1
|
Adnane M, Chapwanya A. Microbial Gatekeepers of Fertility in the Female Reproductive Microbiome of Cattle. Int J Mol Sci 2024; 25:10923. [PMID: 39456706 PMCID: PMC11507627 DOI: 10.3390/ijms252010923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
This review paper delves into the intricate relationship between the genital microbiome and fertility outcomes in livestock, with a specific focus on cattle. Drawing upon insights derived from culture-independent metagenomics studies, the paper meticulously examines the composition and dynamics of the genital microbiome. Through advanced techniques such as high-throughput sequencing, the review illuminates the temporal shifts in microbial communities and their profound implications for reproductive health. The analysis underscores the association between dysbiosis-an imbalance in microbial communities-and the development of reproductive diseases, shedding light on the pivotal role of microbial gatekeepers in livestock fertility. Furthermore, the paper emphasizes the need for continued exploration of uncharted dimensions of the female reproductive microbiome to unlock new insights into its impact on fertility. By elucidating the complex interplay between microbial communities and reproductive health, this review underscores the importance of innovative strategies aimed at enhancing fertility and mitigating reproductive diseases in livestock populations.
Collapse
Affiliation(s)
- Mounir Adnane
- Department of Biomedicine, Institute of Veterinary Sciences, University of Tiaret, Tiaret 14000, Algeria;
| | - Aspinas Chapwanya
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre 00265, Saint Kitts and Nevis
| |
Collapse
|
2
|
Brulin L, Ducrocq S, Even G, Sanchez MP, Martel S, Merlin S, Audebert C, Croiseau P, Estellé J. Characterization of bovine vaginal microbiota using 16S rRNA sequencing: associations with host fertility, longevity, health, and production. Sci Rep 2024; 14:19277. [PMID: 39164272 PMCID: PMC11336114 DOI: 10.1038/s41598-024-69715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Due to their potential impact on the host's phenotype, organ-specific microbiotas are receiving increasing attention in several animal species, including cattle. Specifically, the vaginal microbiota of ruminants is attracting growing interest, due to its predicted critical role on cows' reproductive functions in livestock contexts. Notably, fertility disorders represent a leading cause for culling, and additional research would help to fill relevant knowledge gaps. In the present study, we aimed to characterize the vaginal microbiota of a large cohort of 1171 female dairy cattle from 19 commercial herds in Northern France. Vaginal samples were collected using a swab and the composition of the microbiota was determined through 16S rRNA sequencing targeting the V3-V4 hypervariable regions. Initial analyses allowed us to define the core bacterial vaginal microbiota, comprising all the taxa observed in more than 90% of the animals. Consequently, four phyla, 16 families, 14 genera and a single amplicon sequence variant (ASV) met the criteria, suggesting a high diversity of bacterial vaginal microbiota within the studied population. This variability was partially attributed to various environmental factors such as the herd, sampling season, parity, and lactation stage. Next, we identified numerous significant associations between the diversity and composition of the vaginal microbiota and several traits related to host's production and reproduction performance, as well as reproductive tract health. Specifically, 169 genera were associated with at least one trait, with 69% of them significantly associated with multiple traits. Among these, the abundances of Negativibacillus and Ruminobacter were positively correlated with the cows' performances (i.e., longevity, production performances). Other genera showed mixed relationships with the phenotypes, such as Leptotrichia being overabundant in cows with improved fertility records and reproductive tract health, but also in cows with lower production levels. Overall, the numerous associations underscored the complex interactions between the vaginal microbiota and its host. Given the large number of samples collected from commercial farms and the diversity of the phenotypes considered, this study marks an initial step towards a better understanding of the intimate relationship between the vaginal microbiota and the dairy cow's phenotypes.
Collapse
Affiliation(s)
- L Brulin
- GD Biotech-Gènes Diffusion, 59000, Lille, France.
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| | - S Ducrocq
- GD Biotech-Gènes Diffusion, 59000, Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| | - G Even
- GD Biotech-Gènes Diffusion, 59000, Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| | - M P Sanchez
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - S Martel
- GD Biotech-Gènes Diffusion, 59000, Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| | - S Merlin
- GD Biotech-Gènes Diffusion, 59000, Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| | - C Audebert
- GD Biotech-Gènes Diffusion, 59000, Lille, France
- PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| | - P Croiseau
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - J Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| |
Collapse
|
3
|
Calleros L, Barcellos M, Grecco S, Garzón JP, Lozano J, Urioste V, Gastal G. Longitudinal study of the bovine cervico-vaginal bacterial microbiota throughout pregnancy using 16S ribosomal RNA gene sequences. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 124:105657. [PMID: 39168274 DOI: 10.1016/j.meegid.2024.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/02/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
The microbiota composition of the bovine female reproductive tract influences reproductive efficiency, susceptibility to genital pathogens, and the health of newborn calves. However, knowledge about cervico-vaginal microbiota during gestation is scarce. Therefore, the present study aimed to analyze the taxonomic profile of the cervico-vaginal bovine microbiota throughout pregnancy and after calving using high-throughput sequencing of a fragment of the 16S ribosomal RNA gene. Healthy nulliparous Holstein heifers (n = 13) with similar age and body conditional score were selected to collect samples from the cervico-vaginal area with a sterile swab at 5 timepoints. We sequenced the V1-V2 region of the 16S ribosomal RNA gene and analyzed data using the DADA2, phyloseq and vegan R Studio packages. No differences were observed in alpha and beta diversity across sampling points, accounting for the stability of the microbiota throughout pregnancy. The most abundant phyla are Firmicutes, Bacteroidota, Proteobacteria and Actinobacteria, and are present as the main taxa in all five sampling points. Also, several of the least abundant taxa can be observed to change with time. Our comprehensive study of the cervico-vaginal bacterial microbiota during the gestation period contributes to the knowledge of microbiota dynamics on the bovine reproductive tract during and after pregnancy and can serve as a baseline for future research and the development of potential therapeutic interventions.
Collapse
Affiliation(s)
- Lucía Calleros
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| | - Maila Barcellos
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| | - Sofía Grecco
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| | - Juan Pablo Garzón
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental INIA La Estanzuela, Ruta 50 Km. 11, Colonia, Uruguay; Instituto Nacional de Investigaciones Agropecuarias - EEA, Azuay, Ecuador.
| | - Joaquín Lozano
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| | - Victoria Urioste
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental INIA La Estanzuela, Ruta 50 Km. 11, Colonia, Uruguay.
| | - Gustavo Gastal
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental INIA La Estanzuela, Ruta 50 Km. 11, Colonia, Uruguay.
| |
Collapse
|
4
|
Juli MSB, Raza A, Forutan M, Siddle HV, Fordyce G, Muller J, Boe-Hansen GB, Tabor AE. Characterisation of reproductive tract microbiome and immune biomarkers for bovine genital campylobacteriosis in vaccinated and unvaccinated heifers. Front Microbiol 2024; 15:1404525. [PMID: 39224219 PMCID: PMC11366586 DOI: 10.3389/fmicb.2024.1404525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024] Open
Abstract
Background Bovine genital campylobacteriosis (BGC) is a globally important venereal disease of cattle caused by Campylobacter fetus subspecies venerealis. Diagnosis of BGC is highly challenging due to the lack of accurate diagnostic tests. Methods To characterise the biomarkers for C. fetus venerealis infection, a total of twelve cycling heifers were selected and categorised as vaccinated (n = 6) with Vibrovax® (Zoetis™) and unvaccinated (n = 6). All heifers were oestrous synchronised with a double dose of prostaglandin (PGF2α) 11 days apart and when in oestrous intravaginally challenged with 2.7 x 109 CFU live C. fetus venerealis. DNA extracted from vaginal mucus samples was screened using a C. fetus qPCR and 16S rRNA was characterised using Illumina sequencing (V5-V8 region). Relative abundances of serum proteins were calculated using sequential window acquisition of all theoretical fragment ion spectra coupled to tandem mass spectrometry (SWATH-MS) for all heifers at three timepoints: pre-challenge, post-challenge and post-recovery. Results In 16S rRNA sequencing of vaginal mucus, Campylobacter spp. appeared two days following challenge in unvaccinated compared to 14 days in vaccinated animals, consistent with the qPCR results. Increased relative abundances of Firmicutes and Campylobacterota were identified after C. fetus venerealis challenge and were associated with C. fetus venerealis in vaccinated and unvaccinated heifers. Greater relative abundance of Streptococcus spp. was observed during oestrous rather than dioestrous. In both vaccinated and unvaccinated heifers, Acinetobacter spp. increased after challenge with higher abundance of Corynebacterium spp. in the vaccinated group. A total of 130 unique proteins were identified in SWATH analysis of the serum samples, and the number of differentially abundant proteins found was higher in the vaccinated group after recovery from infection compared to pre-and post-challenge (adjusted P < 0.05 and Log2FC > 0.2). Conclusion Coglutinin, clusterin, HP homologs, vitamin D binding protein and fetuin B were identified as potential biomarkers for C. fetus venerealis infection and need further study to validate their efficiency as immune biomarkers for BGC.
Collapse
Affiliation(s)
- Mst Sogra Banu Juli
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia, QLD, Australia
| | - Ali Raza
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia, QLD, Australia
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mehrnush Forutan
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia, QLD, Australia
| | - Hannah V. Siddle
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia, QLD, Australia
| | - Geoffry Fordyce
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia, QLD, Australia
- Department of Agriculture & Fisheries, Charters Towers, QLD, Australia
| | - Jarud Muller
- Department of Agriculture & Fisheries, Charters Towers, QLD, Australia
| | - Gry B. Boe-Hansen
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia, QLD, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Ala E. Tabor
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Saint Lucia, QLD, Australia
| |
Collapse
|
5
|
Gil-Miranda A, Macnicol J, Orellana-Guerrero D, Samper JC, Gomez DE. Reproductive Tract Microbiota of Mares. Vet Sci 2024; 11:324. [PMID: 39058008 PMCID: PMC11281493 DOI: 10.3390/vetsci11070324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/29/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The female reproductive tract microbiota is a complex community of microorganisms that might be crucial in maintaining a healthy reproductive environment. Imbalances in the bacterial community (dysbiosis) and the reduction of beneficial organisms and pathogen proliferation are associated with disease. Endometritis is a common cause of fertility problems in mares, and it is still challenging to diagnose and treat based on routine culture results of certain microorganisms. Although high-throughput sequencing studies provide helpful information regarding the composition of the reproductive tract microbiota in mares, there are still challenges in defining a "normal" microbiota. The primary objective of this literature review is to summarize the current knowledge regarding the microbiota present in the reproductive tract of mares, including the vagina, cervix, and uterus. The second objective is to describe the relevant factors that can impact the reproductive microbiota of mares, including the estrous cycle stage, the type of species (genera) investigated, season, and geographic location. The rationality of identifying the normal microbiota in the reproductive tract of a mare will likely aid in understanding the impact of the microbiota on the host's reproductive health and contribute to the treatment and prevention of equine sub and infertility issues.
Collapse
Affiliation(s)
- Ana Gil-Miranda
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.G.-M.); (J.M.)
| | - Jennifer Macnicol
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.G.-M.); (J.M.)
| | | | - Juan C. Samper
- Department of Large Animal Clinical Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4475, USA;
| | - Diego E. Gomez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.G.-M.); (J.M.)
| |
Collapse
|
6
|
Zangirolamo AF, Souza AK, Yokomizo DN, Miguel AKA, da Costa MC, Alfieri AA, Seneda MM. Updates and Current Challenges in Reproductive Microbiome: A Comparative Analysis between Cows and Women. Animals (Basel) 2024; 14:1971. [PMID: 38998083 PMCID: PMC11240322 DOI: 10.3390/ani14131971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The microbiota plays an important role in numerous physiological processes, pathogenesis, development, and metabolism in different animal species. In humans, several studies have demonstrated an association between the vaginal microbiota and fertility rates, and even success in assisted reproduction techniques. In the context of cattle reproduction, although few studies have addressed the microbiota in a healthy state (which is not associated with diseases that affect the reproductive tract of cows), changes in its composition also seem to influence fertility. This review aims to explain the importance of the reproductive microbiota in female bovines and what is available in the literature regarding its possible role in increasing fertility. What are the challenges involved in this process? Future perspectives on its use and manipulation as a selection or intervention tool. Will it be possible to one day extrapolate the findings to reality and apply them in the field? In short, understanding the role of the reproductive microbiota of female bovines can signal the prospect of increasing production, whether of milk or meat, from the same number of animals, as it can optimize reproductive efficiency and perhaps become an allied tool for the economic profitability and sustainability of livestock farming.
Collapse
Affiliation(s)
- Amanda Fonseca Zangirolamo
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.F.Z.); (A.A.A.)
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| | - Anne Kemmer Souza
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| | - Deborah Nakayama Yokomizo
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| | - Ana Karolyne Alves Miguel
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| | | | - Amauri Alcindo Alfieri
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.F.Z.); (A.A.A.)
| | - Marcelo Marcondes Seneda
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.F.Z.); (A.A.A.)
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| |
Collapse
|
7
|
Li J, Toyama H, Matsumoto T, Qasimi MI, Inoue R, Murase H, Yamamoto Y, Nagaoka K. Changes in fecal microbiota during estrous cycle in healthy thoroughbred mares. J Equine Vet Sci 2024; 135:105034. [PMID: 38428754 DOI: 10.1016/j.jevs.2024.105034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Gut microbiota plays a crucial role in various physiological processes, including the regulation of the reproductive system and steroid sex hormones. Throughout the normal estrous cycle of healthy mares, the levels of estradiol-17β (E2) and progesterone (P4) in the blood exhibit periodic changes. To investigate the relationship between cyclic changes in steroid sex hormones and the gut microbiome of mares, we analyzed the fecal microbiota composition in healthy mares during the typical estrous cycle. Blood and fecal samples from five healthy mares were collected, E2 and P4 levels in serum were analyzed using radioimmunoassay (RIA), and the gut microbiome was analyzed by 16S rRNA sequencing. The overall richness and composition of the gut microbiota remained relatively stable during the normal estrous cycle in mares. The Linear Discriminant Analysis Effect Size analysis of the microbial composition during the follicular and luteal phases identified the Rhodococcus genus as differentially abundant. These findings indicate that the mare's gut microbiota's significant composition remains consistent throughout the estrous cycle. At the same time, specific low-abundance pathogenic bacteria exhibit changes that align with sexual hormonal fluctuations.
Collapse
Affiliation(s)
- Junjie Li
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Haruka Toyama
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Touko Matsumoto
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Mohammad Ibrahim Qasimi
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Science, Setsunan University, Osaka, Japan
| | - Harutaka Murase
- Hidaka Training and Research Center, Japan Racing Association, Hokkaido 057-0171, Japan
| | - Yuki Yamamoto
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan.
| |
Collapse
|
8
|
Várhidi Z, Csikó G, Bajcsy ÁC, Jurkovich V. Uterine Disease in Dairy Cows: A Comprehensive Review Highlighting New Research Areas. Vet Sci 2024; 11:66. [PMID: 38393084 PMCID: PMC10893454 DOI: 10.3390/vetsci11020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Uterine disease is an intensely studied part of dairy cattle health management as it heavily affects many commercial dairy farms and has serious economic consequences. Forms of the disease, pathophysiology, pathogens involved and the effects of uterine disease on the health and performance of cows have already been well described by various authors. Lately, researchers' attention has shifted towards the healthy microbiome of the uterus and the vagina to put emphasis on prevention rather than treatment. This aligns with the growing demand to reduce the use of antibiotics or-whenever possible-replace them with alternative treatment options in farm animal medicine. This review provides a comprehensive summary of the last 20 years of uterine disease research and highlights promising new areas for future studies.
Collapse
Affiliation(s)
- Zsóka Várhidi
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - György Csikó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary;
| | - Árpád Csaba Bajcsy
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany;
| | - Viktor Jurkovich
- Centre for Animal Welfare, University of Veterinary Medicine, 1078 Budapest, Hungary
| |
Collapse
|
9
|
Tibbs-Cortes BW, Rahic-Seggerman FM, Schmitz-Esser S, Boggiatto PM, Olsen S, Putz EJ. Fecal and vaginal microbiota of vaccinated and non-vaccinated pregnant elk challenged with Brucella abortus. Front Vet Sci 2024; 11:1334858. [PMID: 38352039 PMCID: PMC10861794 DOI: 10.3389/fvets.2024.1334858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Brucella abortus is the causative agent of brucellosis in cattle and in humans, resulting in economic losses in the agricultural sector and representing a major threat to public health. Elk populations in the American Northwest are reservoirs for this bacterium and transmit the agent to domestic cattle herds. One potential strategy to mitigate the transmission of brucellosis by elk is vaccination of elk populations against B. abortus; however, elk appear to be immunologically distinct from cattle in their responses to current vaccination strategies. The differences in host response to B. abortus between cattle and elk could be attributed to differences between the cattle and elk innate and adaptive immune responses. Because species-specific interactions between the host microbiome and the immune system are also known to affect immunity, we sought to investigate interactions between the elk microbiome and B. abortus infection and vaccination. Methods We analyzed the fecal and vaginal microbial communities of B. abortus-vaccinated and unvaccinated elk which were challenged with B. abortus during the periparturient period. Results We observed that the elk fecal and vaginal microbiota are similar to those of other ruminants, and these microbial communities were affected both by time of sampling and by vaccination status. Notably, we observed that taxa representing ruminant reproductive tract pathogens tended to increase in abundance in the elk vaginal microbiome following parturition. Furthermore, many of these taxa differed significantly in abundance depending on vaccination status, indicating that vaccination against B. abortus affects the elk vaginal microbiota with potential implications for animal reproductive health. Discussion This study is the first to analyze the vaginal microbiota of any species of the genus Cervus and is also the first to assess the effects of B. abortus vaccination and challenge on the vaginal microbiome.
Collapse
Affiliation(s)
- Bienvenido W. Tibbs-Cortes
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture, Ames, IA, United States
| | - Faith M. Rahic-Seggerman
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Stephan Schmitz-Esser
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Paola M. Boggiatto
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture, Ames, IA, United States
| | - Steven Olsen
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture, Ames, IA, United States
| | - Ellie J. Putz
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture, Ames, IA, United States
| |
Collapse
|
10
|
Gobikrushanth M, Dos Santos SJ, Champika F, Hill JE, Dadarwal D. Uterine microbial profiles in healthy postpartum dairy cows do not vary with sampling techniques or phases of estrous cycle. Theriogenology 2024; 214:298-306. [PMID: 37976796 DOI: 10.1016/j.theriogenology.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
In this study, we aimed to compare uterine microbial profiles in postpartum dairy cows, determined by bacteriological culture and next-generation sequencing, using three uterine sampling techniques (swab, cytobrush, and lavage) and induced phases of the estrous cycle (estrus and diestrus). Fifteen healthy postpartum dairy cows at 53 ± 5 days postpartum were enrolled in the study. Uterine samples were collected during a fixed-time artificial insemination protocol. Viable bacteria were aerobically cultured from part of each sample, and bacterial isolates were identified through Sanger sequencing of the 16S rRNA gene. Total genomic DNA was extracted from the remainder of undiluted samples to quantify bacterial load using 16S rRNA qPCR and characterize the microbiome by metagenomic sequencing of the V1-V3 region of the 16S rRNA gene. Microbial profiles and composition were analyzed using the Shannon-Weaver diversity index and principal component analysis, respectively. Out of 87 samples, 88 % (77/87) were culture positive. The proportion of culture-positive uterine samples did not differ between sampling techniques (P = 0.39) or estrous cycle phases (P = 0.99). However, swab, cytobrush, and lavage techniques yielded 1.5, 9 and 9 times greater bacterial loads (P < 0.01), respectively, during diestrus than estrus phase. Moreover, during diestrus phase, the cytobrush method yielded 3 and 6 times more bacteria (P < 0.01) than both the lavage and swab methods. The most abundant bacterial genera identified from both bacteriological culture and metagenomic sequencing were Bacillus and Enterococcus, regardless of sampling technique or phases of the estrous cycle. Bacterial genera in moderate to low abundance through metagenomic sequencing included Streptococcus, Oscillospiraceae, and Lachnospiraceae. Notably, the uterine microbial profiles and composition, determined by metagenomic sequencing, did not differ by sampling techniques (P = 0.55 and P = 0.60, respectively) or estrous cycle phases (P = 0.34 and P = 0.17, respectively). In conclusion, our results suggest that any of the sampling techniques can be reliably used to study the uterine microbiome of healthy cows at random phases of the estrous cycle. However, it is important to consider potential differences in bacterial yield as a confounding factor.
Collapse
Affiliation(s)
- Mohanathas Gobikrushanth
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Scott J Dos Santos
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Fernando Champika
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Janet E Hill
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Dinesh Dadarwal
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
11
|
Barba M, Toquet M, García-Roselló E, Gomis J, Quereda JJ, González-Torres P, Carbonetto B, Gómez-Martín Á. Description of the vaginal microbiota in nulliparous ewes during natural mating and pregnancy: preliminary signs of the male preputial microbiota modulation. Front Microbiol 2024; 14:1224910. [PMID: 38274751 PMCID: PMC10808482 DOI: 10.3389/fmicb.2023.1224910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
The vaginal microbiota plays a key role in animals' health. Understanding its diversity and composition and associated changes occurring through the reproductive cycle represents valuable knowledge to disclose the mechanisms leading to dysbiosis and eventually to infection. Even if the human vaginal microbiota has been thoroughly studied, scarce research has been conducted on the vaginal microbiota of livestock. In this study, 16S rRNA gene-based sequencing was performed on vaginal samples of ten nulliparous ewes at three different sampling points: before the estrus synchronization protocol (T0), at the time of estrus before mating (Testrus), and the day of the pregnancy diagnosis (Tpreg). Preputial samples from the three males collected pre and post-mating were also analyzed. Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria were the most abundant phyla in vaginal samples. The most abundant genera were Porphyromonas, Anaerococcus, and Peptinophilius. Vaginal microbiota biodiversity decreased during pregnancy. Tenericutes (Ureaplasma spp.) increased significantly at Tpreg in both pregnant and non-pregnant ewes. Differences were observed between pregnant and non-pregnant ewes at Tpreg where pregnant ewes had a significantly higher abundance of Actinobacillus spp. and Ureaplasma spp. Ewes that were diagnosed with pregnancy at Tpreg showed a decreased abundance of gram-negative bacteria such as Bacteroidales, Campylobacterales, and Enterobacteriales. In addition, a significant decrease in the relative abundances of genera within Firmicutes, such as Alloicoccus (Lactobacillales), Atopostipes (Lactobacillales), and an uncultured bacteria W5053 from Family XI (Firmicutes, Clostridiales) was observed in non-pregnant ewes at Tpreg. The four most abundant phyla in the rams' prepuce were the same as in the ewes' vagina. The most abundant genus was Corynebacterium. No major differences were observed in the ram's preputial microbiota between pre and post-mating samples. Nevertheless, the differences in the taxonomic composition of ewes' vaginal microbiota between Testrus and Tpreg could be explained by the exposure to the preputial microbiota. This study offers new insights into the effects of several key steps of the ewe's reproductive cycle such as estrus-synchronization protocol, mating, and pregnancy on ovine vaginal microbiota. The knowledge of the microbiota dynamics during the reproductive cycle can help improve the reproductive outcomes of dams by identifying biomarkers and putative probiotics.
Collapse
Affiliation(s)
- Marta Barba
- Microbiological Agents Associated with Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, Alfara del Patriarca, Valencia, Spain
- Agrifood Research and Technology Centre of Aragon (CITA), Teruel, Spain
| | - Marion Toquet
- Microbiological Agents Associated with Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, Alfara del Patriarca, Valencia, Spain
| | - Empar García-Roselló
- Microbiological Agents Associated with Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, Alfara del Patriarca, Valencia, Spain
| | - Jesús Gomis
- Microbiological Agents Associated with Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, Alfara del Patriarca, Valencia, Spain
| | - Juan J. Quereda
- Research Group Intracellular Pathogens: Biology and Infection, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Pedro González-Torres
- Microbiological Agents Associated with Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, Alfara del Patriarca, Valencia, Spain
- Microomics Systems S.L., Barcelona, Spain
| | - Belén Carbonetto
- Microbiological Agents Associated with Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, Alfara del Patriarca, Valencia, Spain
- Microomics Systems S.L., Barcelona, Spain
| | - Ángel Gómez-Martín
- Microbiological Agents Associated with Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, Alfara del Patriarca, Valencia, Spain
| |
Collapse
|
12
|
Wang R, Wang M, Zeng Q, Wang L, Zhang Q, Pu S, Ma X, Wang J, Pan Y. Correlation between microbial characteristics and reproductive status of the yak uterus based on macrogenomic analysis. BMC Vet Res 2024; 20:4. [PMID: 38172906 PMCID: PMC10763020 DOI: 10.1186/s12917-023-03845-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
INTRODUCTION This study aimed to investigate the microbial characteristics of yak uteri collected using intrauterine cotton swabs (CS) during different reproductive stages and the correlation of these microbial characteristics with reproductive status. METHODS We used a macrogenomic approach to analyze the functional aspects of different microorganisms in samples collected during the pre-estrus, estrus, late estrus, and diestrus stages. RESULTS The results revealed the presence of 1293 microbial genera and 3401 microbial species in the uteri of yaks at different reproductive stages. The dominant bacterial species varied across the different periods, with Micrococcus and Proteus being dominant during pre-estrus; Pseudomonas, Clostridium, Flavobacterium, Bacillus, and Staphylococcus during estrus; Acinetobacter, Bacillus and Proteus during late estrus; and Pseudomonas, Escherichia coli, and Proteus during diestrus. DISCUSSION The primary functions of these bacteria are enriched in various metabolic pathways, including carbohydrate and amino acid metabolism, intracellular transport and secretion, post-translational protein modification, and drug resistance. These findings suggest that the microbial diversity in the uterus of yaks plays a crucial role in reproductive regulation and can help prevent reproductive tract-related diseases.
Collapse
Affiliation(s)
- Rui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, China
| | - Qiaoying Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Libin Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, China
| | - Qian Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, China
| | - Sisi Pu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xin Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, China
| | - Jinglei Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, China.
| |
Collapse
|
13
|
Çömlekcioğlu U, Jezierska S, Opsomer G, Pascottini OB. Uterine microbial ecology and disease in cattle: A review. Theriogenology 2024; 213:66-78. [PMID: 37804686 DOI: 10.1016/j.theriogenology.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
Due to the critical contribution of the uterine-associated microbiota in reproductive health, physiology, and performance, culture-independent methods have been increasingly employed to unravel key aspects of microbial ecology in the uterus of cattle. Nowadays, we know that bacterial diversity is crucial to maintain uterine health, however, there is still no consensus on the exact composition of a healthy uterine microbiota (or eubiosis). Generally, loss of bacterial diversity (or dysbiosis) contributes to the development of uterine infections, associated with increased relative abundances of Bacteroides, Fusobacterium, Trueperella, and Porphyromonas. Uterine infections are highly prevalent and gravely influence the profitability of cattle operations, animal welfare, and public health. Thus, understanding the dynamics of uterine microbial ecology is essential to develop effective strategies focused on preventing and mitigating the adverse effects of uterine dysbiosis as well as assisting in the process of restoring the core, healthy uterine microbiota. The aim of this review is to summarize research conducted in the microbial ecology of bovine uteri. We discuss the origin of the uterine microflora of healthy cows and the factors influencing its composition. In addition, we review the biology of specific pathogens that are known to increase in abundance during the occurrence of uterine disease. Lastly, we provide an overview of the bacterial biofilm in the bovine endometrium, and we briefly summarize the rationale for the use of probiotics to prevent uterine disease in cattle.
Collapse
Affiliation(s)
- Uğur Çömlekcioğlu
- Department of Biology, Osmaniye Korkut Ata University, 8000, Osmaniye, Turkiye; Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | | | - Geert Opsomer
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Osvaldo Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, 9820, Merelbeke, Belgium.
| |
Collapse
|
14
|
Malaluang P, Åkerholm T, Nyman G, Lindahl J, Hansson I, Morrell JM. Bacteria in the healthy equine vagina during the estrous cycle. Theriogenology 2024; 213:11-18. [PMID: 37793220 DOI: 10.1016/j.theriogenology.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
An understanding of the normal bacterial microbiota of any organ is essential to provide the background to conditions and interventions that might cause the microbiota to change. In the vagina of the mare, a change of bacterial microbiota could be induced by introduction of semen, treatment with antibiotics, discharge from an unhealthy uterus etc. Previous studies on equine vaginal bacteria are not all conducted in the same way and results are not altogether consistent. Therefore, this study was designed to provide a deeper understanding of the bacterial microbiota of the mare vagina, and possible changes throughout the estrous cycle. The cranial portion of the vagina was sampled on day 0 (ovulation), day 3, day 7, and day 14 of the estrous cycle. The vaginal sampling was conducted with double-guarded occluded swabs from the cranial floor of the vagina. Ovulation was determined by rectal palpation and ultrasonic examination, and the day 0 samples were taken within ±24 h of ovulation. Swabs were brought to the laboratory in Amies medium within 2-3 h and were plated out immediately on both selective and non-selective agars. Results were registered as amount of growth (qualitatively), bacterial species and number of isolates. Bacterial growth was highest on day 3 and 7, representing the beginning and middle of diestrus. The dominant bacteria were Escherichia coli and Streptococcus zooepidemicus. Escherichia coli was especially dominant in maiden mares, compared to the mares that had foaled. An increase in bacterial diversity throughout the estrous cycle was observed, being highest on day 14. These results suggest that there are changes in the bacterial microbiota of the mare vagina throughout the normal estrous cycle.
Collapse
Affiliation(s)
- P Malaluang
- Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - T Åkerholm
- Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - G Nyman
- Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden; Lövsta Stud, Upplands Väsby, Sweden
| | - J Lindahl
- Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden; Current Affiliation Department of Animal Health and Antibiotic Strategies, National Veterinary Institute, Uppsala, Sweden
| | - I Hansson
- Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - J M Morrell
- Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
15
|
Dai R, Huang J, Cui L, Sun R, Qiu X, Wang Y, Sun Y. Gut microbiota and metabolites in estrus cycle and their changes in a menopausal transition rat model with typical neuroendocrine aging. Front Endocrinol (Lausanne) 2023; 14:1282694. [PMID: 38161977 PMCID: PMC10755682 DOI: 10.3389/fendo.2023.1282694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
Background Neuroendocrine alterations in the mid-life hypothalamus coupled with reproductive decline herald the initiation of menopausal transition. The certain feature and contribution of gut microflora and metabolites to neuroendocrine changes in the menopausal transition remain largely unknown. Methods Fecal samples of rats experiencing different reproductive stages were collected and processed for 16S rRNA and liquid chromatography-mass spectrometry sequencing. The differences of gut microbiota and metabolites between young and middle-aged rats during proestrus and diestrus were analyzed, and their relationships to neuroendocrine aging were then examined. Results At the genus level, Anaeroyorax, Rikenella, Tyzzerella_3, and Atopostipes were abundant at proestrus, while Romboutsia, Turicibacter, Clostridium_sensu_stricto_1, Ruminococcaceae_NK4A214_group, CHKCI002, Ruminococcaceae_UCG-010, Staphylococcus, Family_XII_AD3011_group, Ruminococcaceae UCG-011, and Christensenellaceae_R_7_group were enriched in the diestrus of middle-aged rats. DNF00809, Phocea, and Lachnospiraceae_UCG-006 were found abundant during proestrus instead, while Bacteroides, Lactobacillus, Erysipelatoclostridium, Anaeroplasma, Anaerofustis, Parasutterella, and Enterococcus were enriched at the diestrus of young female individuals. Discriminatory metabolites were identified involving 90 metabolic pathways among the animal sets, which were enriched for steroid hormone biosynthesis, arachidonic metabolism, primary bile acid synthesis, and ovarian steroidogenesis. A total of 21 metabolites lacking in hormone-associated changes in middle-aged female individuals presented positive or negative correlations with the circulating luteinizing hormone, bile acid, fibroblast growth factor 19, and gut hormones. Moreover, close correlations were detected between the intestinal bacteria and their metabolites. Conclusion This study documents specific gut microbial composition changes and concomitant shifting trends of metabolites during menopausal transition, which may initiate the gut-brain dysfunction in neuroendocrine aging.
Collapse
Affiliation(s)
- Ruoxi Dai
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Jianqin Huang
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
- The Academy of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Liyuan Cui
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Ruiqi Sun
- Department of Clinical Medicine, Clinical College of Anhui Medical University, Hefei, China
| | - Xuemin Qiu
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yan Wang
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yan Sun
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
- The Academy of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Webb EM, Holman DB, Schmidt KN, Pun B, Sedivec KK, Hurlbert JL, Bochantin KA, Ward AK, Dahlen CR, Amat S. Sequencing and culture-based characterization of the vaginal and uterine microbiota in beef cattle that became pregnant or remained open following artificial insemination. Microbiol Spectr 2023; 11:e0273223. [PMID: 37921486 PMCID: PMC10714821 DOI: 10.1128/spectrum.02732-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
IMPORTANCE Emerging evidence suggests that microbiome-targeted approaches may provide a novel opportunity to reduce the incidence of reproductive failures in cattle. To develop such microbiome-based strategies, one of the first logical steps is to identify reproductive microbiome features related to fertility and to isolate the fertility-associated microbial species for developing a future bacterial consortium that could be administered before breeding to enhance pregnancy outcomes. Here, we characterized the vaginal and uterine microbiota in beef cattle that became pregnant or remained open via artificial insemination and identified microbiota features associated with fertility. We compared similarities between vaginal and uterine microbiota and between heifers and cows. Using culturing, we provided new insights into the culturable fraction of the vaginal and uterine microbiota and their antimicrobial resistance. Overall, our findings will serve as an important basis for future research aimed at harnessing the vaginal and uterine microbiome for improved cattle fertility.
Collapse
Affiliation(s)
- Emily M. Webb
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Kaycie N. Schmidt
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Beena Pun
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Kevin K. Sedivec
- Central Grasslands Research Extension Center, North Dakota State University, Streeter, North Dakota, USA
| | - Jennifer L. Hurlbert
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, North Dakota, USA
| | - Kerri A. Bochantin
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, North Dakota, USA
| | - Alison K. Ward
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, North Dakota, USA
| | - Carl R. Dahlen
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, North Dakota, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
17
|
Mejia ME, Mercado-Evans V, Zulk JJ, Ottinger S, Ruiz K, Ballard MB, Fowler SW, Britton RA, Patras KA. Vaginal microbial dynamics and pathogen colonization in a humanized microbiota mouse model. NPJ Biofilms Microbiomes 2023; 9:87. [PMID: 37985659 PMCID: PMC10661851 DOI: 10.1038/s41522-023-00454-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Vaginal microbial composition is associated with differential risk of urogenital infection. Although Lactobacillus spp. are thought to confer protection against infection, the lack of in vivo models resembling the human vaginal microbiota remains a prominent barrier to mechanistic discovery. Using 16S rRNA amplicon sequencing of C57BL/6J female mice, we found that vaginal microbial composition varies within and between colonies across three vivaria. Noting vaginal microbial plasticity in conventional mice, we assessed the vaginal microbiome of humanized microbiota mice (HMbmice). Like the community structure in conventional mice, HMbmice vaginal microbiota clustered into community state types but, uniquely, HMbmice communities were frequently dominated by Lactobacillus or Enterobacteriaceae. Compared to conventional mice, HMbmice were less susceptible to uterine ascension by urogenital pathobionts group B Streptococcus (GBS) and Prevotella bivia. Although Escherichia and Lactobacillus both correlated with the absence of uterine GBS, vaginal pre-inoculation with exogenous HMbmouse-derived E. coli, but not Ligilactobacillus murinus, reduced vaginal GBS burden. Overall, HMbmice serve as a useful model to elucidate the role of endogenous microbes in conferring protection against urogenital pathogens.
Collapse
Affiliation(s)
- Marlyd E Mejia
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Vicki Mercado-Evans
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Jacob J Zulk
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Samantha Ottinger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Korinna Ruiz
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Mallory B Ballard
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Stephanie W Fowler
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Center for Comparative Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Kathryn A Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
18
|
Murga Valderrama NL, Segura Portocarrero GT, Romani Vasquez AC, Frias Torres H, Flores Durand GJ, Cornejo Villanueva VG, Del Solar JC, Costa Polveiro R, da Silva Vieira D, Bardales Escalante W, Zamora-Huamán SJ, Ordinola-Ramirez CM, Maicelo Quintana JL, Lopez Lapa RM. Exploring the microbiome of two uterine sites in cows. Sci Rep 2023; 13:18768. [PMID: 37907617 PMCID: PMC10618249 DOI: 10.1038/s41598-023-46093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023] Open
Abstract
Bacterial communities in the mammalian reproductive system can be rich and diverse, differing in structure and quantity depending on location. In addition, its microbiome is associated with the state of health of this tract and reproductive success. This study evaluated the microbiome composition of the uterine body (UB) and uterine horn mucosa (UH) samples using 16S rRNA sequencing of samples extracted from cows in the Amazon region. It was observed that four main phyla were shared between the uterine sites: Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. Linear discriminant analysis effect size and heat tree analysis showed that members of Lachnospiraceae (NK3A20 group) and Oscillospiraceae were significantly more abundant in the UB than in UH. In addition, there are more unique genera in the UB than in the UH. A higher bacterial load in UB than in UH is expected because of the exposure to external factors of UB. However, comparing the site's communities through beta diversity did not generate well-defined clustering. Thus, it can be attributed to the closeness of the sites, which would make the niches similar ecologically and microbiologically. Therefore, this research provides knowledge to understand biomarkers in the prior reproduction period.
Collapse
Affiliation(s)
- Nilton Luis Murga Valderrama
- Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
| | - Gleni Tatiana Segura Portocarrero
- Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
| | - Ana Cecilia Romani Vasquez
- Laboratorio de Fisiología Molecular, Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
| | - Hugo Frias Torres
- Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
| | - Gary Jacsel Flores Durand
- Laboratorio de Fisiología Molecular, Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
| | - Victor Guillermo Cornejo Villanueva
- Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
- Laboratorio de Fisiología Molecular, Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
| | - Jakson Ch Del Solar
- Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
| | - Richard Costa Polveiro
- Laboratory of Bacterial Diseases, Sector of Preventive Veterinary Medicine and Public Health, Department of Veterinary, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Dielson da Silva Vieira
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - William Bardales Escalante
- Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
| | - Segundo José Zamora-Huamán
- Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
| | - Carla Maria Ordinola-Ramirez
- Facultad de Ciencias de la Salud, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
| | - Jorge Luis Maicelo Quintana
- Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru
| | - Rainer Marco Lopez Lapa
- Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru.
- Laboratorio de Fisiología Molecular, Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru.
- Facultad de Medicina, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Chachapoyas, Peru.
| |
Collapse
|
19
|
Liman N, Sağsöz H. The immunolocalization of cadherins and beta-catenin in the cervix and vagina of cycling cows. Vet Res Commun 2023; 47:1155-1175. [PMID: 36729278 DOI: 10.1007/s11259-023-10075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 01/14/2023] [Indexed: 02/03/2023]
Abstract
The adherens junctions (AJs) maintain the epithelial cell layers' structural integrity and barrier function. AJs also play a vital role in various biological and pathological processes. AJs perform these functions through the cadherin-catenin adhesion complex. This study investigated the presence, cell-specific localization, and temporal distribution of AJ components such as classical type I cadherins and beta-catenin in the cow cervix and vagina during the estrous cycle. Immunohistochemistry and Western blot analysis results demonstrated that beta-catenin and epithelial (E)-, neural (N)-, and placental (P)-cadherins are expressed in the cow cervix and vagina during the estrous cycle. These adhesion molecules were localized in the membrane and cytoplasm of the ciliated and non-ciliated cervical cells and the stratified vaginal epithelial cells. Positive immunostaining for P-, N-cadherin, and beta-catenin was also observed in the vascular endothelial cells of the cervical and vaginal stroma. Quantitative immunohistochemistry examinations revealed that in the cervical and vaginal epithelia, P-cadherin's optical density values (ODv) were the highest; in contrast, the N-cadherin ODv were the lowest. The ODv of P-cadherin and beta-catenin in the cervical epithelium and E-cadherin in the vagina were significantly higher in the luteal phase versus the follicular phase of the estrous cycle. Furthermore, the ODv of P-cadherin, N-cadherin, and beta-catenin in the cervix's central and peripheral epithelial regions were different during the estrous cycle. These findings indicate that classical cadherins and beta-catenin in the cervix and vagina exhibit cell- and tissue-specific expression patterns under the influence of estrogen and progesterone hormones during the estrous cycle.
Collapse
Affiliation(s)
- Narin Liman
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey.
| | - Hakan Sağsöz
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
20
|
Pereida-Aguilar JC, Barragán-Vargas C, Domínguez-Sánchez C, Álvarez-Martínez RC, Acevedo-Whitehouse K. Bacterial dysbiosis and epithelial status of the California sea lion (Zalophus californianus) in the Gulf of California. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105474. [PMID: 37356747 DOI: 10.1016/j.meegid.2023.105474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/11/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Despite the high incidence of urogenital carcinoma (UGC) in California sea lions stranded along California, no UGC has been reported in other areas of their distribution; however, cell morphologies typical of premalignant states have been found. Risk factors for UGC include high of organochlorines and infection with a gammaherpesvirus, OtHV-1, but the importance of the bacteriome for epithelial status remains unknown. We characterized the genital bacteriome of adult female California sea lions along their distribution in the Gulf of California and examined whether the diversity and abundance of the bacteriome varied spatially, whether there were detectable differences in the bacteriome between healthy and altered epithelia, and whether the bacteriome was different in California sea lions infected with OtHV-1 or papillomavirus. We detected 2270 ASVs in the genital samples, of which 35 met the criteria for inclusion in the core bacteriome. Fusobacteriia and Clostridia were present in all samples, at high abundances, and Actinobacteria, Alphaproteobacteria, and Campylobacteria were also well-represented. Alpha diversity and abundance of the California sea lion genital bacteriome varied geographically. The abundance of bacterial ASVs varied depending on the genital epithelial status and inflammation, with differences driven by classes Fusobacteriia, Clostridia, Campylobacteria and Alphaproteobacteria. Alpha diversity and abundance were lowest in samples in which OtHV-1 was detected, and highest those with papillomavirus. Our study is the first investigation of how the bacteriome is related to epithelial status in a wild marine species prone to developing cancer.
Collapse
Affiliation(s)
- Juan Carlos Pereida-Aguilar
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro 76146, Mexico
| | - Cecilia Barragán-Vargas
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro 76146, Mexico
| | - Carlos Domínguez-Sánchez
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro 76146, Mexico
| | - Roberto Carlos Álvarez-Martínez
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro 76146, Mexico
| | - Karina Acevedo-Whitehouse
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Santiago de Queretaro 76146, Mexico.
| |
Collapse
|
21
|
Souza AK, Zangirolamo AF, Droher RG, Bonato FGC, Alfieri AA, Carvalho da Costa M, Seneda MM. Investigation of the vaginal microbiota of dairy cows through genetic sequencing of short (Illumina) and long (PacBio) reads and associations with gestational status. PLoS One 2023; 18:e0290026. [PMID: 37611040 PMCID: PMC10446230 DOI: 10.1371/journal.pone.0290026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
The vaginal microbiota has been shown to be important in local immune regulation and may play a role in reproduction and fertility. Next-generation sequencing (NGS) technologies have been used to characterize the bovine vaginal microbiota, mainly using short-read sequencing (Illumina). However, the main limitation of this technique is its inability to classify bacteria at the species level. The objective of this study was to characterize the bovine vaginal microbiota at the species level using long-read sequencing (PacBio) and to compare it with the results of short-read sequencing. In addition, the vaginal microbiota of cows that became pregnant after artificial insemination (AI) was compared with that of infertile animals. Thirteen Holstein cows had vaginal swabs collected prior to AI. DNA was extracted and subjected to Illumina and PacBio sequencing to characterize the V4 region and the entire 16S rRNA gene, respectively. PacBio sequencing yielded 366,509 reads that were assigned to 476 species from 27 phyla. However, none of the most abundant reads (>1%) could be classified at the species level. Illumina sequencing yielded more reads and consequently was able to detect a more observed species, but PacBio sequencing was able to detect more unique and rare species. The composition of the vaginal microbiota varies according to the sequencing method used, which might complicate the interpretation of results obtained in the majority of the current studies. The present study expands on the current knowledge of bovine microbiota, highlighting the need for further efforts to improve the current databanks.
Collapse
Affiliation(s)
- Anne Kemmer Souza
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina, Paraná, Brazil
- Laboratory of Biotechnology of Animal Reproduction, Department of Veterinary Clinics, Center for Agricultural Sciences, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Amanda Fonseca Zangirolamo
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina, Paraná, Brazil
- Laboratory of Biotechnology of Animal Reproduction, Department of Veterinary Clinics, Center for Agricultural Sciences, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Ricardo Guella Droher
- Laboratory of Biotechnology of Animal Reproduction, Department of Veterinary Clinics, Center for Agricultural Sciences, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Francieli Gesleine Capote Bonato
- Laboratory of Biotechnology of Animal Reproduction, Department of Veterinary Clinics, Center for Agricultural Sciences, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Amauri A. Alfieri
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | | - Marcelo Marcondes Seneda
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina, Paraná, Brazil
- Laboratory of Biotechnology of Animal Reproduction, Department of Veterinary Clinics, Center for Agricultural Sciences, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
22
|
Mariadassou M, Nouvel LX, Constant F, Morgavi DP, Rault L, Barbey S, Helloin E, Rué O, Schbath S, Launay F, Sandra O, Lefebvre R, Le Loir Y, Germon P, Citti C, Even S. Microbiota members from body sites of dairy cows are largely shared within individual hosts throughout lactation but sharing is limited in the herd. Anim Microbiome 2023; 5:32. [PMID: 37308970 DOI: 10.1186/s42523-023-00252-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Host-associated microbes are major determinants of the host phenotypes. In the present study, we used dairy cows with different scores of susceptibility to mastitis with the aim to explore the relationships between microbiota composition and different factors in various body sites throughout lactation as well as the intra- and inter-animal microbial sharing. RESULTS Microbiotas from the mouth, nose, vagina and milk of 45 lactating dairy cows were characterized by metataxonomics at four time points during the first lactation, from 1-week pre-partum to 7 months post-partum. Each site harbored a specific community that changed with time, likely reflecting physiological changes in the transition period and changes in diet and housing. Importantly, we found a significant number of microbes shared among different anatomical sites within each animal. This was between nearby anatomic sites, with up to 32% of the total number of Amplicon Sequence Variants (ASVs) of the oral microbiota shared with the nasal microbiota but also between distant ones (e.g. milk with nasal and vaginal microbiotas). In contrast, the share of microbes between animals was limited (< 7% of ASVs shared by more than 50% of the herd for a given site and time point). The latter widely shared ASVs were mainly found in the oral and nasal microbiotas. These results thus indicate that despite a common environment and diet, each animal hosted a specific set of bacteria, supporting a tight interplay between each animal and its microbiota. The score of susceptibility to mastitis was slightly but significantly related to the microbiota associated to milk suggesting a link between host genetics and microbiota. CONCLUSIONS This work highlights an important sharing of microbes between relevant microbiotas involved in health and production at the animal level, whereas the presence of common microbes was limited between animals of the herd. This suggests a host regulation of body-associated microbiotas that seems to be differently expressed depending on the body site, as suggested by changes in the milk microbiota that were associated to genotypes of susceptibility to mastitis.
Collapse
Affiliation(s)
| | | | - Fabienne Constant
- Ecole Nationale Vétérinaire d'Alfort, Université Paris-Saclay, UVSQ, INRAE, BREED, Maisons-Alfort, France
| | - Diego P Morgavi
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genes-Champanelle, France
| | - Lucie Rault
- INRAE, Institut Agro, UMR1253 STLO, Rennes, France
| | - Sarah Barbey
- INRAE, UE326 Unité Expérimentale du Pin, Gouffern en Auge, France
| | | | - Olivier Rué
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Jouy-en-Josas, France
| | - Sophie Schbath
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
| | - Frederic Launay
- INRAE, UE326 Unité Expérimentale du Pin, Gouffern en Auge, France
| | - Olivier Sandra
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
| | - Rachel Lefebvre
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Yves Le Loir
- INRAE, Institut Agro, UMR1253 STLO, Rennes, France
| | - Pierre Germon
- INRAE, Université de Tours, UMR ISP, 37380, Nouzilly, France
| | | | - Sergine Even
- INRAE, Institut Agro, UMR1253 STLO, Rennes, France.
| |
Collapse
|
23
|
Mejia ME, Mercado-Evans V, Zulk JJ, Ottinger S, Ruiz K, Ballard MB, Britton RA, Patras KA. Vaginal microbial dynamics and pathogen colonization in a humanized microbiota mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527909. [PMID: 36798217 PMCID: PMC9934685 DOI: 10.1101/2023.02.09.527909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Vaginal microbiota composition is associated with differential risk of urogenital infection. Although vaginal Lactobacillus spp. are thought to confer protection through acidification, bacteriocin production, and immunomodulation, lack of an in vivo model system that closely resembles the human vaginal microbiota remains a prominent barrier to mechanistic discovery. We performed 16S rRNA amplicon sequencing of wildtype C57BL/6J mice, commonly used to study pathogen colonization, and found that the vaginal microbiome composition varies highly both within and between colonies from three distinct vivaria. Because of the strong influence of environmental exposure on vaginal microbiome composition, we assessed whether a humanized microbiota mouse ( HMb mice) would model a more human-like vaginal microbiota. Similar to humans and conventional mice, HMb mice vaginal microbiota clustered into five community state types ( h mCST). Uniquely, HMb mice vaginal communities were frequently dominated by Lactobacilli or Enterobacteriaceae . Compared to genetically-matched conventional mice, HMb mice were less susceptible to uterine ascension by urogenital pathobionts group B Streptococcus (GBS) and Prevotella bivia , but no differences were observed with uropathogenic E. coli . Specifically, vaginal Enterobacteriaceae and Lactobacillus were associated with the absence of uterine GBS. Anti-GBS activity of HMb mice vaginal E. coli and L. murinus isolates, representing Enterobacteriaceae and Lactobacillus respectively, were characterized in vitro and in vivo . Although L. murinus reduced GBS growth in vitro , vaginal pre-inoculation with HMb mouse-derived E. coli , but not L. murinus , conferred protection against vaginal GBS burden. Overall, the HMb mice are an improved model to elucidate the role of endogenous microbes in conferring protection against urogenital pathogens. IMPORTANCE An altered vaginal microbiota, typically with little to no levels of Lactobacillus , is associated with increased susceptibility to urogenital infections, although mechanisms driving this vulnerability are not fully understood. Despite known inhibitory properties of Lactobacillus against urogenital pathogens, clinical studies with Lactobacillus probiotics have shown mixed success. In this study, we characterize the impact of the vaginal microbiota on urogenital pathogen colonization using a humanized microbiota mouse model that more closely mimics the human vaginal microbiota. We found several vaginal bacterial taxa that correlated with reduced pathogen levels but showed discordant effects in pathogen inhibition between in vitro and in vivo assays. We propose that this humanized microbiota mouse platform is an improved model to describe the role of the vaginal microbiota in protection against urogenital pathogens. Furthermore, this model will be useful in testing efficacy of new probiotic strategies in the complex vaginal environment.
Collapse
|
24
|
Ault-Seay TB, Moorey SE, Mathew DJ, Schrick FN, Pohler KG, McLean KJ, Myer PR. Importance of the female reproductive tract microbiome and its relationship with the uterine environment for health and productivity in cattle: A review. FRONTIERS IN ANIMAL SCIENCE 2023. [DOI: 10.3389/fanim.2023.1111636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Once thought to be sterile, the reproductive tract microbiome has been characterized due to the transition from culture-dependent identification of bacteria to culture-independent sequencing methods. The urogenital microbiome was first identified in women through the Human Microbiome Project, which led to research in other species such as the bovine. Previous research focused on uterine bacteria associated with postpartum disease, but next generation sequencing methods identified a normal, healthy bacterial community of the reproductive tract of cows and heifers. Bacterial communities are now understood to differ between the uterus and vagina, and throughout the estrous cycle with changes in hormone dominance. In a healthy state, the bacterial communities largely interact with the uterine environment by assisting in maintaining the proper pH, providing and utilizing nutrients and metabolites, and influencing the immunological responses of the reproductive tract. If the bacterial communities become unbalanced due to an increase in potentially pathogenic bacteria, the health and fertility of the host may be affected. Although the presence of a reproductive tract microbiome has become widely accepted, the existence of a placental microbiome and in utero colonization of the fetus is still a popular debate due to conflicting study results. Currently, researchers are evaluating methods to manipulate the reproductive bacterial communities, such as diet changes and utilizing probiotics, to improve reproductive outcomes. The following review discusses the current understanding of the reproductive tract microbiome, how it differs between humans and cattle, and its relationship with the uterine environment.
Collapse
|
25
|
Poole RK, Pickett AT, Oliveira Filho RV, de Melo GD, Palanisamy V, Chitlapilly Dass S, Cooke RF, Pohler KG. Shifts in uterine bacterial communities associated with endogenous progesterone and 17β-estradiol concentrations in beef cattle. Domest Anim Endocrinol 2023; 82:106766. [PMID: 36182815 DOI: 10.1016/j.domaniend.2022.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022]
Abstract
The relation between circulating concentrations of progesterone and 17β-estradiol prior to insemination play a key role in optimizing fertility in cattle. This study aimed to determine the impact of endogenous progesterone (P4) and estradiol (E2) concentrations on uterine bacterial community abundance and diversity in beef cattle. Angus-influenced heifers were subjected to an industry standard estrous synchronization protocol. Uterine flushes were collected on d -2 (endogenous P4) and d 0 (endogenous E2) and used for targeting the V4 hypervariable region of 16S rRNA bacterial gene. Plasma was collected on d -2 and 0 for quantification of P4 and E2 concentrations by radioimmunoassay, respectively. Heifers were allotted to one of the following groups: High P4 + High E2 (H-H; n = 11), High P4 + Low E2 (H-L; n = 9), Low P4 + High E2 (L-H; n = 9), Low P4 + Low E2 (L-L; n = 11). Results indicated that Shannon's diversity index tended to be greater for H-L heifers compared to L-H heifers on d 0 (P = 0.10). For H-L heifers from d -2 to d 0, the relative abundance of Actinobacteria decreased and Tenericutes increased (P < 0.01). Within phylum Actinobacteria, the relative abundance of Corynebacterium decreased from d -2 to d 0 in treatment groups H-H, H-L, and L-L (P < 0.05); however, did not differ by d for L-H heifers. Within phylum Tenericutes, the relative abundance of Ureaplasma increased from d -2 to d 0 for H-L heifers (P = 0.01). Additionally for H-L heifers, the relative abundance of Bacteroidetes tended to increase from day -2 to on d 0 (P = 0.07). For H-L heifers, uterine pH increased from day -2 to d 0 (P = 0.05). These results suggest that differing endogenous concentrations of P4 and E2 may be associated with shifts in uterine microbiota and pH, and this could ultimately impact fertility outcomes in beef cattle.
Collapse
Affiliation(s)
- R K Poole
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| | - A T Pickett
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - R V Oliveira Filho
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - G D de Melo
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - V Palanisamy
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - S Chitlapilly Dass
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - R F Cooke
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - K G Pohler
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
26
|
Pickett AT, Cooke RF, Mackey SJ, Brandão AP, Colombo EA, Oliveira Filho RV, de Melo GD, Pohler KG, Poole RK. Shifts in bacterial communities in the rumen, vagina, and uterus of beef heifers receiving different levels of concentrate. J Anim Sci 2022; 100:skac338. [PMID: 36239685 PMCID: PMC9733499 DOI: 10.1093/jas/skac338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/12/2022] [Indexed: 12/15/2022] Open
Abstract
This experiment investigated the effects of diet composition on rumen, vaginal, and uterine microbiota of beef heifers. Fifteen rumen-cannulated, pubertal Angus-influenced heifers were used in a replicated 3 × 3 Latin square design (28-d periods and 21-d washout intervals). Dietary treatments included diets based on (as-fed) 100% grass hay (HF), 60% grass hay + 40% corn-based concentrate (INT), or 25% grass hay + 75% corn-based concentrate (HG). Treatments were offered individually to heifers once daily at 2% body weight. Rumen, vaginal, and uterine samples were collected on days 0 and 28 of each period. Data were analyzed using orthogonal contrasts (linear and quadratic), using results from day 0 as independent covariates and heifer as the experimental unit. Ruminal pH on day 28 decreased linearly (P < 0.01) as concentrate inclusion increased. Uterine and vaginal pH on day 28 were not affected by treatments (P ≥ 0.35). Within the rumen samples, Bacteriodetes was the most abundant phylum and its relative abundance linearly decreased (P ≤ 0.01) with the inclusion of concentrate. Prevotella was the most abundant genus within the rumen but was not affected by treatments (P ≥ 0.44). Genera with relative abundance ≥1% (average across treatments) in the rumen that were impacted by treatments (P ≤ 0.01) included Bacteroides, Pedobacter, Dysgonomonas, Caloramator, and Ruminococcus. Firmicutes was the most abundant phylum in the vagina and uterus, but it was unaffected by treatments (P ≥ 0.16). Prevotella was the most abundant genus in the vagina, and its relative abundance increased (P < 0.01) with the inclusion of concentrate. Other genera with relative abundance ≥1% that were significantly affected (P ≤ 0.05) by treatments were Clostridium, Pedobacter, Roseburia, Oscillospira, Faecalibacterium, Caloramator, Paludibacter, Rhodothermus, and Porphyromonas. In uterine samples, Prevotella was the most abundant genus but was unaffected by treatments (P ≥ 0.29). Genera with relative abundance ≥1% in the uterus that were significantly affected (P < 0.01) by treatments were Caloramator, Paludibacter, and Thalassospira. Collectively, inclusion of concentrate in the diet altered the bacterial composition within the rumen as well as shifting bacterial populations within the vagina and uterus. Research is warranted to further understand the impacts of these diet-induced microbiota changes on reproductive function and performance of beef heifers.
Collapse
Affiliation(s)
- Autumn T Pickett
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Reinaldo F Cooke
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Shea J Mackey
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Alice P Brandão
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Eduardo A Colombo
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | | | | | - Ky G Pohler
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Rebecca K Poole
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
27
|
Luecke SM, Webb EM, Dahlen CR, Reynolds LP, Amat S. Seminal and vagino-uterine microbiome and their individual and interactive effects on cattle fertility. Front Microbiol 2022; 13:1029128. [PMID: 36425035 PMCID: PMC9679222 DOI: 10.3389/fmicb.2022.1029128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/19/2022] [Indexed: 09/13/2023] Open
Abstract
Reproductive failure is a major economical drain on cow-calf operations across the globe. It can occur in both males and females and stem from prenatal and postnatal influences. Therefore, the cattle industry has been making efforts to improve fertility and the pregnancy rate in cattle herds as an attempt to maintain sustainability and profitability of cattle production. Despite the advancements made in genetic selection, nutrition, and the implementation of various reproductive technologies, fertility rates have not significantly improved in the past 50 years. This signifies a missing factor or factors in current reproductive management practices that influence successful fertilization and pregnancy. Emerging lines of evidence derived from human and other animals including cattle suggest that the microbial continuum along the male and female reproductive tracts are associated with male and female fertility-that is, fertilization, implantation, and pregnancy success-highlighting the potential for harnessing the male and female reproductive microbiome to improve fertility in cattle. The objective of this narrative review is to provide an overview of the recent studies on the bovine seminal and vagino-uterine microbiome and discuss individual and interactive roles of these microbial communities in defining cattle fertility.
Collapse
Affiliation(s)
- Sarah M. Luecke
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Emily M. Webb
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Carl R. Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Lawrence P. Reynolds
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
28
|
Choi S, Cha J, Song M, Son J, Park MR, Lim YJ, Kim TH, Lee KT, Park W. Analysis of 16S rRNA gene sequencing data for the taxonomic characterization of the vaginal and the fecal microbial communities in Hanwoo. Anim Biosci 2022; 35:1808-1816. [PMID: 36108700 PMCID: PMC9659453 DOI: 10.5713/ab.22.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/09/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE The study of Hanwoo (Korean native cattle) has mainly been focused on meat quality and productivity. Recently the field of microbiome research has increased dramatically. However, the information on the microbiome in Hanwoo is still insufficient, especially relationship between vagina and feces. Therefore, the purpose of this study is to examine the microbial community characteristics by analyzing the 16S rRNA sequencing data of Hanwoo vagina and feces, as well as to confirm the difference and correlation between vaginal and fecal microorganisms. As a result, the goal is to investigate if fecal microbiome can be used to predict vaginal microbiome. METHODS A total of 31 clinically healthy Hanwoo that delivered healthy calves more than once in Cheongju, South Korea were enrolled in this study. During the breeding season, we collected vaginal and fecal samples and sequenced the microbial 16S rRNA genes V3-V4 hypervariable regions from microbial DNA of samples. RESULTS The results revealed that the phylum-level microorganisms with the largest relative distribution were Firmicutes, Actinobacteria, Bacteroidetes, and Proteobacteria in the vagina, and Firmicutes, Bacteroidetes, and Spirochaetes in the feces, respectively. In the analysis of alpha, beta diversity, and effect size measurements (LefSe), the results showed significant differences between the vaginal and fecal samples. We also identified the function of these differentially abundant microorganisms by functional annotation analyses. But there is no significant correlation between vaginal and fecal microbiome. CONCLUSION There is a significant difference between vaginal and fecal microbiome, but no significant correlation. Therefore, it is difficult to interrelate vaginal microbiome as fecal microbiome in Hanwoo. In a further study, it will be necessary to identify the genetic relationship of the entire microorganism between vagina and feces through the whole metagenome sequencing analysis and meta-transcriptome analysis to figure out their relationship.
Collapse
Affiliation(s)
- Soyoung Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365,
Korea
| | - Jihye Cha
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365,
Korea
| | - Minji Song
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365,
Korea
| | - JuHwan Son
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365,
Korea
| | - Mi-Rim Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365,
Korea
| | - Yeong-jo Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365,
Korea
| | - Tae-Hun Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365,
Korea
| | - Kyung-Tai Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365,
Korea
| | - Woncheoul Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365,
Korea,Corresponding Author: Woncheoul Park, Tel: +82-63-238-7317, E-mail:
| |
Collapse
|
29
|
Ault-Seay TB, Payton RR, Moorey SE, Pohler KG, Schrick FN, Shepherd EA, Voy BH, Lamour KH, Mathew DJ, Myer PR, McLean KJ. Endometrial gene expression in response to lipopolysaccharide between estrous cycle phases and uterine horns in cattle. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.939876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Uterine bacterial community abundances shift throughout the estrous cycle, potentially altering the immunological environment of the uterus and impacting subsequent fertility. The objective of the current study was to evaluate the immunological impact of lipopolysaccharide (LPS), as a model for potentially pathogenic bacteria, throughout the uterine endometrium between the luteal and follicular phase of the estrous cycle. Bovine uterine tracts were harvested in mid-luteal (n = 7) or follicular (n = 7) phase. Explants were collected from the contralateral and ipsilateral horn relative to the dominant follicle or corpus luteum, then subjected to one of three treatments: uncultured control, cultured control, or cultured with LPS (1 µg/mL). Explants underwent RNA extraction and targeted RNA sequencing for expression analyses of 40 immune response related genes. Sequencing reads were mapped to Bos taurus genome in CLC Genomics Workbench. Resulting total read counts were normalized by housekeeping gene GAPDH and analyzed for overall expression profile by Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) and Variable Importance in Projection (VIP) analyses in Metaboanalyst. Individual gene expression differences were determined by GLIMMIX procedure in SAS with fixed effects of treatment, estrous phase, uterine horn, and their interaction, with random effect of individual uterus. Expression of 29 genes were affected among treatment groups, with seven genes increased in LPS treatment compared to other groups (P < 0.05). Multiple genes were affected by estrous phase and uterine horn, independent of treatment (P < 0.05). The OPLS-DA analyses indicated overall gene expression differences due to clustering by estrous cycle and treatment (P < 0.001), with no effect of uterine horn (P > 0.10). Similar clustering was observed between luteal and follicular phase explants of controls, but distinct separate clustering between phases with LPS treatment (P = 0.001). According to VIP analyses, mucins were identified as contributing the most to differences observed between phase and treatment. In conclusion, estrous cycle phase resulted in differing overall endometrial gene expression profiles of immune response to LPS treatment. Therefore, altered immunological environment of the uterus in response to bacteria at different estrous cycle stages may lead to differences in reproductive success.
Collapse
|
30
|
Ault-Seay TB, Brandt KJ, Henniger MT, Payton RR, Mathew DJ, Moorey SE, Schrick FN, Pohler KG, Smith TPL, Rhinehart JD, Schneider LG, McLean KJ, Myer PR. Bacterial Communities of the Uterus and Rumen During Heifer Development With Protein Supplementation. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.903909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacterial communities play major roles in rumen and uterine function toward optimal animal performance and may be affected by changes occurring during heifer development such as nutritional supplementation for optimal growth and the attainment of puberty. The effect of different levels of protein supplementation on ruminal and uterine bacterial communities following weaning was examined through first breeding of heifers. Angus heifers (n = 39) were blocked by initial body weight (BW) and randomly assigned to one of three 163-day (d) crude protein (CP) supplementation diets including control (10% CP, n = 14), 20% CP (n = 11), or 40% CP (n = 14) treatment groups. Growth and development were monitored by body weight, with blood progesterone concentration determined every 14 d to determine pubertal status. Uterine flush and rumen fluid were collected on d 56, 112, and 163 relative to the start of supplementation. Bacterial DNA was extracted from fluid samples, the V1–V3 hypervariable region of the 16S rRNA gene was amplified, and amplicons were sequenced then processed in R 4.1. Statistical analyses were performed in SAS 9.4 with a GLIMMIX procedure utilizing fixed effects of protein, month, pubertal status, and interactions, with random effects including BW, interaction of BW and protein, and heifer within the interaction, and repeated measures of day. In the uterus, pubertal status and day of supplementation affected the observed amplicon sequence variants (ASVs) and led to clustering of samples in a principal coordinate analysis (PCoA; P < 0.05), but no effect of protein supplementation was observed. Ruminal samples clustered in PCoA (P = 0.001), and observed ASVs were impacted over time (P < 0.0001), but no effect of protein supplementation was detected. In contrast, protein supplementation, pubertal status, and day of supplementation affected the abundance of multiple phyla and genera in the uterus and rumen (P < 0.05). Temporal and pubertal status effects on the heifer’s uterine bacterial communities potentially indicate a maturing uterine microbiome. Protein supplementation did not impact microbial diversity measures but did affect the abundance of individual bacterial phyla and genera that may provide future opportunities to manipulate bacterial community composition and maximize productivity.
Collapse
|
31
|
Mocé ML, Esteve IC, Pérez-Fuentes S, Gómez EA, Mocé E. Microbiota in Goat Buck Ejaculates Differs Between Breeding and Non-breeding Seasons. Front Vet Sci 2022; 9:867671. [PMID: 35647092 PMCID: PMC9136232 DOI: 10.3389/fvets.2022.867671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/21/2022] [Indexed: 01/04/2023] Open
Abstract
Changes in semen microbiota are associated with alterations to sperm quality and fertility. However, the microbiota from most livestock species has not yet been studied. Goats are seasonal breeders, but semen microbiota has never been described in this species, and it is unknown how seasonality affects it. Our study objective is 2-fold: to describe the microbiota in goat buck ejaculates and to determine if it differs between breeding and non-breeding seasons. Semen from six males of the Murciano-Granadina breed was collected during both seasons. Two replicates were performed per male and season on different days. The microbiota was characterized by genomic sequencing technology. Sperm quality was also evaluated. Repetition was not significant for the studied variables. Sperm velocities were higher for the breeding than for the non-breeding season. The ejaculates from both seasons also differed in the proportion of apoptotic spermatozoa. The five dominant phyla were Firmicutes, Proteobacteria, Fusobacteria, Actinobacteria, and Bacteroidetes during the breeding season and Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, and Cyanobacteria during the non-breeding season. The dominant genus during both seasons was Ureaplasma. Differences in microbial community structure (the beta diversity) were found. A decrease in the relative abundance of the genus Faecalibacterium and an increase in the genera Sphingomonas and Halomonas were observed in the ejaculates collected during the breeding season. Sphingomonas and Faecalibacterium abundance favorably and unfavorably correlated with sperm quality, respectively. In conclusion, the semen microbiota from goat bucks varies between breeding and non-breeding seasons, and the microbiota remains stable for 7 days within a season. In addition, the genera Sphingomonas and Faecalibacterium could be possible biomarkers of semen quality in goat bucks. These results contribute to an in-depth understanding of the effects of reproductive seasonality on goat buck ejaculates.
Collapse
Affiliation(s)
- María Lorena Mocé
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
- Unidad Asociada UCH-CEU – IVIA, Valencia, Spain
| | - Inés Carolina Esteve
- Unidad Asociada UCH-CEU – IVIA, Valencia, Spain
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Sara Pérez-Fuentes
- Unidad Asociada UCH-CEU – IVIA, Valencia, Spain
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Ernesto A. Gómez
- Unidad Asociada UCH-CEU – IVIA, Valencia, Spain
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Eva Mocé
- Unidad Asociada UCH-CEU – IVIA, Valencia, Spain
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
- *Correspondence: Eva Mocé
| |
Collapse
|
32
|
Evaluation of Host Depletion and Extraction Methods for Shotgun Metagenomic Analysis of Bovine Vaginal Samples. Microbiol Spectr 2022; 10:e0041221. [PMID: 35404108 PMCID: PMC9045270 DOI: 10.1128/spectrum.00412-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The reproductive tract metagenome plays a significant role in the various reproductive system functions, including reproductive cycles, health, and fertility. One of the major challenges in bovine vaginal metagenome studies is host DNA contamination, which limits the sequencing capacity for metagenomic content and reduces the accuracy of untargeted shotgun metagenomic profiling. This is the first study comparing the effectiveness of different host depletion and DNA extraction methods for bovine vaginal metagenomic samples. The host depletion methods evaluated were slow centrifugation (Soft-spin), NEBNext Microbiome DNA Enrichment kit (NEBNext), and propidium monoazide (PMA) treatment, while the extraction methods were DNeasy Blood and Tissue extraction (DNeasy) and QIAamp DNA Microbiome extraction (QIAamp). Soft-spin and QIAamp were the most effective host depletion method and extraction methods, respectively, in reducing the number of cattle genomic content in bovine vaginal samples. The reduced host-to-microbe ratio in the extracted DNA increased the sequencing depth for microbial reads in untargeted shotgun sequencing. Bovine vaginal samples extracted with QIAamp presented taxonomical profiles which closely resembled the mock microbial composition, especially for the recovery of Gram-positive bacteria. Additionally, samples extracted with QIAamp presented extensive functional profiles with deep coverage. Overall, a combination of Soft-spin and QIAamp provided the most robust representation of the vaginal microbial community in cattle while minimizing host DNA contamination. IMPORTANCE In addition to the host tissue collected during the sampling process, bovine vaginal samples are saturated with large amounts of extracellular DNA and secreted proteins that are essential for physiological purposes, including the reproductive cycle and immune defense. Due to the high host-to-microbe genome ratio, which hampers the sequencing efficacy for metagenome samples and the recovery of the actual metagenomic profiles, bovine vaginal samples cannot benefit from the full potential of shotgun sequencing. This is the first investigation on the most effective host depletion and extraction methods for bovine vaginal metagenomic samples. This study demonstrated an effective combination of host depletion and extraction methods, which harvested higher percentages of 16S rRNA genes and microbial reads, which subsequently led to a taxonomical profile that resembled the actual community and a functional profile with deeper coverage. A representative metagenomic profile is essential for investigating the role of the bovine vaginal metagenome for both reproductive function and susceptibility to infections.
Collapse
|
33
|
The Exoproteome of Staphylococcus pasteuri Isolated from Cervical Mucus during the Estrus Phase in Water Buffalo (Bubalus bubalis). Biomolecules 2022; 12:biom12030450. [PMID: 35327642 PMCID: PMC8946806 DOI: 10.3390/biom12030450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
Bacterial extracellular proteins participate in the host cell communication by virtue of the modulation of pathogenicity, commensalism and mutualism. Studies on the microbiome of cervical mucus of the water buffalo (Bubalus bubalis) have shown the occurrence of Staphylococcus pasteuri and that the presence of this bacterium is indicative of various physiological and reproductive states in the host. Recently, S. pasteuri has been isolated from the cervical mucus of the buffalo during the different phases of estrous cycle, and has proved to be much more pronounced during the estrus phase. The basis underlying the availability of a significantly increased S. pasteuri population, specifically during the estrus phase, is not known. Consequently, it is important to determine the significance of the specific abundance of S. pasteuri during the estrus phase of the buffalo host, particularly from the perspective of whether this bacterial species is capable of contributing to sexual communication via its extracellular proteins and volatiles. Therefore, the relevance of S. pasteuri exoproteome in the buffalo cervical mucus during the estrus phase was analyzed using LC-MS/MS. As many as 219 proteins were identified, among which elongation factor Tu (EF-Tu), 60-kDa chaperonin (Cpn60), enolase, fructose-bisphosphate aldolase class 1 (FBP aldolase), enoyl-[acyl-carrier-protein] reductase [NADPH] (ENR) and lipoprotein (Lpp) were the functionally important candidates. Most of the proteins present in the exoproteome of S. pasteuri were those involved in cellular–metabolic functions, as well as catalytic- and binding activities. Moreover, computational studies of Lpp have shown enhanced interaction with volatiles such as acetic-, butanoic-, isovaleric- and valeric acids, which were identified in the cervical mucus S. pasteuri culture supernatant. The present findings suggest that S. pasteuri extracellular proteins may play an important role in buffalo sexual communication during the estrus phase.
Collapse
|
34
|
Amat S, Dahlen CR, Swanson KC, Ward AK, Reynolds LP, Caton JS. Bovine Animal Model for Studying the Maternal Microbiome, in utero Microbial Colonization and Their Role in Offspring Development and Fetal Programming. Front Microbiol 2022; 13:854453. [PMID: 35283808 PMCID: PMC8916045 DOI: 10.3389/fmicb.2022.854453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 01/10/2023] Open
Abstract
Recent developments call for further research on the timing and mechanisms involved in the initial colonization of the fetal/infant gut by the maternal microbiome and its role in Developmental Origins of Health and Disease (DOHaD). Although progress has been made using primarily preterm infants, ethical and legal constraints hinder research progress in embryo/fetal-related research and understanding the developmental and mechanistic roles of the maternal microbiome in fetal microbial imprinting and its long-term role in early-life microbiome development. Rodent models have proven very good for studying the role of the maternal microbiome in fetal programming. However, some inherent limitations in these animal models make it challenging to study perinatal microbial colonization from a biomedical standpoint. In this review, we discuss the potential use of bovine animals as a biomedical model to study the maternal microbiome, in utero microbial colonization of the fetal gut, and their impact on offspring development and DOHaD.
Collapse
Affiliation(s)
- Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Carl R Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Kendall C Swanson
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Alison K Ward
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Lawrence P Reynolds
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Joel S Caton
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
35
|
Metagenomic analysis of bacterial communities during estrous cycle in Bos indicus. Trop Anim Health Prod 2022; 54:118. [DOI: 10.1007/s11250-022-03119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/18/2022] [Indexed: 10/19/2022]
|
36
|
Ong CT, Ross EM, Boe-Hansen GB, Turni C, Hayes BJ, Tabor AE. Technical note: overcoming host contamination in bovine vaginal metagenomic samples with nanopore adaptive sequencing. J Anim Sci 2022; 100:skab344. [PMID: 34791313 PMCID: PMC8722758 DOI: 10.1093/jas/skab344] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Animal metagenomic studies, in which host-associated microbiomes are profiled, are an increasingly important contribution to our understanding of the physiological functions, health and susceptibility to diseases of livestock. One of the major challenges in these studies is host DNA contamination, which limits the sequencing capacity for metagenomic content and reduces the accuracy of metagenomic profiling. This is the first study comparing the effectiveness of different sequencing methods for profiling bovine vaginal metagenomic samples. We compared the new method of Oxford Nanopore Technologies (ONT) adaptive sequencing, which can be used to target or eliminate defined genetic sequences, to standard ONT sequencing, Illumina 16S rDNA amplicon sequencing, and Illumina shotgun sequencing. The efficiency of each method in recovering the metagenomic data and recalling the metagenomic profiles was assessed. ONT adaptive sequencing yielded a higher amount of metagenomic data than the other methods per 1 Gb of sequence data. The increased sequencing efficiency of ONT adaptive sequencing consequently reduced the amount of raw data needed to provide sufficient coverage for the metagenomic samples with high host-to-microbe DNA ratio. Additionally, the long reads generated by ONT adaptive sequencing retained the continuity of read information, which benefited the in-depth annotations for both taxonomical and functional profiles of the metagenome. The different methods resulted in the identification of different taxa. Genera Clostridium, which was identified at low abundances and categorized under Order "Unclassified Clostridiales" when using the 16S rDNA amplicon sequencing method, was identified to be the dominant genera in the sample when sequenced with the three other methods. Additionally, higher numbers of annotated genes were identified with ONT adaptive sequencing, which also produced high coverage on most of the commonly annotated genes. This study illustrates the advantages of ONT adaptive sequencing in improving the amount of metagenomic data derived from microbiome samples with high host-to-microbe DNA ratio and the advantage of long reads in preserving intact information for accurate annotations.
Collapse
Affiliation(s)
- Chian Teng Ong
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Queensland 4072, Australia
| | - Elizabeth M Ross
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Queensland 4072, Australia
| | - Gry B Boe-Hansen
- Faculty of Science, School of Veterinary Science, The University of Queensland, Queensland 4072, Australia
| | - Conny Turni
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Queensland 4072, Australia
| | - Ben J Hayes
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Queensland 4072, Australia
| | - Ala E Tabor
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Queensland 4072, Australia
- Faculty of Science, School of Chemistry and Molecular Bioscience, The University of Queensland, Queensland 4072, Australia
| |
Collapse
|
37
|
Miranda MH, Aristimuño Ficoseco C, Nader-Macías MEF. Safety, environmental and technological characterization of beneficial autochthonous lactic bacteria, and their vaginal administration to pregnant cows for the design of homologous multi-strain probiotic formulas. Braz J Microbiol 2021; 52:2455-2473. [PMID: 34505225 PMCID: PMC8578494 DOI: 10.1007/s42770-021-00608-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022] Open
Abstract
In recent years, veterinary probiotic formulations constitute an interesting alternative to the use of antibiotics in animals for human consumption, but beneficial microorganisms must meet certain requirements to be included in these products. The objective of this work was to evaluate the safety and innocuity of beneficial autochthonous lactic bacteria (BALB) as well as to determine their beneficial, environmental, and technological characterization. Antibiotic resistance was assayed using phenotypic and genotypic methodology. A bovine vaginal fluid simulated medium (MSBVF) was designed where growth, pH changes, and expression of beneficial characteristics of lactic bacteria were evaluated; additionally, the optimal culture conditions in commercial media were determined in order to obtain the highest biomass production of the strains. Finally, the best strains were lyophilized and administered intravaginally to pregnant cows and their permanence in the vagina and adverse effects were evaluated. The results show that most of the strains were resistant to vancomycin, tetracycline, and streptomycin, with a high sensitivity to ampicillin, gentamicin, and clindamycin. The strains evaluated did not show gelatinase or hyaluronidase activity; however, 11 strains produced α-type hemolysis. The optimal growth of the microorganism was obtained in MRS broth, under slight agitation and without pH control. The strains grown in the MSBVF grew well and maintained the probiotic properties. Animals treated with probiotics bacteria did not show systemic or local inflammation. These strains can be included in a probiotic veterinary product to be applied to different bovine mucosa.
Collapse
Affiliation(s)
- María Hortencia Miranda
- Centro de Referencia Para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas, Chacabuco 145, 4000, San Miguel de Tucumán, Argentina
| | - Cecilia Aristimuño Ficoseco
- Centro de Referencia Para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas, Chacabuco 145, 4000, San Miguel de Tucumán, Argentina
| | - María Elena Fátima Nader-Macías
- Centro de Referencia Para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas, Chacabuco 145, 4000, San Miguel de Tucumán, Argentina.
| |
Collapse
|
38
|
Moreno CG, Luque AT, Galvão KN, Otero MC. Bacterial communities from vagina of dairy healthy heifers and cows with impaired reproductive performance. Res Vet Sci 2021; 142:15-23. [PMID: 34847462 DOI: 10.1016/j.rvsc.2021.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 12/26/2022]
Abstract
Vaginal microenvironment plays a significant role in bovine fertility since its resident microorganisms interact with the host mucosa and constitutes the first barrier against ascending pathogens in the reproductive tract. In this study, the vaginal microbiome of healthy heifers (H) and cows with impaired reproductive performance, metritis complex (MT) or repeat breeders (RB), was assessed using a 16S rRNA gene sequencing approach. Analysis revealed that even though a vaginal microbiological guild (Firmicutes, Bacteroidetes, Proteobacteria, Tenericutes, Fusobacteria and Actinobacteria) was shared among healthy heifers and cows with uterine disease; further analysis at genus level showed significant differences depending on the reproductive health status. The relative abundances of recognized uterine pathogens such as Bacteroidetes, Fusobacterium and Helcococcus were higher in MT when compared with H and RB; therefore, their presence in vagina can be considered as a risk factor for fertility. The present study describes for the first time, the composition of native bacterial communities in the vagina of cows undergoing the repeat breeding syndrome (RBS), and reports an association between this disease and the presence of Porphyromonas and unassigned genera of the Pasteurellaceae family. In addition, this work highlights the bacteria associated with a healthy vagina: genera from the families Lachnospiraceae, Rikenellaceae and the genera Acinetobacter, Bacillus, Oscillospira, CF231 and 5-7NS. Results highlighted herein, signify the potential of the evaluation of the bovine vaginal microbiome to future design therapeutic interventions to improve pregnancy rates however, further research is needed to elucidate the balance of bacterial species resulting in an optimal reproductive health.
Collapse
Affiliation(s)
- Candelaria Gonzalez Moreno
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, UNT, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina; Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Florentino Ameghino s/n, CP 4105, Barrio Mercantil, El Manantial, Tucumán, Argentina
| | - Andrea Torres Luque
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, UNT, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina
| | - Klibs N Galvão
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - María C Otero
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, UNT, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
39
|
Kudo H, Sugiura T, Higashi S, Oka K, Takahashi M, Kamiya S, Tamura Y, Usui M. Characterization of Reproductive Microbiota of Primiparous Cows During Early Postpartum Periods in the Presence and Absence of Endometritis. Front Vet Sci 2021; 8:736996. [PMID: 34733902 PMCID: PMC8558311 DOI: 10.3389/fvets.2021.736996] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/21/2021] [Indexed: 12/30/2022] Open
Abstract
Endometritis has a major impact on fertility in postpartum dairy cows. Since previous studies showed an association between reproductive microbiota and perinatal disease, we monitored both bovine uterine and vaginal microbiota in primiparous cows to elucidate the effect of early postpartum microbiota on endometritis. Uterine and vaginal samples were collected at time points from pre-calving to 35 days postpartum (DPP), and analyzed by 16S rRNA sequencing, combined with ancillary bacterial culture. A total of seven healthy cows and seven cows diagnosed with endometritis on 35 DPP were used in the current study. The uterine and vaginal microbiota showed a maximum of 20.1% shared amplicon sequence variants (ASVs) at linked time points. 16S rRNA based analysis and traditional culture methods revealed that Trueperella showed a higher abundance in both uterus and vagina of the endometritis group compared to the healthy group on 21 DPP (U-test p < 0.05). Differential abundance analysis of the uterine microbiota showed that Enterococcus and six bacterial genera including Bifidobacterium were unique to the healthy group on the day of calving (0 DPP) and 28 DPP, respectively. In contrast, Histophilus and Mogibacteriaceae were characteristic bacteria in the vagina pre-calving in cows that later developed endometritis, suggesting that these bacteria could be valuable to predict clinical outcomes. Comparing the abundances of bacterial genera in the uterine microbiota, a negative correlation was observed between Trueperella and several bacteria including Lactobacillus. These results suggest that building an environment where there is an increase in bacteria that are generally recognized as beneficial, such as Lactobacillus, may be one possible solution to reduce the abundance of Trueperella and control endometritis.
Collapse
Affiliation(s)
- Hayami Kudo
- Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan.,Research Department, R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama, Japan
| | - Tomochika Sugiura
- Department of Large Animal Clinical Science, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| | - Seiya Higashi
- Research Department, R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama, Japan
| | - Kentaro Oka
- Research Department, R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama, Japan
| | - Motomichi Takahashi
- Research Department, R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama, Japan
| | - Shigeru Kamiya
- Research Department, R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama, Japan
| | - Yutaka Tamura
- Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| | - Masaru Usui
- Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| |
Collapse
|
40
|
Staphylococcus pasteuri (BCVME2) Resident in Buffalo Cervical Vaginal Mucus: A Potential Source of Estrus-Specific Sex Pheromone(s). J Chem Ecol 2021; 48:7-15. [PMID: 34542784 DOI: 10.1007/s10886-021-01311-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 07/28/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Mammals have microbes resident in their reproductive tract, some of which can be pathogenic while others may play a role in protecting the tract from infection. Volatile compounds play a role as sex pheromones that attract males for coitus during female estrus or heat. It is likely that these compounds themselves are secondary metabolites of bacterial flora resident in the vagina. In order to substantiate this hypothesis, bacteria were isolated from cervico-vaginal mucus (CVM) of buffalo during various phases of the estrous cycle and identified, using morphological, biochemical and molecular characteristics, as Bacillus during preestrus and diestrus, and as Staphylococcus during all three phases of the estrous cycle. Populations of Staphylococcus differed between different phases of the estrous cycle, the predominant forms being S. warneri (BCVMPE1_1) during preestrus, S. pastueri (BCVME2) during estrus and S. epidermis (BCVMDE3) during diestrus. Mice were used as chemosensors to differentiate the estrus-specific S. pasteuri (BCVME2) from the others. Chemical analysis showed that S. pasteuri (BCVME2) produced acetic, propanoic, isobutyric, butyric, isovaleric and valeric acids. In addition, it was shown that S. pasteuri (BCVME2) volatiles influenced the sexual behaviors, flehmen and mounting, of the bull. Thus, S. pasteuri (BCVME2) is a potential source of vaginal pheromone(s) during estrus in buffalo.
Collapse
|
41
|
Messman RD, Contreras-Correa ZE, Paz HA, Lemley CO. Melatonin-induced changes in the bovine vaginal microbiota during maternal nutrient restriction. J Anim Sci 2021; 99:6196023. [PMID: 33773492 DOI: 10.1093/jas/skab098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/24/2021] [Indexed: 11/14/2022] Open
Abstract
Altering the composition of the bovine vaginal microbiota has proved challenging, with recent studies deeming the microbiota dynamic due to few overall changes being found. Therefore, the objectives of this study were to determine whether gestational age, endogenous progesterone, maternal nutrient restriction, or dietary melatonin altered the composition of the bovine vaginal microbiota. Brangus heifers (n = 29) from timed artificial insemination to day 240 of gestation were used; at day 160 of gestation, heifers were assigned to either an adequate (ADQ; n = 14; 100% NRC requirements) or restricted (RES; n = 15; 60% NRC requirements) nutritional plane and were either supplemented with dietary melatonin (MEL; n = 15) or not supplemented (CON; n = 14). Samples for vaginal microbiota analysis were taken on day 0 (prior to artificial insemination), day 150 (prior to dietary treatments), and day 220 of gestation (60 d post-treatment initiation) using a double guarded culture swab. The vaginal bacterial overall community structure was determined through sequencing the V4 region of the 16S rRNA gene using the Illumina Miseq platform. Alpha diversity was compared via 2-way ANOVA; β diversity was compared via PERMANOVA. The linear discriminant analysis for effect size (LEfSe) pipeline was utilized for analysis of taxonomic rank differences between bacterial communities. Gestational age, progesterone concentration, and maternal nutritional plane did not alter α or β diversity of the vaginal microbiota. However, gestational age resulted in compositional changes at the order, family, and genus level. Moreover, dietary melatonin supplementation did not alter α diversity of the vaginal microbiota but did alter β diversity (P = 0.02). Specifically, melatonin altered the composition at the genus level and increased the prevalence of aerobic bacteria in the vaginal tract. To date, melatonin is the first hormone associated with altering the composition of the bovine vaginal microbiota.
Collapse
Affiliation(s)
- Riley D Messman
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Zully E Contreras-Correa
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Henry A Paz
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Caleb O Lemley
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
42
|
Srinivasan M, Adnane M, Archunan G. Significance of cervico-vaginal microbes in bovine reproduction and pheromone production - A hypothetical review. Res Vet Sci 2021; 135:66-71. [PMID: 33450498 DOI: 10.1016/j.rvsc.2021.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/10/2020] [Accepted: 01/03/2021] [Indexed: 01/08/2023]
Abstract
The vaginal microbiota has been studied in animal reproduction and fertility, in particular little information of vaginal microbes in reference to bovine reproduction and pheromone production is known. The vaginal mucosa in healthy cow is colonized by an equilibrated and dynamic composition of aerobic, facultative anaerobic and obligate anaerobic microbes. Cervico-vaginal mucus (CVM) composition, viscosity and volume vary with the cyclicity and health status of the reproductive tract. In addition, CVM contains pheromones, volatile compounds, and proteins that attract males for coitus. Commensal microbiota plays a key role in protection of the genital tract from pathogenic microbes by competition effect. In the bovine species, the microbial composition, its abundance and diversity in the female gut, vagina, urine, saliva, and feces, and the associated chemical communication remains poorly documented. The impact of microbes in the reproductive tract of cow, buffalo and certain mammals are discussed in this review. Since the microbial population diversity of CVM is modified during estrus phase it presumes that it may have a role for pheromone production in conspecific. Herein, we would like to critically discuss the current state of knowledge on microbially produced signals in animals and the role of genital and CVM microbiota in estrous cycle and pregnancy.
Collapse
Affiliation(s)
- M Srinivasan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| | - M Adnane
- Institute of Veterinary Sciences, University of Tiaret, Algeria.
| | - G Archunan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, India.
| |
Collapse
|
43
|
Vaginal Microbiota Is Stable throughout the Estrous Cycle in Arabian Maress. Animals (Basel) 2020; 10:ani10112020. [PMID: 33153053 PMCID: PMC7692283 DOI: 10.3390/ani10112020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
Lactic acid bacteria (LAB) dominate human vaginal microbiota and inhibit pathogen proliferation. In other mammals, LAB do not dominate vaginal microbiota, however shifts of dominant microorganisms occur during ovarian cycle. The study objectives were to characterize equine vaginal microbiota in mares by culture-dependent and independent methods and to describe its variation in estrus and diestrus. Vaginal swabs from 8 healthy adult Arabian mares were obtained in estrus and diestrus. For culture-dependent processing, bacteria were isolated on Columbia blood agar (BA) and Man Rogosa Sharpe (MRS) agar. LAB comprised only 2% of total bacterial isolates and were not related to ovarian phases. For culture-independent processing, V3/V4 variable regions of the 16S ribosomal RNA gene were amplified and sequenced using Illumina Miseq. The diversity and composition of the vaginal microbiota did not change during the estrous cycle. Core equine vaginal microbiome consisted of Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria at the phylum level. At the genus level it was defined by Porphyromonas, Campylobacter, Arcanobacterium, Corynebacterium, Streptococcus, Fusobacterium, uncultured Kiritimatiaellae and Akkermansia. Lactobacillus comprised only 0.18% of the taxonomic composition in estrus and 0.37% in diestrus. No differences in the relative abundance of the most abundant phylum or genera were observed between estrus and diestrus samples.
Collapse
|