1
|
Mukanova L, Kırıkçı K, Sadykulov T, Baimazhi Y, Zhumagaliyeva G, Adylkanova S. Effect of DGAT1 gene polymorphisms in coarse-haired fat-tailed lambs of different genotypes. BRAZ J BIOL 2024; 84:e285041. [PMID: 39109730 DOI: 10.1590/1519-6984.285041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/31/2024] [Indexed: 08/10/2024] Open
Abstract
The aim of this study was to investigate the DGAT1 gene polymorphism and its effects on lamb weight in kazakh and tajik sheep breeds. A total of 97 blood samples were collected from purebred (еdilbay х еdilbay) and crossbred lambs (еdilbay x gissar) breеd by the Baiserke Agro Scientific and Production Center in the Talgar District of the Almaty Region of Kazakhstan. Animals were genotyped for DGAT1-AluI polymorphism using the polymerase chain reaction-restriction length polymorphism (PCR-RFLP) method. The result of PCR-RFLP showed that purebred (еdilbay х еdilbay) sheep had three genotypes (CC, CT and TT) and crossbred sheep had two genotypes (CC and CT). The predominant genotype was CC with a frequency of 0.70 and 0.58 in purebred sheep and crossbred sheep breeds, respectively. The DGAT1 gene showed no significant association with live weight of lambs at different times in both breeds studied. However, the study showed that the CC genotype produced higher live weight at day 60 in purebred sheep (CC: 33,668 kg and CT: 32,444) and at day 120 (CC: 41,487 and CT: 40,929) in crossbred lambs. The present study was the first to investigate the polymorphism and relationships between genotypes and lamb live weights for DGAT1 gene in sheep breeds, purebred and crossbred. We conclude that further comprehensive investigations should be done for the exact evidence of the effects of DGAT1/Aluı polymorphism on lamb live weights.
Collapse
Affiliation(s)
- L Mukanova
- Kazakh National Agrarian Research University, Almaty, Kazakhstan
| | - K Kırıkçı
- Ahi Evran University, Kırşehir, Türkiye
| | - T Sadykulov
- Kazakh National Agrarian Research University, Almaty, Kazakhstan
| | - Y Baimazhi
- Kazakh National Agrarian Research University, Almaty, Kazakhstan
| | - G Zhumagaliyeva
- Kazakh National Agrarian Research University, Almaty, Kazakhstan
| | - Sh Adylkanova
- Kazakh National Agrarian Research University, Almaty, Kazakhstan
| |
Collapse
|
2
|
Prihandini PW, Hasinah H, Sari APZNL, Tribudi YA, Praharani L, Asmarasari SA, Handiwirawan E, Tiesnamurti B, Robba DK, Romjali E, Ibrahim A. Sumbawa cattle: a study of growth hormone (GH) gene variants and their association with biometric traits. BRAZ J BIOL 2024; 84:e282823. [PMID: 38922197 DOI: 10.1590/1519-6984.282823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/10/2024] [Indexed: 06/27/2024] Open
Abstract
The growth hormone (GH) gene plays a vital role in regulating animal metabolism and body size, making it a potential candidate for influencing livestock performance. This study aimed to investigate the polymorphisms within the GH gene and their associations with 10 biometric traits in the Sumbawa cattle population of Indonesia. Biometric trait data and blood samples were collected from 112 Sumbawa cattle individuals, and their GH gene sequences were analyzed using two sets of primers for amplification. Seven single nucleotide polymorphisms (SNPs) were identified in the GH gene: g.442C>T, g.446G>C, g.558C>T, g.649C>A, g.1492C>A, g.1510C>A, and g.1578G>A. All SNPs were located in the intronic region except for SNP g.558C>T, which was found in the coding sequence (CDS) region. The SNP g.558C>T is classified as a synonymous variant. Haplotype analysis revealed a strong linkage disequilibrium between SNPs g.558C>T and g.649C>A. Distributions of genotypes and alleles of all SNPs were in agreement with the Hardy-Weinberg equilibrium (p > 0.05, χ2 < 15.56), except for SNPs g.446G>C and g.1492C>A. The association study showed that the SNP g.442C>T significantly (p < 0.05) affected HL, BL, SH, and PH traits in Sumbawa cattle. Additionally, the g.446G>C and g.558C>T were also found to be associated with PH and CC traits, respectively. The polymorphisms detected in the GH gene could have implications for selection programs to enhance desired biometric traits in Sumbawa cattle. Improving livestock productivity can be done by understanding genetic diversity and its relationship with phenotypic characteristics.
Collapse
Affiliation(s)
- P W Prihandini
- National Research and Innovation Agency - BRIN, Research Center for Animal Husbandry, Bogor, Indonesia
| | - H Hasinah
- Center for Standardization of Animal Husbandry and Animal Health Instruments, Bogor, Indonesia
| | - A P Z N L Sari
- Universitas Padjadjaran, Faculty of Animal Husbandry, Sumedang, Indonesia
| | - Y A Tribudi
- Universitas Tanjungpura, Faculty of Agriculture, Pontianak, Indonesia
| | - L Praharani
- National Research and Innovation Agency - BRIN, Research Center for Animal Husbandry, Bogor, Indonesia
| | - S A Asmarasari
- National Research and Innovation Agency - BRIN, Research Center for Animal Husbandry, Bogor, Indonesia
| | - E Handiwirawan
- National Research and Innovation Agency - BRIN, Research Center for Animal Husbandry, Bogor, Indonesia
| | - B Tiesnamurti
- National Research and Innovation Agency - BRIN, Research Center for Animal Husbandry, Bogor, Indonesia
| | - D K Robba
- National Research and Innovation Agency - BRIN, Research Center for Animal Husbandry, Bogor, Indonesia
| | - E Romjali
- National Research and Innovation Agency - BRIN, Research Center for Animal Husbandry, Bogor, Indonesia
| | - A Ibrahim
- National Research and Innovation Agency - BRIN, Research Center for Animal Husbandry, Bogor, Indonesia
| |
Collapse
|
3
|
He HY, Liu LL, Chen B, Xiao HX, Liu WJ. Study on lactation performance and development of KASP marker for milk traits in Xinjiang donkey ( Equus asinus). Anim Biotechnol 2023; 34:2724-2735. [PMID: 36007548 DOI: 10.1080/10495398.2022.2114002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Donkey milk has high nutritional and medicinal value, but there are few researches in donkey milk traits, especially on genome. The whole lactation of 89 donkeys was recorded and it was found that Xinjiang donkey had good lactation performance while great differences among individuals. In our previous study, four genes including LGALS2, NUMB, ADCY8 and CA8 were identified as milk-associated with Chinese Kazakh house, based on Equine 670k Chip genomic analysis. And then 15 SNPs of the four key genes were conducted for genotyping in Xinjiang donkey in this study, one of Chinese indigenous breed, 14 SNPs were successful classified. And those SNPs were correlation analysis with milk yield of Xinjiang donkeys. The results showed that NUMB g.46709914T > G was significantly correlated with daily milk yield of Xinjiang donkey in the early, middle, and late periods, while ADCY8 g.48366302T > C, CA8 g.89567442T > G and CA8 g.89598328T > A were significantly correlated with lactation in the late periods. These results indicate that NUMB g.46709914T > G can be as markers of candidate genes for lactating traits in donkeys, SNPs of ADCY8 and CA8 as potential. Our findings will not only help confirm key genes for donkey milk traits, but also provide future for genomic selection in donkeys.
Collapse
Affiliation(s)
- Hai-Ying He
- Faculty of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Ling-Ling Liu
- Faculty of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Bin Chen
- Faculty of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Hai-Xia Xiao
- Institute of Animal Husbandry, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| | - Wu-Jun Liu
- Faculty of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|
4
|
Krivoruchko A, Likhovid A, Kanibolotskaya A, Saprikina T, Safaryan E, Yatsyk O. Genome-Wide Search for Associations with Meat Production Parameters in Karachaevsky Sheep Breed Using the Illumina BeadChip 600 K. Genes (Basel) 2023; 14:1288. [PMID: 37372468 DOI: 10.3390/genes14061288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
In a group of Karachaevsky rams, a genome-wide associations analysis of single nucleotide polymorphisms (SNPs) with live parameters of meat production was performed. We used for genotyping the Ovine Infinium HD BeadChip 600 K, which consists of points to detection of 606,000 polymorphisms. A total of 12 SNPs was found to be significantly associated with live meat quality parameters of the corpus and legs and ultrasonic traits. In this case, 11 candidate genes were described, the polymorphic variants of which can change in sheep body parameters. We found SNPs in the exons, introns, and other regions of some genes and transcripts: CLVS1, EVC2, KIF13B, ENSOART00000000511.1, KCNH5, NEDD4, LUZP2, MREG, KRT20, KRT23 and FZD6. The described genes involved in the metabolic pathways of cell differentiation, proliferation and apoptosis are connected with the regulation of the gastrointestinal, immune and nervous systems. In known productivity genes (MSTN, MEF2B, FABP4, etc.), loci were not found to be a significant presence of influence on the meat productivity of the Karachaevsky sheep phenotypes. Our study confirms the possible involvement of the identified candidate genes in the formation of the phenotypes of productivity traits in sheep and indicates the need for new research into candidate genes structure in point to detect their polymorphisms.
Collapse
Affiliation(s)
- Alexander Krivoruchko
- Federal Seфey Budgetary Scientific Institution, North Caucasian Federal Scientific Agrarian Centre, 356241 Mikhailovsk, Russia
- Department of Genetic and Selection, FSAEIHE, North-Caucasus Federal University, 355017 Stavropol, Russia
| | - Andrey Likhovid
- Department of Genetic and Selection, FSAEIHE, North-Caucasus Federal University, 355017 Stavropol, Russia
| | - Anastasiya Kanibolotskaya
- Federal Seфey Budgetary Scientific Institution, North Caucasian Federal Scientific Agrarian Centre, 356241 Mikhailovsk, Russia
| | - Tatiana Saprikina
- Federal Seфey Budgetary Scientific Institution, North Caucasian Federal Scientific Agrarian Centre, 356241 Mikhailovsk, Russia
| | - Elena Safaryan
- Federal Seфey Budgetary Scientific Institution, North Caucasian Federal Scientific Agrarian Centre, 356241 Mikhailovsk, Russia
| | - Olesya Yatsyk
- Federal Seфey Budgetary Scientific Institution, North Caucasian Federal Scientific Agrarian Centre, 356241 Mikhailovsk, Russia
| |
Collapse
|
5
|
Mansour MM, Zeitoun MM. Influence of spirulina supplementation on growth performance, puberty traits, blood metabolites, testosterone concentrations, and semen quality in Barki male lambs. Open Vet J 2023; 13:772-781. [PMID: 37545698 PMCID: PMC10399660 DOI: 10.5455/ovj.2023.v13.i6.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/28/2023] [Indexed: 08/08/2023] Open
Abstract
Background The fertility and genetic value of the flock can be enhanced by selecting lambs with highly developed early puberty characteristics. Spirulina (SP) has been evaluated as a natural product supplement to boost lamb growth, immunity, and productivity. Aim Study growth performance, blood metabolites, puberty development traits, semen quality, and seminal plasma biochemical concentrations of growing Barki lambs when supplemented with SP at different levels. Methods in a 24 weeks study, 30 Barki male lambs weighing an average of 21.78 ± 2.56 kg, with a body condition score of 3.20 ± 0.55 and an age of about 16 ± 0.24 weeks were used. The lambs were randomly assigned to three groups (10 lambs each) of daily SP supplementation levels per lamb of 0 ml (control), 50 ml (SP1), and 100 ml (SP2). The SP powder was made into a water suspension using SP to water ratio of 1 g:10 ml. The growth characteristics, as well as the development of puberty, blood metabolites, and semen quality analysis of every lamb, were measured. Results The growth performance was greater (p < 0.05) in SP2 lambs compared with other lambs. While daily dry matter intake was not affected by SP treatment, feed efficiency had significantly improved in SP2 groups. Furthermore, the SP2 lambs have attained puberty at early ages than the control lambs. The testes volume of SP2 lambs was bigger (p < 0.05) than other groups throughout the pre-pubertal up to the puberty stage. The addition of SP had no effects on the total protein, glucose, and triglycerides concentrations. Meanwhile, the cholesterol concentration was lowest (p < 0.05) in the SP2 lambs. The blood and seminal plasma levels of alanine aminotransferase and aspartate aminotransferase decreased (p < 0.05) in the SP lambs more than their control counterparts. The levels of superoxide dismutase reduced glutathione, and total antioxidants had increased (p < 0.05) in the treated lambs compared with the control group. Further, the malondialdehyde levels decreased (p < 0.05) in the SP-treated lambs. Additionally, the SP2 lambs produced better semen quality than the control lambs. Conclusion SP supplementation (100 ml/head/day) enhanced growth performance, feed efficiency, and antioxidative status, exerting a positive influence on the physiological parameters and sexual behavioral patterns at puberty in Barki lambs.
Collapse
Affiliation(s)
- Mohamed M. Mansour
- Department of Biology, College of Sciences and Arts in Unayzah, Qassim University, Buraydah, Kingdom of Saudi Arabia
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhur, Egypt
| | - Moustafa M. Zeitoun
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Kader Esen V, Esen S. Association of the IGF1 5′UTR Polymorphism in Meat-Type Sheep Breeds Considering Growth, Body Size, Slaughter, and Meat Quality Traits in Turkey. Vet Sci 2023; 10:vetsci10040270. [PMID: 37104425 PMCID: PMC10146731 DOI: 10.3390/vetsci10040270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
This investigation was conducted to determine how the growth and carcass traits of meat-type sheep breeds raised in Turkey are associated with IGF1 5′UTR polymorphisms. Overall, 202 lambs from five breeds were evaluated. We identified eight nucleotide changes (seven substitutions and one deletion) in three variants of IGF1 5′UTR by SSCP analysis and nucleotide sequencing. It was found that the P1 variants had a unique deletion (g.171328230 delT), while the P2 variants were identified by SNPs rs401028781, rs422604851, and g.171328404C > Y. The P3 variants possessed one heterozygous substitution (g.171328260G > R) and three homozygous substitutions (g.171328246T > A, g.171328257T > G, g.171328265T > C) not observed in P1 or P2. Based on the growth and production traits, a statistically significant difference was found only in chest width at weaning (p < 0.01) and leg circumferences at yearling (p < 0.05). The P1 variants showed a leaner profile with a higher Musculus longissimus dorsi, but the differences were not significant (p > 0.05). The P2 variants had a higher percentage of rack (p < 0.01) and loin (p > 0.05). Moreover, there was no discernible difference between variants, even though the P3 variants had a higher percentage of neck and leg and the P1 variants had a higher percentage of the shoulder. It is concluded that nucleotide changes in IGF1 5′UTR could be exploited utilizing a marker-assisted selection technique to increase growth and production attributes, as well as carcass quality traits.
Collapse
Affiliation(s)
- Vasfiye Kader Esen
- Department of Breeding and Genetics, Sheep Breeding Research Institute, Balıkesir 10200, Turkey
| | - Selim Esen
- Balikesir Directorate of Provincial Agriculture and Forestry, Republic of Turkey Ministry of Agriculture and Forestry, Balikesir 10470, Turkey
| |
Collapse
|
7
|
Fereig RM, Ibrahim RM, Khalil AM, Frey CF, Khalifa FA. Evaluation of Clinical and Biochemical Traits in Egyptian Barki Sheep with Different Growth Performances. Animals (Basel) 2023; 13:ani13060962. [PMID: 36978504 PMCID: PMC10044517 DOI: 10.3390/ani13060962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
The Barki sheep industry is becoming increasingly important in Egypt because of the high quality of their meat and wool. This sheep breed is also commonly known for its resistance to arid and harsh environmental conditions. Such characteristics can be exploited in solving the problematic situation of inadequate animal protein for human consumption, particularly under climatic changes. However, very few studies have investigated aspects of breeding, nutrition, and susceptibility to infectious or non-infectious diseases in Barki sheep. Herein, we propose to unravel the differences in the clinical and biochemical profiles among Barki sheep of different growth rates. We measured clinical and biochemical parameters in stunted (n = 10; test group) and in good body condition (n = 9; control group) Barki sheep. Animals subjected to this experiment were of the same sex (female), age (12 months old), and housed in the same farm with similar conditions of feeding, management practice, and vaccination and deworming regimens. Regarding clinical examination, stunted/tested sheep showed a significantly higher pulse and respiratory rate compared to sheep with a good body condition/control group. The appetite, body temperature, and digestion processes were the same in both groups. In biochemical investigations, nutritional biomarkers were reduced markedly in stunted sheep compared with the control sheep, including total protein (p = 0.0445), albumin (p = 0.0087), cholesterol (p = 0.0007), and triglycerides (p = 0.0059). In addition, the Barki sheep test group suffered from higher levels of urea and blood urea nitrogen than the control group. Consistently, growth and thyroid hormone levels were lower in stunted sheep than the control sheep, although the differences were not statistically significant (p > 0.05). No significant differences were detected in both groups for serum levels of calcium, phosphorus, magnesium, iron, and zinc (p > 0.05). To detect the reasons for emaciation, certain debilitating infections were tested. All tested sheep showed negative coprological tests for gastrointestinal parasites, and had no obvious seropositivity to brucellosis, toxoplasmosis, neosporosis, or Q fever. This study demonstrates the useful biochemical markers for monitoring growth performance in Egyptian Barki sheep and unravels the usefulness of this breed in nationwide breeding and farming.
Collapse
Affiliation(s)
- Ragab M. Fereig
- Division of Internal Medicine, Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
- Correspondence:
| | - Rawia M. Ibrahim
- Division of Clinical and Laboratory Diagnosis, Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Atef M. Khalil
- Division of Clinical Pathology, Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Caroline F. Frey
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse-Faculty, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland
| | - Fatma A. Khalifa
- Division of Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| |
Collapse
|
8
|
Ibrahim S, Al-Sharif M, Younis F, Ateya A, Abdo M, Fericean L. Analysis of Potential Genes and Economic Parameters Associated with Growth and Heat Tolerance in Sheep ( Ovis aries). Animals (Basel) 2023; 13:ani13030353. [PMID: 36766241 PMCID: PMC9913162 DOI: 10.3390/ani13030353] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
This study explored the potential genes and economic factors that might be associated with growth and heat tolerance in two sheep breeds. Data on growth performance from the third month to six months of age were obtained based on records. In comparison to Aboudeleik lambs, Barki lambs developed considerably greater starting body weight, final body weight, final body weight gain, daily weight gain, and percentage increase in BW/month. Single nucleotide polymorphisms (SNPs) were found between lambs of the two breeds using PCR-DNA sequencing of CAST, LEP, MYLK4, MEF2B, STAT5A, TRPV1, HSP90AB1, HSPB6, HSF1, ST1P1, and ATP1A1 genes. Lambs from each breed were divided into groups based on detected SNPs in genes related to growth. The least squares means of the differentiated groups revealed a significant correlation of detected SNPs with growth and heat tolerance attributes (p ≤ 0.05). Barki lambs elicited greater total variable costs, total costs, total return, and net return values. The Barki sheep provided the best economic efficiency value when comparing the percentage difference between net profit and economic efficiency. Together with economic considerations, SNPs found may be used as proxies for marker-assisted selection of the best breed of sheep for traits related to growth and heat tolerance.
Collapse
Affiliation(s)
- Samer Ibrahim
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mona Al-Sharif
- Department of Biology, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Fawzy Younis
- Animal and Poultry Physiology Department, Animal and Poultry Division, Desert Research Center, Cairo 11753, Egypt
| | - Ahmed Ateya
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence: ; Tel.: +2-01003-541921; Fax: +2-050-2372592
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat, Sadat City 32897, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania
| |
Collapse
|
9
|
Yao D, Guo D, Zhang Y, Chen Z, Gao X, Xing G, Yang X, Wang X, Di S, Cai J, Niu B. Identification of mutations in porcine STAT5A that contributes to the transcription of CISH. Front Vet Sci 2023; 9:1090833. [PMID: 36733428 PMCID: PMC9887310 DOI: 10.3389/fvets.2022.1090833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Identification of causative genes or genetic variants associated with phenotype traits benefits the genetic improvement of animals. CISH plays a role in immunity and growth, however, the upstream transcriptional factors of porcine CISH and the genetic variations in these factors remain unclear. In this study, we firstly identified the minimal core promoter of porcine CISH and confirmed the existence of STATx binding sites. Overexpression and RT-qPCR demonstrated STAT5A increased CISH transcriptional activity (P < 0.01) and mRNA expression (P < 0.01), while GATA1 inhibited CISH transcriptional activity (P < 0.01) and the following mRNA expression (P < 0.05 or P < 0.01). Then, the putative functional genetic variations of porcine STAT5A were screened and a PCR-SSCP was established for genotype g.508A>C and g.566C>T. Population genetic analysis showed the A allele frequency of g.508A>C and C allele frequency of g.566C>T was 0.61 and 0.94 in Min pigs, respectively, while these two alleles were fixed in the Landrace population. Statistical analysis showed that Min piglets with CC genotype at g.566C>T or Hap1: AC had higher 28-day body weight, 35-day body weight, and ADG than TC or Hap3: CT animals (P < 0.05, P < 0.05). Further luciferase activity assay demonstrated that the activity of g.508A>C in the C allele was lower than the A allele (P < 0.05). Collectively, the present study demonstrated that STAT5A positively regulated porcine CISH transcription, and SNP g.566C>T in the STAT5A was associated with the Min piglet growth trait.
Collapse
Affiliation(s)
- Diwen Yao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Dongchun Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Yingkun Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhihua Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiaowen Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Guiling Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xibiao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Shengwei Di
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | | | - Buyue Niu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China,*Correspondence: Buyue Niu ✉
| |
Collapse
|
10
|
Impact of protein supply on the productive performance of growing lambs drinking natural saline water and fed low-quality forage under semi-arid conditions. Trop Anim Health Prod 2023; 55:59. [PMID: 36723688 PMCID: PMC9892080 DOI: 10.1007/s11250-023-03462-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/17/2023] [Indexed: 02/02/2023]
Abstract
Consuming saline water causes animals salinity stress, which leads to many adapting metabolic changes that could negatively affect its performance and the quality of the derived products. Therefore, this study aimed to evaluate the impact of increasing diet protein level on the productive performance of growing lambs drinking natural saline water in Egyptian semi-arid region. Twenty-four growing Barki lambs (4-5 months old) with an initial body weight of 20.7 ± 0.25 kg were randomly distributed into four similar groups for 150 days. Two diets were formulated: low protein and high protein levels (concentrate feed mixture containing 14% and 20% crude protein (CP) on dry matter basis, respectively). Within each level of CP, natural saline water was represented by low saline (LS) and high saline (HS) water, containing 658 and 2100 mg/L of total dissolved solids, respectively. Results showed that the HS water increased (p = 0.02) water intake by about 18% and had adverse effect (p < 0.001) on dry matter intake, nutrient digestibility, and growth performance. The ruminal pH values, total volatile fatty acids, and ammonia-N concentrations were not affected by drinking the HS water. However, the protein supplementation enhanced the HS lambs' nutrients digestion and showed greater growth performance. The HS water decreased (p < 0.001) the serum concentrations of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and increased (p = 0.03) the urea-N by about 9%. The protein supplementation amended the serum ALT and AST concentrations of HS lambs. It is concluded that the dietary protein supply was affective sustainable management strategy against the deleterious effect of drinking high saline water on growing lambs.
Collapse
|
11
|
MicroRNA-200c Affects Milk Fat Synthesis by Targeting PANK3 in Ovine Mammary Epithelial Cells. Int J Mol Sci 2022; 23:ijms232415601. [PMID: 36555241 PMCID: PMC9779841 DOI: 10.3390/ijms232415601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/19/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Milk fat is the foremost nutrient of milk and a vital indicator in evaluating milk quality. Accumulating evidence suggests that microRNAs (miRNAs) are involved in the synthesis of milk fat. The miR-200c is closely related to lipid metabolism, but little is known about its effect on the synthesis of milk fat in MECs of ewes. Herein, the effect of miR-200c on the proliferation of ovine mammary epithelial cells (MECs) and its target relationship with a predicted target gene were investigated. The regulatory effects of miR-200c on the expression of the target genes and the content of triglycerides in ovine MECs were further analyzed. The results revealed that the expression level of miR-200c was differentially expressed in both eight tissues selected during lactation and in mammary gland tissues at different physiological periods. Overexpression of miR-200c inhibited the viability and proliferation of ovine MECs, while inhibition of miR-200c increased cell viability and promoted the proliferation of ovine MECs. Target gene prediction results indicated that miR-200c would bind the 3'UTR region of pantothenate kinase 3 (PANK3). Overexpression of miR-200c reduced the luciferase activity of PANK3, while inhibition of miR-200c increased its luciferase activity. These findings illustrated that miR-200c could directly interact with the target site of the PANK3. It was further found that overexpression of miR-200c reduced the expression levels of PANK3 and, thus, accelerated the synthesis of triglycerides. In contrary, the inhibitor of miR-200c promoted the expression of PANK3 that, thus, inhibited the synthesis of triglycerides in ovine MECs. Together, these findings revealed that miR-200c promotes the triglycerides synthesis in ovine MECs via increasing the lipid synthesis related genes expression by targeting PANK3.
Collapse
|
12
|
Rawash RAA, Sharaby MA, Hassan GEDA, Elkomy AE, Hafez EE, Hafsa SHA, Salem MMI. Expression profiling of HSP 70 and interleukins 2, 6 and 12 genes of Barki sheep during summer and winter seasons in two different locations. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:2047-2053. [PMID: 35882644 PMCID: PMC9534818 DOI: 10.1007/s00484-022-02339-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The objectives of this research were to contrast the expression values of heat shock protein (HSP70) and interleukins 2, 6 and 12 (IL 2, IL 6 and IL 12) genes in summer and winter in two different locations in Egypt (Alexandria zone and Matrouh zone) to deduce changes in thermo-physiological traits and biochemical blood metabolites of Barki sheep. A total of 50 ewes (20 in Alexandria and 30 in Matrouh) were individually blood sampled to determine plasma total protein (TP), Albumin, Globulin and Glucose constituents and T3, T4 and cortisol hormones. The thermo-physiological parameters of rectal temperature (RT, °C), skin temperature (ST, °C), Wool temperature (WT, °C), respiration rate (RR, breaths/min) and pulse rate (PR, beats/min) were measured for each ewe. Expressions of IL 2, IL 6, IL 12 and HSP 70 in summer and winter were analyzed along with thermo-physiological parameters and blood biochemical metabolites. In both locations, THI had significant effects on ST, WT, PR and RR, but not significant on RT. However, it had no significant effects on blood plasma metabolites and hormonal concentrations in the two locations in summer and winter. In Alexandria location, THI had negative significant effect on the expressions of IL-2 and IL-6 but positively affected on HSP70 genes in winter, while the expression of IL-12 gene was not affected by seasons, whereas in Matrouh zone, the effects of THI on the expressions of all tolerance genes were not significant. The results of the current study suggest that IL-2, IL-6 and HSP70 genes could be used as molecular markers for heat/cold stress.
Collapse
Affiliation(s)
- Raed A Abu Rawash
- Department of Animal and Fish Production, Faculty of Agriculture, University of Alexandria, Alexandria, 21545, Egypt
- Department of Livestock Research, Arid Lands Cultivation Research Institute, City for Scientific Research and Technology Applications, New Borg El-Arab, Alexandria, 21934, Egypt
| | - Mahmoud A Sharaby
- Department of Animal and Fish Production, Faculty of Agriculture, University of Alexandria, Alexandria, 21545, Egypt
| | - Gamal El-Din A Hassan
- Department of Animal and Fish Production, Faculty of Agriculture, University of Alexandria, Alexandria, 21545, Egypt
| | - Alaa E Elkomy
- Department of Livestock Research, Arid Lands Cultivation Research Institute, City for Scientific Research and Technology Applications, New Borg El-Arab, Alexandria, 21934, Egypt
- Faculty of Desert and Environmental Agriculture, Matrouh University, Matrouh, Egypt
| | - Elsayed E Hafez
- Plant Protection and Biomolecular Diagnosis Department, City of Scientific Research and Technology Applications, Arid Lands Cultivation Research Institute, New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Salma H Abu Hafsa
- Department of Livestock Research, Arid Lands Cultivation Research Institute, City for Scientific Research and Technology Applications, New Borg El-Arab, Alexandria, 21934, Egypt
| | - Mohamed M I Salem
- Department of Animal and Fish Production, Faculty of Agriculture, University of Alexandria, Alexandria, 21545, Egypt.
| |
Collapse
|
13
|
El-Shorbagy HM, Abdel-Aal ES, Mohamed SA, El-Ghor AA. Association of PRLR, IGF1, and LEP genes polymorphism with milk production and litter size in Egyptian Zaraibi goat. Trop Anim Health Prod 2022; 54:321. [PMID: 36155857 PMCID: PMC9512711 DOI: 10.1007/s11250-022-03316-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022]
Abstract
Studying variation in genes responsible for physiological characters is important to enhance goat productive and reproductive efficiency. This study aimed to detect specific nucleotide polymorphisms in prolactin receptor (PRLR), insulin-like growth factor (IGF1), and leptin (LEP) genes and their correlation with milk production (MP) and litter size (LS) traits in Zaraibi goat. PCR-SSCP products of different patterns of each gene were sequenced and aligned to reveal two mutations (T > C) and (G > A) in 3′UTR of PRLR gene and registered on NCBI with accession numbers OM418863 for TT and OM418864 for CT, while (G > A) variation was registered as OM418861 for GG and OM418862 for AG in exon 10. TT, CT, AG, and GG genotypes were distributed in the studied animals with frequencies 0.43, 0.57, 0.65, and 0.35, respectively. While alleles C, T, A, and G frequencies were 0.28, 0.72, 0.32, and 0.68, respectively. CT and AG genotypes associated significantly (P < 0.05) with higher MP and LS, respectively. By studying the haplotypes of PRLR, C-A and T-A were associated with the highest and the lowest level of MP, respectively. For LS, T-A and C-G showed significant correlation with the highest and the lowest rate, respectively. Regarding IGF1 gene, two polymorphisms were detected; T74C at exon 4 which registered on NCBI as OM418860, and combined mutations as ins. G470, A531G, and T534C (PP genotype) at 5′ flanking region that registered as OM418859. For LEP, only one polymorphism was found in intron 2 (G281A) which submitted to NCBI as OM418855. All detected polymorphisms have shown to be involved in regulating the MP or LS as reproductive traits in goat.
Collapse
Affiliation(s)
- Haidan M El-Shorbagy
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
- Faculty of Biotechnology, October University for Modern Science and Arts, 6th October, Giza, Egypt
| | - Ehab S Abdel-Aal
- Sheep & Goat Research Department, Animal Production Research Institute, Agricultural Research Center (ARC), Giza, Egypt
| | - Shaimaa A Mohamed
- Sheep & Goat Research Department, Animal Production Research Institute, Agricultural Research Center (ARC), Giza, Egypt.
| | - Akmal A El-Ghor
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
14
|
Rabee AE, Younan BR, Kewan KZ, Sabra EA, Lamara M. Modulation of rumen bacterial community and feed utilization in camel and sheep using combined supplementation of live yeast and microalgae. Sci Rep 2022; 12:12990. [PMID: 35906456 PMCID: PMC9338284 DOI: 10.1038/s41598-022-16988-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
The combination of live yeast and microalgae as feed supplementation could improve rumen fermentation and animal productivity. This study aimed to investigate the impact of a mixture of (YA) yeast (Saccharomyces cerevisiae) and microalgae (Spirulina platensis and Chlorella vulgaris) as feed supplementation on feed intake, rumen disappearance of barley straw, bacteria, and fermentation, blood parameters of camels and sheep. Three fistulated camels and three fistulated rams were fed a concentrates mixture and ad libitum barley straw as a basal diet alone or supplemented with YA mixture. The dietary supplementation improved the feed intake, rumen disappearance of barley straw nutrients, and the blood immunity parameters. The YA supplementation affected rumen fermentation as well as the composition and diversity of rumen bacteria; however, the response to the supplementation varied according to animal species. Principle Coordinate Analysis (PCoA) separated bacterial communities based on animal species and feeding treatment. Phylum Bacteroidetes and Firmicutes dominated the bacterial community; and the dominant genera were Prevotella, RC9_gut_group, Butyrivibrio, Ruminococcus, Saccharofermentans, Christensenellaceae_R-7_group, and Succiniclasticum. Our results suggest positive impacts of YA supplementation in rumen fermentation and animal performance.
Collapse
Affiliation(s)
- Alaa Emara Rabee
- Animal and Poultry Nutrition Department, Desert Research Center, Cairo, Egypt.
| | - Boshra R Younan
- Animal and Poultry Nutrition Department, Desert Research Center, Cairo, Egypt
| | - Khalid Z Kewan
- Animal and Poultry Nutrition Department, Desert Research Center, Cairo, Egypt
| | - Ebrahim A Sabra
- Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Mebarek Lamara
- Forest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, Canada
| |
Collapse
|
15
|
Wu X, Zhen H, Liu Y, Li L, Luo Y, Liu X, Li S, Hao Z, Li M, Hu L, Qiao L, Wang J. Tissue-Specific Expression of Circ_015343 and Its Inhibitory Effect on Mammary Epithelial Cells in Sheep. Front Vet Sci 2022; 9:919162. [PMID: 35836501 PMCID: PMC9275140 DOI: 10.3389/fvets.2022.919162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) are a kind of non-coding RNA that have an important molecular function in mammary gland development and lactation of mammals. In our previous study, circ_015343 was found to be highly expressed in the ovine mammary gland tissue at the peak-lactation period by using RNA sequencing (RNA-seq). In the present study, the authenticity of circ_015343 was confirmed by using reverse transcriptase-polymerase chain reaction (RT-PCR) analysis and Sanger sequencing. The circ_015343 was derived from the complete 10 exons of aminoadipic semialdehyde synthase (AASS), ranging from exon 2 to exon 11 and mainly located in cytoplasm of ovine mammary epithelial cells. The circRNA was found to be expressed in eight ovine tissues, with the highest expression level in the mammary gland and the least expression in Longissimus dorsi muscle. The circ_015343 had a lower level of expression in a sheep breed with higher milk yield and milk fat content. The disturbed circ_015343 increased the viability and proliferation of the ovine mammary epithelial cells. The inhibition of circ_015343 also increased the expression levels of three milk fat synthesis marker genes: acetyl-coenzyme A carboxylase alpha (ACACA), fatty acid-binding protein 4 (FABP4), and sterol regulatory element-binding protein 1 (SREBP1), as well as three proliferation-related genes: cyclin dependent kinase 2 (CDK2), cyclin dependent kinase 4 (CDK4) and proliferating cell nuclear antigen (PCNA), but decreased the expression level of its parent gene AASS. A circRNA-miRNA-mRNA interaction network showed that circ_015343 would bind some microRNAs (miRNAs) to regulate the expression of functional genes related to the development of mammary gland and lactation. This study contributes to a better understanding of the roles of circ_015343 in the mammary gland of sheep.
Collapse
|
16
|
Mohammadi H, Farahani AHK, Moradi MH, Mastrangelo S, Di Gerlando R, Sardina MT, Scatassa ML, Portolano B, Tolone M. Weighted Single-Step Genome-Wide Association Study Uncovers Known and Novel Candidate Genomic Regions for Milk Production Traits and Somatic Cell Score in Valle del Belice Dairy Sheep. Animals (Basel) 2022; 12:ani12091155. [PMID: 35565582 PMCID: PMC9104502 DOI: 10.3390/ani12091155] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Milk production is the most economically crucial dairy sheep trait and constitutes the major genetic enhancement purpose via selective breeding. Also, mastitis is one of the most frequently encountered diseases, having a significant impact on animal welfare, milk yield, and quality. The aim of this study was to identify genomic region(s) associated with the milk production traits and somatic cell score (SCS) in Valle del Belice sheep using single-step genome-wide association (ssGWA) and genotyping data from medium density SNP panels. We identified several genomic regions (OAR1, OAR2, OAR3, OAR4, OAR6, OAR9, and OAR25) and candidate genes implicated in milk production traits and SCS. Our findings offer new insights into the genetic basis of milk production traits and SCS in dairy sheep. Abstract The objective of this study was to uncover genomic regions explaining a substantial proportion of the genetic variance in milk production traits and somatic cell score in a Valle del Belice dairy sheep. Weighted single-step genome-wide association studies (WssGWAS) were conducted for milk yield (MY), fat yield (FY), fat percentage (FAT%), protein yield (PY), protein percentage (PROT%), and somatic cell score (SCS). In addition, our aim was also to identify candidate genes within genomic regions that explained the highest proportions of genetic variance. Overall, the full pedigree consists of 5534 animals, of which 1813 ewes had milk data (15,008 records), and 481 ewes were genotyped with a 50 K single nucleotide polymorphism (SNP) array. The effects of markers and the genomic estimated breeding values (GEBV) of the animals were obtained by five iterations of WssGBLUP. We considered the top 10 genomic regions in terms of their explained genomic variants as candidate window regions for each trait. The results showed that top ranked genomic windows (1 Mb windows) explained 3.49, 4.04, 5.37, 4.09, 3.80, and 5.24% of the genetic variances for MY, FY, FAT%, PY, PROT%, and total SCS, respectively. Among the candidate genes found, some known associations were confirmed, while several novel candidate genes were also revealed, including PPARGC1A, LYPLA1, LEP, and MYH9 for MY; CACNA1C, PTPN1, ROBO2, CHRM3, and ERCC6 for FY and FAT%; PCSK5 and ANGPT1 for PY and PROT%; and IL26, IFNG, PEX26, NEGR1, LAP3, and MED28 for SCS. These findings increase our understanding of the genetic architecture of six examined traits and provide guidance for subsequent genetic improvement through genome selection.
Collapse
Affiliation(s)
- Hossein Mohammadi
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran; (A.H.K.F.); (M.H.M.)
- Correspondence: ; Tel.: +98-9127584572
| | - Amir Hossein Khaltabadi Farahani
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran; (A.H.K.F.); (M.H.M.)
| | - Mohammad Hossein Moradi
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran; (A.H.K.F.); (M.H.M.)
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy; (S.M.); (R.D.G.); (M.T.S.); (B.P.); (M.T.)
| | - Rosalia Di Gerlando
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy; (S.M.); (R.D.G.); (M.T.S.); (B.P.); (M.T.)
| | - Maria Teresa Sardina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy; (S.M.); (R.D.G.); (M.T.S.); (B.P.); (M.T.)
| | - Maria Luisa Scatassa
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy;
| | - Baldassare Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy; (S.M.); (R.D.G.); (M.T.S.); (B.P.); (M.T.)
| | - Marco Tolone
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy; (S.M.); (R.D.G.); (M.T.S.); (B.P.); (M.T.)
| |
Collapse
|
17
|
Genetic Polymorphisms of IGF1 and IGF1R Genes and Their Effects on Growth Traits in Hulun Buir Sheep. Genes (Basel) 2022; 13:genes13040666. [PMID: 35456472 PMCID: PMC9031115 DOI: 10.3390/genes13040666] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 01/08/2023] Open
Abstract
The identification of candidate genes and genetic variations associated with growth traits is important for sheep breeding. Insulin like growth factor 1 (IGF1) and insulin like growth factor 1 receptor (IGF1R) are well-accepted candidate genes that affect animal growth and development. The current study attempted to assess the association between IGF1 and IGF1R genetic polymorphisms and growth traits in Hulun Buir sheep. To achieve this goal, we first identified three and ten single nucleotide polymorphisms (SNPs) in exons of IGF1 and IGF1R in Hulun Buir sheep and then constructed six haplotypes of IGF1R based on linkage disequilibrium, respectively. Association studies were performed between SNPs and haplotypes of IGF1 and IGF1R with twelve growth traits in a population encompassing 229 Hulun Buir sheep using a general linear model. Our result indicated three SNPs in IGF1 were significantly associated with four growth traits (p < 0.05). In IGF1R, three SNPs and two haplotype blocks were significantly associated with twelve growth traits (p < 0.05). The combined haplotype H5H5 and H5H6 in IGF1R showed the strong association with 12 superior growth traits in Hulun Buir sheep (p < 0.05). In conclusion, we identified SNPs and haplotype combinations associated with the growth traits, which provided genetic resources for marker-assisted selection (MAS) in Hulun Buir sheep breeding.
Collapse
|
18
|
Al-Amareen AH, Jawasreh KI. Single and combined effects of CSN1S1 and CSN2-casein genes on Awassi sheep milk quantity and quality. Vet World 2022; 15:435-441. [PMID: 35400971 PMCID: PMC8980402 DOI: 10.14202/vetworld.2022.435-441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Milk produced from Awassi sheep is of high nutritive value; its production is relatively low in Awassi sheep, so the genetic improvement programs targeted milk production and its components are of high importance, especially when using genes that have an important signal to milk traits. This study was aimed at assessing the influence of alpha S1 (CSN1S1) and beta-casein (CSN2) genes genotypes interaction on Awassi ewes milk productivity.
Materials and Methods: A total number of 391 milk yield and its composition records (taken through five consecutive years, 2007-2011) of 167 ewes were utilized for this study. DNA samples were extracted from the ewe's blood samples, then the polymerase chain reaction products of alpha S1 (CSN1S1) and beta-casein (CSN2) genes were sequenced. The obtained sequences were analyzed; thereafter, the detected variants were tested for their possible association with milk traits.
Results: The CSN1S1 and CSN2 variants allelic frequencies were 0.85 and 0.15, and 0.95 and 0.05, respectively. Lactose and solid not fat (SNF) % were associated with TC CSN1S1 genotypes. No association was found among CSN1S1 polymorphic genotypes with milk production, lactose, and SNF % were associated with TC CSN1S1 genotypes. Ewes of CSN2 AC genotype showed higher milk production traits, while no association was found between milk composition traits and CNS2 genotypes. Nevertheless, CSN1S1∗CSN2 interaction showed the highest SNF, fat percentages, and milk production.
Conclusion: The substantial interaction effects between CSN1S1×CSN2 genes were significantly affected the amount of milk, fat, and SNF% produced. The detected variants should be included in the breeding programs of Awassi sheep that are designed for improving their milk quantity and quality.
Collapse
Affiliation(s)
- Ahmad H. Al-Amareen
- Livestock Directorate, National Agriculture Research Center, Albaqa'a 19381, Jordan
| | - Khaleel I. Jawasreh
- Department of Animal Production, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
19
|
Valencia CPL, Franco LÁÁ, Herrera DH. Association of single nucleotide polymorphisms in the CAPN, CAST, LEP, GH, and IGF-1 genes with growth parameters and ultrasound characteristics of the Longissimus dorsi muscle in Colombian hair sheep. Trop Anim Health Prod 2022; 54:82. [PMID: 35088174 DOI: 10.1007/s11250-022-03086-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
Abstract
Recognition of the genes that influence livestock production characteristics has allowed researchers to identify single nucleotide polymorphisms (SNPs) associated with phenotypic traits that contribute to higher productivity. The objective of this research was to associate SNPs in the genes calpain (CAPN), calpastatin (CAST), leptin (LEP), growth hormone (GH), and insulin-like growth factor 1 (IGF-1) with the growth characteristics birth weight (BW), weaning weight adjusted at 120 days (WW), daily pre-weaning gain (PRADG), adjusted weight at 210 days (AW210), and daily post-weaning gain (POADG), and the measures of the Longissimus dorsi muscle based on ultrasound, namely loin eye area (LEA), loin depth (LD), and back fat thickness (BFT), in Colombian hair sheep (OPC). The association between phenotypic and genotypic characteristics was made using the PLINK v.1.9 program using linear regression analysis. There was a statistically significant association (p < 0.05) between the CAST polymorphism (M/N) and BW, a tendency (p = 0.07) for an association between the T → C SNP of the CAPN gene and AW210, and a trend (p = 0.07) for an association between the A → G SNP of the IGF-1 locus and POADG. The LEA and BFT characteristics were not associated with a SNP, while PL was significantly affected by SNPs in the GH and IGF-1 genes. In conclusion, all the genes evaluated were polymorphic, the CAST gene significantly influenced BW, and the GH and IGF-1 genes were associated with LD characteristics. These results could be used to identify individuals with favorable genotypes to implement a marker-assisted selection method.
Collapse
|
20
|
Rabee AE, Sayed Alahl AA, Lamara M, Ishaq SL. Fibrolytic rumen bacteria of camel and sheep and their applications in the bioconversion of barley straw to soluble sugars for biofuel production. PLoS One 2022; 17:e0262304. [PMID: 34995335 PMCID: PMC8740978 DOI: 10.1371/journal.pone.0262304] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/21/2021] [Indexed: 01/04/2023] Open
Abstract
Lignocellulosic biomass such as barley straw is a renewable and sustainable alternative to traditional feeds and could be used as bioenergy sources; however, low hydrolysis rate reduces the fermentation efficiency. Understanding the degradation and colonization of barley straw by rumen bacteria is the key step to improve the utilization of barley straw in animal feeding or biofuel production. This study evaluated the hydrolysis of barley straw as a result of the inoculation by rumen fluid of camel and sheep. Ground barley straw was incubated anaerobically with rumen inocula from three fistulated camels (FC) and three fistulated sheep (FR) for a period of 72 h. The source of rumen inoculum did not affect the disappearance of dry matter (DMD), neutral detergent fiber (NDFD). Group FR showed higher production of glucose, xylose, and gas; while higher ethanol production was associated with cellulosic hydrolysates obtained from FC group. The diversity and structure of bacterial communities attached to barley straw was investigated by Illumina Mi-Seq sequencing of V4-V5 region of 16S rRNA genes. The bacterial community was dominated by phylum Firmicutes and Bacteroidetes. The dominant genera were RC9_gut_group, Ruminococcus, Saccharofermentans, Butyrivibrio, Succiniclasticum, Selenomonas, and Streptococcus, indicating the important role of these genera in lignocellulose fermentation in the rumen. Group FR showed higher RC9_gut_group and group FC revealed higher Ruminococcus, Saccharofermentans, and Butyrivibrio. Higher enzymes activities (cellulase and xylanase) were associated with group FC. Thus, bacterial communities in camel and sheep have a great potential to improve the utilization lignocellulosic material in animal feeding and the production of biofuel and enzymes.
Collapse
Affiliation(s)
- Alaa Emara Rabee
- Animal and Poultry Nutrition Department, Desert Research Center, Cairo, Egypt
| | | | - Mebarek Lamara
- Forest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, Canada
| | - Suzanne L. Ishaq
- School of Food and Agriculture, University of Maine, Orono, Maine, United States of America
| |
Collapse
|
21
|
Luna-Nevárez G, Pendleton AL, Luna-Ramirez RI, Limesand SW, Reyna-Granados JR, Luna-Nevárez P. Genome-wide association study of a thermo-tolerance indicator in pregnant ewes exposed to an artificial heat-stressed environment. J Therm Biol 2021; 101:103095. [PMID: 34879913 DOI: 10.1016/j.jtherbio.2021.103095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022]
Abstract
Environmental heat stress negatively influences sheep production in warm semi-arid regions. An animal's ability to tolerate warm weather is difficult to measure naturally due to environmental variability and genetic variation between animals. In this study we developed a thermo-tolerance indicator (TTI) to define heat stress tolerance in pregnant sheep in a controlled environment. Next, we performed a genome-wide association study (GWAS) to identify genomic regions and target genes associated with thermo-tolerance in sheep. Pregnant Columbia-Rambouillet crossbred ewes (n = 127) were heat-stressed inside a climate-controlled chamber for 57 days by increasing the temperature-humidity index to ≥30. Rectal temperature (RT) and feed intake (FI) data were collected daily and used for the predictive TTI analysis. After the tenth day of heat stress, the regression analyses revealed that FI was stable; however, when the ewe's RT exceeded 39.8 °C their FI was less than thermo-tolerant ewes. This average predicted temperature was used to classify each ewe as heat stress tolerant (≤39.8 °C) and non-heat stress tolerant (>39.8 °C). A GWAS analysis was performed and genomic regions were compared between heat stress tolerant and non-tolerant ewes. The single-marker genomic analysis detected 16 single nucleotide polymorphisms (SNP) associated with heat stress tolerance (P < 0.0001), whereas the multi-marker Bayesian analysis identified 8 overlapped 1-Mb chromosomal regions accounting for 11.39% of the genetic variation associated with tolerance to heat stress. Four intragenic SNP showed a remarkable contribution to thermo-tolerance, and these markers were within the genes FBXO11 (rs407804467), PHC3 (rs414179061), TSHR (rs418575898) and STAT1 (rs417581105). In conclusion, genomic regions harboring four intragenic SNP were associated with heat stress tolerance, and these candidate genes are proposed to influence heat tolerance in pregnant ewes subjected to an artificially induced warm climate. Moreover, these genetic markers could be suitable for use in further genetic selection programs in sheep managed in semi-arid regions.
Collapse
Affiliation(s)
- Guillermo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, 85000, México
| | - Alexander L Pendleton
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Rosa I Luna-Ramirez
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Javier R Reyna-Granados
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, 85000, México
| | - Pablo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, 85000, México.
| |
Collapse
|
22
|
Rabee AE, Kewan KZ, Sabra EA, El Shaer HM, Lamara M. Rumen bacterial community profile and fermentation in Barki sheep fed olive cake and date palm byproducts. PeerJ 2021; 9:e12447. [PMID: 34820187 PMCID: PMC8605757 DOI: 10.7717/peerj.12447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023] Open
Abstract
Rumen bacteria make the greatest contribution to rumen fermentation that enables the host animal to utilize the ingested feeds. Agro-industrial byproducts (AIP) such as olive cake (OC) and date palm byproducts (discarded dates (DD), and date palm fronds (DPF)) represent a practical solution to the deficiency in common feed resources. In this study, thirty-six growing Barki lambs were divided into three groups to evaluate the effect of untraditional diets including the AIP on the growth performance. Subsequently, nine adult Barki rams were used to evaluate the effect of experimental diets on rumen fermentation and rumen bacteria. Three rations were used: common concentrate mixture (S1), common untraditional concentrate mixture including OC and DD (S2), and the same concentrate mixture in S2 supplemented with roughage as DPF enriched with 15% molasses (S3). The animals in S2 group showed higher dry matter intake (DMI) and lower relative growth rate (RGR) as compared to the animals in S1 group. However, the animals in S3 group were the lowest in DMI but achieved RGR by about 87.6% of that in the S1 group. Rumen pH, acetic and butyric acids were more prevalent in animals of S3 group and rumen ammonia (NH3-N), total volatile fatty acids (TVFA), propionic acid were higher in S1. Rumen enzymes activities were higher in S1 group followed by S3 and S2. The bacterial population was more prevalent in S1 and microbial diversity was higher in the S3 group. Principal coordinate analysis revealed clusters associated with diet type and the relative abundance of bacteria varied between sheep groups. The bacterial community was dominated by phylum Bacteroidetes and Firmicutes; whereas, Prevotella, Ruminococcus, and Butyrivibrio were the dominant genera. Results indicate that diet S3 supplemented by OC, DD, and DPF could replace the conventional feed mixture.
Collapse
Affiliation(s)
- Alaa Emara Rabee
- Animal and Poultry Nutrition Department, Desert Research Center, Matariya, Cairo, Egypt
| | - Khalid Z Kewan
- Animal and Poultry Nutrition Department, Desert Research Center, Matariya, Cairo, Egypt
| | - Ebrahim A Sabra
- Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadate City, Menoufia, Egypt
| | - Hassan M El Shaer
- Animal and Poultry Nutrition Department, Desert Research Center, Matariya, Cairo, Egypt
| | - Mebarek Lamara
- Forest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, Canada
| |
Collapse
|
23
|
Abousoliman I, Reyer H, Oster M, Murani E, Mohamed I, Wimmers K. Genome-Wide Analysis for Early Growth-Related Traits of the Locally Adapted Egyptian Barki Sheep. Genes (Basel) 2021; 12:1243. [PMID: 34440417 PMCID: PMC8394750 DOI: 10.3390/genes12081243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/28/2022] Open
Abstract
Sheep play a critical role in the agricultural and livestock sector in Egypt. For sheep meat production, growth traits such as birth and weaning weights are very important and determine the supply and income of local farmers. The Barki sheep originates from the northeastern coastal zone of Africa, and due to its good adaptation to the harsh environmental conditions, it contributes significantly to the meat production in these semi-arid regions. This study aimed to use a genome-wide SNP panel to identify genomic regions that are diversified between groups of individuals of Egyptian Barki sheep with high and low growth performance traits. In this context, from a phenotyped population of 140 lambs of Barki sheep, 69 lambs were considered for a genome-wide scan with the Illumina OvineSNP50 V2 BeadChip. The selected lambs were grouped into divergent subsets with significantly different performance for birth weight and weaning weight. After quality control, 63 animals and 40,383 SNPs were used for analysis. The fixation index (FST) for each SNP was calculated between the groups. The results verified genomic regions harboring some previously proposed candidate genes for traits related to body growth, i.e., EYA2, GDF2, GDF10, MEF2B, SLC16A7, TBX15, TFAP2B, and TNNC2. Moreover, novel candidate genes were proposed with known functional implications on growth processes such as CPXM2 and LRIG3. Subsequent association analysis showed significant effects of the considered SNPs on birth and weaning weights. Results highlight the genetic diversity associated with performance traits and thus the potential to improve growth traits in the Barki sheep breed.
Collapse
Affiliation(s)
- Ibrahim Abousoliman
- Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (I.A.); (H.R.); (M.O.); (E.M.)
- Desert Research Center, Department of Animal and Poultry Breeding, 1 Mathaf El-Matareya St., El-Matareya, Cairo 11753, Egypt;
| | - Henry Reyer
- Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (I.A.); (H.R.); (M.O.); (E.M.)
| | - Michael Oster
- Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (I.A.); (H.R.); (M.O.); (E.M.)
| | - Eduard Murani
- Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (I.A.); (H.R.); (M.O.); (E.M.)
| | - Ismail Mohamed
- Desert Research Center, Department of Animal and Poultry Breeding, 1 Mathaf El-Matareya St., El-Matareya, Cairo 11753, Egypt;
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (I.A.); (H.R.); (M.O.); (E.M.)
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 7, 18059 Rostock, Germany
| |
Collapse
|
24
|
Genome-Wide SNP Analysis for Milk Performance Traits in Indigenous Sheep: A Case Study in the Egyptian Barki Sheep. Animals (Basel) 2021; 11:ani11061671. [PMID: 34205212 PMCID: PMC8228706 DOI: 10.3390/ani11061671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary The Barki sheep is one of the three main breeds in Egypt, which is spread mainly throughout the northwestern coastal zone, which has harsh conditions. Considering the harsh, semi-arid habitat of this breed, milk performance traits such as milk yield and milk composition have a very important role in the feeding of newborn lambs and affect their growth during the early stage of life. In this study, rare milk performance data and genomic information of Barki sheep were used to uncover diversified genomic regions that could explain the variability of milk yield and milk quality traits in the studied population of Barki ewes. Genome-wide analysis identified genomic regions harboring interesting candidate genes such as SLC5A8, NUB1, TBC1D1, KLF3 and ABHD5 for milk yield and PPARA and FBLN1 genes for milk quality traits. The findings offer valuable information for obtaining a better understanding of the genetics of milk performance traits and contribute to the genetic improvement of these traits in Barki sheep. Abstract Sheep milk yield and milk composition traits play an important role in supplying newborn lambs with essential components such as amino acids, energy, vitamins and immune antibodies and are also of interest in terms of the nutritional value of the milk for human consumption. The aim of this study was to identify genomic regions and candidate genes for milk yield and milk composition traits through genome-wide SNP analyses between high and low performing ewes of the Egyptian Barki sheep breed, which is well adapted to the harsh conditions of North-East Africa. Therefore, out of a herd of 111 ewes of the Egyptian Barki sheep breed (IBD = 0.08), ewes representing extremes in milk yield and milk quality traits (n = 25 for each group of animals) were genotyped using the Illumina OvineSNP50 V2 BeadChip. The fixation index (FST) for each SNP was calculated between the diversified groups. FST values were Z-transformed and used to identify putative SNPs for further analysis (Z(FST) > 10). Genome-wide SNP analysis revealed genomic regions covering promising candidate genes related to milk performance traits such as SLC5A8, NUB1, TBC1D1, KLF3 and ABHD5 for milk yield and PPARA and FBLN1 genes for milk quality trait. The results of this study may contribute to the genetic improvement of milk performance traits in Barki sheep breed and to the general understanding of the genetic contribution to variability in milk yield and quality traits.
Collapse
|
25
|
Osman NM, Shafey HI, Abdelhafez MA, Sallam AM, Mahrous KF. Genetic variations in the Myostatin gene affecting growth traits in sheep. Vet World 2021; 14:475-482. [PMID: 33776314 PMCID: PMC7994128 DOI: 10.14202/vetworld.2021.475-482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022] Open
Abstract
Background and Aim Sheep productivity in developing countries is crucial, as this animal is an essential source of meat and wool. Myostatin (MSTN) plays an important role in the regulation of muscle mass through the regulation of muscle growth, differentiation, and regeneration. The present study sought to investigate genetic variation in the first intron of the MSTN gene and the association of variants with growth traits in major sheep breeds in Egypt (Barki, Ossimi, and Rahmani) and Saudi Arabia (Najdi) using polymerase chain reaction (PCR) and sequencing. Materials and Methods Blood samples were collected, and DNA was extracted from 75 animals. A 386 bp fragment in the first intron of the MSTN gene was amplified using PCR. Polymorphic sites were detected using direct sequencing and then correlated with growth traits using a general linear model. Results Sequence analysis of the first intron of MSTN gene identified six single-nucleotide polymorphisms (SNPs) in the studied breeds. Four mutual SNPs were determined: c.18 G>T, c.241 T>C, c.243 G>A, and c.259 G>T. In addition, two SNPs c.159 A>T and c.173 T>G were monomorphic (AA and TT, respectively) in the Ossimi, Rahmani, and Najdi breeds and polymorphic in the Barki breed. The association analysis revealed that the c.18 G>T and c.241 C>T significantly associated (p<0.05) with birth weight and average daily weight gain, respectively. Conclusion Our results strongly support MSTN as a candidate gene for marker-assisted selection in sheep breeding programs. Furthermore, the identified variants may be considered as putative markers to improve growth traits in sheep.
Collapse
Affiliation(s)
- Noha M Osman
- Department of Cell Biology, National Research Centre, El Buhouth Street, 12311, Dokki, Egypt
| | - Heba I Shafey
- Department of Cell Biology, National Research Centre, El Buhouth Street, 12311, Dokki, Egypt
| | - Mohamed A Abdelhafez
- Department of Cell Biology, National Research Centre, El Buhouth Street, 12311, Dokki, Egypt
| | - Ahmed M Sallam
- Animal and Poultry Production Division, Desert Research Center, 11753, Mataryia, Egypt
| | - Karima F Mahrous
- Department of Cell Biology, National Research Centre, El Buhouth Street, 12311, Dokki, Egypt
| |
Collapse
|
26
|
Akhatayeva Z, Li H, Mao C, Cheng H, Zhang G, Jiang F, Meng X, Yao Y, Lan X, Song E, Zhang D. Detecting novel Indel variants within the GHR gene and their associations with growth traits in Luxi Blackhead sheep. Anim Biotechnol 2020; 33:214-222. [PMID: 32615865 DOI: 10.1080/10495398.2020.1784184] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The growth hormone is important in the regulation of metabolism and energy homeostasis and acts through a growth hormone receptor (GHR). In this work, genetic variations within the ovine GHR gene were identified and tested for associations with body morphometric traits in Chinese Luxi Blackhead (LXBH) sheep. Novel deletion loci in the LXBH GHR gene included P2-del-23 bp and P8-del-23 bp indel variants. The polymorphic information content (PIC) was 0.329 in P2-del-23 bp and 0.257 in P8-del-23 bp. Moreover, both indel polymorphisms were not at Hardy-Weinberg equilibrium (p < 0.05) in the LXBH population. Statistical analyses revealed that the P2-del-23 bp and P8-del-23 bp indels were significantly associated (p < 0.05) with several growth traits in rams and ewes, including body weight, body height, chest depth, chest width, chest circumference, cannon circumference, paunch girth and hip width. Among the tested sheep, the body traits of those with genotype DD were superior to those with II and ID genotypes, suggesting that the 'D' allele was responsible for the positive effects on growth traits. Thus, these results indicate that the P2-del-23 bp and P8-del-23 bp indel sites and the DD genotype can be useful in marker-assisted selection in sheep.
Collapse
Affiliation(s)
- Zhanerke Akhatayeva
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Haixia Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Cui Mao
- Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Haijian Cheng
- Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Guoping Zhang
- Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Fugui Jiang
- Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xianfeng Meng
- Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuni Yao
- Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Enliang Song
- Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,College of Life Sciences, Shandong Normal University, Jinan, China
| | - Dongfu Zhang
- Shandong Liaocheng Luxi Blackhead Sheep Farm, Liaocheng, Shandong, China
| |
Collapse
|
27
|
Sallam AM. A missense mutation in the coding region of the toll-like receptor 4 gene affects milk traits in Barki sheep. Anim Biosci 2020; 34:489-498. [PMID: 32819071 PMCID: PMC7961266 DOI: 10.5713/ajas.19.0989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/14/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Milk production is one of the most desirable traits in livestock. Recently, the toll-like receptor (TLR) has been identified as a candidate gene for milk traits in cows. So far, there is no information concerning the contribution of this gene in milk traits in sheep. This study was designed to investigate the TLR 4 gene polymorphisms in Barki ewes in Egypt and then correlate that with milk traits in order to identify potential single nucleotide polymorphisms (SNPs) for these traits in sheep. METHODS A part of the ovine TLR 4 gene was amplified in Barki ewes, to identify the SNPs. Consequently; Barki ewes were genotyped using polymerase chain reaction-single strand conformation polymorphism protocol. These genotypes were correlated with milk traits, which were the daily milk yield (DMY), protein percentage (PP), fat percentage (FP), lactose percentage, and total solid percentage (TSP). RESULTS Age and parity of the ewe had a significant effect (p<0.05 or p<0.01) on DMY, FP, and TSP. The direct sequencing identified a missense mutation located in the coding sequence of the gene (rs592076818; c.1710C>A) and was predicted to change the amino acid sequence of the resulted protein (p.Asn570Lys). The association analyses suggested a significant effect (p<0.05) of the TLR genotype on the FP and PP, while the DMY tended to be influenced as well (p = 0.07). Interestingly, the presence of the G allele tended to increase the DMY (+40.5 g/d) and significantly (p<0.05 or p<0.01) decreased the FP (-1.11%), PP (-1.21%), and TSP (-7.98%). CONCLUSION The results of this study suggested the toll-like receptor 4 (TLR4) as a candidate gene to improve milk traits in sheep worldwide, which will enhance the ability to understand the genetic architecture of genes underlying SNPs that affect such traits.
Collapse
Affiliation(s)
- Ahmed M Sallam
- Animal and Poultry Production Division, Desert Research Center, Cairo 11735, Egypt
| |
Collapse
|