville, VIC 3052, Australia
| | - Maxwell J. D. Ramstead
- VERSES Research Lab and the Spatial Web Foundation, Los Angeles, CA 90016, USA;
- Wellcome Centre for Human Neuroimaging, University College London, London WC1E 6BT, UK
| | - Zahra Sheikhbahaee
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Axel Constant
- Charles Perkins Centre, The University of Sydney, John Hopkins Drive, Camperdown, NSW 2006, Australia;
| |
Collapse
|
27
|
Bolotta S, Dumas G. Social Neuro AI: Social Interaction as the “Dark Matter” of AI. FRONTIERS IN COMPUTER SCIENCE 2022. [DOI: 10.3389/fcomp.2022.846440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This article introduces a three-axis framework indicating how AI can be informed by biological examples of social learning mechanisms. We argue that the complex human cognitive architecture owes a large portion of its expressive power to its ability to engage in social and cultural learning. However, the field of AI has mostly embraced a solipsistic perspective on intelligence. We thus argue that social interactions not only are largely unexplored in this field but also are an essential element of advanced cognitive ability, and therefore constitute metaphorically the “dark matter” of AI. In the first section, we discuss how social learning plays a key role in the development of intelligence. We do so by discussing social and cultural learning theories and empirical findings from social neuroscience. Then, we discuss three lines of research that fall under the umbrella of Social NeuroAI and can contribute to developing socially intelligent embodied agents in complex environments. First, neuroscientific theories of cognitive architecture, such as the global workspace theory and the attention schema theory, can enhance biological plausibility and help us understand how we could bridge individual and social theories of intelligence. Second, intelligence occurs in time as opposed to over time, and this is naturally incorporated by dynamical systems. Third, embodiment has been demonstrated to provide more sophisticated array of communicative signals. To conclude, we discuss the example of active inference, which offers powerful insights for developing agents that possess biological realism, can self-organize in time, and are socially embodied.
Collapse
|
28
|
Lomas JD, Lin A, Dikker S, Forster D, Lupetti ML, Huisman G, Habekost J, Beardow C, Pandey P, Ahmad N, Miyapuram K, Mullen T, Cooper P, van der Maden W, Cross ES. Resonance as a Design Strategy for AI and Social Robots. Front Neurorobot 2022; 16:850489. [PMID: 35574227 PMCID: PMC9097027 DOI: 10.3389/fnbot.2022.850489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/23/2022] [Indexed: 11/20/2022] Open
Abstract
Resonance, a powerful and pervasive phenomenon, appears to play a major role in human interactions. This article investigates the relationship between the physical mechanism of resonance and the human experience of resonance, and considers possibilities for enhancing the experience of resonance within human-robot interactions. We first introduce resonance as a widespread cultural and scientific metaphor. Then, we review the nature of "sympathetic resonance" as a physical mechanism. Following this introduction, the remainder of the article is organized in two parts. In part one, we review the role of resonance (including synchronization and rhythmic entrainment) in human cognition and social interactions. Then, in part two, we review resonance-related phenomena in robotics and artificial intelligence (AI). These two reviews serve as ground for the introduction of a design strategy and combinatorial design space for shaping resonant interactions with robots and AI. We conclude by posing hypotheses and research questions for future empirical studies and discuss a range of ethical and aesthetic issues associated with resonance in human-robot interactions.
Collapse
Affiliation(s)
- James Derek Lomas
- Department of Human Centered Design, Faculty of Industrial Design Engineering, Delft University of Technology, Delft, Netherlands
| | - Albert Lin
- Center for Human Frontiers, Qualcomm Institute, University of California, San Diego, San Diego, CA, United States
| | - Suzanne Dikker
- Department of Psychology, New York University, New York, NY, United States
- Department of Clinical Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Deborah Forster
- Center for Human Frontiers, Qualcomm Institute, University of California, San Diego, San Diego, CA, United States
| | - Maria Luce Lupetti
- Department of Human Centered Design, Faculty of Industrial Design Engineering, Delft University of Technology, Delft, Netherlands
| | - Gijs Huisman
- Department of Human Centered Design, Faculty of Industrial Design Engineering, Delft University of Technology, Delft, Netherlands
| | - Julika Habekost
- The Design Lab, California Institute of Information and Communication Technologies, University of California, San Diego, San Diego, CA, United States
| | - Caiseal Beardow
- Department of Human Centered Design, Faculty of Industrial Design Engineering, Delft University of Technology, Delft, Netherlands
| | - Pankaj Pandey
- Centre for Cognitive and Brain Sciences, Indian Institute of Technology, Gandhinagar, India
| | - Nashra Ahmad
- Centre for Cognitive and Brain Sciences, Indian Institute of Technology, Gandhinagar, India
| | - Krishna Miyapuram
- Centre for Cognitive and Brain Sciences, Indian Institute of Technology, Gandhinagar, India
| | - Tim Mullen
- Intheon Labs, San Diego, CA, United States
| | - Patrick Cooper
- Department of Physics, Duquesne University, Pittsburgh, PA, United States
| | - Willem van der Maden
- Department of Human Centered Design, Faculty of Industrial Design Engineering, Delft University of Technology, Delft, Netherlands
| | - Emily S. Cross
- Social Robotics, Institute of Neuroscience and Psychology, School of Computing Science, University of Glasgow, Glasgow, United Kingdom
- SOBA Lab, School of Psychology, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
29
|
Ramstead MJD, Seth AK, Hesp C, Sandved-Smith L, Mago J, Lifshitz M, Pagnoni G, Smith R, Dumas G, Lutz A, Friston K, Constant A. From Generative Models to Generative Passages: A Computational Approach to (Neuro) Phenomenology. REVIEW OF PHILOSOPHY AND PSYCHOLOGY 2022; 13:829-857. [PMID: 35317021 PMCID: PMC8932094 DOI: 10.1007/s13164-021-00604-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 12/16/2022]
Abstract
This paper presents a version of neurophenomenology based on generative modelling techniques developed in computational neuroscience and biology. Our approach can be described as computational phenomenology because it applies methods originally developed in computational modelling to provide a formal model of the descriptions of lived experience in the phenomenological tradition of philosophy (e.g., the work of Edmund Husserl, Maurice Merleau-Ponty, etc.). The first section presents a brief review of the overall project to naturalize phenomenology. The second section presents and evaluates philosophical objections to that project and situates our version of computational phenomenology with respect to these projects. The third section reviews the generative modelling framework. The final section presents our approach in detail. We conclude by discussing how our approach differs from previous attempts to use generative modelling to help understand consciousness. In summary, we describe a version of computational phenomenology which uses generative modelling to construct a computational model of the inferential or interpretive processes that best explain this or that kind of lived experience.
Collapse
Affiliation(s)
- Maxwell J. D. Ramstead
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- VERSES Research Lab and Spatial Web Foundation, Los Angeles, California USA
| | - Anil K. Seth
- School of Engineering and Informatics, University of Sussex, Brighton, BN1 9QJ UK
- Canadian Institute for Advanced Research (CIFAR), Program on Brain, Mind, and Consciousness, Toronto, Ontario, M5G 1M1 Canada
| | - Casper Hesp
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Department of Psychology, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
- Amsterdam Brain and Cognition Centre, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
- Institute for Advanced Study, University of Amsterdam, Oude Turfmarkt 147, 1012 GC Amsterdam, Netherlands
| | - Lars Sandved-Smith
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon 1 University, Lyon, France
| | - Jonas Mago
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Integrated Program in Neuroscience, Department of Neuroscience, McGill University, Montreal, Canada
- Division of Social and Transcultural Psychiatry, McGill University, Montreal, Canada
| | - Michael Lifshitz
- Division of Social and Transcultural Psychiatry, McGill University, Montreal, Canada
- Lady Davis Institute for Medical Research, Montreal Jewish General Hospital, Montreal, Canada
| | - Giuseppe Pagnoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Ryan Smith
- Laureate Institute for Brain Research, Tulsa, Oklahoma USA
| | - Guillaume Dumas
- CHU Sainte-Justine Research Center, Department of Psychiatry, University of Montreal, Montreal, Canada
- Mila – Quebec Artificial Intelligence Institute, University of Montreal, Montreal, Canada
| | - Antoine Lutz
- Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon 1 University, Lyon, France
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- VERSES Research Lab and Spatial Web Foundation, Los Angeles, California USA
| | - Axel Constant
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| |
Collapse
|
30
|
Safron A, Klimaj V, Hipólito I. On the Importance of Being Flexible: Dynamic Brain Networks and Their Potential Functional Significances. Front Syst Neurosci 2022; 15:688424. [PMID: 35126062 PMCID: PMC8814434 DOI: 10.3389/fnsys.2021.688424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
In this theoretical review, we begin by discussing brains and minds from a dynamical systems perspective, and then go on to describe methods for characterizing the flexibility of dynamic networks. We discuss how varying degrees and kinds of flexibility may be adaptive (or maladaptive) in different contexts, specifically focusing on measures related to either more disjoint or cohesive dynamics. While disjointed flexibility may be useful for assessing neural entropy, cohesive flexibility may potentially serve as a proxy for self-organized criticality as a fundamental property enabling adaptive behavior in complex systems. Particular attention is given to recent studies in which flexibility methods have been used to investigate neurological and cognitive maturation, as well as the breakdown of conscious processing under varying levels of anesthesia. We further discuss how these findings and methods might be contextualized within the Free Energy Principle with respect to the fundamentals of brain organization and biological functioning more generally, and describe potential methodological advances from this paradigm. Finally, with relevance to computational psychiatry, we propose a research program for obtaining a better understanding of ways that dynamic networks may relate to different forms of psychological flexibility, which may be the single most important factor for ensuring human flourishing.
Collapse
Affiliation(s)
- Adam Safron
- Center for Psychedelic and Consciousness Research, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kinsey Institute, Indiana University, Bloomington, IN, United States
- Cognitive Science Program, Indiana University, Bloomington, IN, United States
| | - Victoria Klimaj
- Cognitive Science Program, Indiana University, Bloomington, IN, United States
- Complex Networks and Systems, Informatics Department, Indiana University, Bloomington, IN, United States
| | - Inês Hipólito
- Department of Philosophy, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| |
Collapse
|
31
|
Goekoop R, de Kleijn R. Permutation Entropy as a Universal Disorder Criterion: How Disorders at Different Scale Levels Are Manifestations of the Same Underlying Principle. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1701. [PMID: 34946007 PMCID: PMC8700347 DOI: 10.3390/e23121701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022]
Abstract
What do bacteria, cells, organs, people, and social communities have in common? At first sight, perhaps not much. They involve totally different agents and scale levels of observation. On second thought, however, perhaps they share everything. A growing body of literature suggests that living systems at different scale levels of observation follow the same architectural principles and process information in similar ways. Moreover, such systems appear to respond in similar ways to rising levels of stress, especially when stress levels approach near-lethal levels. To explain such communalities, we argue that all organisms (including humans) can be modeled as hierarchical Bayesian controls systems that are governed by the same biophysical principles. Such systems show generic changes when taxed beyond their ability to correct for environmental disturbances. Without exception, stressed organisms show rising levels of 'disorder' (randomness, unpredictability) in internal message passing and overt behavior. We argue that such changes can be explained by a collapse of allostatic (high-level integrative) control, which normally synchronizes activity of the various components of a living system to produce order. The selective overload and cascading failure of highly connected (hub) nodes flattens hierarchical control, producing maladaptive behavior. Thus, we present a theory according to which organic concepts such as stress, a loss of control, disorder, disease, and death can be operationalized in biophysical terms that apply to all scale levels of organization. Given the presumed universality of this mechanism, 'losing control' appears to involve the same process anywhere, whether involving bacteria succumbing to an antibiotic agent, people suffering from physical or mental disorders, or social systems slipping into warfare. On a practical note, measures of disorder may serve as early warning signs of system failure even when catastrophic failure is still some distance away.
Collapse
Affiliation(s)
- Rutger Goekoop
- Parnassia Group, PsyQ Parnassia Academy, Department of Anxiety Disorders, Early Detection and Intervention Team (EDIT), Lijnbaan 4, 2512 VA Den Haag, The Netherlands
| | - Roy de Kleijn
- Cognitive Psychology Unit, Institute of Psychology & Leiden Institute for Brain and Cognition, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands;
| |
Collapse
|
32
|
Ciaunica A, Safron A, Delafield-Butt J. Back to square one: the bodily roots of conscious experiences in early life. Neurosci Conscious 2021; 2021:niab037. [PMID: 38633139 PMCID: PMC11021924 DOI: 10.1093/nc/niab037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/16/2021] [Accepted: 11/15/2021] [Indexed: 04/19/2024] Open
Abstract
Most theoretical and empirical discussions about the nature of consciousness are typically couched in a way that endorses a tacit adult-centric and vision-based perspective. This paper defends the idea that consciousness science may be put on a fruitful track for its next phase by examining the nature of subjective experiences through a bottom-up developmental lens. We draw attention to the intrinsic link between consciousness, experiences and experiencing subjects, which are first and foremost embodied and situated organisms essentially concerned with self-preservation within a precarious environment. Our paper suggests that in order to understand what consciousness 'is', one should first tackle the fundamental question: how do embodied experiences 'arise' from square one? We then highlight one key yet overlooked aspect of human consciousness studies, namely that the earliest and closest environment of an embodied experiencing subject is the body of another human experiencing subject. We present evidence speaking in favour of fairly sophisticated forms of early sensorimotor integration of bodily signals and self-generated actions already being established in utero. We conclude that these primitive and fundamentally relational and co-embodied roots of our early experiences may have a crucial impact on the way human beings consciously experience the self, body and the world across their lifespan.
Collapse
Affiliation(s)
- Anna Ciaunica
- Centre for Philosophy of Science (CFCUL), University of Lisbon, Lisbon 1749-016, Portugal
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, UK
| | - Adam Safron
- Kinsey Institute, Indiana University, Lindley Hall, 150 S Woodlawn Ave, Bloomington, IN 47405, USA
- Cognitive Science Program, 1001 E. 10th St. Indiana University, Bloomington, IN 47405, USA
| | - Jonathan Delafield-Butt
- Laboratory for Innovation in Autism, University of Strathclyde, Glasgow G1 1QE, UK
- Faculty of Humanities and Social Sciences, University of Strathclyde, Glasgow G4 0LT, UK
| |
Collapse
|
33
|
Albantakis L. Quantifying the Autonomy of Structurally Diverse Automata: A Comparison of Candidate Measures. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1415. [PMID: 34828113 PMCID: PMC8624265 DOI: 10.3390/e23111415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
Should the internal structure of a system matter when it comes to autonomy? While there is still no consensus on a rigorous, quantifiable definition of autonomy, multiple candidate measures and related quantities have been proposed across various disciplines, including graph-theory, information-theory, and complex system science. Here, I review and compare a range of measures related to autonomy and intelligent behavior. To that end, I analyzed the structural, information-theoretical, causal, and dynamical properties of simple artificial agents evolved to solve a spatial navigation task, with or without a need for associative memory. By contrast to standard artificial neural networks with fixed architectures and node functions, here, independent evolution simulations produced successful agents with diverse neural architectures and functions. This makes it possible to distinguish quantities that characterize task demands and input-output behavior, from those that capture intrinsic differences between substrates, which may help to determine more stringent requisites for autonomous behavior and the means to measure it.
Collapse
Affiliation(s)
- Larissa Albantakis
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| |
Collapse
|
34
|
Rorot W. Bayesian theories of consciousness: a review in search for a minimal unifying model. Neurosci Conscious 2021; 2021:niab038. [PMID: 34650816 PMCID: PMC8512254 DOI: 10.1093/nc/niab038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
The goal of the paper is to review existing work on consciousness within the frameworks of Predictive Processing, Active Inference, and Free Energy Principle. The emphasis is put on the role played by the precision and complexity of the internal generative model. In the light of those proposals, these two properties appear to be the minimal necessary components for the emergence of conscious experience-a Minimal Unifying Model of consciousness.
Collapse
Affiliation(s)
- Wiktor Rorot
- Faculty of Philosophy and Faculty of Psychology, University of Warsaw, ul. Krakowskie Przedmieście 3, 00-927, Stawki 5/7, Warsaw 00-183, Poland
| |
Collapse
|
35
|
Deane G. Consciousness in active inference: Deep self-models, other minds, and the challenge of psychedelic-induced ego-dissolution. Neurosci Conscious 2021; 2021:niab024. [PMID: 34484808 PMCID: PMC8408766 DOI: 10.1093/nc/niab024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
Predictive processing approaches to brain function are increasingly delivering promise for illuminating the computational underpinnings of a wide range of phenomenological states. It remains unclear, however, whether predictive processing is equipped to accommodate a theory of consciousness itself. Furthermore, objectors have argued that without specification of the core computational mechanisms of consciousness, predictive processing is unable to inform the attribution of consciousness to other non-human (biological and artificial) systems. In this paper, I argue that an account of consciousness in the predictive brain is within reach via recent accounts of phenomenal self-modelling in the active inference framework. The central claim here is that phenomenal consciousness is underpinned by 'subjective valuation'-a deep inference about the precision or 'predictability' of the self-evidencing ('fitness-promoting') outcomes of action. Based on this account, I argue that this approach can critically inform the distribution of experience in other systems, paying particular attention to the complex sensory attenuation mechanisms associated with deep self-models. I then consider an objection to the account: several recent papers argue that theories of consciousness that invoke self-consciousness as constitutive or necessary for consciousness are undermined by states (or traits) of 'selflessness'; in particular the 'totally selfless' states of ego-dissolution occasioned by psychedelic drugs. Drawing on existing work that accounts for psychedelic-induced ego-dissolution in the active inference framework, I argue that these states do not threaten to undermine an active inference theory of consciousness. Instead, these accounts corroborate the view that subjective valuation is the constitutive facet of experience, and they highlight the potential of psychedelic research to inform consciousness science, computational psychiatry and computational phenomenology.
Collapse
Affiliation(s)
- George Deane
- School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, 3 Charles Street, Edinburgh EH8 9AD, UK
| |
Collapse
|
36
|
Fallon F, Blackmon JC. IIT's Scientific Counter-Revolution: A Neuroscientific Theory's Physical and Metaphysical Implications. ENTROPY (BASEL, SWITZERLAND) 2021; 23:942. [PMID: 34441082 PMCID: PMC8394989 DOI: 10.3390/e23080942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022]
Abstract
IIT includes commitments about the very nature of physical reality, a fact both highly unusual for an empirical theory within neuroscience, and surprisingly underappreciated within the literature. These commitments are intimately tied to the theory; they are not incidental. This paper demonstrates as much by raising certain objections in a "naive" way, and then exposing how the principled IIT responses would rely upon metaphysical positions. Along the way we draw on the IIT literature for support for these interpretations, but also point to a need for elaboration and clarification. Section 1 applies the Placement Argument in a way that leads to problem involving zombies, treated in Section 2. Section 3 frames the zombie problem as an apparent dilemma, and addresses that dilemma by drawing on claims in the IIT literature concerning physical reality. Section 4 raises a related dilemma and treats it in a way that dovetails with the treatment in Section 3 of physical reality. All of this underscores not just the breadth of IIT, but the relevance of this breadth to a full consideration of IIT's merits.
Collapse
Affiliation(s)
- Francis Fallon
- Philosophy Department, St. John’s University, New York, NY 11439, USA
| | - James C. Blackmon
- Department of Philosophy, San Francisco State University, San Francisco, CA 94132, USA
| |
Collapse
|
37
|
Luppi AI, Cain J, Spindler LRB, Górska UJ, Toker D, Hudson AE, Brown EN, Diringer MN, Stevens RD, Massimini M, Monti MM, Stamatakis EA, Boly M. Mechanisms Underlying Disorders of Consciousness: Bridging Gaps to Move Toward an Integrated Translational Science. Neurocrit Care 2021; 35:37-54. [PMID: 34236622 PMCID: PMC8266690 DOI: 10.1007/s12028-021-01281-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/17/2021] [Indexed: 01/08/2023]
Abstract
AIM In order to successfully detect, classify, prognosticate, and develop targeted therapies for patients with disorders of consciousness (DOC), it is crucial to improve our mechanistic understanding of how severe brain injuries result in these disorders. METHODS To address this need, the Curing Coma Campaign convened a Mechanisms Sub-Group of the Coma Science Work Group (CSWG), aiming to identify the most pressing knowledge gaps and the most promising approaches to bridge them. RESULTS We identified a key conceptual gap in the need to differentiate the neural mechanisms of consciousness per se, from those underpinning connectedness to the environment and behavioral responsiveness. Further, we characterised three fundamental gaps in DOC research: (1) a lack of mechanistic integration between structural brain damage and abnormal brain function in DOC; (2) a lack of translational bridges between micro- and macro-scale neural phenomena; and (3) an incomplete exploration of possible synergies between data-driven and theory-driven approaches. CONCLUSION In this white paper, we discuss research priorities that would enable us to begin to close these knowledge gaps. We propose that a fundamental step towards this goal will be to combine translational, multi-scale, and multimodal data, with new biomarkers, theory-driven approaches, and computational models, to produce an integrated account of neural mechanisms in DOC. Importantly, we envision that reciprocal interaction between domains will establish a "virtuous cycle," leading towards a critical vantage point of integrated knowledge that will enable the advancement of the scientific understanding of DOC and consequently, an improvement of clinical practice.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Joshua Cain
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Lennart R B Spindler
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Urszula J Górska
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Daniel Toker
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrew E Hudson
- Department of Anesthesia and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Emery N Brown
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Harvard University, Boston, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael N Diringer
- Department of Neurology and Neurosurgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Robert D Stevens
- Departments of Anesthesiology and Critical Care Medicine, Neurology and Neurosurgery, and Radiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università Degli Studi Di Milano, Milan, Italy
- Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Martin M Monti
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
- Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Melanie Boly
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
38
|
Safron A. The Radically Embodied Conscious Cybernetic Bayesian Brain: From Free Energy to Free Will and Back Again. ENTROPY (BASEL, SWITZERLAND) 2021; 23:783. [PMID: 34202965 PMCID: PMC8234656 DOI: 10.3390/e23060783] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/12/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022]
Abstract
Drawing from both enactivist and cognitivist perspectives on mind, I propose that explaining teleological phenomena may require reappraising both "Cartesian theaters" and mental homunculi in terms of embodied self-models (ESMs), understood as body maps with agentic properties, functioning as predictive-memory systems and cybernetic controllers. Quasi-homuncular ESMs are suggested to constitute a major organizing principle for neural architectures due to their initial and ongoing significance for solutions to inference problems in cognitive (and affective) development. Embodied experiences provide foundational lessons in learning curriculums in which agents explore increasingly challenging problem spaces, so answering an unresolved question in Bayesian cognitive science: what are biologically plausible mechanisms for equipping learners with sufficiently powerful inductive biases to adequately constrain inference spaces? Drawing on models from neurophysiology, psychology, and developmental robotics, I describe how embodiment provides fundamental sources of empirical priors (as reliably learnable posterior expectations). If ESMs play this kind of foundational role in cognitive development, then bidirectional linkages will be found between all sensory modalities and frontal-parietal control hierarchies, so infusing all senses with somatic-motoric properties, thereby structuring all perception by relevant affordances, so solving frame problems for embodied agents. Drawing upon the Free Energy Principle and Active Inference framework, I describe a particular mechanism for intentional action selection via consciously imagined (and explicitly represented) goal realization, where contrasts between desired and present states influence ongoing policy selection via predictive coding mechanisms and backward-chained imaginings (as self-realizing predictions). This embodied developmental legacy suggests a mechanism by which imaginings can be intentionally shaped by (internalized) partially-expressed motor acts, so providing means of agentic control for attention, working memory, imagination, and behavior. I further describe the nature(s) of mental causation and self-control, and also provide an account of readiness potentials in Libet paradigms wherein conscious intentions shape causal streams leading to enaction. Finally, I provide neurophenomenological handlings of prototypical qualia including pleasure, pain, and desire in terms of self-annihilating free energy gradients via quasi-synesthetic interoceptive active inference. In brief, this manuscript is intended to illustrate how radically embodied minds may create foundations for intelligence (as capacity for learning and inference), consciousness (as somatically-grounded self-world modeling), and will (as deployment of predictive models for enacting valued goals).
Collapse
Affiliation(s)
- Adam Safron
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
- Kinsey Institute, Indiana University, Bloomington, IN 47405, USA
- Cognitive Science Program, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
39
|
VanRullen R, Kanai R. Deep learning and the Global Workspace Theory. Trends Neurosci 2021; 44:692-704. [PMID: 34001376 DOI: 10.1016/j.tins.2021.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/19/2021] [Accepted: 04/14/2021] [Indexed: 10/21/2022]
Abstract
Recent advances in deep learning have allowed artificial intelligence (AI) to reach near human-level performance in many sensory, perceptual, linguistic, and cognitive tasks. There is a growing need, however, for novel, brain-inspired cognitive architectures. The Global Workspace Theory (GWT) refers to a large-scale system integrating and distributing information among networks of specialized modules to create higher-level forms of cognition and awareness. We argue that the time is ripe to consider explicit implementations of this theory using deep-learning techniques. We propose a roadmap based on unsupervised neural translation between multiple latent spaces (neural networks trained for distinct tasks, on distinct sensory inputs and/or modalities) to create a unique, amodal Global Latent Workspace (GLW). Potential functional advantages of GLW are reviewed, along with neuroscientific implications.
Collapse
Affiliation(s)
- Rufin VanRullen
- The Brain and Cognition Research Center (CerCo), CNRS UMR5549, Toulouse, France; Artificial and Natural Intelligence Toulouse Institute (ANITI), Université de Toulouse, France.
| | | |
Collapse
|
40
|
Sánchez-Cañizares J. The Free Energy Principle: Good Science and Questionable Philosophy in a Grand Unifying Theory. ENTROPY (BASEL, SWITZERLAND) 2021; 23:238. [PMID: 33669529 PMCID: PMC7922226 DOI: 10.3390/e23020238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 11/16/2022]
Abstract
The Free Energy Principle (FEP) is currently one of the most promising frameworks with which to address a unified explanation of life-related phenomena. With powerful formalism that embeds a small set of assumptions, it purports to deal with complex adaptive dynamics ranging from barely unicellular organisms to complex cultural manifestations. The FEP has received increased attention in disciplines that study life, including some critique regarding its overall explanatory power and its true potential as a grand unifying theory (GUT). Recently, FEP theorists presented a contribution with the main tenets of their framework, together with possible philosophical interpretations, which lean towards so-called Markovian Monism (MM). The present paper assumes some of the abovementioned critiques, rejects the arguments advanced to invalidate the FEP's potential to be a GUT, and overcomes criticism thereof by reviewing FEP theorists' newly minted metaphysical commitment, namely MM. Specifically, it shows that this philosophical interpretation of the FEP argues circularly and only delivers what it initially assumes, i.e., a dual information geometry that allegedly explains epistemic access to the world based on prior dual assumptions. The origin of this circularity can be traced back to a physical description contingent on relative system-environment separation. However, the FEP itself is not committed to MM, and as a scientific theory it delivers more than what it assumes, serving as a heuristic unification principle that provides epistemic advancement for the life sciences.
Collapse
Affiliation(s)
- Javier Sánchez-Cañizares
- Mind-Brain Group, Institute for Culture and Society, University of Navarra, 31009 Pamplona, Spain
| |
Collapse
|
41
|
Goekoop R, de Kleijn R. How higher goals are constructed and collapse under stress: A hierarchical Bayesian control systems perspective. Neurosci Biobehav Rev 2021; 123:257-285. [PMID: 33497783 DOI: 10.1016/j.neubiorev.2020.12.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/19/2020] [Accepted: 12/19/2020] [Indexed: 01/26/2023]
Abstract
In this paper, we show that organisms can be modeled as hierarchical Bayesian control systems with small world and information bottleneck (bow-tie) network structure. Such systems combine hierarchical perception with hierarchical goal setting and hierarchical action control. We argue that hierarchical Bayesian control systems produce deep hierarchies of goal states, from which it follows that organisms must have some form of 'highest goals'. For all organisms, these involve internal (self) models, external (social) models and overarching (normative) models. We show that goal hierarchies tend to decompose in a top-down manner under severe and prolonged levels of stress. This produces behavior that favors short-term and self-referential goals over long term, social and/or normative goals. The collapse of goal hierarchies is universally accompanied by an increase in entropy (disorder) in control systems that can serve as an early warning sign for tipping points (disease or death of the organism). In humans, learning goal hierarchies corresponds to personality development (maturation). The failure of goal hierarchies to mature properly corresponds to personality deficits. A top-down collapse of such hierarchies under stress is identified as a common factor in all forms of episodic mental disorders (psychopathology). The paper concludes by discussing ways of testing these hypotheses empirically.
Collapse
Affiliation(s)
- Rutger Goekoop
- Parnassia Group, PsyQ, Department of Anxiety Disorders, Early Detection and Intervention Team (EDIT), Netherlands.
| | - Roy de Kleijn
- Cognitive Psychology Unit, Leiden University, Netherlands
| |
Collapse
|
42
|
Hirschhorn R, Kahane O, Gur-Arie I, Faivre N, Mudrik L. Windows of Integration Hypothesis Revisited. Front Hum Neurosci 2021; 14:617187. [PMID: 33519404 PMCID: PMC7840615 DOI: 10.3389/fnhum.2020.617187] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/18/2020] [Indexed: 11/13/2022] Open
Abstract
In the ongoing research of the functions of consciousness, special emphasis has been put on integration of information: the ability to combine different signals into a coherent, unified one. Several theories of consciousness hold that this ability depends on - or at least goes hand in hand with - conscious processing. Yet some empirical findings have suggested otherwise, claiming that integration of information could take place even without awareness. Trying to reconcile this apparent contradiction, the "windows of integration" (WOI) hypothesis claims that conscious access enables signal processing over large integration windows. The hypothesis applies to integration windows defined either temporally, spatially, or semantically. In this review, we explain the hypothesis and re-examine it in light of new studies published since it was suggested. In line with the hypothesis, these studies provide compelling evidence for unconscious integration, but also demonstrate its limits with respect to time, space, and semantic distance. The review further highlights open questions that still need to be pursued to demonstrate the applicability of the WOI hypothesis as a guiding principle for understanding the depth and scope of unconscious processes.
Collapse
Affiliation(s)
- Rony Hirschhorn
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Ofer Kahane
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Inbal Gur-Arie
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Nathan Faivre
- Laboratoire de Psychologie et Neurocognition (LPNC), CNRS UMR 5105, Université Grenoble Alpes, Grenoble, France
| | - Liad Mudrik
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
43
|
The predictive global neuronal workspace: A formal active inference model of visual consciousness. Prog Neurobiol 2020; 199:101918. [PMID: 33039416 DOI: 10.1016/j.pneurobio.2020.101918] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/13/2020] [Accepted: 09/26/2020] [Indexed: 11/22/2022]
Abstract
The global neuronal workspace (GNW) model has inspired over two decades of hypothesis-driven research on the neural basis of consciousness. However, recent studies have reported findings that are at odds with empirical predictions of the model. Further, the macro-anatomical focus of current GNW research has limited the specificity of predictions afforded by the model. In this paper we present a neurocomputational model - based on Active Inference - that captures central architectural elements of the GNW and is able to address these limitations. The resulting 'predictive global workspace' casts neuronal dynamics as approximating Bayesian inference, allowing precise, testable predictions at both the behavioural and neural levels of description. We report simulations demonstrating the model's ability to reproduce: 1) the electrophysiological and behavioural results observed in previous studies of inattentional blindness; and 2) the previously introduced four-way taxonomy predicted by the GNW, which describes the relationship between consciousness, attention, and sensory signal strength. We then illustrate how our model can reconcile/explain (apparently) conflicting findings, extend the GNW taxonomy to include the influence of prior expectations, and inspire novel paradigms to test associated behavioural and neural predictions.
Collapse
|
44
|
Safron A. An Integrated World Modeling Theory (IWMT) of Consciousness: Combining Integrated Information and Global Neuronal Workspace Theories With the Free Energy Principle and Active Inference Framework; Toward Solving the Hard Problem and Characterizing Agentic Causation. Front Artif Intell 2020; 3:30. [PMID: 33733149 PMCID: PMC7861340 DOI: 10.3389/frai.2020.00030] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/03/2020] [Indexed: 01/01/2023] Open
Abstract
The Free Energy Principle and Active Inference Framework (FEP-AI) begins with the understanding that persisting systems must regulate environmental exchanges and prevent entropic accumulation. In FEP-AI, minds and brains are predictive controllers for autonomous systems, where action-driven perception is realized as probabilistic inference. Integrated Information Theory (IIT) begins with considering the preconditions for a system to intrinsically exist, as well as axioms regarding the nature of consciousness. IIT has produced controversy because of its surprising entailments: quasi-panpsychism; subjectivity without referents or dynamics; and the possibility of fully-intelligent-yet-unconscious brain simulations. Here, I describe how these controversies might be resolved by integrating IIT with FEP-AI, where integrated information only entails consciousness for systems with perspectival reference frames capable of generating models with spatial, temporal, and causal coherence for self and world. Without that connection with external reality, systems could have arbitrarily high amounts of integrated information, but nonetheless would not entail subjective experience. I further describe how an integration of these frameworks may contribute to their evolution as unified systems theories and models of emergent causation. Then, inspired by both Global Neuronal Workspace Theory (GNWT) and the Harmonic Brain Modes framework, I describe how streams of consciousness may emerge as an evolving generation of sensorimotor predictions, with the precise composition of experiences depending on the integration abilities of synchronous complexes as self-organizing harmonic modes (SOHMs). These integrating dynamics may be particularly likely to occur via richly connected subnetworks affording body-centric sources of phenomenal binding and executive control. Along these connectivity backbones, SOHMs are proposed to implement turbo coding via loopy message-passing over predictive (autoencoding) networks, thus generating maximum a posteriori estimates as coherent vectors governing neural evolution, with alpha frequencies generating basic awareness, and cross-frequency phase-coupling within theta frequencies for access consciousness and volitional control. These dynamic cores of integrated information also function as global workspaces, centered on posterior cortices, but capable of being entrained with frontal cortices and interoceptive hierarchies, thus affording agentic causation. Integrated World Modeling Theory (IWMT) represents a synthetic approach to understanding minds that reveals compatibility between leading theories of consciousness, thus enabling inferential synergy.
Collapse
Affiliation(s)
- Adam Safron
- Indiana University, Bloomington, IN, United States
| |
Collapse
|