1
|
Mohammadi-Bardbori A, Shadboorestan A, Niknahad H, Noorafshan A, Fardid R, Nadimi E, Bakhtari A, Omidi M. Disrupting Development: Unraveling the Interplay of Aryl Hydrocarbon Receptor (AHR) and Wnt/β-Catenin Pathways in Kidney Development Under the Influence of Environmental Pollutants. Biol Trace Elem Res 2024; 202:4482-4493. [PMID: 38117383 DOI: 10.1007/s12011-023-04009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Understanding the intricate molecular mechanisms governing aryl hydrocarbon receptor (AHR) and Wnt/β-Catenin pathways crosstalk is of paramount importance for elucidating normal development. We investigated the repercussions of aberrant activation of these signaling pathways on kidney development. HEK-293 cells were subjected to AHR and Wnt activators and inhibitors for 3 and 24 h. Subsequently, pregnant adult female BALB/c mice were administered treatments at gestation day 9 (GD-9), and embryos were analyzed at GD-18 using a combination of cellular, molecular, stereological, and histopathological techniques. Our results demonstrated a noteworthy escalation in oxidative stress and gene expression endpoints associated with apoptosis. Moreover, stereological analyses exhibited alterations in cortex, proximal tubule, and kidney tissue vessels volumes. Remarkably, co-treatment with 6-formylindolo [3,2-b] carbazole (FICZ) and cadmium (Cd) resulted in a significant reduction in glomerulus volume, while elevating the volumes of distal tubule, Henle loop, and connective tissue, compared to the control group. Histopathological investigations further confirmed structural changes in the loop of Henle and proximal tubule, alongside a decline in glomerular volume. Additionally, the expression levels of AHR and Ctnnb1 genes significantly increased in the Cd-treated group compared to the control group. Enhanced expression of apoptosis-related genes, including Bcl-x, Bax, and Caspase3, along with alterations in mitochondrial membrane potential and cytochrome C release, was observed. In contrast, Gsk3 gene expression was significantly decreased. Our findings robustly establish that chemical pollutants, such as Cd, disrupt the AHR and Wnt/β-Catenin physiological roles during developmental stages by inhibiting the metabolic degradation of FICZ.
Collapse
Affiliation(s)
- Afshin Mohammadi-Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Shadboorestan
- Depertment of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Niknahad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Noorafshan
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Departments of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fardid
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Nadimi
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azizollah Bakhtari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmoud Omidi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
2
|
Salminen A. Aryl hydrocarbon receptor impairs circadian regulation in Alzheimer's disease: Potential impact on glymphatic system dysfunction. Eur J Neurosci 2024; 60:3901-3920. [PMID: 38924210 DOI: 10.1111/ejn.16450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Circadian clocks maintain diurnal rhythms of sleep-wake cycle of 24 h that regulate not only the metabolism of an organism but also many other periodical processes. There is substantial evidence that circadian regulation is impaired in Alzheimer's disease. Circadian clocks regulate many properties known to be disturbed in Alzheimer's patients, such as the integrity of the blood-brain barrier (BBB) as well as the diurnal glymphatic flow that controls waste clearance from the brain. Interestingly, an evolutionarily conserved transcription factor, that is, aryl hydrocarbon receptor (AhR), impairs the function of the core clock proteins and thus could disturb diurnal rhythmicity in the BBB. There is abundant evidence that the activation of AhR signalling inhibits the expression of the major core clock proteins, such as the brain and muscle arnt-like 1 (BMAL1), clock circadian regulator (CLOCK) and period circadian regulator 1 (PER1) in different experimental models. The expression of AhR is robustly increased in the brains of Alzheimer's patients, and protein level is enriched in astrocytes of the BBB. It seems that AhR signalling inhibits glymphatic flow since it is known that (i) activation of AhR impairs the function of the BBB, which is cooperatively interconnected with the glymphatic system in the brain, and (ii) neuroinflammation and dysbiosis of gut microbiota generate potent activators of AhR, which are able to impair glymphatic flow. I will examine current evidence indicating that activation of AhR signalling could disturb circadian functions of the BBB and impair glymphatic flow and thus be involved in the development of Alzheimer's pathology.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
3
|
Guarnieri T. Light Sensing beyond Vision: Focusing on a Possible Role for the FICZ/AhR Complex in Skin Optotransduction. Cells 2024; 13:1082. [PMID: 38994936 PMCID: PMC11240502 DOI: 10.3390/cells13131082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Although our skin is not the primary visual organ in humans, it acts as a light sensor, playing a significant role in maintaining our health and overall well-being. Thanks to the presence of a complex and sophisticated optotransduction system, the skin interacts with the visible part of the electromagnetic spectrum and with ultraviolet (UV) radiation. Following a brief overview describing the main photosensitive molecules that detect specific electromagnetic radiation and their associated cell pathways, we analyze their impact on physiological functions such as melanogenesis, immune response, circadian rhythms, and mood regulation. In this paper, we focus on 6-formylindolo[3,2-b]carbazole (FICZ), a photo oxidation derivative of the essential amino acid tryptophan (Trp). This molecule is the best endogenous agonist of the Aryl hydrocarbon Receptor (AhR), an evolutionarily conserved transcription factor, traditionally recognized as a signal transducer of both exogenous and endogenous chemical signals. Increasing evidence indicates that AhR is also involved in light sensing within the skin, primarily due to its ligand FICZ, which acts as both a chromophore and a photosensitizer. The biochemical reactions triggered by their interaction impact diverse functions and convey crucial data to our body, thus adding a piece to the complex puzzle of pathways that allow us to decode and elaborate environmental stimuli.
Collapse
Affiliation(s)
- Tiziana Guarnieri
- Cell Physiology Laboratory, Department of Biological, Geological, and Environmental Sciences, Alma Mater Studiorum Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, 40126 Bologna, Italy
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo "Mauro Picone", Via dei Taurini 19, 00185 Roma, Italy
| |
Collapse
|
4
|
Cannon AS, Holloman BL, Wilson K, Miranda K, Nagarkatti PS, Nagarkatti M. 6-Formylindolo[3,2-b]carbazole, a potent ligand for the aryl hydrocarbon receptor, attenuates concanavalin-induced hepatitis by limiting T-cell activation and infiltration of proinflammatory CD11b+ Kupffer cells. J Leukoc Biol 2024; 115:1070-1083. [PMID: 38366630 PMCID: PMC11135611 DOI: 10.1093/jleuko/qiae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/12/2023] [Accepted: 01/05/2024] [Indexed: 02/18/2024] Open
Abstract
FICZ (6-formylindolo[3,2-b]carbazole) is a potent aryl hydrocarbon receptor agonist that has a poorly understood function in the regulation of inflammation. In this study, we investigated the effect of aryl hydrocarbon receptor activation by FICZ in a murine model of autoimmune hepatitis induced by concanavalin A. High-throughput sequencing techniques such as single-cell RNA sequencing and assay for transposase accessible chromatin sequencing were used to explore the mechanisms through which FICZ induces its effects. FICZ treatment attenuated concanavalin A-induced hepatitis, evidenced by decreased T-cell infiltration, decreased circulating alanine transaminase levels, and suppression of proinflammatory cytokines. Concanavalin A revealed an increase in natural killer T cells, T cells, and mature B cells upon concanavalin A injection while FICZ treatment reversed the presence of these subsets. Surprisingly, concanavalin A depleted a subset of CD55+ B cells, while FICZ partially protected this subset. The immune cells showed significant dysregulation in the gene expression profiles, including diverse expression of migratory markers such as CCL4, CCL5, and CXCL2 and critical regulatory markers such as Junb. Assay for transposase accessible chromatin sequencing showed more accessible chromatin in the CD3e promoter in the concanavalin A-only group as compared to the naive and concanavalin A-exposed, FICZ-treated group. While there was overall more accessible chromatin of the Adgre1 (F4/80) promoter in the FICZ-treated group, we observed less open chromatin in the Itgam (CD11b) promoter in Kupffer cells, supporting the ability of FICZ to reduce the infiltration of proinflammatory cytokine producing CD11b+ Kupffer cells. Taken together, these data demonstrate that aryl hydrocarbon receptor activation by FICZ suppresses liver injury through the limitation of CD3+ T-cell activation and CD11b+ Kupffer cell infiltration.
Collapse
Affiliation(s)
- Alkeiver S Cannon
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| | - Bryan L Holloman
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| | - Kiesha Wilson
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| | - Kathryn Miranda
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| |
Collapse
|
5
|
Bhakta-Yadav MS, Burra K, Alhamdan N, Allex-Buckner CP, Sulentic CEW. The aryl hydrocarbon receptor differentially modulates the expression profile of antibody isotypes in a human B-cell line. Toxicol Sci 2024; 199:276-288. [PMID: 38526216 PMCID: PMC11131011 DOI: 10.1093/toxsci/kfae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant and high affinity ligand for the aryl hydrocarbon receptor (AhR). In animal models, AhR activation by TCDD generally inhibits antibody secretion. However, it is less clear if this translates to human antibody production. Using a human Burkitt lymphoma B-cell line (CL-01) that can be stimulated to secrete Ig and undergo class switch recombination to other Ig isotypes, the current study evaluated the effects of AhR activation or antagonism on the human Ig isotypic expression profile with CD40L+IL-4 stimulation. Our results suggest that AhR agonists (TCDD and indirubin) have little to no effect on IgM or IgA secretion, which were also not induced with stimulation. However, AhR activation significantly inhibited stimulation-induced IgG secretion, an effect reversed by the AhR antagonist CH223191. Evaluation of Ig heavy chain (IgH) constant region gene expression (ie Cμ, Cγ1-4, Cα1-2, and Cε that encode for IgM, IgG1-4, IgA1-2, and IgE, respectively) demonstrated differential effects. While Cμ and Cα2 transcripts were unaffected by stimulation or AhR agonists, AhR activation significantly inhibited stimulation-induced Cγ2-4 and Cε mRNA transcripts, which was reversed by AhR antagonism. Notably, AhR antagonism in the absence of exogenous AhR ligands significantly increased IgG and IgA secretion as well as the expression of Cγ2-4 and Cε. These results suggest that modulation of AhR activity differentially alters the IgH isotypic expression profile and antibody secretion that may be partly dependent on cellular stimulation. Since a variety of chemicals from anthropogenic, industrial, pharmaceutical, dietary, and bacterial sources bind the AhR, the ability of environmental exposures to alter AhR activity (i.e. activate or inhibit) may have a direct influence on immune function and antibody-relevant disease conditions.
Collapse
Affiliation(s)
- Mili S Bhakta-Yadav
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435, USA
| | - Kaulini Burra
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435, USA
| | - Nasser Alhamdan
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435, USA
| | - Clayton P Allex-Buckner
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435, USA
| | - Courtney E W Sulentic
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435, USA
| |
Collapse
|
6
|
Jaylet T, Coustillet T, Smith NM, Viviani B, Lindeman B, Vergauwen L, Myhre O, Yarar N, Gostner JM, Monfort-Lanzas P, Jornod F, Holbech H, Coumoul X, Sarigiannis DA, Antczak P, Bal-Price A, Fritsche E, Kuchovska E, Stratidakis AK, Barouki R, Kim MJ, Taboureau O, Wojewodzic MW, Knapen D, Audouze K. Comprehensive mapping of the AOP-Wiki database: identifying biological and disease gaps. FRONTIERS IN TOXICOLOGY 2024; 6:1285768. [PMID: 38523647 PMCID: PMC10958381 DOI: 10.3389/ftox.2024.1285768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction: The Adverse Outcome Pathway (AOP) concept facilitates rapid hazard assessment for human health risks. AOPs are constantly evolving, their number is growing, and they are referenced in the AOP-Wiki database, which is supported by the OECD. Here, we present a study that aims at identifying well-defined biological areas, as well as gaps within the AOP-Wiki for future research needs. It does not intend to provide a systematic and comprehensive summary of the available literature on AOPs but summarizes and maps biological knowledge and diseases represented by the already developed AOPs (with OECD endorsed status or under validation). Methods: Knowledge from the AOP-Wiki database were extracted and prepared for analysis using a multi-step procedure. An automatic mapping of the existing information on AOPs (i.e., genes/proteins and diseases) was performed using bioinformatics tools (i.e., overrepresentation analysis using Gene Ontology and DisGeNET), allowing both the classification of AOPs and the development of AOP networks (AOPN). Results: AOPs related to diseases of the genitourinary system, neoplasms and developmental anomalies are the most frequently investigated on the AOP-Wiki. An evaluation of the three priority cases (i.e., immunotoxicity and non-genotoxic carcinogenesis, endocrine and metabolic disruption, and developmental and adult neurotoxicity) of the EU-funded PARC project (Partnership for the Risk Assessment of Chemicals) are presented. These were used to highlight under- and over-represented adverse outcomes and to identify and prioritize gaps for further research. Discussion: These results contribute to a more comprehensive understanding of the adverse effects associated with the molecular events in AOPs, and aid in refining risk assessment for stressors and mitigation strategies. Moreover, the FAIRness (i.e., data which meets principles of findability, accessibility, interoperability, and reusability (FAIR)) of the AOPs appears to be an important consideration for further development.
Collapse
Affiliation(s)
- Thomas Jaylet
- Université Paris Cité, Inserm UMR-S 1124 T3S, Paris, France
| | | | - Nicola M. Smith
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
| | - Barbara Viviani
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Birgitte Lindeman
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
| | - Lucia Vergauwen
- Zebrafishlab, Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - Oddvar Myhre
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
| | - Nurettin Yarar
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
| | - Johanna M. Gostner
- Institute of Medical Biochemistry, Medical University of Innsbruck, Innsbruck, Austria
| | - Pablo Monfort-Lanzas
- Institute of Medical Biochemistry, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Xavier Coumoul
- Université Paris Cité, Inserm UMR-S 1124 T3S, Paris, France
| | - Dimosthenis A. Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
- National Hellenic Research Foundation, Athens, Greece
- Science, Technology and Society Department, Environmental Health Engineering, University School for Advanced Studies (IUSS), Pavia, Italy
| | - Philipp Antczak
- Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Ellen Fritsche
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
- Heinrich-Heine-University, Düsseldorf, Germany
- Swiss Centre for Applied Human Toxicology, Basel, Switzerland
- DNTOX GmbH, Düsseldorf, Germany
| | - Eliska Kuchovska
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Antonios K. Stratidakis
- Science, Technology and Society Department, Environmental Health Engineering, University School for Advanced Studies (IUSS), Pavia, Italy
| | - Robert Barouki
- Université Paris Cité, Inserm UMR-S 1124 T3S, Paris, France
| | - Min Ji Kim
- Inserm UMR-S 1124, Université Sorbonne Paris Nord, Bobigny, Paris, France
| | - Olivier Taboureau
- Université Paris Cité, BFA, Team CMPLI, Inserm U1133, CNRS UMR 8251, Paris, France
| | - Marcin W. Wojewodzic
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
- Cancer Registry of Norway, NIPH, Oslo, Norway
| | - Dries Knapen
- Zebrafishlab, Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - Karine Audouze
- Université Paris Cité, Inserm UMR-S 1124 T3S, Paris, France
| |
Collapse
|
7
|
Liu B, Wang K, Yang L, Zheng J, Ma T, Zhang S, Huang L, Chen T, Guo Y, Cui Z, Zhang X, Chen J, Lu H. 6-formylindolo[3, 2-b]carbazole alters gut microbiota and prevents the progression of ankylosing spondylitis in mice. Int Immunopharmacol 2024; 128:111562. [PMID: 38244515 DOI: 10.1016/j.intimp.2024.111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
Ankylosing spondylitis (AS), is known as a chronic inflammatory autoimmune disease, there is evidence to suggest that gut microbiota disorders may be related to the occurrence and development of AS. Studies have shown that 6-formylindolo[3, 2-b]carbazole (FICZ) has the ability to modulate intestinal homeostasis and inhibit inflammatory responses. The purpose of this work is to evaluate the protective role of FICZ in treating AS and elucidate potential mechanisms. FICZ was administered to the proteoglycan (PG)-induced AS mice for 7 consecutive weeks. The effects of FICZ on AS mice were evaluated by the disease severity, intestinal histopathology, proinflammatory cytokine levels, and intestinal mucosal barrier function. The gut microbiota compositions were profiled through 16S rDNA high-throughput sequencing. We found that FICZ significantly reduced the severity of AS and resulted in the downregulating of TNF-α and IL-17A inflammatory cytokines. Moreover, FICZ ameliorated pathological changes in the ileal and improved intestinal mucosal barrier function. Furthermore, FICZ altered the composition of the gut microbiota by increasing the Bacteroidetes/Firmicutes phylum ratio and enriched the genes related to "glycan biosynthesis and metabolism", thus reversing the process of AS. In conclusion, FICZ suppressed the progression of AS and altered gut microbiota in AS mice, which provided new insight into AS therapy strategy.
Collapse
Affiliation(s)
- Bin Liu
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Kun Wang
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China.
| | - Lianjun Yang
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Junchi Zheng
- Department of Orthopedics, Zhongshan Torch Development Zone People's Hospital, Zhongshan, Guangdong 528437, China; Department of Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, China
| | - Tao Ma
- Department of Biobank, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Shiyanjin Zhang
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Lihua Huang
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Tao Chen
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yuanqing Guo
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Zhifei Cui
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Xueling Zhang
- Department of Child Healthcare, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Junquan Chen
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China.
| | - Hai Lu
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China.
| |
Collapse
|
8
|
Proper SP, Dwyer AT, Appiagyei A, Felton JM, Ben-Baruch Morgenstern N, Marlman JM, Kotliar M, Barski A, Troutman TD, Rothenberg ME, Mersha TB, Azouz NP. Aryl hydrocarbon receptor and IL-13 signaling crosstalk in human keratinocytes and atopic dermatitis. FRONTIERS IN ALLERGY 2024; 5:1323405. [PMID: 38344408 PMCID: PMC10853333 DOI: 10.3389/falgy.2024.1323405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/10/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction Atopic dermatitis (AD) is an allergic skin disease mediated by skin barrier impairment and IL-13-driven immune response. Activation of the aryl hydrocarbon receptor (AHR) has shown promise in early clinical trials for AD; however, the mechanism by which AHR partially ameliorates AD is not well known. Methods Gene expression data from human biopsies were analyzed, and compared to gene expression from RNA-sequencing in our in-vitro HaCaT cell model system. Western blot, ELISA qRT-PCR were used to further explore the relationship between AHR and IL-13 signaling in HaCaT cells. Results The AHR target gene CYP1A1 was decreased in lesional skin compared with healthy control skin (p = 4.30 × 10-9). Single-cell RNA sequencing (scRNAseq) demonstrated increased AHR expression (p < 1.0 × 10-4) and decreased CYP1A1 expression in lesional AD keratinocytes compared with healthy control keratinocytes (p < 0.001). Activation of AHR by AHR agonists in HaCaT cells reversed IL-13-dependent gene expression of several key genes in AD pathogenesis, most notably the eosinophil chemoattractant CCL26 (eotaxin-3). Differentially expressed genes in keratinocytes of patients with AD substantially overlapped with genes regulated by AHR agonists from HaCaT cells by RNAseq, but in reverse direction. Mechanistically, there was evidence for direct transcriptional effects of AHR; AHR binding motifs were identified in the differentially expressed genes from lesional AD keratinocytes compared to control keratinocytes, and AHR activation did not modify IL-13-dependent signal transducer and activator of transcription 6 (STAT6) translocation to the nucleus. Discussion Together, these data suggest that the AHR pathway is dysregulated in AD and that AHR modulates IL-13 downstream signaling in keratinocytes through genome-wide, transcriptional regulatory effects.
Collapse
Affiliation(s)
- Steven P. Proper
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Alexander T. Dwyer
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Andrews Appiagyei
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Jennifer M. Felton
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | | | - Justin M. Marlman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michael Kotliar
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Artem Barski
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Ty D. Troutman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Marc E. Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Tesfaye B. Mersha
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Nurit P. Azouz
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
9
|
Oljuskin T, Azodi N, Volpedo G, Bhattacharya P, Markle HL, Hamano S, Matlashewski G, Satoskar AR, Gannavaram S, Nakhasi HL. Leishmania major centrin knock-out parasites reprogram tryptophan metabolism to induce a pro-inflammatory response. iScience 2023; 26:107593. [PMID: 37744403 PMCID: PMC10517402 DOI: 10.1016/j.isci.2023.107593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 09/26/2023] Open
Abstract
Leishmaniasis is a parasitic disease that is prevalent in 90 countries, and yet no licensed human vaccine exists against it. Toward control of leishmaniasis, we have developed Leishmania major centrin gene deletion mutant strains (LmCen-/-) as a live attenuated vaccine, which induces a strong IFN-γ-mediated protection to the host. However, the immune mechanisms of such protection remain to be understood. Metabolomic reprogramming of the host cells following Leishmania infection has been shown to play a critical role in pathogenicity and shaping the immune response following infection. Here, we applied untargeted mass spectrometric analysis to study the metabolic changes induced by infection with LmCen-/- and compared those with virulent L. major parasite infection to identify the immune mechanism of protection. Our data show that immunization with LmCen-/- parasites, in contrast to virulent L. major infection promotes a pro-inflammatory response by utilizing tryptophan to produce melatonin and downregulate anti-inflammatory kynurenine-AhR and FICZ-AhR signaling.
Collapse
Affiliation(s)
- Timur Oljuskin
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Nazli Azodi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD 20993, USA
| | - Greta Volpedo
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD 20993, USA
| | - Hannah L. Markle
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD 20993, USA
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), The Joint Usage/Research Center on Tropical Disease, Nagasaki University, Nagasaki, Japan
- Nagasaki University Graduate School of Biomedical Sciences Doctoral Leadership Program, Nagasaki, Japan
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Abhay R. Satoskar
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD 20993, USA
| | - Hira L. Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD 20993, USA
| |
Collapse
|
10
|
Lim HJ, Jang WB, Rethineswaran VK, Choi J, Lee EJ, Park S, Jeong Y, Ha JS, Yun J, Choi YJ, Hong YJ, Kwon SM. StemRegenin-1 Attenuates Endothelial Progenitor Cell Senescence by Regulating the AhR Pathway-Mediated CYP1A1 and ROS Generation. Cells 2023; 12:2005. [PMID: 37566085 PMCID: PMC10417434 DOI: 10.3390/cells12152005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023] Open
Abstract
Endothelial progenitor cell (EPC)-based stem cell therapy is a promising therapeutic strategy for vascular diseases. However, continuous in vitro expansion for clinical studies induces the loss of EPC functionality due to aging. In this study, we investigated the effects of StemRegenin-1 (SR-1), an antagonist of aryl hydrocarbon receptor (AhR), on replicative senescence in EPCs. We found that SR-1 maintained the expression of EPC surface markers, including stem cell markers, such as CD34, c-Kit, and CXCR4. Moreover, SR-1 long-term-treated EPCs preserved their characteristics. Subsequently, we demonstrated that SR-1 showed that aging phenotypes were reduced through senescence-associated phenotypes, such as β-galactosidase activity, SMP30, p21, p53, and senescence-associated secretory phenotype (SASP). SR-1 treatment also increased the proliferation, migration, and tube-forming capacity of senescent EPCs. SR-1 inhibited the AhR-mediated cytochrome P450 (CYP)1A1 expression, reactive-oxygen species (ROS) production, and DNA damage under oxidative stress conditions in EPCs. Furthermore, as a result of CYP1A1-induced ROS inhibition, it was found that accumulated intracellular ROS were decreased in senescent EPCs. Finally, an in vivo Matrigel plug assay demonstrated drastically enhanced blood vessel formation via SR-1-treated EPCs. In summary, our results suggest that SR-1 contributes to the protection of EPCs against cellular senescence.
Collapse
Affiliation(s)
- Hye Ji Lim
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (H.J.L.); (W.B.J.); (V.K.R.); (J.C.); (E.J.L.); (S.P.); (Y.J.); (J.S.H.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woong Bi Jang
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (H.J.L.); (W.B.J.); (V.K.R.); (J.C.); (E.J.L.); (S.P.); (Y.J.); (J.S.H.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Vinoth Kumar Rethineswaran
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (H.J.L.); (W.B.J.); (V.K.R.); (J.C.); (E.J.L.); (S.P.); (Y.J.); (J.S.H.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jaewoo Choi
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (H.J.L.); (W.B.J.); (V.K.R.); (J.C.); (E.J.L.); (S.P.); (Y.J.); (J.S.H.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Eun Ji Lee
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (H.J.L.); (W.B.J.); (V.K.R.); (J.C.); (E.J.L.); (S.P.); (Y.J.); (J.S.H.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sangmi Park
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (H.J.L.); (W.B.J.); (V.K.R.); (J.C.); (E.J.L.); (S.P.); (Y.J.); (J.S.H.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yeoreum Jeong
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (H.J.L.); (W.B.J.); (V.K.R.); (J.C.); (E.J.L.); (S.P.); (Y.J.); (J.S.H.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jong Seong Ha
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (H.J.L.); (W.B.J.); (V.K.R.); (J.C.); (E.J.L.); (S.P.); (Y.J.); (J.S.H.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jisoo Yun
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (H.J.L.); (W.B.J.); (V.K.R.); (J.C.); (E.J.L.); (S.P.); (Y.J.); (J.S.H.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Young Jin Choi
- Department of Hemato-Oncology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Young Joon Hong
- Department of Cardiology, Chonnam National University School of Medicine, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (H.J.L.); (W.B.J.); (V.K.R.); (J.C.); (E.J.L.); (S.P.); (Y.J.); (J.S.H.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
11
|
Elson DJ, Kolluri SK. Tumor-Suppressive Functions of the Aryl Hydrocarbon Receptor (AhR) and AhR as a Therapeutic Target in Cancer. BIOLOGY 2023; 12:526. [PMID: 37106727 PMCID: PMC10135996 DOI: 10.3390/biology12040526] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor involved in regulating a wide range of biological responses. A diverse array of xenobiotics and endogenous small molecules bind to the receptor and drive unique phenotypic responses. Due in part to its role in mediating toxic responses to environmental pollutants, AhR activation has not been traditionally viewed as a viable therapeutic approach. Nonetheless, the expression and activation of AhR can inhibit the proliferation, migration, and survival of cancer cells, and many clinically approved drugs transcriptionally activate AhR. Identification of novel select modulators of AhR-regulated transcription that promote tumor suppression is an active area of investigation. The development of AhR-targeted anticancer agents requires a thorough understanding of the molecular mechanisms driving tumor suppression. Here, we summarized the tumor-suppressive mechanisms regulated by AhR with an emphasis on the endogenous functions of the receptor in opposing carcinogenesis. In multiple different cancer models, the deletion of AhR promotes increased tumorigenesis, but a precise understanding of the molecular cues and the genetic targets of AhR involved in this process is lacking. The intent of this review was to synthesize the evidence supporting AhR-dependent tumor suppression and distill insights for development of AhR-targeted cancer therapeutics.
Collapse
Affiliation(s)
- Daniel J. Elson
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Siva K. Kolluri
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
12
|
Kaplan BL, Lawrence BP. Invited Perspective: Environmental Chemical-Sensing AHR Remains an Enigmatic Key Player in Toxicology. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:31307. [PMID: 36975774 PMCID: PMC10044337 DOI: 10.1289/ehp12535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/03/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Barbara L.F. Kaplan
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi, USA
| | - B. Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
13
|
D'Addabbo P, Frezza D, Sulentic CE. Evolutive emergence and divergence of an Ig regulatory node: An environmental sensor getting cues from the aryl hydrocarbon receptor? Front Immunol 2023; 14:996119. [PMID: 36817426 PMCID: PMC9936319 DOI: 10.3389/fimmu.2023.996119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
One gene, the immunoglobulin heavy chain (IgH) gene, is responsible for the expression of all the different antibody isotypes. Transcriptional regulation of the IgH gene is complex and involves several regulatory elements including a large element at the 3' end of the IgH gene locus (3'RR). Animal models have demonstrated an essential role of the 3'RR in the ability of B cells to express high affinity antibodies and to express different antibody classes. Additionally, environmental chemicals such as aryl hydrocarbon receptor (AhR) ligands modulate mouse 3'RR activity that mirrors the effects of these chemicals on antibody production and immunocompetence in mouse models. Although first discovered as a mediator of the toxicity induced by the high affinity ligand 2,3,7,8-tetracholordibenzo-p-dioxin (dioxin), understanding of the AhR has expanded to a physiological role in preserving homeostasis and maintaining immunocompetence. We posit that the AhR also plays a role in human antibody production and that the 3'RR is not only an IgH regulatory node but also an environmental sensor receiving signals through intrinsic and extrinsic pathways, including the AhR. This review will 1) highlight the emerging role of the AhR as a key transducer between environmental signals and altered immune function; 2) examine the current state of knowledge regarding IgH gene regulation and the role of the AhR in modulation of Ig production; 3) describe the evolution of the IgH gene that resulted in species and population differences; and 4) explore the evidence supporting the environmental sensing capacity of the 3'RR and the AhR as a transducer of these cues. This review will also underscore the need for studies focused on human models due to the premise that understanding genetic differences in the human population and the signaling pathways that converge at the 3'RR will provide valuable insight into individual sensitivities to environmental factors and antibody-mediated disease conditions, including emerging infections such as SARS-CoV-2.
Collapse
Affiliation(s)
- Pietro D'Addabbo
- Department of Biology, University of Bari “Aldo Moro”, Bari, Italy
| | - Domenico Frezza
- Department of Biology E. Calef, University of Rome Tor Vergata, Rome, Italy
| | - Courtney E.W. Sulentic
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
14
|
Qi YS, Xiao MY, Xie P, Xie JB, Guo M, Li FF, Piao XL. Comprehensive serum metabolomics and network analysis to reveal the mechanism of gypenosides in treating lung cancer and enhancing the pharmacological effects of cisplatin. Front Pharmacol 2022; 13:1070948. [PMID: 36532716 PMCID: PMC9751056 DOI: 10.3389/fphar.2022.1070948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/21/2022] [Indexed: 10/23/2023] Open
Abstract
Gypenosides (GYP) exerted anticancer activity against various cancers. However, the mechanism of GYP against lung cancer (LC) in vivo remains unclear. This study aims to reveal the potential mechanism of GYP against LC and enhancing cisplatin efficacy using a comprehensive analysis of metabolomics, network analysis. Pharmacodynamic results showed that GYP inhibited tumor growth, reduced tumor volume and tumor weight, and alleviated pathological symptoms in Lewis tumor-bearing mice, and GYP could enhance the anti-LC effects of cisplatin. Using serum metabolomics methods, 53 metabolites were found to be significantly altered in the model group, and the levels of 23 biomarkers were significantly restored after GYP treatment. GYP-related metabolic pathways involved six pathways, including alpha-linolenic acid metabolism, glutathione metabolism, sphingolipid metabolism, glycerophospholipid metabolism, tryptophan metabolism, and primary bile acid biosynthesis. 57 genes associated with differential metabolites of GYP recovery and 7 genes of 11 saponins of GYP against LC were screened by network analysis, the STRING database was used to find the association between 57 genes and 7 genes, and a compound-intersection gene-metabolite related gene-metabolite-pathway network was constructed, and STAT3, MAPK14, EGFR and TYMS might be the crucial targets of GYP against LC. Western blot results showed that GYP restored the levels of STA3, MAPK14, EGFR, and TYMS in the model group, and GYP also restored the levels of STAT3 and MAPK14 in the cisplatin group, indicating that GYP might exert anti-LC effects and enhance the pharmacological effects of cisplatin through MAPK14/STAT3 signaling pathway. Our method revealed the effect and mechanism of GYP on LC and the pharmacological effects of GYP-enhanced chemotherapeutic agent cisplatin, which provided some reference for the development of anti-cancer drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiang-Lan Piao
- School of Pharmacy, Minzu University of China, Beijing, China
| |
Collapse
|
15
|
Liu C, Guo Y, Cheng Y, Qian H. A colon-targeted delivery system of torularhodin encapsulated in electrospinning microspheres, and its co-metabolic regulation mechanism of gut microbiota. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|