1
|
Zhou E, Abula S, Abulizi A, He G, Huang P, Maimaiti M, Liu D, Mai Z, Dong S, Wusiman A. Extraction and immunomodulatory effects of acid Lagenaria siceraria (Molina) Standl. Polysaccharide on chickens. Poult Sci 2024; 103:104113. [PMID: 39146923 PMCID: PMC11379659 DOI: 10.1016/j.psj.2024.104113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 08/17/2024] Open
Abstract
Herbal polysaccharides are extensively studied as vaccine adjuvants due to their safety and potent immunoenhancing activity. This study aimed to analyze the structure of Lagenaria siceraria (Molina) Standl polysaccharide (LSP50) and investigate its adjuvant activity for the H9N2 vaccine in broiler chickens. Structural analysis revealed that LSP50 primarily consisted of rhamnose, arabinose, xylose, mannose, glucose, and galactose with molar ratios of 23.12: 12.28: 10.87: 8.26: 2.64: 22.82 respectively. The adjuvant activity of LSP50 was evaluated, which showing significant enhancements compared to the H9N2 group. Parameters including the immune organ index, H9N2 specific IgG level, cytokines contents (IFN-γ, IL-2, IL-4, and IL-5), and the proportion of CD3e+CD8aT+cells were significantly increased in the LSP50 group (P < 0.05). Additionally, sequencing results showed that LSP50 modulates the immune response by regulating PLA2G12B and PTGDS genes involved in the arachidonic acid pathway. These findings were further validated through qPCR analysis to affirm the reliability of the sequencing data. In conclusion, our results demonstrate that LSP50 exhibits potent adjuvant activity, enhancing both cellular and humoral immunity.
Collapse
Affiliation(s)
- En Zhou
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Saifuding Abula
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Alimujiang Abulizi
- Animal Husbandry and Veterinary Station, Shufu County Bureau of Agriculture and Rural Affairs, Kashgar 844100, China
| | - Guangyan He
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Peng Huang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Mutailipu Maimaiti
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Dandan Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Zhanhai Mai
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China
| | - Shiqi Dong
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Adelijiang Wusiman
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, Urumqi 830052, China.
| |
Collapse
|
2
|
Martinez-Sobrido L, Nogales A. Recombinant Influenza A Viruses Expressing Reporter Genes from the Viral NS Segment. Int J Mol Sci 2024; 25:10584. [PMID: 39408912 PMCID: PMC11476892 DOI: 10.3390/ijms251910584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Studying influenza A viruses (IAVs) requires secondary experimental procedures to detect the presence of the virus in infected cells or animals. The ability to generate recombinant (r)IAV using reverse genetics techniques has allowed investigators to generate viruses expressing foreign genes, including fluorescent and luciferase proteins. These rIAVs expressing reporter genes have allowed for easily tracking viral infections in cultured cells and animal models of infection without the need for secondary approaches, representing an excellent option to study different aspects in the biology of IAV where expression of reporter genes can be used as a readout of viral replication and spread. Likewise, these reporter-expressing rIAVs provide an excellent opportunity for the rapid identification and characterization of prophylactic and/or therapeutic approaches. To date, rIAV expressing reporter genes from different viral segments have been described in the literature. Among those, rIAV expressing reporter genes from the viral NS segment have been shown to represent an excellent option to track IAV infection in vitro and in vivo, eliminating the need for secondary approaches to identify the presence of the virus. Here, we summarize the status on rIAV expressing traceable reporter genes from the viral NS segment and their applications for in vitro and in vivo influenza research.
Collapse
Affiliation(s)
| | - Aitor Nogales
- Center for Animal Health Research, CISA-INIA-CSIC, 28130 Madrid, Spain
| |
Collapse
|
3
|
Song W, Zhao L, Liu S, Jia Y, Ma L, Liao M, Dai M. Analysis of H5N8 influenza virus infection in chicken with mApple reporter genes in vivo and in vitro. Vet Microbiol 2024; 292:110052. [PMID: 38492531 DOI: 10.1016/j.vetmic.2024.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
H5N8 highly pathogenic avian influenza virus (HPAIV) has caused huge losses to the global poultry industry and critically threatens public health. Chickens are the important host for the transmission. However, the distribution of H5N8 avian influenza virus (AIV) in chicken and the infected cell types are limitedly studied. Therefore, in this study, we detected viral replication and infection by generating recombinant H5N8 AIV expressing an easily tracked mApple fluorescent reporter. The results showed that recombinant viruses passaged four times in chicken embryos successfully expressed mApple proteins detected by fluorescence microscopy and WB, which verified that the constructed recombinant viruses were stable. Compared to parental virus, although recombinant virus attenuated for replication in MDCK cells, it can still replicate effectively, and form visible plaques. Importantly, the experiments on infection of chicken PBMCs in vitro showed a strong correlation between mApple positivity rate and NP positivity rate (r = 0.7594, P =0.0176), demonstrating that mApple reporter could be used as an indicator to accurately reflect AIV infection. Then we infected monocytes/macrophages in PBMCs in vitro and detected the mApple positive percentage was 55.1%-80.4%, which confirmed the chicken primary monocytic/macrophages are important target cells for avian influenza virus infection. In chicken, compared with parental virus, the recombinant virus-infected chickens had lower viral titers in oropharyngeal cloacal and organs, but it can cause significant pathogenicity in chicken and the mortality rate was approximately 66%. In addition, the results of bioluminescent imaging showed that the fluorescence in the lungs was strongest at 5 days post-infection (DPI). Finally, we discovered the mApple positive expression in chicken lung immune cells (CD45+ cells), especially some T cells (CD4 and CD8 T cells) also carrying mApple, which indicates that the H5N8 AIV showed a tropism for immune cells including chicken T cells causing potentially aggressive against cellular immunity. We have provided a simple visualization for further exploration of H5N8 AIV infected chicken immune cells, which contributes to further understanding pathogenic mechanism of H5N8 AIV infection in chicken.
Collapse
Affiliation(s)
- Wei Song
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; UK-China Centre of Exellence for Research on Avain Diseases, Guangzhou 510642, China
| | - Li Zhao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; UK-China Centre of Exellence for Research on Avain Diseases, Guangzhou 510642, China
| | - Sairu Liu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; UK-China Centre of Exellence for Research on Avain Diseases, Guangzhou 510642, China
| | - Yusheng Jia
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; UK-China Centre of Exellence for Research on Avain Diseases, Guangzhou 510642, China
| | - Lulu Ma
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; UK-China Centre of Exellence for Research on Avain Diseases, Guangzhou 510642, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; UK-China Centre of Exellence for Research on Avain Diseases, Guangzhou 510642, China.
| | - Manman Dai
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; UK-China Centre of Exellence for Research on Avain Diseases, Guangzhou 510642, China.
| |
Collapse
|
4
|
Hamele CE, Spurrier MA, Leonard RA, Heaton NS. Segmented, Negative-Sense RNA Viruses of Humans: Genetic Systems and Experimental Uses of Reporter Strains. Annu Rev Virol 2023; 10:261-282. [PMID: 37774125 PMCID: PMC10795101 DOI: 10.1146/annurev-virology-111821-120445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Negative-stranded RNA viruses are a large group of viruses that encode their genomes in RNA across multiple segments in an orientation antisense to messenger RNA. Their members infect broad ranges of hosts, and there are a number of notable human pathogens. Here, we examine the development of reverse genetic systems as applied to these virus families, emphasizing conserved approaches illustrated by some of the prominent members that cause significant human disease. We also describe the utility of their genetic systems in the development of reporter strains of the viruses and some biological insights made possible by their use. To conclude the review, we highlight some possible future uses of reporter viruses that not only will increase our basic understanding of how these viruses replicate and cause disease but also could inform the development of new approaches to therapeutically intervene.
Collapse
Affiliation(s)
- Cait E Hamele
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - M Ariel Spurrier
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Rebecca A Leonard
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Nicholas S Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA;
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
5
|
Adaptation of Two Wild Bird-Origin H3N8 Avian Influenza Viruses to Mammalian Hosts. Viruses 2022; 14:v14051097. [PMID: 35632838 PMCID: PMC9147613 DOI: 10.3390/v14051097] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Wild birds play an important role in the emergence, evolution, and spread of zoonotic avian influenza viruses (AIVs). However, there are few studies on the cross-species transmission of the H3N8 AIV originating from wild birds. In this study, we investigated the transmissibility and pathogenicity of two H3N8 low pathogenic avian influenza viruses (LPAIVs) isolated from wild birds, GZA1 and XJ47, to mammals. The HA genes of both strains belonged to Eurasian isolates, while the other genes were derived from a variety of other subtypes of AIVs. Both strains can infect specific-pathogen-free (SPF) chickens, BALB/c mice, and guinea pigs. The XJ47 strain spread horizontally in SPF chickens and guinea pigs. The GZA1 strain did not spread horizontally but caused higher weight loss and mild lung inflammation in mice. P12-GZA1- and P12-XJ47-adapted strains obtained after 12 passages in the lung of mice showed enhanced pathogenicity in mice, which led to obvious clinical symptoms, lung inflammation, and 100% death. Both adapted strains have the reported mutation T97I in the PA, and the reported mutation D701N in PB2 has been found in the P12-GZA1-adapted strain. This study provides an important scientific basis for the continuous monitoring of wild AIVs and the mechanism underlying AIV cross-species transmission.
Collapse
|