1
|
Martínez-García G, Estrada K, Lira-Amaya JJ, Santamaria-Epinosa RM, Lopez-Arellano ME, Sciutto-Conde EL, Rojas-Martinez C, Alvarez-Martínez JA, Sánchez-Flores A, Figueroa-Millán JV. Comparative Analysis of Immune Response Genes Induced by a Virulent or Attenuated Strain of Babesia bigemina. Int J Mol Sci 2025; 26:487. [PMID: 39859202 PMCID: PMC11764604 DOI: 10.3390/ijms26020487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
RNA-seq technology has been widely used for the characterization of the transcriptome profile induced by several diseases in both humans and animals. In the present study, RNA-seq was used to identify the differential expression of genes associated with the immune response in cattle infected with two different strains of Babesia bigemina, both derived from the same Mexican field isolate, which exhibit distinct phenotypic characteristics: the virulent strain, capable of producing acute clinical signs, and the attenuated strain, capable of stimulating a protective immune response when used as an immunogen with an efficacy greater than 80%. The differential gene expression analysis performed revealed a total of 620 differentially expressed genes (DEGs). However, the intersection of the edgeR and DESeq2 programs used in the bioinformatics analysis only identified 247 DEGs, of which 108 genes were enriched to be closely correlated with the bovine immune response based on gene ontology terms; most of the DEGs obtained encode proteins associated with the major histocompatibility complex, immunoglobulins, and T-cell surface receptors. The infection caused by the attenuated strain induced higher transcription of immune response genes compared to the infection caused by the virulent strain; nonetheless, in both infections, a greater down-regulation than up-regulation was observed. Different immunoglobulin-associated genes were found to be up-regulated in the group inoculated with the attenuated strain, whereas these were down-regulated in the virulent strain-inoculated group. In addition, an up-regulation of the HSPA6, CD163, and SLC11a1 genes was observed in the group inoculated with the virulent strain, previously reported in other Apicomplexan infections. The findings provide relevant information that could contribute to clarifying the immune response associated with an acute bovine babesiosis infection by B. bigemina.
Collapse
Affiliation(s)
- Grecia Martínez-García
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec 62550, Mexico; (G.M.-G.); (J.J.L.-A.); (R.M.S.-E.); (M.E.L.-A.); (C.R.-M.); (J.A.A.-M.)
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Karel Estrada
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62209, Mexico; (K.E.); (A.S.-F.)
| | - José J. Lira-Amaya
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec 62550, Mexico; (G.M.-G.); (J.J.L.-A.); (R.M.S.-E.); (M.E.L.-A.); (C.R.-M.); (J.A.A.-M.)
| | - Rebeca M. Santamaria-Epinosa
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec 62550, Mexico; (G.M.-G.); (J.J.L.-A.); (R.M.S.-E.); (M.E.L.-A.); (C.R.-M.); (J.A.A.-M.)
| | - María E. Lopez-Arellano
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec 62550, Mexico; (G.M.-G.); (J.J.L.-A.); (R.M.S.-E.); (M.E.L.-A.); (C.R.-M.); (J.A.A.-M.)
| | - Edda L. Sciutto-Conde
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Carmen Rojas-Martinez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec 62550, Mexico; (G.M.-G.); (J.J.L.-A.); (R.M.S.-E.); (M.E.L.-A.); (C.R.-M.); (J.A.A.-M.)
| | - Jesus A. Alvarez-Martínez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec 62550, Mexico; (G.M.-G.); (J.J.L.-A.); (R.M.S.-E.); (M.E.L.-A.); (C.R.-M.); (J.A.A.-M.)
| | - Alejandro Sánchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62209, Mexico; (K.E.); (A.S.-F.)
| | - Julio V. Figueroa-Millán
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec 62550, Mexico; (G.M.-G.); (J.J.L.-A.); (R.M.S.-E.); (M.E.L.-A.); (C.R.-M.); (J.A.A.-M.)
| |
Collapse
|
2
|
Lagunes-Quintanilla R, Gómez-Romero N, Mendoza-Martínez N, Castro-Saines E, Galván-Arellano D, Basurto-Alcantara FJ. Perspectives on using integrated tick management to control Rhipicephalus microplus in a tropical region of Mexico. Front Vet Sci 2024; 11:1497840. [PMID: 39649682 PMCID: PMC11621215 DOI: 10.3389/fvets.2024.1497840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/11/2024] [Indexed: 12/11/2024] Open
Abstract
The Rhipicephalus microplus tick is widely recognized as the most economically significant ectoparasite affecting cattle globally, particularly in the Neotropical region. In Mexico, at least 65% of the cattle are infested with R. microplus and are susceptible to tick-borne diseases. Integrated tick management strategies are required to maintain compatible levels of animal production and reduce the reliance on chemical acaricides for tick control. Therefore, this paper aims to analyze current methods for controlling tick infestation in extensively raised cattle using Integrated Tick Management (ITM) and to propose an ITM program suitable for implementation in the humid tropical region of Veracruz, Mexico.
Collapse
Affiliation(s)
- Rodolfo Lagunes-Quintanilla
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad—INIFAP, Carretera Federal Cuernavaca—Cuautla, Jiutepec, Mexico
| | - Ninnet Gómez-Romero
- Vaccinology Laboratory, Department of Microbiology and Immunology, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Nancy Mendoza-Martínez
- Posgrado en Ciencias de la Producción y de la Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edgar Castro-Saines
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad—INIFAP, Carretera Federal Cuernavaca—Cuautla, Jiutepec, Mexico
| | - Dulce Galván-Arellano
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca de Lerdo, Mexico
| | - Francisco Javier Basurto-Alcantara
- Vaccinology Laboratory, Department of Microbiology and Immunology, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Alzan HF, Mahmoud MS, Suarez CE. Current vaccines, experimental immunization trials, and new perspectives to control selected vector borne blood parasites of veterinary importance. Front Vet Sci 2024; 11:1484787. [PMID: 39606652 PMCID: PMC11602000 DOI: 10.3389/fvets.2024.1484787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Parasite infections transmitted by vectors such as ticks and blood-sucking arthropods pose a significant threat to both human and animal health worldwide and have a substantial economic impact, particularly in the context of worsening environmental conditions. These infections can manifest in a variety of symptoms, including fever, anemia, jaundice, enlarged spleen, neurological disorders, and lymphatic issues, and can have varying mortality rates. In this review, we will focus on the current state of available vaccines, vaccine research approaches, and trials for diseases caused by vector-borne blood parasites, such as Babesia, Theileria, Anaplasma, and Trypanosoma, in farm animals. Control measures for these infections primarily rely on vector control, parasiticidal drug treatments, and vaccinations for disease prevention. However, many of these approaches have limitations, such as environmental concerns associated with the use of parasiticides, acaricides, and insecticides. Additionally, while some vaccines for blood parasites are already available, they still have several drawbacks, including practicality issues, unsuitability in non-endemic areas, and concerns about spreading other infectious agents, particularly in the case of live vaccines. This article highlights recent efforts to develop vaccines for controlling blood parasites in animals. The focus is on vaccine development approaches that show promise, including those based on recombinant antigens, vectored vaccines, and live attenuated or genetically modified parasites. Despite intensive research, developing effective subunit vaccines against blood stage parasites remains a challenge. By learning from previous vaccine development efforts and using emerging technologies to define immune mechanisms of protection, appropriate adjuvants, and protective antigens, we can expand our toolkit for controlling these burdensome diseases.
Collapse
Affiliation(s)
- Heba F. Alzan
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Center, Giza, Egypt
| | - Mona S. Mahmoud
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Center, Giza, Egypt
| | - Carlos E. Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, United States
| |
Collapse
|
4
|
Cardillo NM, Villarino NF, Lacy PA, Riscoe MK, Doggett JS, Ueti MW, Chung CJ, Suarez CE. The Combination of Buparvaquone and ELQ316 Exhibit a Stronger Effect than ELQ316 and Imidocarb Against Babesia bovis In Vitro. Pharmaceutics 2024; 16:1402. [PMID: 39598526 PMCID: PMC11597495 DOI: 10.3390/pharmaceutics16111402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Bovine babesiosis is a vector-borne disease transmitted by ticks that causes important losses in livestock worldwide. Recent research performed on the drugs currently used to control bovine babesiosis reported several issues including drug resistance, toxicity impact, and residues in edible tissue, suggesting the need for developing novel effective therapies. The endochin-like quinolones ELQ-316 and buparvaquone (BPQ) act as cytochrome bc1 inhibitors and have been proven to be safe and efficacious against related apicomplexans, such as Plasmodium spp. and Babesia microti, without showing toxicity in mammals. The objectives of this study are investigating whether ELQ-316, BPQ, and their combination treatment could be effective against Babesia bovis in an in vitro culture model and comparing with imidocarb (ID), the routinely used drug. Methods: In vitro cultured parasites starting at 2% percentage of parasitemia (PPE) were treated with BPQ, ELQ-316, ID, and the combinations of BPQ + ELQ-316 and ID + ELQ-316 at drug concentrations that ranged from 25 to 1200 nM, during four consecutive days. The IC50% and IC99% were reported. Parasitemia levels were evaluated daily using microscopic examination. Data were compared using the non-parametrical Mann-Whitney and Kruskall-Wallis test. Results: All drugs tested, whether used alone or in combination, significantly decreased the survival (p < 0.05) of B. bovis in in vitro cultures. The combination of BPQ + ELQ-316 had the lowest calculated inhibitory concentration 50% (IC50%) values, 31.21 nM (IC95%: 15.06-68.48); followed by BPQ, 77.06 nM (IC95%: 70.16-86.01); ID + ELQ316, 197 nM (IC95%:129.0-311.2); ID, 635.1 nM (IC95%: 280.9-2119); and ELQ316, 654.9 nM (IC95%: 362.3-1411). Conclusions: The results reinforce the higher efficacy of BPQ at affecting B. bovis survival and the potential synergistic effects of its combination with ELQ-316, providing a promising treatment option against B. bovis.
Collapse
Affiliation(s)
- Natalia M. Cardillo
- Animal Disease Research Unit, United States Department of Agriculture-Animal Research Unit (USDA-ARS), 3003 ADBF, WSU, Pullman, WA 99163, USA; (P.A.L.); (M.W.U.); (C.J.C.); (C.E.S.)
- Estación Experimental INTA Paraná, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 2290, Argentina
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Nicolas F. Villarino
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA;
| | - Paul A. Lacy
- Animal Disease Research Unit, United States Department of Agriculture-Animal Research Unit (USDA-ARS), 3003 ADBF, WSU, Pullman, WA 99163, USA; (P.A.L.); (M.W.U.); (C.J.C.); (C.E.S.)
| | - Michael K. Riscoe
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USA (J.S.D.)
- Department of Microbiology and Molecular Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Joseph Stone Doggett
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USA (J.S.D.)
- School of Medicine, Division of Infectious Diseases, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Massaro W. Ueti
- Animal Disease Research Unit, United States Department of Agriculture-Animal Research Unit (USDA-ARS), 3003 ADBF, WSU, Pullman, WA 99163, USA; (P.A.L.); (M.W.U.); (C.J.C.); (C.E.S.)
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Chungwon J. Chung
- Animal Disease Research Unit, United States Department of Agriculture-Animal Research Unit (USDA-ARS), 3003 ADBF, WSU, Pullman, WA 99163, USA; (P.A.L.); (M.W.U.); (C.J.C.); (C.E.S.)
| | - Carlos E. Suarez
- Animal Disease Research Unit, United States Department of Agriculture-Animal Research Unit (USDA-ARS), 3003 ADBF, WSU, Pullman, WA 99163, USA; (P.A.L.); (M.W.U.); (C.J.C.); (C.E.S.)
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
5
|
Cardillo NM, Lacy PA, Villarino NF, Doggett JS, Riscoe MK, Bastos RG, Laughery JM, Ueti MW, Suarez CE. Comparative efficacy of buparvaquone and imidocarb in inhibiting the in vitro growth of Babesia bovis. Front Pharmacol 2024; 15:1407548. [PMID: 38751779 PMCID: PMC11094231 DOI: 10.3389/fphar.2024.1407548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction B. bovis is an apicomplexan parasite responsible for bovine babesiosis, a tick-borne disease with a worldwide impact. The disease remains inefficiently controlled, and few effective drugs, including imidocarb dipropionate (ID), are currently available in endemic areas. The objective of this study was to evaluate whether buparvaquone (BPQ), a drug currently used to treat cattle infected with the Babesia-related Theileria spp. parasites, could be active against Babesia parasites. Herein, we compared the effect of ID and BPQ on B. bovis growth in vitro erythrocyte culture. Methods We compared the effect of ID and BPQ on the culture-adapted Texas T2Bo strain of B. bovis. In vitro cultured parasites were incubated with ID and BPQ at two starting parasitemia levels (PPE), 0.2% and 1%. In vitro cultured parasites were treated with ID or BPQ at concentrations ranging from 10 to 300 nM, during 4 consecutive days. Parasitemia levels were daily evaluated using microscopic examination. Data was compared using the independent Student's t-test. Results and discussion Both ID and BPQ significantly inhibited (p < 0.05) the growth of B. bovis, regardless of the initial parasitemia used. At 1% parasitemia, BPQ had lower calculated inhibitory concentration 50 (IC50: 50.01) values than ID (IC50: 117.3). No parasites were found in wells with 0.2% starting parasitemia, treated previously with 50 nM of BPQ or ID, after 2 days of culture without drugs. At 1% parasitemia, no parasite survival was detected at 150 nM of BPQ or 300 nM of ID, suggesting that both drugs acted as babesiacidals. Conclusion Overall, the data suggests that BPQ is effective against B. bovis and shows a residual effect that seems superior to ID, which is currently the first-line drug for treating bovine babesiosis globally.
Collapse
Affiliation(s)
- Natalia M. Cardillo
- Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, WSU, Pullman, WA, United States
- Estación Experimental INTA Paraná Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Parana, Argentina
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Paul A. Lacy
- Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, WSU, Pullman, WA, United States
| | - Nicolas F. Villarino
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, United States
| | - J. Stone Doggett
- Oregon Health and Science University, Portland, OR, United States
- VA Portland Healthcare System, Portland, OR, United States
| | - Michael K. Riscoe
- Oregon Health and Science University, Portland, OR, United States
- VA Portland Healthcare System, Portland, OR, United States
| | - Reginaldo G. Bastos
- Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, WSU, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Jacob M. Laughery
- Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, WSU, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Massaro W. Ueti
- Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, WSU, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Carlos E. Suarez
- Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, WSU, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
6
|
Elati K, Tajeri S, Mugo RM, Obara I, Darghouth MA, Zweygarth E, Nijhof AM. In vitro infection of bovine erythrocytes with Theileria annulata merozoites as a key step in completing the T. annulata life cycle in vitro. Sci Rep 2024; 14:3647. [PMID: 38351295 PMCID: PMC10864261 DOI: 10.1038/s41598-024-54327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/11/2024] [Indexed: 02/16/2024] Open
Abstract
Theileria annulata is a protozoan parasite with a complex life cycle involving a bovine host and a tick vector. It is transmitted by Hyalomma ticks and is the causative agent of tropical theileriosis, a debilitating and often fatal disease in southern Europe, northern Africa and large parts of Asia. Understanding the biology of different life cycle stages is critical for the control of tropical theileriosis and requires the use of experimental animals which poses an ethical concern. We present for the first time the in vitro infection of red blood cells (RBCs) with T. annulata differentiated schizonts. The Ankara cell line of T. annulata was cultured at 41 °C for nine days to induce merogony and subsequently incubated with purified RBCs for one to three days. Percentage of parasitized erythrocyte (PPE) over the short culture period was estimated by Giemsa staining (0.007-0.01%), Flow cytometry activated sorting (FACS) (0.02-1.1%) and observation of FACS sorted cells by confocal microscopy (0.05-0.4%). There was a significant difference in the PPE between FACS and the two other techniques (one-way ANOVA followed by Tukey test, P = 0.004) but no significant difference was observed between the confocal imaging and Giemsa staining methods (ANOVA one-way followed by Tukey test, P = 0.06). Importantly, all three complementary methods confirmed the invasion of RBCs by T. annulata merozoites in vitro. Although the experimental conditions will require further optimization to increase the PPE, the in vitro infection of RBCs by T. annulata merozoites is pivotal in paving the way for the eventual completion of the T. annulata life cycle in vitro when combined with artificial tick feeding.
Collapse
Affiliation(s)
- Khawla Elati
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany.
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Robert-Von-Ostertag-Str. 8, 14163, Berlin, Germany.
- Laboratoire de Parasitologie, École Nationale de Médecine Vétérinaire de Sidi Thabet, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, Université de la Manouba, 2020, Sidi Thabet, Tunisia.
| | - Shahin Tajeri
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Robert-Von-Ostertag-Str. 8, 14163, Berlin, Germany
| | - Robert M Mugo
- Institute of Immunology, Center for Infection Medicine, Freie Universtät Berlin, 14163, Berlin, Germany
| | - Isaiah Obara
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Robert-Von-Ostertag-Str. 8, 14163, Berlin, Germany
| | - Mohamed Aziz Darghouth
- Laboratoire de Parasitologie, École Nationale de Médecine Vétérinaire de Sidi Thabet, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, Université de la Manouba, 2020, Sidi Thabet, Tunisia
| | - Erich Zweygarth
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Ard Menzo Nijhof
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-Von-Ostertag-Str. 7, 14163, Berlin, Germany.
- Veterinary Centre for Resistance Research, Freie Universität Berlin, Robert-Von-Ostertag-Str. 8, 14163, Berlin, Germany.
| |
Collapse
|
7
|
Tuvshintulga B, Guswanto A, Nugraha AB, Sivakumar T, Umemiya-Shirafuji R, Yokoyama N. Disruption of a DNA fragment that encodes the microneme adhesive repeat domain-containing region of the BBOV_III011730 does not affect the blood stage growth of Babesia bovis in vitro. Mol Biochem Parasitol 2023; 255:111576. [PMID: 37315901 DOI: 10.1016/j.molbiopara.2023.111576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/21/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
Babesia bovis, an intraerythrocytic hemoprotozoan parasite, causes the most pathogenic form of bovine babesiosis, negatively impacting the cattle industry. Comprehensive knowledge of B. bovis biology is necessary for developing control methods. In cattle, B. bovis invades the red blood cells (RBCs) and reproduces asexually. Micronemal proteins, which bind to sialic acid of host cells via their microneme adhesive repeat (MAR) domains, are believed to play a key role in host cell invasion by apicomplexan parasites. In this study, we successfully deleted the region encoding MAR domain of the BBOV_III011730 by integrating a fusion gene of enhanced green fluorescent protein-blasticidin-S-deaminase into the genome of B. bovis. The transgenic B. bovis, lacking the MAR domain of the BBOV_III011730, invaded bovine RBCs in vitro and grew at rates similar to the parental line. In conclusion, our study revealed that the MAR domain is non-essential for the intraerythrocytic development of B. bovis in vitro.
Collapse
Affiliation(s)
- Bumduuren Tuvshintulga
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Azirwan Guswanto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Arifin Budiman Nugraha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Thillaiampalam Sivakumar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.
| |
Collapse
|
8
|
Bastos RG, Capelli-Peixoto J, Laughery JM, Suarez CE, Ueti MW. Vaccination with an in vitro culture attenuated Babesia bovis strain safely protects highly susceptible adult cattle against acute bovine babesiosis. Front Immunol 2023; 14:1219913. [PMID: 37583702 PMCID: PMC10424928 DOI: 10.3389/fimmu.2023.1219913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/07/2023] [Indexed: 08/17/2023] Open
Abstract
Introduction Live in vivo attenuated Babesia bovis vaccines produced by sequential passages in splenectomized calves have historically been used to control acute bovine babesiosis in endemic areas worldwide. However, several constraints prevent the widespread use of these vaccines, including the need for several splenectomized calves to produce vaccine batches, and potential inconsistent parasite attenuation, which contraindicates their use for highly Babesia-susceptible adult cattle. Thus, the use of vaccines based on well-defined in vitro culture attenuated B. bovis strains emerges as a more sustainable and efficient alternative. Previous work demonstrated that the culture attenuated strain Att-S74-T3Bo is non-tick transmissible and able to safely protect calves against needle challenge with a B. bovis virulent strain. Methods and results Herein we evaluated safety and efficacy of Att-S74-T3Bo in preventing acute babesiosis in adult (>1.5 year of age) cattle. Results demonstrated that Att-S74-T3Bo vaccination of adult animals (n=5) induced self-limiting signs of acute infection and protected the vaccinated animals against challenge with the homologous virulent B. bovis strain Vir-S74-T3Bo. Att-S74-T3Bo-vaccinated adult cattle developed significant (P<0.05) monocytosis, with concomitant neutropenia and CD4+ leukopenia, in peripheral blood early after vaccination. Also, vaccinated animals developed a specific signature of pro- and anti-inflammatory cytokine expression in peripheral blood and significant levels of IgM, total IgG, IgG1, and IgG2 against the B. bovis immunodominant antigen RAP-1 CT. Strikingly, none of the vaccinated animals showed any signs of acute babesiosis after challenge with Vir-S74-T3Bo. In contrast, control adult cattle (n=5) showed pathognomonic symptoms of acute babesiosis, and significant decrease (P<0.05) in lymphocytes, monocytes, and neutrophils, starting on day 7 post-challenge. All control animals developed severe acute disease and were euthanized on days 10 through 12 days post-challenge. Discussion and conclusion Evidence from this study indicates that Att-S74-T3Bo safely protects highly susceptible adult cattle against challenge with a homologous virulent strain of B. bovis. In conclusion, Att-S74-T3Bo may be considered as a potential efficient and sustainable attenuated candidate vaccine strain to control acute bovine babesiosis in highly susceptible adult cattle. Future studies should focus on increasing the number of animals vaccinated, duration of immunity, and efficacy of this attenuated strain against heterologous virulent parasite strains.
Collapse
Affiliation(s)
- Reginaldo G. Bastos
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Janaina Capelli-Peixoto
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Jacob M. Laughery
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Carlos E. Suarez
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Massaro W. Ueti
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
9
|
Malgwi SA, Ogunsakin RE, Oladepo AD, Adeleke MA, Okpeku M. A Forty-Year Analysis of the Literature on Babesia Infection (1982-2022): A Systematic Bibliometric Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6156. [PMID: 37372744 DOI: 10.3390/ijerph20126156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/14/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Babesia infection is a tick-borne protozoan disease associated with significant veterinary, economic, and medical importance. This infection affects many hosts, ranging from wild to domestic animals and including man. All vertebrates serve as potential carriers due to the huge diversity of the species. Babesiosis has been associated with severe economic loss in livestock production, especially in cattle farming, and is also a major public health concern in man, which could be fatal. The infection is usually opportunistic, ranging from asymptomatic to symptomatic, usually in immunocompromised subjects or under conditions of stressful management. This study was designed to uncover trends in relation to publication growth and further explore research output regarding babesiosis from data indexed in the WoS. The WoS is the only platform used to map publications on Babesia infection. The search term "babesiosis" or "Babesia infection" was used to extract articles published across the study period from 1982 to 2022. The inclusion criteria were restricted to only articles for the analysis. The results from the search query showed that a total of 3763 articles were published during the study period with an average of 91.70 ± 43.87 articles annually and an average total citation (n = 1874.8). An annual growth rate of 2.5% was recorded during the study period. The year 2021 had the highest number of published articles (n = 193, 5.1%) and citations (n = 7039). The analysis of the most relevant keywords and titles showed that infection (n = 606, 16.1%), babesiosis (n = 444, 11.7%), and Babesia (n = 1302, 16%) were the most relevant keyword plus (ID), author keyword (DE), and title, respectively. The common conceptual framework analysis through K-means clustering showed two clusters comprising 4 and 41 elements, respectively. The United States of America is the top-performing country in terms of article production (n = 707, 20.8%) and the leading funder for babesiosis research, with two of its agencies ranked at the top. These are the Department of Health and Human Services (n = 254, 6.7%) and the National Institute of Health (n= 238,6.3%). Igarashi I. is the top-performing author (n = 231, 6.1%), while Veterinary Parasitology is ranked the top journal (n = 393, 10.4%) in terms of babesiosis publications. Overall, an increase in publications was observed in the study period, with significant output from developed nations.
Collapse
Affiliation(s)
- Samson Anjikwi Malgwi
- Discipline of Genetics, School of Life Sciences, University of Kwa-Zulu Natal, Westville, Durban 4000, South Africa
| | - Ropo Ebenezer Ogunsakin
- Biostatistics Unit, Discipline of Public Health Medicine, School of Nursing & Public Health, College of Health Sciences, University of Kwa-Zulu Natal, Durban 4000, South Africa
| | - Abolade David Oladepo
- Discipline of Genetics, School of Life Sciences, University of Kwa-Zulu Natal, Westville, Durban 4000, South Africa
| | - Matthew Adekunle Adeleke
- Discipline of Genetics, School of Life Sciences, University of Kwa-Zulu Natal, Westville, Durban 4000, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of Kwa-Zulu Natal, Westville, Durban 4000, South Africa
| |
Collapse
|
10
|
Keroack CD, Elsworth B, Tennessen JA, Paul AS, Hua R, Ramirez-Ramirez L, Ye S, Moreira CM, Meyers MJ, Zarringhalam K, Duraisingh MT. Comparative chemical genomics in Babesia species identifies the alkaline phosphatase phoD as a novel determinant of resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544849. [PMID: 37398106 PMCID: PMC10312741 DOI: 10.1101/2023.06.13.544849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Babesiosis is an emerging zoonosis and widely distributed veterinary infection caused by 100+ species of Babesia parasites. The diversity of Babesia parasites, coupled with the lack of potent inhibitors necessitates the discovery of novel conserved druggable targets for the generation of broadly effective antibabesials. Here, we describe a comparative chemogenomics (CCG) pipeline for the identification of novel and conserved targets. CCG relies on parallel in vitro evolution of resistance in independent populations of evolutionarily-related Babesia spp. ( B. bovis and B. divergens ). We identified a potent antibabesial inhibitor from the Malaria Box, MMV019266. We were able to select for resistance to this compound in two species of Babesia, achieving 10-fold or greater resistance after ten weeks of intermittent selection. After sequencing of multiple independently derived lines in the two species, we identified mutations in a single conserved gene in both species: a membrane-bound metallodependent phosphatase (putatively named PhoD). In both species, the mutations were found in the phoD-like phosphatase domain, proximal to the predicted ligand binding site. Using reverse genetics, we validated that mutations in PhoD confer resistance to MMV019266. We have also demonstrated that PhoD localizes to the endomembrane system and partially with the apicoplast. Finally, conditional knockdown and constitutive overexpression of PhoD alter the sensitivity to MMV019266 in the parasite: overexpression of PhoD results in increased sensitivity to the compound, while knockdown increases resistance, suggesting PhoD is a resistance mechanism. Together, we have generated a robust pipeline for identification of resistance loci, and identified PhoD as a novel determinant of resistance in Babesia species. Highlights Use of two species for in vitro evolution identifies a high confidence locus associated with resistance Resistance mutation in phoD was validated using reverse genetics in B. divergens Perturbation of phoD using function genetics results in changes in the level of resistance to MMV019266Epitope tagging reveals localization to the ER/apicoplast, a conserved localization with a similar protein in diatoms Together, phoD is a novel resistance determinant in multiple Babesia spp .
Collapse
|
11
|
Developing Anti-Babesia bovis Blood Stage Vaccines: A New Perspective Regarding Synthetic Vaccines. Int J Mol Sci 2023; 24:ijms24065219. [PMID: 36982294 PMCID: PMC10049154 DOI: 10.3390/ijms24065219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 03/12/2023] Open
Abstract
Bovine babesiosis is caused by the Apicomplexa parasites from the genus Babesia. It is one of the most important tick-borne veterinary diseases worldwide; Babesia bovis being the species associated with the most severe clinical signs of the disease and causing the greatest economic losses. Many limitations related to chemoprophylaxis and the acaricides control of transmitting vectors have led to the adoption of live attenuated vaccine immunisation against B. bovis as an alternative control strategy. However, whilst this strategy has been effective, several drawbacks related to its production have prompted research into alternative methodologies for producing vaccines. Classical approaches for developing anti-B. bovis vaccines are thus discussed in this review and are compared to a recent functional approach to highlight the latter’s advantages when designing an effective synthetic vaccine targeting this parasite.
Collapse
|
12
|
Bastos RG, Laughery JM, Ozubek S, Alzan HF, Taus NS, Ueti MW, Suarez CE. Identification of novel immune correlates of protection against acute bovine babesiosis by superinfecting cattle with in vitro culture attenuated and virulent Babesia bovis strains. Front Immunol 2022; 13:1045608. [PMID: 36466866 PMCID: PMC9716085 DOI: 10.3389/fimmu.2022.1045608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/02/2022] [Indexed: 08/12/2023] Open
Abstract
The apicomplexan tickborne parasites Babesia bovis and B. bigemina are the major causative agents of bovine babesiosis, a disease that negatively affects the cattle industry and food safety around the world. The absence of correlates of protection represents one major impediment for the development of effective and sustainable vaccines against bovine babesiosis. Herein we superinfected cattle with attenuated and virulent strains of B. bovis to investigate immune correlates of protection against acute bovine babesiosis. Three 6-month-old Holstein calves were infected intravenously (IV) with the in vitro culture attenuated Att-S74-T3Bo B. bovis strain (106 infected bovine red blood cells (iRBC)/calf) while three age-matched Holstein calves were inoculated IV with normal RBC as controls (106 RBC/calf). All Att-S74-T3Bo-infected calves showed a significant increase in temperature early after inoculation but recovered without treatment. Att-S74-T3Bo-infected calves also developed: (a) monocytosis, neutropenia, and CD4+ lymphopenia in peripheral blood on days 3 to 7 post-inoculation; (b) significant levels of TNFα, CXCL10, IFNγ, IL-4, and IL-10 in sera at day 6 after infection; and (c) IgM and IgG against B. bovis antigens, starting at days 10 and 30 post-inoculation, respectively. At 46 days post-Att-S74-T3Bo inoculation, all experimental calves were infected IV with the homologous virulent B. bovis strain Vir-S74-T3Bo (107 iRBC/calf). All Att-S74-T3Bo-infected calves survived superinfection with Vir-S74-T3Bo without displaying signs of acute babesiosis. In contrast, control animals showed signs of acute disease, starting at day 10 post-Vir-S74-T3Bo infection, and two of them were humanely euthanized at days 13 and 14 after inoculation due to the severity of their symptoms. Also, control calves showed higher (P<0.05) parasite load in peripheral blood compared to animals previously exposed to Att-S74-T3Bo. No significant alterations in the profile of leukocytes and cytokines were observed in Att-S74-T3Bo-inoculated after Vir-S74-T3Bo infection. In conclusion, data demonstrate novel changes in the profile of blood immune cells and cytokine expression in peripheral blood that are associated with protection against acute bovine babesiosis. These identified immune correlates of protection may be useful for designing effective and sustainable vaccines against babesiosis in cattle.
Collapse
Affiliation(s)
- Reginaldo G. Bastos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Jacob M. Laughery
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Sezayi Ozubek
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig, Turkey
| | - Heba F. Alzan
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Center, Dokki, Giza, Egypt
| | - Naomi S. Taus
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research, Pullman, WA, United States
| | - Massaro W. Ueti
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research, Pullman, WA, United States
| | - Carlos E. Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research, Pullman, WA, United States
| |
Collapse
|
13
|
Al-Nazal H, Low L, Kumar S, Good MF, Stanisic DI. A vaccine for human babesiosis: prospects and feasibility. Trends Parasitol 2022; 38:904-918. [PMID: 35933301 DOI: 10.1016/j.pt.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 10/16/2022]
Abstract
Babesiosis is a tick-borne disease caused by intraerythrocytic Babesia parasites. It is a well-known illness in companion animals and livestock, resulting in substantial economic losses in the cattle industry. Babesiosis is also recognized as an emerging zoonosis of humans in many countries worldwide. There is no vaccine against human babesiosis. Currently, preventive measures are focused on vector avoidance. Although not always effective, treatment includes antimicrobial therapy and exchange transfusion. In this review, we discuss the host's immune response to the parasite, vaccines being used to prevent babesiosis in animals, and lessons from malaria vaccine development efforts to inform the development of a human babesiosis vaccine. An effective human vaccine would be a significant advance towards curtailing this rapidly emerging disease.
Collapse
Affiliation(s)
- Hanan Al-Nazal
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, Australia
| | - Leanne Low
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, USA
| | - Sanjai Kumar
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Centre for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Michael F Good
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, Australia
| | - Danielle I Stanisic
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, Australia.
| |
Collapse
|
14
|
Draft Genome Sequences of Mexican Babesia bovis Virulent and Attenuated Strains. Microbiol Resour Announc 2022; 11:e0115321. [PMID: 35262379 PMCID: PMC9022577 DOI: 10.1128/mra.01153-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Babesia bovis, a tick-borne intraerythrocytic protozoan parasite that belongs to the phylum Apicomplexa, is one of the etiological agents of bovine babesiosis, a highly prevalent disease in tropical and subtropical countries that causes significant morbidity and deaths in cattle. This report presents the draft genome sequences of attenuated and virulent B. bovis strains of Mexican origin.
Collapse
|
15
|
Alzan HF, Bastos RG, Laughery JM, Scoles GA, Ueti MW, Johnson WC, Suarez CE. A Culture-Adapted Strain of Babesia bovis Has Reduced Subpopulation Complexity and Is Unable to Complete Its Natural Life Cycle in Ticks. Front Cell Infect Microbiol 2022; 12:827347. [PMID: 35223550 PMCID: PMC8867610 DOI: 10.3389/fcimb.2022.827347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Babesia bovis natural field strains are composed of several geno-phenotypically distinct subpopulations. This feature, together with possible epigenetic modifications, may facilitate adaptation to variable environmental conditions. In this study we compare geno-phenotypical features among long-term (more than 12 years) (LTCP) and short-term cultured B. bovis parasites (STCP) derived from the B. bovis S74-T3Bo strain. LTCPs intraerythrocytic forms are smaller in size than STCPs and have faster in vitro growth rate. In contrast to its parental strain, the LTCP lack expression of the sexual stage specific 6cysA and 6cysB proteins and are unable to develop sexual forms upon in vitro sexual stage induction. Consistently, in contrast to its parental strain, LTCPs have reduced virulence and are not transmissible to cattle by vector competent Rhipicephalus microplus (R. microplus). Similar to previous comparisons among attenuated and virulent B. bovis strains, the LTCP line has decreased genomic diversity compared to the STCP line. Thus, LTCP may contribute to our understanding of adaptive mechanisms used by the parasites in response to environmental changes, protective immunity, virulence, and transmission by ticks. In addition, LTCPs may be considered as candidates for a non-tick transmissible vaccine against bovine babesiosis.
Collapse
Affiliation(s)
- Heba F. Alzan
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Parasitology and Animal Diseases Department, National Research Center, Giza, Egypt
- Tick and Tick-Borne Disease Research Unit, National Research Center, Giza, Egypt
- *Correspondence: Heba F. Alzan, ; Carlos E. Suarez,
| | - Reginaldo G. Bastos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Jacob M. Laughery
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Glen A. Scoles
- Invasive Insect Biocontrol and Behavior Laboratory, Agricultural Research Service, Beltsville, MD, United States
| | - Massaro W. Ueti
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA, United States
| | - Wendell C. Johnson
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA, United States
| | - Carlos E. Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA, United States
- *Correspondence: Heba F. Alzan, ; Carlos E. Suarez,
| |
Collapse
|
16
|
Delbecq S. Major Surface Antigens in Zoonotic Babesia. Pathogens 2022; 11:pathogens11010099. [PMID: 35056047 PMCID: PMC8780968 DOI: 10.3390/pathogens11010099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
Human babesiosis results from a combination of tick tropism for humans, susceptibility of a host to sustain Babesia development, and contact with infected ticks. Climate modifications and increasing diagnostics have led to an expanded number of Babesia species responsible for human babesiosis, although, to date, most cases have been attributed to B. microti and B. divergens. These two species have been extensively studied, and in this review, we mostly focus on the antigens involved in host–parasite interactions. We present features of the major antigens, so-called Bd37 in B. divergens and BmSA1/GPI12 in B. microti, and highlight the roles of these antigens in both host cell invasion and immune response. A comparison of these antigens with the major antigens found in some other Apicomplexa species emphasizes the importance of glycosylphosphatidylinositol-anchored proteins in host–parasite relationships. GPI-anchor cleavage, which is a property of such antigens, leads to soluble and membrane-bound forms of these proteins, with potentially differential recognition by the host immune system. This mechanism is discussed as the structural basis for the protein-embedded immune escape mechanism. In conclusion, the potential consequences of such a mechanism on the management of both human and animal babesiosis is examined.
Collapse
Affiliation(s)
- Stephane Delbecq
- Centre de Biologie Structurale, Faculté de Pharmacie, University of Montpellier, UMR CNRS 5048, 34090 Montpellier, France
| |
Collapse
|
17
|
He L, Bastos RG, Sun Y, Hua G, Guan G, Zhao J, Suarez CE. Babesiosis as a potential threat for bovine production in China. Parasit Vectors 2021; 14:460. [PMID: 34493328 PMCID: PMC8425137 DOI: 10.1186/s13071-021-04948-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/11/2021] [Indexed: 11/15/2022] Open
Abstract
Babesiosis is a tick-borne disease with global impact caused by parasites of the phylum Apicomplexa, genus Babesia. Typically, acute bovine babesiosis (BB) is characterized by fever, anemia, hemoglobinuria, and high mortality. Surviving animals remain persistently infected and become reservoirs for parasite transmission. Bovids in China can be infected by one or more Babesia species endemic to the country, including B. bovis, B. bigemina, B. orientalis, B. ovata, B. major, B. motasi, B. U sp. Kashi and B. venatorum. The latter may pose a zoonotic risk. Occurrence of this wide diversity of Babesia species in China may be due to a combination of favorable ecological factors, such as the presence of multiple tick vectors, including Rhipicephalus and Hyalomma, the coexistence of susceptible bovid species, such as domestic cattle, yaks, and water buffalo, and the lack of efficient measures of tick control. BB is currently widespread in several regions of the country and a limiting factor for cattle production. While some areas appear to have enzootic stability, others have considerable cattle mortality. Research is needed to devise solutions to the challenges posed by uncontrolled BB. Critical research gaps include risk assessment for cattle residing in endemic areas, understanding factors involved in endemic stability, evaluation of parasite diversity and pathogenicity of regional Babesia species, and estimation of whether and how BB should be controlled in China. Research should allow the design of comprehensive interventions to improve cattle production, diminish the risk of human infections, and increase the availability of affordable animal protein for human consumption in China and worldwide. In this review, we describe the current state of BB with reference to the diversity of hosts, vectors, and parasite species in China. We also discuss the unique risks and knowledge gaps that should be taken into consideration for future Babesia research and control strategies.
Collapse
Affiliation(s)
- Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164 USA
| | - Reginaldo G. Bastos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164 USA
| | - Yali Sun
- State Key Laboratory of Plateau Ecology and Agriculture, College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016 People’s Republic of China
| | - Guohua Hua
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, International Joint Research Centre for Animal Genetics, Breeding and Reproduction, College of Animal Science & Technology, Huazhong Agriculture University, Wuhan, Hubei China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping, Lanzhou, 730046 China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Carlos E. Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164 USA
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA 99164 USA
| |
Collapse
|
18
|
Sun Y, Jiang B, Zheng W, Wang H, Jiang R, Wang X, Jia N, Yang F, Chen H, Jiang J, Cao W. Isolation and in vitro cultivation of Babesia venatorum (Apicomplexa: Babesiidae), a zoonotic hemoprotozoan from Ixodes persulcatus ticks in China. BIOSAFETY AND HEALTH 2021. [DOI: 10.1016/j.bsheal.2021.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
19
|
Humoral and Cell-Mediated Immune Response Validation in Calves after a Live Attenuated Vaccine of Babesia bigemina. Pathogens 2020; 9:pathogens9110936. [PMID: 33187270 PMCID: PMC7698288 DOI: 10.3390/pathogens9110936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/31/2020] [Accepted: 11/07/2020] [Indexed: 12/17/2022] Open
Abstract
The current vaccines to control bovine Babesia bigemina (B. bigemina) infection are not fully protective and vaccination failures incur heavy losses to the cattle industry around the world. Using modified micro-aerophilous stationary phase, we developed a culture-derived attenuated live vaccine against B. bigemina and tested a single subcutaneous inoculation of 2 × 108 infected erythrocytes in calves. The protection was measured after a lethal intravenous challenge with 5 × 108 virulent calf-derived B. bigemina. Our results demonstrated that a single shot of attenuated vaccine was capable of inducing robust humoral and cell-mediated immune responses in calves. We found a significant increase in the IgG antibody titers post-challenge and a strong proliferation of both CD4+ and CD8+ T cells contributing towards the protection. Our vaccine provided complete protection and parasitic clearance, which was followed for more than 100 days post-challenge. This immunity against babesiosis was directly linked to strong humoral responses; however, the parasitic clearance was attributed to significant T cells effector responses in vaccinated calves as compared to the infected control calves. We anticipate that these results will be helpful in the development of more efficient culture-derived vaccines against Babesia infections, thus reducing significant global economic losses to farmers and the cattle industry.
Collapse
|