1
|
Wang Q, Qiu P, Peng Z, Wu J, Bao R, Huang L, Li X, Shi H, Zhang H, Wang X. Stability of Fly Maggot Peptides and Its Alleviating Effect on Lipopolysaccharide Combined with Hemocoagulase Oxidative Stress in Arbor Acres Chicks. Vet Sci 2024; 11:470. [PMID: 39453062 PMCID: PMC11511490 DOI: 10.3390/vetsci11100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Recently, there has been fast-growing interest among researchers in discovering bioactive peptides from insects and evaluating their potential applications in livestock production. The present study aimed to assess the antioxidant properties and stability of fly maggot peptide (FMP) and its effects on Arbor Acres (AA) broilers' oxidative stress induced by lipopolysaccharide (LPS) and hemocoagulase (HC). A total of 108 one-day-old AA broilers were randomly divided into six groups: CG (normal saline, basal diet), DG (LPS + HC, basal diet), VG (DG + vitamin C 50 ug/kg), LPG (DG + FMP 5 mg/kg), MPG (DG + FMP 15 mg/kg), and HPG (DG + FMP 25 mg/kg). The results showed that the addition of FMP to the diet promoted LPS+ HC-induced increases in average daily gain (ADG), total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC). Meanwhile, FMP regulated the intestinal morphology. Additionally, FMP decreased the increase in the contents of malondialdehyde (MDA), the relative weight of immune organs, interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). In conclusion, this research suggested that the addition of FMP can relieve the LPS+ HC-induced oxidative stress of AA broilers and the recommended dose of FMP is 25 mg/kg. This study presents a theoretical foundation for the addition of an FMP supplement for the purpose of protecting broilers' growth.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xuemei Wang
- Animal Nutrition, Reproduction and Breeding Laboratory, Department of Animal Science, School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China; (Q.W.); (P.Q.); (Z.P.); (J.W.); (R.B.); (L.H.); (X.L.); (H.S.); (H.Z.)
| |
Collapse
|
2
|
Qosimah D, Amri IA, Pratama DAOA, Permata FS, Noorhamdani N, Widasmara D, Sabri J. Hexane extract from black soldier fly prepupae: A novel immunomodulatory strategy against Aeromonas hydrophila infection in zebrafish. Vet World 2024; 17:1655-1660. [PMID: 39185043 PMCID: PMC11344120 DOI: 10.14202/vetworld.2024.1655-1660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/09/2024] [Indexed: 08/27/2024] Open
Abstract
Background and Aim Aeromonas hydrophila infections in fish result in significant financial losses within aquaculture. Previous research indicates black soldier fly (BSF) prepupae provide immunomodulatory benefits through their fatty acids, chitin, and proteins. The study evaluated the impact of hexane extract from black soldier fly prepupae (HEBP) on interleukin (IL)-4 and IL-10 cytokine expression in zebrafish, both infected and uninfected with A. hydrophila. Materials and Methods Adult zebrafish (aged 4-5 months) was assigned to a negative control group (fed commercial feed), a positive control group (commercial feed + A. hydrophila infection at 107 colony-forming unit/mL), and three treatment groups (T1, T2, T3) that received HEBP at doses of 1000; 2000 and 4000 mg/kg feed for 30 days, respectively. A. hydrophila infection was introduced on day 31 through immersion. Analysis of IL-4 and IL-10 expression in the head kidney trunk region (body without head and tail) through quantitative polymerase chain reaction was conducted on day 33. Results The HEBP modulated the immune response to A. hydrophila infection at a concentration of 1000 mg/kg feed, as evidenced by an increase in IL-4 and IL-10 expression in the groups not infected with the bacteria. However, these cytokines were decreased in the infected groups. Conclusion A feed concentration of 1000 mg/kg HEBP was identified as optimal for cytokine modulation. This discovery marks a significant advancement in the development and benefit of a natural extract-based immunomodulator in a zebrafish model, which is potentially immunotherapeutic against bacterial infections in fish for the aquaculture industry.
Collapse
Affiliation(s)
- Dahliatul Qosimah
- Laboratory of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, East Java 65151, Indonesia
| | - Indah Amalia Amri
- Laboratory of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, East Java 65151, Indonesia
| | - Dyah Ayu Oktavianie A. Pratama
- Laboratory of Veterinary Anatomical Pathology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, East Java 65151, Indonesia
| | - Fajar Shodiq Permata
- Laboratory of Veterinary Anatomy and Histology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, East Java 65145, Indonesia
| | - Noorhamdani Noorhamdani
- Department of Medical Microbiology, Faculty of Medicine, Universitas Brawijaya, Malang, East Java 65145, Indonesia
| | - Dhelya Widasmara
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Brawijaya, Dr. Saiful Anwar Regional Hospital, Jl. Jaksa Agung Suprapto 2, Malang, East Java 65111, Indonesia
| | - Jasni Sabri
- Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, East Java 65151, Indonesia
| |
Collapse
|
3
|
Kannan M, Vitenberg T, Schweitzer R, Opatovsky I. Hemolymph metabolism of black soldier fly (Diptera: Stratiomyidae), response to different supplemental fungi. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:5. [PMID: 38713543 DOI: 10.1093/jisesa/ieae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/17/2024] [Accepted: 04/14/2024] [Indexed: 05/09/2024]
Abstract
The black soldier fly, Hermetia illucens L. (Diptera: Stratiomyidae), is commonly used for organic waste recycling and animal feed production. However, the often inadequate nutrients in organic waste necessitate nutritional enhancement of black soldier fly larvae, e.g., by fungal supplementation of its diet. We investigated the amino acid composition of two fungi, Candida tropicalis (Castell.) Berkhout (Saccharomycetales: Saccharomycetaceae) and Pichia kudriavzevii Boidin, Pignal & Besson (Saccharomycetales: Pichiaceae), from the black soldier fly gut, and commercial baker's yeast, Saccharomyces cerevisiae Meyen ex E.C. Hansen (Saccharomycetales: Saccharomycetaceae), and their effects on larval growth and hemolymph metabolites in fifth-instar black soldier fly larvae. Liquid chromatography-mass spectrometry was used to study the effect of fungal metabolites on black soldier fly larval metabolism. Amino acid analysis revealed significant variation among the fungi. Fungal supplementation led to increased larval body mass and differential metabolite accumulation. The three fungal species caused distinct metabolic changes, with each over-accumulating and down-accumulating various metabolites. We identified significant alteration of histidine metabolism, aminoacyl-tRNA biosynthesis, and glycerophospholipid metabolism in BSF larvae treated with C. tropicalis. Treatment with P. kudriavzevii affected histidine metabolism and citrate cycle metabolites, while both P. kudriavzevii and S. cerevisiae treatments impacted tyrosine metabolism. Treatment with S. cerevisiae resulted in down-accumulation of metabolites related to glycine, serine, and threonine metabolism. This study suggests that adding fungi to the larval diet significantly affects black soldier fly larval metabolomics. Further research is needed to understand how individual amino acids and their metabolites contributed by fungi affect black soldier fly larval physiology, growth, and development, to elucidate the interaction between fungal nutrients and black soldier fly physiology.
Collapse
Affiliation(s)
- Mani Kannan
- Laboratory of Insect Nutrition and Metabolism, Department of Nutrition and Natural Products, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
- Department of Animal Science, Faculty of Sciences and Technology, Tel-Hai College, 11 Upper Galilee, Israel
| | - Tzach Vitenberg
- Laboratory of Insect Nutrition and Metabolism, Department of Nutrition and Natural Products, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
| | - Ron Schweitzer
- Department of Natural Compounds and Analytical Chemistry, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
| | - Itai Opatovsky
- Laboratory of Insect Nutrition and Metabolism, Department of Nutrition and Natural Products, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
- Department of Animal Science, Faculty of Sciences and Technology, Tel-Hai College, 11 Upper Galilee, Israel
| |
Collapse
|
4
|
Silva Carvalho R, Nóbrega Cardoso RK, Teixeira Amorim Dos Santos LA, Xavier Sales Dos Santos M, Leocadio Santos Neto E, Zamora Restan WA, Savinov A, Paul A, Agy Loureiro B. Effect of feeding black soldier fly larvae meal based diet on canine skin barrier function, organic antioxidant defence and blood biochemistry. Arch Anim Nutr 2024; 78:159-177. [PMID: 39037852 DOI: 10.1080/1745039x.2024.2375463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/28/2024] [Indexed: 07/24/2024]
Abstract
Black soldier fly meal in pet diets is gaining acceptance. This study aimed to assess the use of black soldier fly larvae defatted meal (BSFL) and its impact on blood parameters, biochemical markers, organic antioxidant capacity, skin barrier function and skin and coat quality. A cross-over study involved eight beagle dogs with two periods of 50 days each and a washout period of seven days in between. Two approximately iso-nutritive extruded diets were evaluated, the first containing 29.5% BSFL meal and a control diet containing 26% poultry by-product meal (PBP) as protein source. Skin and coat evaluations and blood collections were conducted before and after each period. Skin barrier function was assessed by measurement of trans epidermal water loss (TEWL) and stratum corneum hydration (SCH) in belly and pinna of the dogs on days 0, 15, 30, and 45 of each period. A trend for higher antioxidant effect significant reduction in serum scavenging capacity was found with PBP for BSFL diet trough malondialdehyde and Vitamin E measurement in dog's serum 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assay. When fed PBP diet dogs exhibited reduction in serum cholesterol triglycerides and decreased LDL levels after 50 days, while dogs fed BSFL presented significant reduction in ALT. TEWL was significantly reduced in belly and pinna over time when dogs were fed BSFL, and TEWL in belly was significantly lower in dogs fed BSFL in comparison to PBP. while Increased SCH was also higher for the BSFL group observed in the same along the feeding period in comparison to PBP, indicating improved ability of the dogs to retain water and keep skin moisture. Improvement skin barrier function could be related to fatty acids from BSFL and increased sebaceous lipids in skin. These are responsible for to avoid water loss and improve skin protection against microbial insults. Inclusion of BSFL as protein source did not promote negative changes in blood biochemistry and had minor antioxidant effect in healthy dogs. However, it proved effective in improving skin barrier function, making BSFL a valuable alternative protein source for dogs, particularly those with sensitive skin or allergies manifesting on the skin.
Collapse
Affiliation(s)
- Rafaela Silva Carvalho
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil
| | | | | | | | | | | | | | | | - Bruna Agy Loureiro
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil
| |
Collapse
|
5
|
Rivero-Pino F, Gonzalez-de la Rosa T, Montserrat-de la Paz S. Edible insects as a source of biopeptides and their role in immunonutrition. Food Funct 2024; 15:2789-2798. [PMID: 38441670 DOI: 10.1039/d3fo03901c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Many edible insect species are attracting the attention of the food industry and consumers in Western societies due to their high content and quality of protein, and consequently, the potential to be used as a more environmentally friendly dietary source could be beneficial for humans. On the other hand, prevention of inflammatory diseases using nutritional interventions is currently being proposed as a sustainable and cost-effective strategy to improve people's health. In this regard, finding bioactive compounds such as peptides with anti-inflammatory properties from sustainable sources (e.g., edible insects) is one area of particular interest, which might have a relevant role in immunonutrition. This review aims to summarize the recent literature on the discovery of immunomodulatory peptides through in vitro studies from edible insects, as well as to describe cell-based assays aiming to prove their bioactivity. On top of that, in vivo studies (i.e., animal and human), although scarce, have been mentioned in relation to the topic. In addition, the challenges and future perspectives related to edible-insect peptides and their role in immunonutrition are discussed. The amount of literature aiming to demonstrate the potential immunomodulatory activity of edible-insect peptides is scarce but promising. Different approaches have been employed, especially cell assays and animal studies employing insect meal as supplementation in the diet. Insects such as Tenebrio molitor or Gryllodes sigillatus are some of the most studied and have demonstrated to contain bioactive peptides. Further investigations, mostly with humans, are needed in order to clearly state that peptides from edible insects may contribute to the modulation of the immune system.
Collapse
Affiliation(s)
- Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009, Seville, Spain.
| | - Teresa Gonzalez-de la Rosa
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009, Seville, Spain.
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009, Seville, Spain.
| |
Collapse
|
6
|
Zhao JH, Cheng P, Wang Y, Yan X, Xu ZM, Peng DH, Yu GH, Shao MW. Using kin discrimination to construct synthetic microbial communities of Bacillus subtilis strains impacts the growth of black soldier fly larvae. INSECT SCIENCE 2024. [PMID: 38494587 DOI: 10.1111/1744-7917.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 03/19/2024]
Abstract
Using synthetic microbial communities to promote host growth is an effective approach. However, the construction of such communities lacks theoretical guidance. Kin discrimination is an effective means by which strains can recognize themselves from non-self, and construct competitive microbial communities to produce more secondary metabolites. However, the construction of cooperative communities benefits from the widespread use of beneficial microorganisms. We used kin discrimination to construct synthetic communities (SCs) comprising 13 Bacillus subtilis strains from the surface and gut of black soldier fly (BSF) larvae. We assessed larval growth promotion in a pigeon manure system and found that the synthetic community comprising 4 strains (SC 4) had the most profound effect. Genomic analyses of these 4 strains revealed that their complementary functional genes underpinned the robust functionality of the cooperative synthetic community, highlighting the importance of strain diversity. After analyzing the bacterial composition of BSF larvae and the pigeon manure substrate, we observed that SC 4 altered the bacterial abundance in both the larval gut and pigeon manure. This also influenced microbial metabolic functions and co-occurrence network complexity. Kin discrimination facilitates the rapid construction of synthetic communities. The positive effects of SC 4 on larval weight gain resulted from the functional redundancy and complementarity among the strains. Furthermore, SC 4 may enhance larval growth by inducing shifts in the bacterial composition of the larval gut and pigeon manure. This elucidated how the SC promoted larval growth by regulating bacterial composition and provided theoretical guidance for the construction of SCs.
Collapse
Affiliation(s)
- Jun-Hui Zhao
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Ping Cheng
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yi Wang
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xun Yan
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhi-Min Xu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Dong-Hai Peng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Guo-Hui Yu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ming-Wei Shao
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests, Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
7
|
Delfino D, Prandi B, Ridolo E, Dellafiora L, Pedroni L, Nicoletta F, Cavazzini D, Sforza S, Tedeschi T, Folli C. Allergenicity of tropomyosin variants identified in the edible insect Hermetia illucens (black soldier fly). Food Chem 2023; 437:137849. [PMID: 39491244 DOI: 10.1016/j.foodchem.2023.137849] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
Insect consumption could address the increasing protein demand in compliance with environmental sustainability. Hermetia illucens (black soldier fly, BSF) is a promising insect for human diet and it is essential to assess the related allergenic risk, meant as primary sensitization or cross-reactivity with known allergens. In this work, we investigate the allergenicity of two tropomyosin variants identified in the BSF genome and produced as recombinant proteins. Immunoblot experiments showed that both proteins were recognized by sera of patients allergic to shrimp or mites highlighting the cross-reactivity risk. CD spectroscopy, cross-linking assays and size-exclusion chromatography showed a structure composed of alpha-helices oligomers for both variants. These proteins were quite stable to pH but sensitive to increasing temperatures. In vitro simulated digestion associated to mass-spectrometry allowed the identification of peptides resistant to gastrointestinal conditions which were compared with epitopes of Arthropoda and Mollusca allergens to predict the persistence of allergenicity upon digestion.
Collapse
Affiliation(s)
- Danila Delfino
- Department of Food and Drug, University of Parma, Parma, Italy.
| | - Barbara Prandi
- Department of Food and Drug, University of Parma, Parma, Italy.
| | - Erminia Ridolo
- Allergy and Clinical Immunology, Medicine and Surgery Department, University of Parma, Parma, Italy.
| | - Luca Dellafiora
- Department of Food and Drug, University of Parma, Parma, Italy.
| | - Lorenzo Pedroni
- Department of Food and Drug, University of Parma, Parma, Italy.
| | - Francesca Nicoletta
- Allergy and Clinical Immunology, Medicine and Surgery Department, University of Parma, Parma, Italy.
| | - Davide Cavazzini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
| | - Stefano Sforza
- Department of Food and Drug, University of Parma, Parma, Italy.
| | - Tullia Tedeschi
- Department of Food and Drug, University of Parma, Parma, Italy.
| | - Claudia Folli
- Department of Food and Drug, University of Parma, Parma, Italy.
| |
Collapse
|
8
|
Exploring the Potential of Black Soldier Fly Larval Proteins as Bioactive Peptide Sources through in Silico Gastrointestinal Proteolysis: A Cheminformatic Investigation. Catalysts 2023. [DOI: 10.3390/catal13030605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Despite their potential as a protein source for human consumption, the health benefits of black soldier fly larvae (BSFL) proteins following human gastrointestinal (GI) digestion are poorly understood. This computational study explored the potential of BSFL proteins to release health-promoting peptides after human GI digestion. Twenty-six proteins were virtually proteolyzed with GI proteases. The resultant peptides were screened for high GI absorption and non-toxicity. Shortlisted peptides were searched against the BIOPEP-UWM and Scopus databases to identify their bioactivities. The potential of the peptides as inhibitors of myeloperoxidase (MPO), NADPH oxidase (NOX), and xanthine oxidase (XO), as well as a disruptor of Keap1–Nrf2 protein–protein interaction, were predicted using molecular docking and dynamics simulation. Our results revealed that about 95% of the 5218 fragments generated from the proteolysis of BSFL proteins came from muscle proteins. Dipeptides comprised the largest group (about 25%) of fragments arising from each muscular protein. Screening of 1994 di- and tripeptides using SwissADME and STopTox tools revealed 65 unique sequences with high GI absorption and non-toxicity. A search of the databases identified 16 antioxidant peptides, 14 anti-angiotensin-converting enzyme peptides, and 17 anti-dipeptidyl peptidase IV peptides among these sequences. Results from molecular docking and dynamic simulation suggest that the dipeptide DF has the potential to inhibit Keap1–Nrf2 interaction and interact with MPO within a short time frame, whereas the dipeptide TF shows promise as an XO inhibitor. BSFL peptides were likely weak NOX inhibitors. Our in silico results suggest that upon GI digestion, BSFL proteins may yield high-GI-absorbed and non-toxic peptides with potential health benefits. This study is the first to investigate the bioactivity of peptides liberated from BSFL proteins following human GI digestion. Our findings provide a basis for further investigations into the potential use of BSFL proteins as a functional food ingredient with significant health benefits.
Collapse
|
9
|
Bose U, Juhasz A, Stockwell S, Escobar-Correas S, Marcora A, Paull C, Broadbent JA, Wijffels G. Unpacking the Proteome and Metaproteome of the Black Soldier Fly Larvae: Efficacy and Complementarity of Multiple Protein Extraction Protocols. ACS OMEGA 2023; 8:7319-7330. [PMID: 36872973 PMCID: PMC9979371 DOI: 10.1021/acsomega.2c04462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The larvae of the black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), have demonstrated the ability to efficiently bioconvert organic waste into a sustainable source of food and feed, but fundamental biology remains to be discovered to exploit their full biodegradative potential. Herein, LC-MS/MS was used to assess the efficiency of eight differing extraction protocols to build foundational knowledge regarding the proteome landscape of both the BSF larvae body and gut. Each protocol yielded complementary information to improve BSF proteome coverage. Protocol 8 (liquid nitrogen, defatting, and urea/thiourea/chaps) was better than all other protocols for the protein extraction from larvae gut samples, and the exclusion of defatting steps yielded the highest number of proteins for the larval body samples. Protocol-specific functional annotation using protein level information has shown that the selection of extraction buffer can affect protein detection and their associated functional classes within the measured BSF larval gut proteome. A targeted LC-MRM-MS experiment was performed on the selected enzyme subclasses to assess the influence of protocol composition using peptide abundance measurements. Metaproteome analysis of the BSF larvae gut has uncovered the prevalence of two bacterial phyla: actinobacteria and proteobacteria. We envisage that using complementary extraction protocols and investigating the proteome from the BSF body and gut separately will expand the fundamental knowledge of the BSF proteome and thereby provide translational opportunities for future research to enhance their efficiency for waste degradation and contribution to the circular economy.
Collapse
Affiliation(s)
- Utpal Bose
- CSIRO
Agriculture and Food, 306 Carmody Road, St Lucia, Queensland 4067, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, Joondalup, Western Australia 6027, Australia
- School
of Pharmacy, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Angela Juhasz
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, Joondalup, Western Australia 6027, Australia
| | - Sally Stockwell
- CSIRO
Agriculture and Food, 306 Carmody Road, St Lucia, Queensland 4067, Australia
| | - Sophia Escobar-Correas
- CSIRO
Agriculture and Food, 306 Carmody Road, St Lucia, Queensland 4067, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, School of Science, Edith
Cowan University, Joondalup, Western Australia 6027, Australia
- CSIRO
Agriculture and Food, Boggo Road, Dutton Park, Brisbane, Queensland 4001, Australia
| | - Anna Marcora
- School
of Pharmacy, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Cate Paull
- School
of Pharmacy, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - James A. Broadbent
- CSIRO
Agriculture and Food, 306 Carmody Road, St Lucia, Queensland 4067, Australia
| | - Gene Wijffels
- CSIRO
Agriculture and Food, 306 Carmody Road, St Lucia, Queensland 4067, Australia
| |
Collapse
|
10
|
Cytoprotective and Antioxidant Effects of Hydrolysates from Black Soldier Fly ( Hermetia illucens). Antioxidants (Basel) 2023; 12:antiox12020519. [PMID: 36830077 PMCID: PMC9952651 DOI: 10.3390/antiox12020519] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The black soldier fly (BSF), Hermetia illucens, has been recognized as one of the most promising insect species for its ability to valorize organic waste while producing a valuable larval biomass with a great potential as a sustainable source of nutrients, including proteins and bioactive molecules. In the present study, BSF larvae were used to produce and characterize the protein hydrolysates (BPHs) that were then evaluated for their potential biological activity in vitro. The BPHs obtained from the BSF larvae proteins by enzymatic digestion were characterized by Nuclear Magnetic Resonance (NMR) and polyacrylamide gel electrophoresis and assessed for their antioxidant activity (BPHs in the range of 0.1 to 1.5 mg/mL) in L-929 cells. Our findings show that BPHs can exert a dose-dependent cytoprotective role against H2O2-iduced oxidative stress in cells. This antioxidant activity relies on the reduction of ROS levels in challenged cells as measured by flow cytometry and fluorescence microscopy, together with the induction and nuclear translocation of Nrf2, as evaluated by qPCR and indirect immunofluorescence analysis, respectively. Overall, our findings on the remarkable biological activity of the BPHs obtained in a large-scale process strongly suggest the application of BPHs as ingredients promoting animal health in feed formulations.
Collapse
|
11
|
Quah Y, Tong SR, Bojarska J, Giller K, Tan SA, Ziora ZM, Esatbeyoglu T, Chai TT. Bioactive Peptide Discovery from Edible Insects for Potential Applications in Human Health and Agriculture. Molecules 2023; 28:molecules28031233. [PMID: 36770900 PMCID: PMC9921607 DOI: 10.3390/molecules28031233] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
In the past decade, there has been fast-growing interest among researchers to discover bioactive peptides from edible insects and to evaluate their potential applications in the management of human, livestock, and plant health. This review summarizes current knowledge of insect-derived peptides and their potential role in tackling human health issues and solving agriculture problems by protecting crops and livestock against their pathogens. Numerous bioactive peptides have been identified from edible insect species, including peptides that were enzymatically liberated from insect proteins and endogenous peptides that occur naturally in insects. The peptides exhibited diverse bioactivities, encompassing antioxidant, anti-angiotensin-converting enzyme, anti-dipeptidyl peptidase-IV, anti-glucosidase, anti-lipase, anti-lipoxygenase, anti-cyclooxygenase, anti-obesity, and hepatoprotective activities. Such findings point to their potential contribution to solving human health problems related to inflammation, free radical damage, diabetes, hypertension, and liver damage, among others. Although most of the experiments were performed in vitro, evidence for the in vivo efficacy of some peptides is emerging. Evidence of the protective effects of insect-derived endogenous antimicrobial peptides in combating farm animal and plant pathogens is available. The ability of insect-derived endogenous neuropeptides to protect plants against herbivorous insects has been demonstrated as well. Nevertheless, the potency of peptides identified from insect protein hydrolysates in modulating livestock and plant health remains a knowledge gap to be filled.
Collapse
Affiliation(s)
- Yixian Quah
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Shi-Ruo Tong
- Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Setapak, Kuala Lumpur 53300, Malaysia
| | - Joanna Bojarska
- Department of Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland
| | - Katrin Giller
- Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Sheri-Ann Tan
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Setapak, Kuala Lumpur 53300, Malaysia
| | - Zyta Maria Ziora
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia
- Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia
- Correspondence:
| |
Collapse
|
12
|
A Mixture of Full-Fat and Defatted Hermetia illucens Larvae and Poultry By-Products as Sustainable Protein Sources Improved Fillet Quality Traits in Farmed Barramundi, Lates calcarifer. Foods 2023; 12:foods12020362. [PMID: 36673454 PMCID: PMC9858547 DOI: 10.3390/foods12020362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
The physicochemical quality and shelf-life of fillets from barramundi, which were fed for 56 days on a mixture of poultry by-product meal (PBM), full-fat Hermetia illucens (FHI), and defatted HI (DHI), were investigated and compared to a fishmeal (FM) control diet. The proximate and total amino acids compositions of the fillets were unaffected by the test diets, while the mixture of PBM and HI larvae improved the sensory quality. An eight-day shelf-life study showed that PBM-HI-based diets improved the texture profile based upon the chewiness, cohesiveness, gumminess, and hardness, regardless of the storage time. The improved texture was aligned with comparatively less degradation of the microstructure of the muscle tissue in the same diets. An improvement in the quality index (QI) value, an increase in pH, and a decrease in lipid oxidation were also found in the fillets of barramundi fed test diets compared with the control diet during the storage time. The test diets positively influenced flesh lightness and redness, while the color profiles were negatively influenced by the storage time. Overall, the maintenance of compositional attributes; the enhancement of fillet sensory attributes, texture, and brightness; and the improved raw fillet shelf-life support the inclusion of PBM-HI-based diets in aquafeed.
Collapse
|
13
|
Advantages and disadvantages of using more sustainable ingredients in fish feed. Heliyon 2022; 8:e10527. [PMID: 36119893 PMCID: PMC9475308 DOI: 10.1016/j.heliyon.2022.e10527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
As the population grows, demand for food increases. Fish is considered to be one of the most efficient sources of protein. But as demand increases, we need to think about the efficient and sustainable fish feed. There is a need to replace existing feed ingredients such as fishmeal and fish oil with more sustainable sources of protein and oil. In 1990, fish feed consisted mainly of fishmeal and fish oil, but today’s fish feed is dominated by vegetable protein and vegetable oil. Comparing the advantages and disadvantages of the alternatives is concluded that previously used fish feed ingredients such as fishmeal and fish oil are not the most efficient, sustainable, and economically viable resources. The comparison shows why the composition of fish feed has shifted from 1990 to 2020 towards the use of plant resources in fish feed, as plant resources are more efficient, sustainable, and economically viable.
Collapse
|
14
|
First Evidence of Past and Present Interactions between Viruses and the Black Soldier Fly, Hermetia illucens. Viruses 2022; 14:v14061274. [PMID: 35746744 PMCID: PMC9231314 DOI: 10.3390/v14061274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 12/10/2022] Open
Abstract
Black soldier flies (BSFs, Hermetia illucens) are becoming a prominent research model encouraged by the insect as food and feed and waste bioconversion industries. Insect mass-rearing facilities are at risk from the spread of viruses, but so far, none have been described in BSFs. To fill this knowledge gap, a bioinformatic approach was undertaken to discover viruses specifically associated with BSFs. First, BSF genomes were screened for the presence of endogenous viral elements (EVEs). This led to the discovery and mapping of seven orthologous EVEs integrated into three BSF genomes originating from five viral families. Secondly, a virus discovery pipeline was used to screen BSF transcriptomes. This led to detecting a new exogenous totivirus that we named hermetia illucens totivirus 1 (HiTV1). Phylogenetic analyses showed this virus belongs to a clade of insect-specific totiviruses and is closely related to the largest EVE located on chromosome 1 of the BSF genome. Lastly, this EVE was found to express a small transcript in some BSFs infected by HiTV1. Altogether, this data mining study showed that far from being unscathed from viruses, BSFs bear traces of past interactions with several viral families and of present interactions with the exogenous HiTV1.
Collapse
|
15
|
Kępińska-Pacelik J, Biel W. Insects in Pet Food Industry-Hope or Threat? Animals (Basel) 2022; 12:1515. [PMID: 35739851 PMCID: PMC9219536 DOI: 10.3390/ani12121515] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Due to the increasing global population, the world cannot currently support the well-known techniques of food production due to their harmful effects on land use, water consumption, and greenhouse gas emissions. The key answer is a solution based on the use of edible insects. They have always been present in the diet of animals. They are characterized by a very good nutritional value (e.g., high protein content and contents of essential amino acids and fatty acids, including lauric acid), and products with them receive positive results in palatability tests. Despite the existing literature data on the benefits of the use of insects as a protein source, their acceptance by consumers and animal caregivers remains problematic. In spite of the many advantages of using insects in pet food, it is necessary to analyze the risk of adverse food reactions, including allergic reactions that may be caused by insect consumption. Other hazards relate to the contamination of insects. For example, they can be contaminated with anthropogenic factors during breeding, packaging, cooking, or feeding. These contaminants include the presence of bacteria, mold fungi, mycotoxins, and heavy metals. However, insects can be used in the pet food industry. This is supported by the evolutionary adaptation of their wild ancestors to the eating of insects in the natural environment. The chemical composition of insects also corresponds to the nutritional requirements of dogs. It should be borne in mind that diets containing insect and their effects on animals require careful analysis. The aim of this article is to discuss the nutritional value of insects and their possible applications in the nutrition of companion animals, especially dogs.
Collapse
Affiliation(s)
| | - Wioletta Biel
- Department of Monogastric Animal Sciences, Division of Animal Nutrition and Food, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| |
Collapse
|
16
|
Abdelfattah EA, El-Bassiony GM. Impact of malathion toxicity on the oxidative stress parameters of the black soldier fly Hermetia illucens (Linnaeus, 1758) (Diptera: Stratiomyidae). Sci Rep 2022; 12:4583. [PMID: 35301370 PMCID: PMC8931003 DOI: 10.1038/s41598-022-08564-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
The black soldier fly larvae (BSFL) may serve as a promising tool in the animals feed production industry. The input organic wastes may be contaminated by insecticides that affect both the insect’s mass rearing, and the animals feed process. Therefore, in the current study the assessment of oxidative stress parameters of the black soldier fly (BSF) were investigated to quantify the deleterious effect of malathion-contaminated kitchen waste (1:1 vegetable: fruit waste) container on the insect. The different developmental stages of insect (adult and larva) were exposed to different concentrations (0, 0.005, 0.01, 0.015, and 0.02 mg/mL) of malathion. The results showed that the mean value of the reactive oxygen species (ROS), which included hydrogen peroxide (H2O2) and superoxide anion radicals (O2•-) concentrations were lower in larval stage than in adults, in all treated groups (0, 0.005, 0.01, 0.015, and 0.02 mg/mL malathion concentration). Also, the protein carbonyls amount and lipid peroxides levels were decreased in the 0.02 mg/mL Malathion compared to the control values. However, the cluster analysis revealed slight dissimilar patterns for control insects and the highest malathion concentration (0.02 mg/ml). These stage-related differences could occur from the different growth dynamic functions of larvae and adults. The larvae were distinguished by robust growth, and significant oxygen consumption. The results verified that oxidative stress parameters, especially protein carbonyls and α, α-diphenyl-β-picrylhydrazyl (DPPH) were promising, cheap, quick and cost-effective applications for determining the macromolecules damage, and antioxidant ability of H. illucens enclosed with malathion exposure. These findings described that malathion application induces macromolecules damage mediated through oxidative stress injury.
Collapse
Affiliation(s)
- Eman Alaaeldin Abdelfattah
- Department of Entomology, Faculty of Science, Cairo University, El-Nahda Square, Giza, Cairo, 12613, Egypt.
| | - Ghada M El-Bassiony
- Department of Entomology, Faculty of Science, Cairo University, El-Nahda Square, Giza, Cairo, 12613, Egypt
| |
Collapse
|
17
|
Do S, Koutsos EA, McComb A, Phungviwatnikul T, de Godoy MRC, Swanson KS. Palatability and apparent total tract macronutrient digestibility of retorted black soldier fly larvae-containing diets and their effects on the fecal characteristics of cats consuming them. J Anim Sci 2022; 100:6542851. [PMID: 35246679 PMCID: PMC9036390 DOI: 10.1093/jas/skac068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/02/2022] [Indexed: 11/14/2022] Open
Abstract
There is a growing interest in using black soldier fly larvae (BSFL) due to its supposed sustainability and nutritional qualities. Because little research has been conducted to evaluate the use of BSFL in cats, our objective was to determine the palatability and apparent total tract macronutrient digestibility (ATTD) of BSFL-containing canned diets and the fecal characteristics of healthy adult cats consuming them. First, three palatability tests were conducted to compare the following diets: 1) diet with poultry byproduct meal (PBPM) and chicken serving as the primary protein sources (control) vs. diet with BSFL meal replacing PBPM (BSFL meal); 2) control vs. diet with whole BSFL replacing some PBPM and poultry fat (BSFL whole); and 3) control vs. diet with BSFL oil replacing poultry fat (BSFL oil). All diets were formulated to meet Association of American Feed Control Officials nutrient profiles for adult cats and were produced using a still retort. A paired t-test was conducted to analyze data from each palatability test, with a higher (P < 0.05) consumption ratio being observed for BSFL meal (1.93:1), BSFL whole (2.03:1), and BSFL oil (1.57:1). Second, 32 adult cats (20 females and 12 males; BW: 4.19 ± 0.55 kg; age: 3.3 ± 0.38 yr) were used in a completely randomized design study composed of a 21-d baseline period and a 70-d experimental period. Cats consumed the control diet during the baseline and were then allotted to one of four experimental diets (n = 8 per group): 1) control, 2) BSFL meal, 3) whole BSFL, and 4) BSFL oil. Fecal samples were collected after baseline and experimental periods for ATTD and fecal characteristic analysis. Fecal output was higher (P < 0.05) and fecal dry matter percentage was lower (P < 0.05) in cats fed BSFL meal than those fed BSFL oil. Organic matter, crude protein (CP), and energy ATTD were lower (P < 0.05) in cats fed BSFL meal than those fed BSFL oil or control. CP and energy ATTD were lower (P < 0.05) in cats fed BSFL whole than those fed BSFL oil. A few serum metabolites were affected by diet (P < 0.05) but remained within reference ranges. Hematology was not affected by diet (P > 0.05). Overall, our results suggest that BSFL-containing diets are palatable and do not negatively affect fecal characteristics or serum chemistry but may have slightly lower nutrient digestibilities in adult cats.
Collapse
Affiliation(s)
- Sungho Do
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | - Maria R C de Godoy
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA,Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana IL 61801, USA,Corresponding author:
| |
Collapse
|
18
|
Queiroz LS, Casanova F, Feyissa AH, Jessen F, Ajalloueian F, Perrone IT, de Carvalho AF, Mohammadifar MA, Jacobsen C, Yesiltas B. Physical and Oxidative Stability of Low-Fat Fish Oil-in-Water Emulsions Stabilized with Black Soldier Fly ( Hermetia illucens) Larvae Protein Concentrate. Foods 2021; 10:foods10122977. [PMID: 34945527 PMCID: PMC8701752 DOI: 10.3390/foods10122977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 01/03/2023] Open
Abstract
The physical and oxidative stability of fish oil-in-water (O/W) emulsions were investigated using black soldier fly larvae (BSFL) (Hermetia illucens) protein concentrate as an emulsifier. To improve the protein extraction and the techno-functionality, defatted BSFL powder was treated with ohmic heating (BSFL-OH) and a combination of ohmic heating and ultrasound (BSFL-UOH). Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) were performed in order to characterize the secondary structure and thermal stability of all protein concentrate samples. The interfacial properties were evaluated by the pendant drop technique. The lowest interfacial tension (12.95 mN/m) after 30 min was observed for BSFL-OH. Dynamic light scattering, ζ-potential and turbiscan stability index (TSI) were used to evaluate the physical stability of emulsions. BSFL-OH showed the smallest droplet size (0.68 μm) and the best emulsion stability (TSI = 8.89). The formation of primary and secondary volatile oxidation products and consumption of tocopherols were evaluated for all emulsions, revealing that OH and ultrasound treatment did not improve oxidative stability compared to the emulsion with untreated BSFL. The results revealed the promising application of BSFL proteins as emulsifiers and the ability of ohmic heating to improve the emulsifying properties of BSFL proteins.
Collapse
Affiliation(s)
- Lucas Sales Queiroz
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.S.Q.); (F.C.); (A.H.F.); (F.J.); (M.A.M.); (C.J.)
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, Brazil
| | - Federico Casanova
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.S.Q.); (F.C.); (A.H.F.); (F.J.); (M.A.M.); (C.J.)
| | - Aberham Hailu Feyissa
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.S.Q.); (F.C.); (A.H.F.); (F.J.); (M.A.M.); (C.J.)
| | - Flemming Jessen
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.S.Q.); (F.C.); (A.H.F.); (F.J.); (M.A.M.); (C.J.)
| | - Fatemeh Ajalloueian
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Italo Tuler Perrone
- Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora (UFJF), Rua José Lourenço Kelmer, São Pedro, Juiz de Fora 36036-900, Brazil;
| | - Antonio Fernandes de Carvalho
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, Brazil
- Correspondence: (A.F.d.C.); (B.Y.)
| | - Mohammad Amin Mohammadifar
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.S.Q.); (F.C.); (A.H.F.); (F.J.); (M.A.M.); (C.J.)
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.S.Q.); (F.C.); (A.H.F.); (F.J.); (M.A.M.); (C.J.)
| | - Betül Yesiltas
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.S.Q.); (F.C.); (A.H.F.); (F.J.); (M.A.M.); (C.J.)
- Correspondence: (A.F.d.C.); (B.Y.)
| |
Collapse
|
19
|
Yellow Mealworm and Black Soldier Fly Larvae for Feed and Food Production in Europe, with Emphasis on Iceland. Foods 2021; 10:foods10112744. [PMID: 34829029 PMCID: PMC8625742 DOI: 10.3390/foods10112744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 01/02/2023] Open
Abstract
Insects are part of the diet of over 2 billion people worldwide; however, insects have not been popular in Europe, neither as food nor as a feed ingredient. This has been changing in recent years, due to increased knowledge regarding the nutritional benefits, the need for novel protein production and the low environmental impact of insects compared to conventional protein production. The purpose of this study is to give an overview of the most popular insects farmed in Europe, yellow mealworm, Tenebrio molitor, and black soldier fly (BSF), Hermetia illucens, together with the main obstacles and risks. A comprehensive literature study was carried out and 27 insect farming companies found listed in Europe were contacted directly. The results show that the insect farming industry is increasing in Europe, and the success of the frontrunners is based on large investments in technology, automation and economy of scale. The interest of venture capital firms is noticeable, covering 90% of the investment costs in some cases. It is concluded that insect farming in Europe is likely to expand rapidly in the coming years, offering new proteins and other valuable products, not only as a feed ingredient, but also for human consumption. European regulations have additionally been rapidly changing, with more freedom towards insects as food and feed. There is an increased knowledge regarding safety concerns of edible insects, and the results indicate that edible insects pose a smaller risk for zoonotic diseases than livestock. However, knowledge regarding risk posed by edible insects is still lacking, but food and feed safety is essential to put products on the European market.
Collapse
|
20
|
Dong L, Ariëns RM, America AH, Paul A, Veldkamp T, Mes JJ, Wichers HJ, Govers C. Clostridium perfringens suppressing activity in black soldier fly protein preparations. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Mouithys-Mickalad A, Tome NM, Boogaard T, Chakraborty A, Serteyn D, Aarts K, Paul A. Unlocking the Real Potential of Black Soldier Fly ( Hermetia illucens) Larvae Protein Derivatives in Pet Diets. Molecules 2021; 26:molecules26144216. [PMID: 34299491 PMCID: PMC8304293 DOI: 10.3390/molecules26144216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/28/2022] Open
Abstract
Black soldier fly larvae (BSFL)-derived proteins are gaining popularity as sustainable pet food ingredients. According to the literature, these ingredients have strong antioxidant and antimicrobial activities. Due to the ability of BSFL protein derivatives to donate hydrogen atoms and/or electrons to counterpoise unstable molecules, they could possibly help in the prevention of osteoarthritis. During this study, the antiarthritic potential of BSFL protein derivatives was evaluated using the following assays: (1) proteinase inhibition, (2) erythrocyte membrane stability, (3) reactive oxygen species (ROS) production by activated macrophages, (4) ROS production by monocytes, and (5) cellular toxicity. Additionally, the glucosamine content of these ingredients was also evaluated. Chicken meal is commonly used in pet food formulations and was used as an industrial benchmark. The results obtained during this study demonstrated the strong antiarthritic potential of BSFL protein derivatives. We found that BSFL protein derivatives are not only useful in preventing the development of arthritis but could also help to cure it due to the presence of glucosamine. We also found that chicken meal could contribute to the development of arthritis by increasing ROS production by monocytes.
Collapse
Affiliation(s)
- Ange Mouithys-Mickalad
- Centre of Oxygen, Research and Development, University of Liege, 4000 Liege, Belgium; (A.M.-M.); (D.S.)
| | - Nuria Martin Tome
- Protix B.V., 5107 NC Dongen, The Netherlands; (N.M.T.); (A.C.); (K.A.)
| | | | | | - Didier Serteyn
- Centre of Oxygen, Research and Development, University of Liege, 4000 Liege, Belgium; (A.M.-M.); (D.S.)
| | - Kees Aarts
- Protix B.V., 5107 NC Dongen, The Netherlands; (N.M.T.); (A.C.); (K.A.)
| | - Aman Paul
- Protix B.V., 5107 NC Dongen, The Netherlands; (N.M.T.); (A.C.); (K.A.)
- Correspondence:
| |
Collapse
|
22
|
Menozzi D, Sogari G, Mora C, Gariglio M, Gasco L, Schiavone A. Insects as Feed for Farmed Poultry: Are Italian Consumers Ready to Embrace This Innovation? INSECTS 2021; 12:insects12050435. [PMID: 34066011 PMCID: PMC8151576 DOI: 10.3390/insects12050435] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 12/20/2022]
Abstract
Simple Summary Research into alternative protein sources might help to reduce environmental pollution and increase animal welfare. Insect proteins used in feed production could represent a good solution for these environmental and ethical problems. However, consumer acceptance of insects as feed must be carefully considered, along with the role of information in affecting the acceptance of such feed. In this study, we tested how non-technical information on the benefits of introducing insects as feed for farmed animals convinced a group of Italian consumers to accept duck meat fed either with insect-based meal or live insects. We found that providing information on the environmental, safety, nutritional, and taste-related aspects of insect-based feed as a protein substitute in the poultry sector increased the consumers’ acceptance of using insects as feed, as well as their readiness to purchase and consume these products. Our results show that some sociodemographic attributes, i.e., gender, age, and education level, are significantly related with the acceptance of products from insect-fed animals. Abstract The inclusion of insects as a protein source in feed production is not only related to technical, economical, and normative restrictions but is also affected by consumer acceptance. In this study, we evaluated consumers’ attitudes, intention to purchase and eat, and willingness to pay for meat obtained from a farmed duck fed with insect-based meal or a live insect diet. We conducted a survey among a sample of 565 consumers to test the effects of information about the benefits of using insects as feed on consumers’ attitudes towards animal-based products fed with insects. Providing information on the sustainability and nutritional benefits of using insects as feed increased both attitude towards and intention to purchase and eat meat products made from animals fed with insects. In the treatment group, we found a significant reduction from 21.9 to 14.0% in those who wanted to be compensated for buying a duck fed with an insect-based meal and an increase in those willing to pay the same price—from 64.9 to 72.7%. The information treatment significantly increased the intention to eat such products, suggesting that increasing consumers’ knowledge might help in reducing the fears and misconceptions around the topic of using insects as a feed source.
Collapse
Affiliation(s)
- Davide Menozzi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 45/A, 43124 Parma, Italy; (D.M.); (C.M.)
| | - Giovanni Sogari
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 45/A, 43124 Parma, Italy; (D.M.); (C.M.)
- Correspondence:
| | - Cristina Mora
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 45/A, 43124 Parma, Italy; (D.M.); (C.M.)
| | - Marta Gariglio
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (M.G.); (A.S.)
| | - Laura Gasco
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy;
| | - Achille Schiavone
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (M.G.); (A.S.)
| |
Collapse
|
23
|
Acuff HL, Dainton AN, Dhakal J, Kiprotich S, Aldrich G. Sustainability and Pet Food: Is There a Role for Veterinarians? Vet Clin North Am Small Anim Pract 2021; 51:563-581. [PMID: 33773646 DOI: 10.1016/j.cvsm.2021.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sustainability has become a watchword for a wide array of resource-intensive goods and services. This is promulgated by an increasing global population and concerns that natural resources and a hospitable climate will not be preserved for future generations. Life-cycle analysis is a tool that provides a framework to determine the magnitude products contribute to carbon emissions and depletion of natural resources. In this review, published research has been summarized to provide an overview of the impacts that pet food production and pet ownership have on the environment and the prospective role of veterinary practitioners in advocating for sustainability.
Collapse
Affiliation(s)
- Heather L Acuff
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66502, USA
| | - Amanda N Dainton
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66502, USA
| | - Janak Dhakal
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66502, USA
| | - Samuel Kiprotich
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66502, USA
| | - Greg Aldrich
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66502, USA.
| |
Collapse
|
24
|
Palatability Enhancement Potential of Hermetia illucens Larvae Protein Hydrolysate in Litopenaeus vannamei Diets. Molecules 2021; 26:molecules26061582. [PMID: 33805599 PMCID: PMC8002068 DOI: 10.3390/molecules26061582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Marine feed ingredients derived from cephalopods (e.g., squid) and crustaceans (e.g., krill) are commercially used to improve the palatability of shrimp diets. Increase in global demand for shrimps has resulted in overfishing of these marine organisms and is a matter of concern. Insect protein hydrolysate could be a sustainable alternative for the possible replacement of these marine feed ingredients. During this study, four formulations: diet A (control: not containing any palatability enhancer), diet B (containing squid meal and krill oil), diet C (containing 1% insect protein hydrolysate), and diet D (containing 2% insect protein hydrolysate) were tested for (1) time required by first subject to begin feeding (time to strike) and (2) palatability in Litopenaeus vannamei. Additionally, the chemical composition of all four diet formulations was also analyzed. Results indicate that all diets had similar crude composition. The major essential amino acids in all diets were leucine and lysine, whereas eicosapentaenoic acid was the major omega-3 fatty acid in all diets. There were no significant differences between the mean time to strike for all the tested formulations. Palatability of tested formulations was found in the following order: diet D > diet C > diet B = diet A (p < 0.05), indicating that addition of squid meal and krill oil has no effect on palatability in comparison to control, whereas inclusion of insect protein hydrolysates significantly improves the palatability of formulations. Palatability enhancement potential of insect protein hydrolysate could be attributed to the high free amino acid content and water solubility in comparison to squid meal.
Collapse
|
25
|
Rumbos CI, Athanassiou CG. 'Insects as Food and Feed: If You Can't Beat Them, Eat Them!'-To the Magnificent Seven and Beyond. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:9. [PMID: 33822126 PMCID: PMC8023366 DOI: 10.1093/jisesa/ieab019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 05/04/2023]
Abstract
The objective of this special issue is to highlight the current state of research in the field of insects as food and feed, but also other aspects on the exploitation of insect farming. In this editorial, we make a short introduction of the topic of the special issue, briefly present the contributions that are collected in it and offer some thoughts on the future research priorities and challenges that should be addressed. Regarding insect farming, there are additional applications, such as fertilizer, health-promoting products, and cosmetics, that can be produced and utilized, that go far beyond food and feed production.
Collapse
Affiliation(s)
- Christos I Rumbos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Christos G Athanassiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| |
Collapse
|
26
|
Moruzzo R, Mancini S, Boncinelli F, Riccioli F. Exploring the Acceptance of Entomophagy: A Survey of Italian Consumers. INSECTS 2021; 12:123. [PMID: 33573090 PMCID: PMC7911797 DOI: 10.3390/insects12020123] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/22/2022]
Abstract
Insect-based food is not common in Europe, because most people do not consider insects to be edible, but rather a threat and a health risk. Fear and refusal to eat a new food product introduced into a culture is called food neophobia, which results in a hesitation to trying and experimenting with new foods. Although there is significant interest in this novel sector, there is a lack of research on the link between rejection, the level of food neophobia, and consumer behavior related to the introduction of insects into the diet. In this study, through 420 questionnaires, a specific experimental scale of insects was introduced which, together with a neophobia scale, analyzed the probability and the intention of respondents to consume insects. Another issue tested has been their intention to eat food containing insects. We observed that the analyses of the two scales produced different results, confirming the need for a specific scale to measure "insect phobia". This is important, since knowledge about consumer preferences for and barriers to using insects as human food sources is limited but necessary in order to set up commercialization strategies. The development of insect-based food offers physical health benefits and also improves the sustainability of the food industry.
Collapse
Affiliation(s)
- Roberta Moruzzo
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (R.M.); (F.R.)
| | - Simone Mancini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (R.M.); (F.R.)
| | - Fabio Boncinelli
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy;
| | - Francesco Riccioli
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (R.M.); (F.R.)
| |
Collapse
|
27
|
Evaluation of the Antimicrobial Activity of an Extract of Lactobacillus casei-Infected Hermetia illucens Larvae Produced Using an Automatic Injection System. Animals (Basel) 2020; 10:ani10112121. [PMID: 33207571 PMCID: PMC7696172 DOI: 10.3390/ani10112121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary In this investigation, an automatic mass-injection system was developed to produce an extract of Lactobacillus casei–infected Hermetia illucens larvae (HIL) at low cost. The extract produced was found to be a novel natural antibiotic candidate with a wide range of applications, especially in the food, animal feed, and medicinal industries. Abstract In the present study, we developed an automatic mass-injection system (AMIS) to produce an extract of infected H. illucens larvae (iHIL-E) and then evaluated antimicrobial peptide (AMP) expressions and assessed the antimicrobial activity of iHIL-E against various pathogens and Lactobacillus species. AMP gene expressions were assessed by real-time quantitative polymerase chain reaction (PCR) and the antimicrobial activities of iHIL-E were estimated using a radial diffusion assay and by determining minimal inhibitory concentrations. Results showed that the antimicrobial activity of HIL extract was effectively enhanced by L. casei infection and that the gene expressions of cecropin 3 and defensin 3 (antimicrobial peptides) were up-regulated. iHIL-E also prevented the growths of Enterococcus faecalis, Streptococcus mutans, and Candida vaginitis (MICs 200, 500, and 1000 µg/100 µL, respectively) and demonstrated high protease resistance. Moreover, the growths of methicillin-resistant Staphylococcus aureus, antibiotic-resistant Pseudomonas aeruginosa and AMP-resistant bacteria, Serratia marcescens, and Pseudomons tolaasii were significantly suppressed by iHIL-E. In addition, although iHIL completely cleared Salmonella species at concentrations of >200 µg/100 µL, Lactobacillus species were unaffected by iHIL at concentrations of <1000 µg/100 µL. The present investigation shows that the devised automatic mass injection system is effective for the mass production of the extract of infected HIL and that this extract is a novel, natural, protease-resistant, antibiotic candidate with broad-spectrum antibiotic activity.
Collapse
|