1
|
Chen J, Pan Z, Li Q, Wu Y, Li X, Wang X, Hao D, Peng X, Pan L, Li W, Wang J, Li T, Fu F. The Aqueous Extract of Hemerocallis citrina Baroni Improves the Lactation-Promoting Effect in Bovine Mammary Epithelial Cells through the PI3K-AKT Signaling Pathway. Foods 2024; 13:2813. [PMID: 39272577 PMCID: PMC11395325 DOI: 10.3390/foods13172813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Insufficient milk supply is a widespread issue faced by women globally and associated with a higher risk of health problems in infants and mothers. Hemerocallis citrina Baron, commonly known as daylily, is a perennial edible plant often used in traditional Asian cuisine to promote lactation. However, the active compound(s) and mechanism of its lactation-promoting effect remain unclear. This study aimed to confirm the traditional use of daylily in promoting lactation and investigate its potential active components and underlying molecular mechanisms. Our results showed that the aqueous extracts of H. citrina Baroni (HAE) significantly enhanced milk production, and the serum levels of lactation-related hormones, and promoted mammary gland development in lactating rats, as well as increased the levels of milk components in bovine mammary epithelial cells (BMECs) (p < 0.05). UHPLC-Q-Exactive Orbitrap-MS analysis revealed that hexamethylquercetin (HQ) is the representative flavonoid component in HAE, accounting for 42.66% of the total flavonoids. An integrated network pharmacology and molecular docking analysis suggested that HQ may be the potential active flavonoid in HAE that promotes lactation, possibly supporting lactation by binding to key target proteins such as STAT5A, PIK3CA, IGF1R, TP53, CCND1, BCL2, INS, AR, and DLD. Cell experiments further demonstrated that HQ could promote cell proliferation and the synthesis of milk proteins, lactose, and milk fat in BMECs. Transcriptomic analysis combined with a quantitative reverse transcription polymerase chain reaction (RT-qPCR) revealed that both HAE and HQ exert a lactation-promoting function mainly through regulating the expression of key genes in the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Jiaxu Chen
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhaoping Pan
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Qili Li
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Key Laboratory of Dongting, Yuelushan Center for Industrial Innovation, Changsha 410125, China
| | - Yanyang Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaopeng Li
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xue Wang
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Dandan Hao
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xiaoyu Peng
- Ausnutria Dairy Co., Ltd., Changsha 410200, China
| | - Lina Pan
- Ausnutria Dairy Co., Ltd., Changsha 410200, China
| | - Wei Li
- Ausnutria Dairy Co., Ltd., Changsha 410200, China
| | - Jiaqi Wang
- Ausnutria Dairy Co., Ltd., Changsha 410200, China
| | - Tao Li
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Fuhua Fu
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Key Laboratory of Dongting, Yuelushan Center for Industrial Innovation, Changsha 410125, China
| |
Collapse
|
2
|
Gao R, Zhu Q, Huang L, Fan X, Teng X, Miao Y. LEP Gene Promotes Milk Fat Synthesis via the JAK2-STAT3 and mTOR Signaling Pathways in Buffalo Mammary Epithelial Cells. Animals (Basel) 2024; 14:2446. [PMID: 39199979 PMCID: PMC11350831 DOI: 10.3390/ani14162446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Leptin (LEP), a protein hormone well-known for its role in metabolic regulation, has recently been linked to lipid metabolism in cattle. However, its function in buffalo mammary glands remains unclear. To address this issue, we isolated and identified the LEP gene and conducted experiments to investigate its function in buffalo mammary epithelial cells (BuMECs). In this study, two transcript variants of LEP, designated as LEP_X1 and LEP_X2, were identified. The coding sequences (CDS) of LEP_X1 and LEP_X2 are 504 bp and 579 bp in length, encoding 167 and 192 amino acid residues, respectively. Bioinformatics analysis revealed that LEP_X2 is a hydrophobic protein with an isoelectric point below 7 and contains a signal peptide, while LEP_X1 is hydrophilic and lacks a signal peptide. Our study found that LEP gene expression in lactating BuMECs was significantly higher than in non-lactating cells, with LEP_X2 expression remarkably higher than LEP_X1 in lactating BuMECs. Overexpression of both LEP_X1 and LEP_X2 significantly promoted the expression of genes related to milk fat synthesis in lactating BuMECs, including STAT3, PI3K, mTOR, SCD, and SREBF1, accompanied by an increase in cellular triglycerides (TG). Interestingly, LEP_X2 overexpression significantly suppressed LEP_X1 expression while increasing intracellular TG concentration by 12.10-fold compared to LEP_X1 overexpression, suggesting an antagonistic relationship between the two variants and supposing LEP_X2 plays a dominant role in milk fat synthesis in lactating BuMECs. Additionally, four nucleotide substitutions were identified in the buffalo LEP CDS, including a nonsynonymous substitution c.148C>T (p.Arg50Cys), which was predicted to decrease the stability of the LEP protein without affecting its function. These results collectively underscore the significant role of LEP in milk fat synthesis and can provide a basis for molecular breeding strategies of buffalo.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongwang Miao
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.G.); (Q.Z.); (L.H.); (X.F.); (X.T.)
| |
Collapse
|
3
|
Khan MZ, Li L, Wang T, Liu X, Chen W, Ma Q, Zahoor M, Wang C. Bioactive Compounds and Probiotics Mitigate Mastitis by Targeting NF-κB Signaling Pathway. Biomolecules 2024; 14:1011. [PMID: 39199398 PMCID: PMC11352841 DOI: 10.3390/biom14081011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Mastitis is a significant inflammatory condition of the mammary gland in dairy cows. It is caused by bacterial infections and leads to substantial economic losses worldwide. The disease can be either clinical or sub-clinical and presents challenges such as reduced milk yield, increased treatment costs, and the need to cull affected cows. The pathogenic mechanisms of mastitis involve the activation of Toll-like receptors (TLRs), specifically TLR2 and TLR4. These receptors play crucial roles in recognizing pathogen-associated molecular patterns (PAMPs) and initiating immune responses through the NF-κB signaling pathway. Recent in vitro studies have emphasized the importance of the TLR2/TLR4/NF-κB signaling pathway in the development of mastitis, suggesting its potential as a therapeutic target. This review summarizes recent research on the role of the TLR2/TLR4/NF-κB signaling pathway in mastitis. It focuses on how the activation of TLRs leads to the production of proinflammatory cytokines, which, in turn, exacerbate the inflammatory response by activating the NF-κB signaling pathway in mammary gland tissues. Additionally, the review discusses various bioactive compounds and probiotics that have been identified as potential therapeutic agents for preventing and treating mastitis by targeting TLR2/TLR4/NF-κB signaling pathway. Overall, this review highlights the significance of targeting the TLR2/TLR4/NF-κB signaling pathway to develop effective therapeutic strategies against mastitis, which can enhance dairy cow health and reduce economic losses in the dairy industry.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Liangliang Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Tongtong Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Xiaotong Liu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Wenting Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Qingshan Ma
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien, 90372 Oslo, Norway
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| |
Collapse
|
4
|
Wu XF, Xu Q, Wang A, Wang BZ, Lan XY, Li WY, Liu Y. Relationship between Indel Variants within the JAK2 Gene and Growth Traits in Goats. Animals (Basel) 2024; 14:1994. [PMID: 38998106 PMCID: PMC11240706 DOI: 10.3390/ani14131994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Janus kinase 2 (JAK2) plays a critical role in myoblast proliferation and fat deposition in animals. Our previous RNA-Seq analyses identified a close association between the JAK2 gene and muscle development. To date, research delving into the relationship between the JAK2 gene and growth traits has been sparse. In this study, we sought to investigate the relationship between novel mutations within the JAK2 gene and goat growth traits. Herein, two novel InDel (Insertion/Deletion) polymorphisms within the JAK2 gene were detected in 548 goats, and only two genotypes were designated as ID (Insertion/Deletion) and DD (Deletion/Deletion). The results indicate that the two InDels, the del19008 locus in intron 2 and del72416 InDel in intron 6, showed significant associations with growth traits (p < 0.05). Compared to Nubian and Jianzhou Daer goats, the del72416 locus displayed a more pronounced effect in the Fuqing breed group. In the Nubian breed (NB) group, both InDels showed a marked influence on body height (BH). There were strong linkages observed for these two InDels between the Fuqing (FQ) and Jianzhou (JZ) populations. The DD-ID diplotype was associated with inferior growth traits in chest width (ChW) and cannon circumference (CaC) in the FQ goats compared to the other diplotypes. In the NB population, the DD-DD diplotype exhibited a marked negative impact on BH and HuWI (hucklebone width index), in contrast to the other diplotypes. In summary, our findings suggest that the two InDel polymorphisms within the JAK2 gene could serve as valuable molecular markers for enhancing goat growth traits in breeding programs.
Collapse
Affiliation(s)
- Xian-Feng Wu
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding/Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Qian Xu
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding/Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Ao Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ben-Zhi Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xian-Yong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Wen-Yang Li
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding/Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yuan Liu
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding/Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| |
Collapse
|
5
|
Duman E, Özmen Ö, Kul S. Profiling several key milk miRNAs and analysing their signalling pathways in dairy sheep breeds during peak and late lactation. Vet Med Sci 2024; 10:e1505. [PMID: 38924289 PMCID: PMC11198020 DOI: 10.1002/vms3.1505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 04/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The comprehensive understanding of microRNAs (miRNAs) in sheep milk during various lactation periods and their impact on milk yield and composition remains limited. OBJECTIVES This study aimed to investigate the expression patterns of four highly expressed miRNAs in sheep milk and their association with milk composition and yield parameters during peak and late lactation stages. METHODS A total of 40 healthy 4-year-old Akkaraman (n = 20) and Awassi (n = 20) ewes registered with the Ministry of Agriculture and Forestry of the Republic of Türkiye were used in the present study. For miRNA isolation from milk, the Qiagen miRNeasy Serum/Plasma Advanced Kit was utilised following the manufacturer's instructions. The expression levels of miRNAs were assessed using Qiagen miRNA PCR Assays. RESULTS The significant fold changes in the expression levels of oar-miR-30a-5p, oar-miR-148a and oar-miR-181a were observed between peak and late lactation periods in the Awassi sheep breed. Conversely, only oar-miR-30a-5p and oar-miR-148a exhibited statistically significant changes in the Akkaraman sheep breed during the same lactation periods. Furthermore, oar-miR-21-5p demonstrated a significant fold change exclusively in peak lactation compared to Akkaraman and Awassi ewes. CONCLUSIONS The findings suggest that the expression of the analysed miRNAs is influenced by both the lactation stage and different sheep breeds. This study offers valuable insights into the relationship between key miRNA expressions in sheep milk and milk composition and yield parameters during peak and late lactation, contributing to the existing knowledge in this field.
Collapse
Affiliation(s)
- Esra Duman
- Faculty of Medicine, Institute of Molecular Gastroenterology and HepatologyKocaeli UniversityKocaeliTürkiye
| | - Özge Özmen
- Faculty of Veterinary Medicine, Department of GeneticsAnkara UniversityAnkaraTürkiye
| | - Selim Kul
- Faculty of Veterinary Medicine, Department of Animal BreedingYozgat Bozok UniversityYozgatTürkiye
| |
Collapse
|
6
|
Hua K, Liu D, Xu Q, Peng Y, Sun Y, He R, Luo R, Jin H. The role of hormones in the regulation of lactogenic immunity in porcine and bovine species. Domest Anim Endocrinol 2024; 88:106851. [PMID: 38733944 DOI: 10.1016/j.domaniend.2024.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Colostrum and milk offer a complete diet and vital immune protection for newborn mammals with developing immune systems. High immunoglobulin levels in colostrum serve as the primary antibody source for newborn piglets and calves. Subsequent milk feeding support continued local antibody protection against enteric pathogens, as well as maturation of the developing immune system and provide nutrients for newborn growth. Mammals have evolved hormonal strategies that modulate the levels of immunoglobulins in colostrum and milk to facilitate effective lactational immunity. In addition, hormones regulate the gut-mammary gland-secretory immunoglobulin A (sIgA) axis in pregnant mammals, controlling the levels of sIgA in milk, which serves as the primary source of IgA for piglets and helps them resist pathogens such as PEDV and TGEV. In the present study, we review the existing studies on the interactions between hormones and the gut-mammary-sIgA axis/lactogenic immunity in mammals and explore the potential mechanisms of hormonal regulation that have not been studied in detail, to draw attention to the role of hormones in influencing the immune response of pregnant and lactating mammals and their offspring, and highlight the effect of hormones in regulating sIgA-mediated anti-infection processes in colostrum and milk. Discussion of the relationship between hormones and lactogenic immunity may lead to a better way of improving lactogenic immunity by determining a better injection time and developing new vaccines.
Collapse
Affiliation(s)
- Kexin Hua
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Dan Liu
- China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Qianshuai Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Yuna Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Yu Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Rongrong He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China.
| |
Collapse
|
7
|
Boschiero C, Neupane M, Yang L, Schroeder SG, Tuo W, Ma L, Baldwin RL, Van Tassell CP, Liu GE. A Pilot Detection and Associate Study of Gene Presence-Absence Variation in Holstein Cattle. Animals (Basel) 2024; 14:1921. [PMID: 38998033 PMCID: PMC11240624 DOI: 10.3390/ani14131921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Presence-absence variations (PAVs) are important structural variations, wherein a genomic segment containing one or more genes is present in some individuals but absent in others. While PAVs have been extensively studied in plants, research in cattle remains limited. This study identified PAVs in 173 Holstein bulls using whole-genome sequencing data and assessed their associations with 46 economically important traits. Out of 28,772 cattle genes (from the longest transcripts), a total of 26,979 (93.77%) core genes were identified (present in all individuals), while variable genes included 928 softcore (present in 95-99% of individuals), 494 shell (present in 5-94%), and 371 cloud genes (present in <5%). Cloud genes were enriched in functions associated with hormonal and antimicrobial activities, while shell genes were enriched in immune functions. PAV-based genome-wide association studies identified associations between gene PAVs and 16 traits including milk, fat, and protein yields, as well as traits related to health and reproduction. Associations were found on multiple chromosomes, illustrating important associations on cattle chromosomes 7 and 15, involving olfactory receptor and immune-related genes, respectively. By examining the PAVs at the population level, the results of this research provided crucial insights into the genetic structures underlying the complex traits of Holstein cattle.
Collapse
Affiliation(s)
- Clarissa Boschiero
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Mahesh Neupane
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Liu Yang
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Steven G Schroeder
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| |
Collapse
|
8
|
Blocher R, Liu Y, Patrick T, Polejaeva IA. Cytokine-Supplemented Maturation Medium Enhances Cytoplasmic and Nuclear Maturation in Bovine Oocytes. Animals (Basel) 2024; 14:1837. [PMID: 38929455 PMCID: PMC11200980 DOI: 10.3390/ani14121837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Bovine in vitro oocyte maturation (IVM) is an easy way to obtain oocytes for subsequent assisted reproductive techniques but is inefficient compared to in vivo maturation. Supplementation of three cytokines, fibroblast growth factor 2 (FGF2), leukemia inhibitory factor (LIF), and insulin-like growth factor 1 (IGF1), or FLI, has increased oocyte maturation and embryo development in multiple species, but studies have not explored the oocyte differences caused by FLI IVM supplementation. This study aimed to assess important nuclear and cytoplasmic maturation events in high-quality oocytes. FLI-supplemented oocytes had a decreased GV (3.0% vs. 13.7%, p < 0.01) and increased telophase I incidence (34.6% vs. 17.6%, p < 0.05) after IVM, increased normal meiotic spindles (68.8% vs. 50.0%, p < 0.001), and an increased nuclear maturation rate (75.1% vs. 66.8%, p < 0.001). Moreover, in metaphase II oocytes, the percentage of FLI-treated oocytes with a diffuse mitochondrial distribution was higher (87.7% vs. 77.5%, p < 0.05) and with a cortical mitochondrial distribution was lower (11.6% vs. 17.4%, p < 0.05). Additionally, FLI-supplemented oocytes had more pattern I cortical granules (21.3% vs. 14.4%, p < 0.05). These data suggest that FLI supplementation in bovine in vitro maturation medium coordinates nuclear and cytoplasmic maturation to produce higher-quality oocytes.
Collapse
Affiliation(s)
| | | | | | - Irina A. Polejaeva
- Animal, Dairy, and Veterinary Sciences Department, Utah State University, 4815 Old Main Hill, Logan, UT 84322, USA; (R.B.); (Y.L.); (T.P.)
| |
Collapse
|
9
|
Song N, Ma C, Guo Y, Cui S, Chen S, Chen Z, Ling Y, Zhang Y, Liu H. Identifying differentially expressed genes in goat mammary epithelial cells induced by overexpression of SOCS3 gene using RNA sequencing. Front Vet Sci 2024; 11:1392152. [PMID: 38835896 PMCID: PMC11148363 DOI: 10.3389/fvets.2024.1392152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
The suppressor of cytokine signaling 3 (SOCS3) is a key signaling molecule that regulates milk synthesis in dairy livestock. However, the molecular mechanism by which SOCS3 regulates lipid synthesis in goat milk remains unclear. This study aimed to screen for key downstream genes associated with lipid synthesis regulated by SOCS3 in goat mammary epithelial cells (GMECs) using RNA sequencing (RNA-seq). Goat SOCS3 overexpression vector (PC-SOCS3) and negative control (PCDNA3.1) were transfected into GMECs. Total RNA from cells after SOCS3 overexpression was used for RNA-seq, followed by differentially expressed gene (DEG) analysis, functional enrichment analysis, and network prediction. SOCS3 overexpression significantly inhibited the synthesis of triacylglycerol, total cholesterol, non-esterified fatty acids, and accumulated lipid droplets. In total, 430 DEGs were identified, including 226 downregulated and 204 upregulated genes, following SOCS3 overexpression. Functional annotation revealed that the DEGs were mainly associated with lipid metabolism, cell proliferation, and apoptosis. We found that the lipid synthesis-related genes, STAT2 and FOXO6, were downregulated. In addition, the proliferation-related genes BCL2, MMP11, and MMP13 were upregulated, and the apoptosis-related gene CD40 was downregulated. In conclusion, six DEGs were identified as key regulators of milk lipid synthesis following SOCS3 overexpression in GMECs. Our results provide new candidate genes and insights into the molecular mechanisms involved in milk lipid synthesis regulated by SOCS3 in goats.
Collapse
Affiliation(s)
- Ning Song
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Cunxia Ma
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yuzhu Guo
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shuangshuang Cui
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shihao Chen
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhi Chen
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yinghui Ling
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Hongyu Liu
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
10
|
Liu Y, Zhen H, Wu X, Wang J, Luo Y, Hu J, Liu X, Li S, Li M, Shi B, Ren C, Gu Y, Hao Z. Molecular Characteristics of JAK2 and Its Effect on the Milk Fat and Casein Synthesis of Ovine Mammary Epithelial Cells. Int J Mol Sci 2024; 25:4027. [PMID: 38612844 PMCID: PMC11012485 DOI: 10.3390/ijms25074027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
In addition to its association with milk protein synthesis via the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway, JAK2 also affects milk fat synthesis. However, to date, there have been no reports on the effect of JAK2 on ovine mammary epithelial cells (OMECs), which directly determine milk yield and milk contents. In this study, the coding sequence (CDS) region of ovine JAK2 was cloned and identified and its tissue expression and localization in ovine mammary glands, as well as its effects on the viability, proliferation, and milk fat and casein levels of OMECs, were also investigated. The CDS region of ovine JAK2, 3399 bp in length, was cloned and its authenticity was validated by analyzing its sequence similarity with JAK2 sequences from other animal species using a phylogenetic tree. JAK2 was found to be expressed in six ovine tissues, with the highest expression being in the mammary gland. Over-expressed JAK2 and three groups of JAK2 interference sequences were successfully transfected into OMECs identified by immunofluorescence staining. When compared with the negative control (NC) group, the viability of OMECs was increased by 90.1% in the pcDNA3.1-JAK2 group. The over-expression of JAK2 also increased the number and ratio of EdU-labeled positive OMECs, as well as the expression levels of three cell proliferation marker genes. These findings show that JAK2 promotes the viability and proliferation of OMECs. Meanwhile, the triglyceride content in the over-expressed JAK2 group was 2.9-fold higher than the controls and the expression levels of four milk fat synthesis marker genes were also increased. These results indicate that JAK2 promotes milk fat synthesis. Over-expressed JAK2 significantly up-regulated the expression levels of casein alpha s2 (CSN1S2), casein beta (CSN2), and casein kappa (CSN3) but down-regulated casein alpha s1 (CSN1S1) expression. In contrast, small interfered JAK2 had the opposite effect to JAK2 over-expression on the viability, proliferation, and milk fat and milk protein synthesis of OMECs. In summary, these results demonstrate that JAK2 promotes the viability, proliferation, and milk fat synthesis of OMECs in addition to regulating casein expression in these cells. This study contributes to a better comprehension of the role of JAK2 in the lactation performance of sheep.
Collapse
Affiliation(s)
| | | | | | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.); (H.Z.); (X.W.); (Y.L.); (J.H.); (X.L.); (S.L.); (M.L.); (B.S.); (C.R.); (Y.G.)
| | | | | | | | | | | | | | | | | | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.L.); (H.Z.); (X.W.); (Y.L.); (J.H.); (X.L.); (S.L.); (M.L.); (B.S.); (C.R.); (Y.G.)
| |
Collapse
|
11
|
Sattari Z, Kjaerup RB, Rasmussen MK, Yue Y, Poulsen NA, Larsen LB, Purup S. Bovine mammary epithelial cells can grow and express milk protein synthesis genes at reduced fetal bovine serum concentration. Cell Biol Int 2024; 48:473-482. [PMID: 38173144 DOI: 10.1002/cbin.12116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/10/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
Milk proteins produced by lactating cells isolated from bovine mammary tissue can offer a sustainable solution to the high protein demand of a global growing population. Serum is commonly added to culture systems to provide compounds necessary for optimal growth and function of the cells. However, in a cellular agricultural context, its usage is desired to be decreased. This study aims at examining the minimum level of fetal bovine serum (FBS) required for the growth and functionality of bovine mammary epithelial cells (MECs). The cells were isolated from dairy cows in early and mid-lactation and cultured in reduced concentrations of FBS (10%, 5%, 1.25%, and 0%). Real-time cell analysis showed a significant effect of lactation stage on growth rate and 5% FBS resulted in similar growth rate as 10% while 0% resulted in the lowest. The effect of reducing FBS on cell functionality was examined by studying the expressions of selected marker genes involved in milk protein and fat synthesis, following differentiation. The gene expressions were not affected by the level of FBS. A reduction of FBS in the culture system of MEC, at least down to 5%, does not assert any negative effect on the growth and expression levels of studied genes. As the first attempt in developing an in-vitro model for milk component production using MEC, our results demonstrate the potential of MEC to endure FBS-reduced conditions.
Collapse
Affiliation(s)
- Zahra Sattari
- Department of Food Science, Aarhus University, Aarhus N, Denmark
| | | | | | - Yuan Yue
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | | | | | - Stig Purup
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| |
Collapse
|
12
|
Satheesan L, Kittur PM, Alhussien MN, Lal GS, Kamboj A, Dang AK. Reliability of udder infrared thermography as a non-invasive technology for early detection of sub-clinical mastitis in Sahiwal (Bos indicus) cows under semi-intensive production system. J Therm Biol 2024; 121:103838. [PMID: 38554568 DOI: 10.1016/j.jtherbio.2024.103838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/06/2024] [Accepted: 02/17/2024] [Indexed: 04/01/2024]
Abstract
The present study focused on Sahiwal cows, a prominent milch breed in tropical India, to correlate udder temperature with physiological markers of stress and inflammation during subclinical mastitis (SCM). The primary goal was to assess the potential of udder infrared thermography for the early detection of SCM under the semi-intensive production. Cows were categorized based on milk somatic cell counts (SCC), with healthy (H) cows having SCC <2 × 105 cells/mL and no history of mastitis, and cows with subclinical mastitis (SCM) and initial stages of clinical mastitis (CM) having quarter milk SCC of 2-5 × 105 and >5 × 105 cells/mL, respectively. Firstly, udder thermograms were analysed for udder skin surface temperature (USST), teat skin surface temperature (TSST), and teat apex temperature (TAT) using Fluke software to determine the optimal site for temperature measurement during intramammary infection. Secondly, milk samples were collected for automatic estimation of compositional changes, electrical conductivity, and pH. Thirdly, milk whey was separated for quantifying stress and inflammatory indicators, including cortisol, prolactin, and acute-phase proteins (APPs): milk amyloid A and milk haptoglobin using bovine-specific ELISA kits. Significant increases (p < 0.01) in USST, TSST, TAT, cortisol, and APPs were observed in SCM and CM compared to healthy cows, while prolactin levels decreased (p < 0.01). The correlation matrix revealed strong positive correlations of SCC with USST (r = 0.84, p < 0.01). In ROC analysis, USST demonstrated cut-off values of 37.74 and 39.58 °C, with accuracy (p < 0.05) of 98% for SCM and 95% for CM, surpassing both TAT and TSST. Therefore, the combination of these non-invasive methods increases the reliability and accuracy of infrared thermography for early detection of SCM, providing valuable insights for the development of a protocol for routine screening and udder health monitoring in indigenous dairy cows.
Collapse
Affiliation(s)
- Lija Satheesan
- Lactation and Immuno-Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India
| | - Priyanka M Kittur
- Lactation and Immuno-Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India
| | - Mohanned Naif Alhussien
- Reproductive Biotechnology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Gayathri S Lal
- Livestock Production Management Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India
| | - Aarti Kamboj
- Lactation and Immuno-Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India
| | - Ajay Kumar Dang
- Lactation and Immuno-Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India.
| |
Collapse
|
13
|
Lopdell TJ, Trevarton AJ, Moody J, Prowse-Wilkins C, Knowles S, Tiplady K, Chamberlain AJ, Goddard ME, Spelman RJ, Lehnert K, Snell RG, Davis SR, Littlejohn MD. A common regulatory haplotype doubles lactoferrin concentration in milk. Genet Sel Evol 2024; 56:22. [PMID: 38549172 PMCID: PMC11234695 DOI: 10.1186/s12711-024-00890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Bovine lactoferrin (Lf) is an iron absorbing whey protein with antibacterial, antiviral, and antifungal activity. Lactoferrin is economically valuable and has an extremely variable concentration in milk, partly driven by environmental influences such as milking frequency, involution, or mastitis. A significant genetic influence has also been previously observed to regulate lactoferrin content in milk. Here, we conducted genetic mapping of lactoferrin protein concentration in conjunction with RNA-seq, ChIP-seq, and ATAC-seq data to pinpoint candidate causative variants that regulate lactoferrin concentrations in milk. RESULTS We identified a highly-significant lactoferrin protein quantitative trait locus (pQTL), as well as a cis lactotransferrin (LTF) expression QTL (cis-eQTL) mapping to the LTF locus. Using ChIP-seq and ATAC-seq datasets representing lactating mammary tissue samples, we also report a number of regions where the openness of chromatin is under genetic influence. Several of these also show highly significant QTL with genetic signatures similar to those highlighted through pQTL and eQTL analysis. By performing correlation analysis between these QTL, we revealed an ATAC-seq peak in the putative promotor region of LTF, that highlights a set of 115 high-frequency variants that are potentially responsible for these effects. One of the 115 variants (rs110000337), which maps within the ATAC-seq peak, was predicted to alter binding sites of transcription factors known to be involved in lactation-related pathways. CONCLUSIONS Here, we report a regulatory haplotype of 115 variants with conspicuously large impacts on milk lactoferrin concentration. These findings could enable the selection of animals for high-producing specialist herds.
Collapse
Affiliation(s)
- Thomas J Lopdell
- Research & Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand.
| | - Alexander J Trevarton
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Janelle Moody
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Claire Prowse-Wilkins
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
- Faculty of Veterinarian and Agricultural Science, The University of Melbourne, Parkville, VIC, Australia
| | - Sarah Knowles
- Auckland War Memorial Museum, Victoria Street West, Auckland, New Zealand
| | - Kathryn Tiplady
- Research & Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Michael E Goddard
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
- Faculty of Veterinarian and Agricultural Science, The University of Melbourne, Parkville, VIC, Australia
| | - Richard J Spelman
- Research & Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Russell G Snell
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Stephen R Davis
- Research & Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
| | - Mathew D Littlejohn
- Research & Development, Livestock Improvement Corporation, Ruakura Road, Hamilton, New Zealand
- AL Rae Centre for Genetics and Breeding, Massey University, Palmerston North, New Zealand
| |
Collapse
|
14
|
Chhotaray S, Vohra V, Uttam V, Santhosh A, Saxena P, Gahlyan RK, Gowane G. TWAS revealed significant causal loci for milk production and its composition in Murrah buffaloes. Sci Rep 2023; 13:22401. [PMID: 38104199 PMCID: PMC10725422 DOI: 10.1038/s41598-023-49767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023] Open
Abstract
Milk yield is the most complex trait in dairy animals, and mapping all causal variants even with smallest effect sizes has been difficult with the genome-wide association study (GWAS) sample sizes available in geographical regions with small livestock holdings such as Indian sub-continent. However, Transcriptome-wide association studies (TWAS) could serve as an alternate for fine mapping of expression quantitative trait loci (eQTLs). This is a maiden attempt to identify milk production and its composition related genes using TWAS in Murrah buffaloes (Bubalus bubalis). TWAS was conducted on a test (N = 136) set of Murrah buffaloes genotyped through ddRAD sequencing. Their gene expression level was predicted using reference (N = 8) animals having both genotype and mammary epithelial cell (MEC) transcriptome information. Gene expression prediction was performed using Elastic-Net and Dirichlet Process Regression (DPR) model with fivefold cross-validation and without any cross-validation. DPR model without cross-validation predicted 80.92% of the total genes in the test group of Murrah buffaloes which was highest compared to other methods. TWAS in test individuals based on predicted gene expression, identified a significant association of one unique gene for Fat%, and two for SNF% at Bonferroni corrected threshold. The false discovery rates (FDR) corrected P-values of the top ten SNPs identified through GWAS were comparatively higher than TWAS. Gene ontology of TWAS-identified genes was performed to understand the function of these genes, it was revealed that milk production and composition genes were mainly involved in Relaxin, AMPK, and JAK-STAT signaling pathway, along with CCRI, and several key metabolic processes. The present study indicates that TWAS offers a lower false discovery rate and higher significant hits than GWAS for milk production and its composition traits. Hence, it is concluded that TWAS can be effectively used to identify genes and cis-SNPs in a population, which can be used for fabricating a low-density genomic chip for predicting milk production in Murrah buffaloes.
Collapse
Affiliation(s)
- Supriya Chhotaray
- Division of Animal Genetics and Breeding, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125001, India
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Vikas Vohra
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Vishakha Uttam
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Ameya Santhosh
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Punjika Saxena
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Rajesh Kumar Gahlyan
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Gopal Gowane
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
15
|
Xu H, Lin C, Wang C, Zhao T, Yang J, Zhang J, Hu Y, Qi X, Chen X, Chen Y, Chen J, Guo A, Hu C. ALKBH5 Stabilized N 6-Methyladenosine-Modified LOC4191 to Suppress E. coli-Induced Apoptosis. Cells 2023; 12:2604. [PMID: 37998339 PMCID: PMC10670315 DOI: 10.3390/cells12222604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
E. coli is a ubiquitous pathogen that is responsible for over one million fatalities worldwide on an annual basis. In animals, E. coli can cause a variety of diseases, including mastitis in dairy cattle, which represents a potential public health hazard. However, the pathophysiology of E. coli remains unclear. We found that E. coli could induce global upregulation of m6A methylation and cause serious apoptosis in bovine mammary epithelial cells (MAC-T cells). Furthermore, numerous m6A-modified lncRNAs were identified through MeRIP-seq. Interestingly, we found that the expression of LOC4191 with hypomethylation increased in MAC-T cells upon E. coli-induced apoptosis. Knocking down LOC4191 promoted E. coli-induced apoptosis and ROS levels through the caspase 3-PARP pathway. Meanwhile, knocking down ALKBH5 resulted in the promotion of apoptosis through upregulated ROS and arrested the cell cycle in MAC-T cells. ALKBH5 silencing accelerated LOC4191 decay by upregulating its m6A modification level, and the process was recognized by hnRNP A1. Therefore, this indicates that ALKBH5 stabilizes m6A-modified LOC4191 to suppress E. coli-induced apoptosis. This report discusses an initial investigation into the mechanism of m6A-modified lncRNA in cells under E. coli-induced apoptosis and provides novel insights into infectious diseases.
Collapse
Affiliation(s)
- Haojun Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.X.); (C.L.); (T.Z.); (J.Y.); (J.Z.); (Y.H.); (X.Q.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
| | - Changjie Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.X.); (C.L.); (T.Z.); (J.Y.); (J.Z.); (Y.H.); (X.Q.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
| | - Chao Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
| | - Tianrui Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.X.); (C.L.); (T.Z.); (J.Y.); (J.Z.); (Y.H.); (X.Q.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
| | - Jinghan Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.X.); (C.L.); (T.Z.); (J.Y.); (J.Z.); (Y.H.); (X.Q.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
| | - Junhao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.X.); (C.L.); (T.Z.); (J.Y.); (J.Z.); (Y.H.); (X.Q.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
| | - Yanjun Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.X.); (C.L.); (T.Z.); (J.Y.); (J.Z.); (Y.H.); (X.Q.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
| | - Xue Qi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.X.); (C.L.); (T.Z.); (J.Y.); (J.Z.); (Y.H.); (X.Q.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
| | - Xi Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Changmin Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.X.); (C.L.); (T.Z.); (J.Y.); (J.Z.); (Y.H.); (X.Q.)
| |
Collapse
|
16
|
Ghiasi H, Khaldari M, Taherkhani R. Identification of hub genes associated with somatic cell score in dairy cow. Trop Anim Health Prod 2023; 55:349. [PMID: 37796357 DOI: 10.1007/s11250-023-03766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
CONTEXT Somatic cell count (SCC) is used as an indicator of udder health. The log transformation of SCC is called somatic cell score (SCS). AIM Several QTL and genes have been identified that are associated with SCS. This study aimed to identify the most important genes associated with SCS. METHODS This study compiled 168 genes that were reported to be significantly linked to SCS. Pathway analysis and network analysis were used to identify hub genes. KEY RESULTS Pathway analysis of these genes identified 73 gene ontology (GO) terms associated with SCS. These GO terms are associated with molecular function, biological processes, and cellular components, and the identified pathways are directly or indirectly linked with the immune system. In this study, a gene network was constructed, and from this network, the 17 hub genes (CD4, CXCL8, TLR4, STAT1, TLR2, CXCL9, CCR2, IGF1, LEP, SPP1, GH1, GHR, VWF, TNFSF11, IL10RA, NOD2, and PDGFRB) associated to SCS were identified. The subnetwork analysis yielded 10 clusters, with cluster 1 containing all identified hub genes (except for the VWF gene). CONCLUSION Most hub genes and pathways identified in our study were mainly involved in inflammatory and cytokine responses. IMPLICATIONS Result obtained in current study provides knowledge of the genetic basis and biological mechanisms controlling SCS. Therefore, the identified hub genes may be regarded as the main gene for the genomic selection of mastitis resistance.
Collapse
Affiliation(s)
- Heydar Ghiasi
- Department of Animal Science, Faculty of Agricultural Science, Payame Noor University, Tehran, 19395-4697, Iran.
| | - Majid Khaldari
- Department of Animal Science, Faculty of Agriculture, Lorestan University, Khorram-Abad, Iran
| | - Reza Taherkhani
- Department of Animal Science, Faculty of Agricultural Science, Payame Noor University, Tehran, 19395-4697, Iran
| |
Collapse
|
17
|
Song N, Luo J, Huang L, Chen X, Niu H, Zhu L. miR-380-3p promotes β-casein expression by targeting αS1-casein in goat mammary epithelial cells. Anim Biosci 2023; 36:1488-1498. [PMID: 37170511 PMCID: PMC10475382 DOI: 10.5713/ab.23.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/23/2023] [Accepted: 03/28/2023] [Indexed: 05/13/2023] Open
Abstract
OBJECTIVE αS1-Casein is more closely associated with milk allergic reaction than other milk protein components. microRNA (miRNA) is a class of small non-coding RNAs that modulate multiple biological progresses by the target gene. However, the post-transcriptional regulation of αS1-casein expression by miRNA in ruminants remains unclear. This study aims to explore the regulatory roles of miR-380-3p on αS1-casein synthesis in goat mammary epithelial cells (GMEC). METHODS αS1-Casein gene and miR-380-3p expression was measured in dairy goat mammary gland by quantitative real-time polymerase chain reaction (qRT-PCR). miR-380-3p overexpression and knockdown were performed by miR-380-3p mimic or inhibitor in GMEC. The effect of miR-380-3p on αS1-casein synthesis was detected by qRT-PCR, western blot, luciferase and chromatin immunoprecipitation assays in GMEC. RESULTS Compared with middle-lactation period, αS1-casein gene expression is increased, while miR-380-3p expression is decreased during peak-lactation of dairy goats. miR-380-3p reduces αS1-casein abundance by targeting the 3'-untranslated region (3'UTR) of αS1-casein mRNA in GMEC. miR-380-3p enhances β-casein expression and signal transducer and activator of transcription 5a (STAT5a) activity. Moreover, miR-380-3p promotes β-casein abundance through target gene αS1-casein, and activates β-casein transcription by enhancing the binding of STAT5 to β-casein gene promoter region. CONCLUSION miR-380-3p decreases αS1-casein expression and increases β-casein expression by targeting αS1-casein in GMEC, which supplies a novel strategy for reducing milk allergic potential and building up milk quality in ruminants.
Collapse
Affiliation(s)
- Ning Song
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100,
China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100,
China
| | - Lian Huang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100,
China
| | - Xiaoying Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100,
China
| | - Huimin Niu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100,
China
| | - Lu Zhu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100,
China
| |
Collapse
|
18
|
Oster N, Szewczuk MA, Zych S, Stankiewicz T, Błaszczyk B, Wieczorek-Dąbrowska M. Association between Polymorphism in the Janus Kinase 2 ( JAK2) Gene and Selected Performance Traits in Cattle and Sheep. Animals (Basel) 2023; 13:2470. [PMID: 37570280 PMCID: PMC10416845 DOI: 10.3390/ani13152470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
The Janus Kinase 2 (JAK2) tyrosine kinase is an essential component of signal transduction of the class II cytokine receptors, including the growth hormone receptor. Therefore, it may play a crucial role in the signaling pathway of the somatotropic axis, which influences growth, development, and reproductive traits in ruminants. For this purpose, for three breeds of cattle (Hereford, Angus, and Limousin; a total of 781 individuals), two polymorphic sites located in exon 16 (rs210148032; p.Ile704Val, within pseudokinase (JH2)) and exon 23 (silent mutation rs211067160, within JH1 kinase domain) were analyzed. For two breeds of sheep (Pomeranian and Suffolk; 333 individuals in total), two polymorphic sites in exon 6 (rs160146162 and rs160146160; encoding the FERM domain) and one polymorphic site in exon 24 of the JAK2 gene (rs160146116; JH1 kinase domain) were genotyped. In our study, the associations examined for cattle were inconclusive. However, Hereford and Limousin cattle with genotypes AA (e16/RsaI) and AA (e23/HaeIII) tended to have the highest body weight and better daily gains (p ≤ 0.05). No clear tendency was observed in the selected reproductive traits. In the case of sheep, regardless of breed, individuals with the AA (e6/EarI), GG (e6/seq), and AA (e24/Hpy188III) genotypes had the highest body weights and daily gains in the study periods (p ≤ 0.01). The same individuals in the Pomeranian breed also had better fertility and lamb survival (p ≤ 0.01). To the best of our knowledge, these are the first association studies for all these polymorphic sites. Single-nucleotide polymorphisms in the JAK2 gene can serve as genetic markers for growth and selected reproductive traits in ruminants given that they are further investigated in subsequent populations and analyzed using haplotype and/or combined genotype systems.
Collapse
Affiliation(s)
- Nicola Oster
- Department of Monogastric Animal Science, Faculty of Biotechnology and Animal Husbandry, West Pommeranian University of Technology in Szczecin, 29 Klemensa Janickiego, 71-270 Szczecin, Poland;
| | - Małgorzata Anna Szewczuk
- Department of Monogastric Animal Science, Faculty of Biotechnology and Animal Husbandry, West Pommeranian University of Technology in Szczecin, 29 Klemensa Janickiego, 71-270 Szczecin, Poland;
| | - Sławomir Zych
- Laboratory of Chromatography and Mass Spectroscopy, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 29 Klemensa Janickiego, 71-270 Szczecin, Poland
| | - Tomasz Stankiewicz
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 29 Klemensa Janickiego, 71-270 Szczecin, Poland; (T.S.); (B.B.)
| | - Barbara Błaszczyk
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 29 Klemensa Janickiego, 71-270 Szczecin, Poland; (T.S.); (B.B.)
| | - Marta Wieczorek-Dąbrowska
- National Research Institute of Animal Production, Kraków, Experimental Department, Kołbacz, 1 Warcisława Street, 74-106 Stare Czarnowo, Poland
| |
Collapse
|
19
|
Guo H, Li J, Wang Y, Cao X, Lv X, Yang Z, Chen Z. Progress in Research on Key Factors Regulating Lactation Initiation in the Mammary Glands of Dairy Cows. Genes (Basel) 2023; 14:1163. [PMID: 37372344 DOI: 10.3390/genes14061163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Lactation initiation refers to a functional change in the mammary organ from a non-lactating state to a lactating state, and a series of cytological changes in the mammary epithelium from a non-secreting state to a secreting state. Like the development of the mammary gland, it is regulated by many factors (including hormones, cytokines, signaling molecules, and proteases). In most non-pregnant animals, a certain degree of lactation also occurs after exposure to specific stimuli, promoting the development of their mammary glands. These specific stimuli can be divided into two categories: before and after parturition. The former inhibits lactation and decreases activity, and the latter promotes lactation and increases activity. Here we present a review of recent progress in research on the key factors of lactation initiation to provide a powerful rationale for the study of the lactation initiation process and mammary gland development.
Collapse
Affiliation(s)
- Haoyue Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | | | - Yuhao Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiang Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Huanshan Group, Qingdao 266000, China
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Huanshan Group, Qingdao 266000, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| |
Collapse
|
20
|
Khan MZ, Wang J, Ma Y, Chen T, Ma M, Ullah Q, Khan IM, Khan A, Cao Z, Liu S. Genetic polymorphisms in immune- and inflammation-associated genes and their association with bovine mastitis resistance/susceptibility. Front Immunol 2023; 14:1082144. [PMID: 36911690 PMCID: PMC9997099 DOI: 10.3389/fimmu.2023.1082144] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/06/2023] [Indexed: 02/25/2023] Open
Abstract
Bovine mastitis, the inflammation of the mammary gland, is a contagious disease characterized by chemical and physical changes in milk and pathological changes in udder tissues. Depressed immunity and higher expression of inflammatory cytokines with an elevated milk somatic cell count can be observed during mastitis in dairy cattle. The use of somatic cell count (SCC) and somatic cell score (SCS) as correlated traits in the indirect selection of animals against mastitis resistance is in progress globally. Traditional breeding for mastitis resistance seems difficult because of the low heritability (0.10-0.16) of SCC/SCS and clinical mastitis. Thus, genetic-marker-selective breeding to improve host genetics has attracted considerable attention worldwide. Moreover, genomic selection has been found to be an effective and fast method of screening for dairy cattle that are genetically resistant and susceptible to mastitis at a very early age. The current review discusses and summarizes the candidate gene approach using polymorphisms in immune- and inflammation-linked genes (CD4, CD14, CD46, TRAPPC9, JAK2, Tf, Lf, TLRs, CXCL8, CXCR1, CXCR2, C4A, C5, MASP2, MBL1, MBL2, LBP, NCF1, NCF4, MASP2, A2M, and CLU, etc.) and their related signaling pathways (Staphylococcus aureus infection signaling, Toll-like receptor signaling, NF-kappa B signaling pathway, Cytokine-cytokine receptor, and Complement and coagulation cascades, etc.) associated with mastitis resistance and susceptibility phenotypic traits (IL-6, interferon-gamma (IFN-γ), IL17, IL8, SCS, and SCC) in dairy cattle.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mei Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Thompson MA, McCann BE, Simmons RB, Rhen T. Major locus on ECA18 influences effectiveness of GonaCon vaccine in feral horses. J Reprod Immunol 2023; 155:103779. [PMID: 36462462 DOI: 10.1016/j.jri.2022.103779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/02/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Contraceptive vaccines are used to reduce birth rates in wild and feral animal populations. While the immunocontraceptive GonaCon-Equine has proven effective in reducing fertility among female feral horses, there is individual variation in the duration of infertility following treatment. To identify genetic factors influencing the effectiveness of GonaCon-Equine, we conducted a genome-wide association study of 88 mares from a feral population genotyped using the Illumina GGP Equine 70k SNP array. Contraceptive treatment schedules and long-term foaling rates have been recorded for each individual. We used mixed linear models to control for relatedness among mares. We found a significant association (p < 5 ×10-8) with a locus on equine chromosome 18. The most likely candidate genes in this region are STAT1 and STAT4, which are both involved in immune system function. Variation in STAT function could affect the immune response to the vaccine, leading to variation in contraceptive efficacy. Additional SNPs reaching a less stringent threshold of significance (p < 5 ×10-6) were located on other chromosomes near known immune system genes, supporting the hypothesis that variation in immunocontraceptive efficacy can be attributed to genetic variation in immune response rather than fertility genes.
Collapse
Affiliation(s)
- Melissa A Thompson
- Department of Biology, University of North Dakota, Grand Forks, ND 58202, USA; Theodore Roosevelt National Park, National Park Service, Medora, ND 58645, USA.
| | - Blake E McCann
- Theodore Roosevelt National Park, National Park Service, Medora, ND 58645, USA
| | - Rebecca B Simmons
- Department of Biology, University of North Dakota, Grand Forks, ND 58202, USA
| | - Turk Rhen
- Department of Biology, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
22
|
Du W, Zhang ZF, Xiao JY, Wang Y, Liu WY, Zheng HL. 5-Hydroxytryptophan inhibits β-casein biosynthesis and promotes goat mammary epithelial cell apoptosis through the JAK2/STAT5a axis and the HTR7. J Anim Sci 2023; 101:skad089. [PMID: 36964762 PMCID: PMC10132817 DOI: 10.1093/jas/skad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/22/2023] [Indexed: 03/26/2023] Open
Abstract
5-Hydroxytryptamine (5-HT) is an amine produced in both the mammary gland and the central nervous system. Tryptophan hydroxylase 1 (TPH1) catalyzes the conversion of 5-hydroxytryptophan (5-HTP) into l-tryptophan, which is then converted into 5-HT by monoamine-oxidase (MAO-A). In the mammary gland, 5-HT has been shown to have a variety of paracrine-autocrine actions, including suppressing lactation, controlling the destiny of mammary epithelial cells, and maintaining calcium homeostasis throughout the transition from pregnancy to lactation. To examine the effects of 5-HT on the composition of colostrum and milk, a total of 30 transition Guan Zhong dairy goats were intramuscularly injected with 5-HTP (1.0 mg/kg) every morning before feeding from 10 d before the projected parturition date to the day of parturition. The average number of days animals received injections was 8.2 ± 3.2 d. 5-HTP treatment increased serum 5-HT concentration from days 5 to 2 relative to parturition (P < 0.05), and decreased the casein concentration of colostrum (P < 0.05). In the in vitro experiment, mammary epithelial cells isolated from three individual goats' mammary glands were separately treated with 200 μM 5-HTP, 30 μM PCPA (the specific inhibitor of TPH1), or 200 μM 5-HTP + 50 μM SB269970 (the selective antagonist of 5-HTR7). The results showed that 200 μM 5-HTP inhibited the expression of β-casein, downregulated the activity of the JAK2/ STAT5a signaling pathway, and promoted the apoptosis of goat mammary epithelial cells (GMECs) (P < 0.05). When GMECs were treated with 30 μM Four-chloro-dl-phenylalanine (PCPA), a specific inhibitor of 5-HT synthesis, the mRNA expression of STAT5a and the phosphorylated STAT5a protein level were upregulated. The 50 μM SB269970 treatment rescued the effects of 5-HTP on GMECs (P < 0.05). Taken together, the results indicated that 5-HTP exerted an inhibitory effect on β-casein synthesis and a proapoptotic effect in GMECs via HTR7 and the JAK2/STAT5a axis.
Collapse
Affiliation(s)
- Wei Du
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, China
| | - Zhi Fei Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jia Ying Xiao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, China
| | - Ying Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, China
| | - Weng Yi Liu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, China
| | - Hui Ling Zheng
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, China
| |
Collapse
|
23
|
Barajas-Mendiola MA, Salgado-Lora MG, López-Meza JE, Ochoa-Zarzosa A. Prolactin regulates H3K9ac and H3K9me2 epigenetic marks and miRNAs expression in bovine mammary epithelial cells challenged with Staphylococcus aureus. Front Microbiol 2022; 13:990478. [PMID: 36212825 PMCID: PMC9539446 DOI: 10.3389/fmicb.2022.990478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Epigenetic mechanisms are essential in the regulation of immune response during infections. Changes in the levels of reproductive hormones, such as prolactin, compromise the mammary gland’s innate immune response (IIR); however, its effect on epigenetic marks is poorly known. This work explored the epigenetic regulation induced by bovine prolactin (bPRL) on bovine mammary epithelial cells (bMECs) challenged with Staphylococcus aureus. In this work, bMECs were treated as follows: (1) control cells without any treatment, (2) bMECs treated with bPRL (5 ng/ml) at different times (12 or 24 h), (3) bMECs challenged with S. aureus for 2 h, and (4) bMECs treated with bPRL at different times (12 or 24 h), and then challenged with S. aureus 2 h. By western blot analyses of histones, we determined that the H3K9ac mark decreased (20%) in bMECs treated with bPRL (12 h) and challenged with S. aureus, while the H3K9me2 mark was increased (50%) in the same conditions. Also, this result coincided with an increase (2.3-fold) in HDAC activity analyzed using the cellular histone deacetylase fluorescent kit FLUOR DE LYS®. ChIP-qPCRs were performed to determine if the epigenetic marks detected in the histones correlate with enriched marks in the promoter regions of inflammatory genes associated with the S. aureus challenge. The H3K9ac mark was enriched in the promoter region of IL-1β, IL-10, and BNBD10 genes (1.5, 2.5, 7.5-fold, respectively) in bMECs treated with bPRL, but in bMECs challenged with S. aureus it was reduced. Besides, the H3K9me2 mark was enriched in the promoter region of IL-1β and IL-10 genes (3.5 and 2.5-fold, respectively) in bMECs challenged with S. aureus but was inhibited by bPRL. Additionally, the expression of several miRNAs was analyzed by qPCR. Let-7a-5p, miR-21a, miR-30b, miR-155, and miR-7863 miRNAs were up-regulated (2, 1.5, 10, 1.5, 3.9-fold, respectively) in bMECs challenged with S. aureus; however, bPRL induced a down-regulation in the expression of these miRNAs. In conclusion, bPRL induces epigenetic regulation on specific IIR elements, allowing S. aureus to persist and evade the host immune response.
Collapse
|
24
|
He X, Yin J, Yu M, Qiu J, Wang A, Wang H, He X, Wu X. Identification and validation of potential hub genes in rheumatoid arthritis by bioinformatics analysis. Am J Transl Res 2022; 14:6751-6762. [PMID: 36247278 PMCID: PMC9556438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is considered to be a chronic immune disease pathologically characterized by synovial inflammation and bone destruction. At present, the potential pathogenesis of RA is still unclear. Hub genes are recognized to play a pivotal role in the occurrence and progression of RA. METHODS Firstly, we attempted to screen hub genes that are associated with RA, to clarify the underlying pathological mechanisms of RA, and to offer potential treatment methods for RA. We acquired these datasets (GSE12021, GSE55235, and GSE55457) of RA patients and healthy samples from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were recognized via R software. Then, Gene ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were utilized to deeply explore the underlying biological functions and pathways closely associated with RA. In addition, a protein-protein interaction (PPI) network was built to further evaluate and screen for hub genes. Finally, on the basis of the results of PPI analysis, we confirmed the mRNA expression levels of five hub genes in the synovial tissue of rats modeled with RA. RESULTS In the human microarray datasets, LCK, JAK2, SOCS3, STAT1, and EGFR were identified as hub genes associated with RA by bioinformatics analysis. Furthermore, we verified the differential expression levels of hub genes in rat synovial tissues via qRT-PCR (P < 0.05). CONCLUSIONS Our findings suggest that the hub genes LCK, JAK2, SOCS3, STAT1, and EGFR might have vital roles in the progression of RA and may offer novel therapeutic treatments for RA.
Collapse
Affiliation(s)
- Xinling He
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou, Sichuan, China
| | - Ji Yin
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou, Sichuan, China
| | - Mingfang Yu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou, Sichuan, China
- The Traditional Chinese Medicine Hospital of LuzhouLuzhou, Sichuan, China
| | - Jiao Qiu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou, Sichuan, China
| | - Aiyang Wang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou, Sichuan, China
| | - Haoyu Wang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou, Sichuan, China
| | - Xueyi He
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou, Sichuan, China
| | - Xiao Wu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou, Sichuan, China
| |
Collapse
|
25
|
Zhang Q, Bai X, Shi J, Wang X, Zhang B, Dai L, Lin T, Gao Y, Zhang Y, Zhao X. DIA proteomics identified the potential targets associated with angiogenesis in the mammary glands of dairy cows with hemorrhagic mastitis. Front Vet Sci 2022; 9:980963. [PMID: 36003411 PMCID: PMC9393364 DOI: 10.3389/fvets.2022.980963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Hemorrhagic mastitis (HM) in dairy cows caused great economic losses in the dairy industry due to decreased milk production and increased costs associated with cattle management and treatment. However, the pathological and molecular mechanisms of HM are not well-understood. The present study aimed to investigate differentially expressed proteins (DEPs) associated with HM according to data-independent acquisition (DIA) proteomics. Compared to the mammary glands of healthylactating Holstein cows (Control, C group), the pathology of the HM group displayed massive alveolar infiltration of hemocytes and neutrophils, and the blood vessels, including arteriole, venules and capillaries were incomplete and damaged, with a loss of endothelial cells. DIA proteomics results showed that a total of 3,739 DEPs and 819 biological process terms were screened in the HM group. We focused on the blood, permeability of blood vessel, vascular and angiogenesis of mammary glands, and a total of 99 candidate DEPs, including 60 up- and 39 down-regulated DEPs, were obtained from the Gene Ontology (GO) and Pathway enrichment analyses. Phenotype prediction and function analysis of the DEPs revealed that three DEPs, particularly Caveolin-1(CAV1), were participated in the regulation of angiogenesis. Immunohistochemical and immunofluorescence staining showed that the CAV1 protein was present mainly in the mammary epithelial cells, vascular endothelial cells and vascular smooth muscle cells. The expression level of CAV1 mRNA and protein in the HM group was significantly down-regulated. The results will be helpful to the further understanding of the pathological and molecular mechanisms of HM in dairy cows.
Collapse
Affiliation(s)
- Quanwei Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
- *Correspondence: Quanwei Zhang
| | - Xu Bai
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Jun Shi
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Xueying Wang
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Bohao Zhang
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Lijun Dai
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Ting Lin
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Yuan Gao
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou, China
- Xingxu Zhao
| |
Collapse
|
26
|
Mutation of Signal Transducer and Activator of Transcription 5 (STAT5) Binding Sites Decreases Milk Allergen α S1-Casein Content in Goat Mammary Epithelial Cells. Foods 2022; 11:foods11030346. [PMID: 35159497 PMCID: PMC8834060 DOI: 10.3390/foods11030346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
αS1-Casein (encoded by the CSN1S1 gene) is associated with food allergy more than other milk protein components. Milk allergy caused by αS1-casein is derived from cow milk, goat milk and other ruminant milk. However, little is known about the transcription regulation of αS1-casein synthesis in dairy goats. This study aimed to investigate the regulatory roles of signal transducer and activator of transcription 5 (STAT5) on αS1-casein in goat mammary epithelial cells (GMEC). Deletion analysis showed that the core promoter region of CSN1S1 was located at −110 to −18 bp upstream of transcription start site, which contained two putative STAT5 binding sites (gamma-interferon activation site, GAS). Overexpression of STAT5a gene upregulated the mRNA level and the promoter activity of the CSN1S1 gene, and STAT5 inhibitor decreased phosphorylated STAT5 in the nucleus and CSN1S1 transcription activity. Further, GAS site-directed mutagenesis and chromatin immunoprecipitation (ChIP) assays revealed that GAS1 and GAS2 sites in the CSN1S1 promoter core region were binding sites of STAT5. Taken together, STAT5 directly regulates CSN1S1 transcription by GAS1 and GAS2 sites in GMEC, and the mutation of STAT5 binding sites could downregulate CSN1S1 expression and decrease αS1-casein synthesis, which provide the novel strategy for reducing the allergic potential of goat milk and improving milk quality in ruminants.
Collapse
|
27
|
Integrating Network Pharmacology and Molecular Docking to Analyse the Potential Mechanism of action of Macleaya cordata (Willd.) R. Br. in the Treatment of Bovine Hoof Disease. Vet Sci 2021; 9:vetsci9010011. [PMID: 35051095 PMCID: PMC8779036 DOI: 10.3390/vetsci9010011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/18/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
Based on network pharmacological analysis and molecular docking techniques, the main components of M. cordata for the treatment of bovine relevant active compounds in M. cordata were searched for through previous research bases and literature databases, and then screened to identify candidate compounds based on physicochemical properties, pharmacokinetic parameters, bioavailability, and drug-like criteria. Target genes associated with hoof disease were obtained from the GeneCards database. Compound−target, compound−target−pathway−disease visualization networks, and protein−protein interaction (PPI) networks were constructed by Cytoscape. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed in R language. Molecular docking analysis was done using AutoDockTools. The visual network analysis showed that four active compounds, sanguinarine, chelerythrine, allocryptopine and protopine, were associated with the 10 target genes/proteins (SRC, MAPK3, MTOR, ESR1, PIK3CA, BCL2L1, JAK2, GSK3B, MAPK1, and AR) obtained from the screen. The enrichment analysis indicated that the cAMP, PI3K-Akt, and ErbB signaling pathways may be key signaling pathways in network pharmacology. The molecular docking results showed that sanguinarine, chelerythrine, allocryptopine, and protopine bound well to MAPK3 and JAK2. A comprehensive bioinformatics-based network topology strategy and molecular docking study has elucidated the multi-component synergistic mechanism of action of M. cordata in the treatment of bovine hoof disease, offering the possibility of developing M. cordata as a new source of drugs for hoof disease treatment.
Collapse
|
28
|
Wang JP, Hu QC, Yang J, Luoreng ZM, Wang XP, Ma Y, Wei DW. Differential Expression Profiles of lncRNA Following LPS-Induced Inflammation in Bovine Mammary Epithelial Cells. Front Vet Sci 2021; 8:758488. [PMID: 34778437 PMCID: PMC8589037 DOI: 10.3389/fvets.2021.758488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022] Open
Abstract
Bovine mastitis is an inflammatory response of mammary glands caused by pathogenic microorganisms such as Escherichia coli (E. coli). As a key virulence factor of E. coli, lipopolysaccharide (LPS) triggers innate immune responses via activation of the toll-like-receptor 4 (TLR4) signaling pathway. However, the molecular regulatory network of LPS-induced bovine mastitis has yet to be fully mapped. In this study, bovine mammary epithelial cell lines MAC-T were exposed to LPS for 0, 6 and 12 h to assess the expression profiles of long non-coding RNAs (lncRNAs) using RNA-seq. Differentially expressed lncRNAs (DElncRNAs) were filtered out of the raw data for subsequent analyses. A total of 2,257 lncRNAs, including 210 annotated and 2047 novel lncRNAs were detected in all samples. A large proportion of lncRNAs were present in a high abundance, and 112 DElncRNAs were screened out at different time points. Compared with 0 h, there were 22 up- and 25 down-regulated lncRNAs in the 6 h of post-infection (hpi) group, and 27 up- and 22 down-regulated lncRNAs in the 12 hpi group. Compared with the 6 hpi group, 32 lncRNAs were up-regulated and 25 lncRNAs were down-regulated in the 12 hpi group. These DElncRNAs are involved in the regulation of a variety of immune-related processes including inflammatory responses bMECs exposed to LPS. Furthermore, lncRNA TCONS_00039271 and TCONS_00139850 were respectively significance down- and up-regulated, and their target genes involve in regulating inflammation-related signaling pathways (i.e.,Notch, NF-κB, MAPK, PI3K-Akt and mTOR signaling pathway), thereby regulating the occurrence and development of E. coli mastitis. This study provides a resource for lncRNA research on the molecular regulation of bovine mastitis.
Collapse
Affiliation(s)
- Jin-Peng Wang
- School of Agriculture, Ningxia University, Yinchuan, China.,Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Qi-Chao Hu
- School of Agriculture, Ningxia University, Yinchuan, China.,Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jian Yang
- School of Agriculture, Ningxia University, Yinchuan, China.,Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Zhuo-Ma Luoreng
- School of Agriculture, Ningxia University, Yinchuan, China.,Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Xing-Ping Wang
- School of Agriculture, Ningxia University, Yinchuan, China.,Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Yinchuan, China.,Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Da-Wei Wei
- School of Agriculture, Ningxia University, Yinchuan, China.,Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, China
| |
Collapse
|
29
|
Liu X, Shen J, Zong J, Liu J, Jin Y. Beta-Sitosterol Promotes Milk Protein and Fat Syntheses-Related Genes in Bovine Mammary Epithelial Cells. Animals (Basel) 2021; 11:ani11113238. [PMID: 34827970 PMCID: PMC8614283 DOI: 10.3390/ani11113238] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The levels of milk fats and proteins are important indexes used to evaluate milk quality. Generally, feed additives are used to improve milk quality. This study aimed to investigate the effect of β-sitosterol on milk fat and protein gene expression in bovine mammary epithelial cells. β-sitosterol increased the β-casein levels in bovine mammary epithelial cells and promoted the expression of milk fat and protein synthesis-related genes, suggesting the use of β-sitosterol as a potential feed additive to improve milk quality in dairy cows. Abstract β-sitosterol, a phytosterol with multiple biological activities, has been used in the pharmaceutical industry. However, there are only a few reports on the use of β-sitosterol in improving milk synthesis in dairy cows. This study aimed to investigate the effects of β-sitosterol on milk fat and protein syntheses in bovine mammary epithelial cells (MAC-T) and its regulatory mechanism. MAC-T cells were treated with different concentrations (0.01, 0.1, 1, 5, 10, 20, 30, or 40 μM) of β-sitosterol, and the expression levels of milk protein and fat synthesis-related genes and proteins were analyzed. β-sitosterol at 0.1, 1, and 10 μM concentrations promoted the mRNA and protein expression of β-casein. β-sitosterol (0.1, 1, 10 μM) increased the mRNA and protein expression levels of signal transducer activator of transcription 5 (STAT5), mammalian target of rapamycin (mTOR), and ribosomal protein S6 kinase beta-1 (S6K1) of the JAK2/STAT5 and mTOR signaling pathways. It also stimulated the milk fat synthesis-related factors, including sterol regulatory element-binding protein 1 (SREBP1), peroxisome proliferator-activated receptor-gamma (PPARγ), acetyl-CoA carboxylase (ACC), lipoprotein lipase (LPL), and stearyl CoA desaturase (SCD). β-sitosterol (0.1, 1, 10 μM) also significantly increased the expression of growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis and hypoxia-inducible factor-1α (HIF-1α)-related genes. Notably, the compound inhibited the expression of the negative regulator, the suppressor of cytokine signaling 2 (SOCS2) at the two lower concentrations (0.1, 1 μM), but significantly promoted the expression at the highest concentration (30 μM). These results highlight the role of β-sitosterol at concentrations ranging from 0.1 to 10 μM in improving milk protein and fat syntheses, regulating milk quality. Therefore, β-sitosterol can be used as a potential feed additive to improve milk quality in dairy cows.
Collapse
|
30
|
Tsugami Y, Wakasa H, Nishimura T, Kobayashi K. Genistein Directly Represses the Phosphorylation of STAT5 in Lactating Mammary Epithelial Cells. ACS OMEGA 2021; 6:22765-22772. [PMID: 34514247 PMCID: PMC8427774 DOI: 10.1021/acsomega.1c03107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Genistein is a soy isoflavone and shows various physiological activities, such as affinities for estrogen receptors (ERs) and inhibitory effects on the epidermal growth factor receptor (EGFR) pathway. A previous study reported that genistein downregulates milk production ability in mammary epithelial cells (MECs) while decreasing the phosphorylation of STAT5. The ER and EGFR pathways indirectly regulate STAT5. In this study, the repressing mechanism of genistein against the phosphorylation of STAT5 was investigated using a culture model of mouse MECs with milk production ability. The results revealed that genistein did not influence the behavior of ERα and ERβ, whereas genistein immediately repressed the phosphorylation of ERK1/2. However, the decrease in phosphorylated STAT5 occurred independent of the phosphorylation of EGFR. Genistein repressed new phosphorylation of STAT5 by prolactin without influencing the phosphorylation of JAK2. In conclusion, this study indicates that genistein directly inhibits the phosphorylation of STAT5 in lactating MECs.
Collapse
Affiliation(s)
- Yusaku Tsugami
- Laboratory
of Animal Histophysiology, Graduate School of Integrated Sciences
for Life, Hiroshima University, 1-4-4 Kagamiyama Higashi-Hiroshima 739-8528 Hiroshima, Japan
| | - Haruka Wakasa
- Laboratory
of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9 060-8589 Sapporo, Japan
| | - Takanori Nishimura
- Laboratory
of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9 060-8589 Sapporo, Japan
| | - Ken Kobayashi
- Laboratory
of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9 060-8589 Sapporo, Japan
| |
Collapse
|
31
|
Keel BN, Lindholm-Perry AK, Oliver WT, Wells JE, Jones SA, Rempel LA. Characterization and comparative analysis of transcriptional profiles of porcine colostrum and mature milk at different parities. BMC Genom Data 2021; 22:25. [PMID: 34376140 PMCID: PMC8353812 DOI: 10.1186/s12863-021-00980-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Porcine milk is a complex fluid, containing a myriad of immunological, biochemical, and cellular components, made to satisfy the nutritional requirements of the neonate. Whole milk contains many different cell types, including mammary epithelial cells, neutrophils, macrophages, and lymphocytes, as well nanoparticles, such as milk exosomes. To-date, only a limited number of livestock transcriptomic studies have reported sequencing of milk. Moreover, those studies focused only on sequencing somatic cells as a proxy for the mammary gland with the goal of investigating differences in the lactation process. Recent studies have indicated that RNA originating from multiple cell types present in milk can withstand harsh environments, such as the digestive system, and transmit regulatory molecules from maternal to neonate. Transcriptomic profiling of porcine whole milk, which is reflective of the combined cell populations, could help elucidate these mechanisms. To this end, total RNA from colostrum and mature milk samples were sequenced from 65 sows at differing parities. A stringent bioinformatic pipeline was used to identify and characterize 70,841 transcripts. RESULTS The 70,841 identified transcripts included 42,733 previously annotated transcripts and 28,108 novel transcripts. Differential gene expression analysis was conducted using a generalized linear model coupled with the Lancaster method for P-value aggregation across transcripts. In total, 1667 differentially expressed genes (DEG) were identified for the milk type main effect, and 33 DEG were identified for the milk type x parity interaction. Several gene ontology (GO) terms related to immune response were significant for the milk type main effect, supporting the well-known fact that immunoglobulins and immune cells are transferred to the neonate via colostrum. CONCLUSIONS This is the first study to perform global transcriptome analysis from whole milk samples in sows from different parities. Our results provide important information and insight into synthesis of milk proteins and innate immunity and potential targets for future improvement of swine lactation and piglet development.
Collapse
Affiliation(s)
- Brittney N Keel
- USDA-ARS Roman L Hruska US Meat Animal Research Center, Clay Center, NE, 68933, USA.
| | | | - William T Oliver
- USDA-ARS Roman L Hruska US Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - James E Wells
- USDA-ARS Roman L Hruska US Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - Shuna A Jones
- USDA-ARS Roman L Hruska US Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - Lea A Rempel
- USDA-ARS Roman L Hruska US Meat Animal Research Center, Clay Center, NE, 68933, USA
| |
Collapse
|
32
|
Infascelli L, Tudisco R, Iommelli P, Capitanio F. Milk Quality and Animal Welfare as a Possible Marketing Lever for the Economic Development of Rural Areas in Southern Italy. Animals (Basel) 2021; 11:ani11041059. [PMID: 33918038 PMCID: PMC8070171 DOI: 10.3390/ani11041059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The growing interest of consumers in products that guarantee animal welfare and a high level of quality should represent the economic lever for small producers in the south of Italy, who mainly manage their farms on pasture or feeding animals with a high forage/concentrate ratio diet. In response to new consumers’ needs, the proposal on the market of these products can be advantageous for small breeders who may require a higher price for the products thus obtained. Our research emphasizes the fact that a greater awareness about the qualities of milk as well as animal welfare positively influence the likelihood of increased consumers’ willingness to pay. Abstract The aim of the present work was to investigate the consumers’ willingness to pay (WTP) for dairy products obtained by grazing animals or fed with a high forage/concentrate ratio diet. To this aim, a survey was carried out on Italian consumers in the Campania Region and data collected were analyzed both by simple descriptive statistics and by an econometric model. Our results highlight that young age, knowledge of milk properties, and a healthy lifestyle are extremely important components in determining a higher WTP.
Collapse
|