1
|
Vijayaram S, Sinha R, Faggio C, Ringø E, Chou CC. Biopolymer encapsulation for improved probiotic delivery: Advancements and challenges. AIMS Microbiol 2024; 10:986-1023. [PMID: 39628726 PMCID: PMC11609427 DOI: 10.3934/microbiol.2024043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/27/2024] [Accepted: 10/22/2024] [Indexed: 12/06/2024] Open
Abstract
Probiotics, known for their health benefits as living microorganisms, hold significant importance across various fields, including agriculture, aquaculture, nutraceuticals, and pharmaceuticals. Optimal delivery and storage of probiotic cells are essential to maximize their effectiveness. Biopolymers, derived from living sources, plants, animals, and microbes, offer a natural solution to enhance probiotic capabilities and they possess distinctive qualities such as stability, flexibility, biocompatibility, sustainability, biodegradability, and antibacterial properties, making them ideal for probiotic applications. These characteristics create optimal environments for the swift and precisely targeted delivery of probiotic cells that surpass the effectiveness of unencapsulated probiotic cells. Various encapsulation techniques using diverse biopolymers are employed for this purpose. These techniques are not limited to spray drying, emulsion, extrusion, spray freeze drying, layer by layer, ionic gelation, complex coacervation, vibration technology, electrospinning, phase separation, sol-gel encapsulation, spray cooling, fluidized, air suspension coating, compression coating, co-crystallization coating, cyclodextrin inclusion, rotating disk, and solvent evaporation methods. This review addresses the latest advancements in probiotic encapsulation materials and techniques, bridging gaps in our understanding of biopolymer-based encapsulation systems. Specifically, we address the limitations of current encapsulation methods in maintaining probiotic viability under extreme environmental conditions and the need for more targeted and efficient delivery mechanisms. Focusing on the interactions between biopolymers and probiotics reveals how customized encapsulation approaches can enhance probiotic stability, survival, and functionality. Through detailed comparative analysis of the effectiveness of various encapsulation methods, we identify key strategies for optimizing probiotic deployment in challenging conditions such as high-temperature processing, acidic environments, and gastrointestinal transit. The findings presented in this review highlight the superior performance of novel encapsulation methods using biopolymer blends and advanced technologies like electrospinning and layer-by-layer assembly, which provide enhanced protection and controlled release of probiotics by offering insights into the development of more robust encapsulation systems that ensure the sustained viability and bioavailability of probiotics, thus advancing their application across multiple industries. In conclusion, this paper provides the foundation for future research to refine encapsulation techniques to overcome the challenges of probiotic delivery in clinical and commercial settings.
Collapse
Affiliation(s)
- Srirengaraj Vijayaram
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, 145 Xingda Rd. Taichung, 40227, Taiwan
| | - Reshma Sinha
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, 176206, India
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 S. Agata-Messina, Italy
| | - Einar Ringø
- Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries, and Economics, UiT the Arctic University of Norway, Tromsø, 9037, Norway
| | - Chi-Chung Chou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, 145 Xingda Rd. Taichung, 40227, Taiwan
| |
Collapse
|
2
|
Dissinger A, Bowman J, Molinari GS, Kwasek K. Effects of Oregano ( Origanum vulgare) Essential Oil Supplementation on Growth Performance of Zebrafish ( Danio rerio) Fed a High-Inclusion Soybean Meal Diet. Zebrafish 2024; 21:338-348. [PMID: 39042596 DOI: 10.1089/zeb.2024.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Soybean meal (SBM) has become a common dietary replacement for fish meal (FM) in aquafeed. However, at high inclusions, SBM has been shown to have negative impacts presenting as reduced feed intake and intestinal inflammation. Medicinal plant extracts, namely essential oils, have been used to promote growth performance and immune response. The objective of this study was to investigate the potential therapeutic effects of oregano (Origanum vulgare) essential oil (OEO) inclusion on utilization of a high-inclusion SBM diet using zebrafish as a model. Five diets were used in this study: reference-FM-based diet, control-55.7% inclusion SBM diet, and three experimental SBM-based diets OEO1, OEO2, and OEO3 that were supplemented with 1%, 2%, or 3% of oregano oil, respectively. The FM group had overall better growth performance when compared with the other treatment groups; however, the OEO3 mean weight and feed conversion ratio were not significantly different from the FM group (p > 0.05) and were significantly improved compared with the SBM group (p < 0.05). Similarly, OEO2 total length was not significantly different from FM (p > 0.05) but significantly higher than the SBM group (p < 0.05). Expression of inflammation-related genes did not significantly differ between the OEO groups and the SBM-only group. However, the OEO2 and OEO3 groups displayed improved growth performance compared with the SBM group, suggesting that inclusion of OEO at or above 2% inclusion may help to alleviate common symptoms induced by a high-inclusion SBM diet.
Collapse
Affiliation(s)
- Aubrey Dissinger
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, USA
- Department of Zoology, Southern Illinois University - Carbondale, Carbondale, Illinois, USA
| | - Jacob Bowman
- Department of Zoology, Southern Illinois University - Carbondale, Carbondale, Illinois, USA
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Giovanni S Molinari
- Department of Zoology, Southern Illinois University - Carbondale, Carbondale, Illinois, USA
| | - Karolina Kwasek
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, USA
- Department of Zoology, Southern Illinois University - Carbondale, Carbondale, Illinois, USA
| |
Collapse
|
3
|
Hosseini SS, Sudaagar M, Zakariaee H, Paknejad H, Baruah K, Norouzitalab P. Evaluation of the synbiotic effects of Saccharomyces cerevisiae and mushroom extract on the growth performance, digestive enzyme activity, and immune status of zebrafish danio rerio. BMC Microbiol 2024; 24:331. [PMID: 39245724 PMCID: PMC11382455 DOI: 10.1186/s12866-024-03459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND The quest for candidate probiotics and prebiotics to develop novel synbiotics for sustainable and profitable fish farming remains a major focus for various stakeholders. In this study, we examined the effects of combining two fungal probiotics, Saccharomyces cerevisiae and Aspergillus niger with extracts of Jerusalem artichoke and white button mushroom to develop a synbiotic formulation to improve the growth and health status of zebrafish (Danio rerio). An initial in vitro study determined the most effective synbiotic combination, which was then tested in a 60-day in vivo nutritional trial using zebrafish (80 ± 1.0 mg) as a model animal. Four experimental diets were prepared: a control diet (basal diet), a prebiotic diet with 100% selected mushroom extract, a probiotic diet with 107 CFU of S. cerevisiae/g of diet, and a synbiotic diet with 107 CFU of S. cerevisiae/g of diet and 100% mushroom extract. As readouts, growth performance, survival, digestive enzyme activity and innate immune responses were evaluated. RESULTS In vitro results showed that the S. cerevisiae cultured in a medium containing 100% mushroom extract exhibited the maximum specific growth rate and shortest doubling time. In the in vivo test with zebrafish, feeding them with a synbiotic diet, developed with S. cerevisiae and mushroom extract, led to a significant improvement in the growth performance of zebrafish (P < 0.05). The group of zebrafish fed with the synbiotic diet showed significantly higher levels of digestive enzyme activity and immune responses compared to the control group (P < 0.05). CONCLUSION Taken together, these results indicated that the combination of S. cerevisiae and mushroom extract forms an effective synbiotic, capable of enhancing growth performance and immune response in zebrafish.
Collapse
Affiliation(s)
- Seyedeh Sedigheh Hosseini
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, 4934174515, Iran.
- Department of Laboratory Sciences, Faculty of Para-medicine, Golestan University of Medical Sciences, Gorgan, 4934174515, Iran.
| | - Mohammad Sudaagar
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 4918943464, Iran
| | - Hamideh Zakariaee
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 4918943464, Iran
| | - Hamed Paknejad
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 4918943464, Iran
| | - Kartik Baruah
- Department of Applied Animal Science and Welfare, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, 7070, SE-750 07, Sweden
| | - Parisa Norouzitalab
- Department of Applied Animal Science and Welfare, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, 7070, SE-750 07, Sweden
| |
Collapse
|
4
|
Sundararajan A, Sahu NP, Shamna N, Jayant M, Sardar P, Vasanthakumaran, Krishnamenan NS, Bhattacharya S, Chandraprakasham M, Sankar S. Dietary papaya peel extract ameliorates the crowding stress, enhances growth and immunity in Labeo rohita fingerlings. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1047-1064. [PMID: 38367083 DOI: 10.1007/s10695-024-01317-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 02/04/2024] [Indexed: 02/19/2024]
Abstract
This study was designed to determine the effects of papaya peel extract (PPE) supplementation on the growth and immunophysiological responses of rohu fingerlings at different stocking densities. In this study, three isonitrogenous (307.2-309.8 g kg-1 protein) and isocaloric diets (16.10-16.16 MJ digestible energy kg-1) were prepared using three different inclusion levels (0, 5, and 10 g kg-1) of PPE. Four hundred and five rohu fingerlings (mean weight: 4.24 g ± 0.12) were randomly distributed into nine treatment groups in triplicates viz. low (10nos 75 L-1 or ≈ 0.565 kg/m3), medium (15nos 75 L-1 or ≈ 0.848 kg/m3), and high (20nos 75 L-1 or ≈ 1.13 kg/m3) following a completely randomized design. The study found that increasing stocking density negatively affected fish growth indices, such as weight gain percentage (WG%), feed efficiency ratio (FER), specific growth rate (SGR) and survival. In contrast, dietary PPE supplementation improved growth indices and survival (p < 0.05). We also observed that aminotransferase, lactate (LDH), and malate dehydrogenase (MDH) activity increased with stocking density, whereas 5 and 10 g kg-1 PPE supplementation reduced LDH and MDH activity (p < 0.05). PPE supplementation positively affected serum indices, decreased glucose levels, and increased respiratory burst activity (p < 0.05). Interferon-gamma (IFN-γ) expression was highest in the low- and medium-stocking density groups fed with 5 g kg-1 PPE, which also increased total immunoglobulin and myeloperoxidase activity while decreasing malondialdehyde concentration (p < 0.05). The results revealed that 5 g kg-1 dietary PPE supplementation could be used as a growth promoter and immunostimulant to improve immuno-physiological responses at low and medium stocking densities.
Collapse
Affiliation(s)
- Atshaya Sundararajan
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| | - Narottam P Sahu
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India.
| | - Nazeemashahul Shamna
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| | - Manish Jayant
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| | - Parimal Sardar
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| | - Vasanthakumaran
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| | - Naveen S Krishnamenan
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| | - Soumyodeep Bhattacharya
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| | - Manojkumar Chandraprakasham
- Aquatic Environment and Health Management Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| | - Sangeetha Sankar
- Fish Genetics and Biotechnology Division, ICAR- Central Institute of Fisheries Education, Versova, Mumbai, 400 061, India
| |
Collapse
|
5
|
Trivedi SP, Dwivedi S, Trivedi A, Khan AA, Singh S, Yadav KK, Kumar V, Dwivedi S, Tiwari V, Awasthi Y. Dietary inclusion of Withania somnifera and Asparagus racemosus induces growth, activities of digestive enzymes, and transcriptional modulation of MyoD, MyoG, Myf5, and MRF4 genes in fish, Channa punctatus. Comp Biochem Physiol B Biochem Mol Biol 2024; 271:110944. [PMID: 38237655 DOI: 10.1016/j.cbpb.2024.110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/12/2024]
Abstract
The present study explores growth potential of two medicinal herbs, Withania somnifera (Ashwagandha or 'A') and Asparagus racemosus (Shatavari or 'S') after their dietary inclusion in fish, Channa punctatus (13.5 ± 2 g; 11.5 ± 1 cm). Three hundred well-acclimatized fish were distributed into 10 groups- C (Control), S1 (1% S), S2 (2% S), S3 (3% S), A1 (1% A), A2 (2% A), A3 (3% A), AS1 (1% A and S), AS2 (2% A and S), and AS3 (3% A and S), each having 10 specimens. Fish were fed with these diets for 60 days. The study was performed in triplicate. Growth indices- weight gain (WG), specific growth rate percentage (SGR%), feed intake (FI), and condition factor (CF), after 30 and 60 days, were found significantly (p < 0.05) up-regulated in all the groups, except S1, when compared to the C. A significant (p < 0.05) increase in final body weight (FBW) was noticed in all the groups, except S1, after 60 days. Relative to the control group, activities of lipase and amylase in the gut tissue were elevated in all groups, at both sampling times, with the exception of lipase in S1 at 60 days, and amylase in S1 at day 30 and day 60 and S2 at day 60. The mRNA expression of myogenic regulatory factors (MRFs) was also found to be significantly (p < 0.05) up-regulated with the highest fold changes recorded in AS3 for myoD (3.93 ± 0.91); myoG (6.71 ± 0.30); myf5 (4.40 ± 0.33); MRF4 (4.94 ± 0.21) in comparison to the C.
Collapse
Affiliation(s)
- Sunil P Trivedi
- Centre of Excellence in Fish Nutrigenomics, Department of Zoology, University of Lucknow, Lucknow 226007, India.
| | - Shikha Dwivedi
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Abha Trivedi
- Department of Animal Science, MJP Rohilkhand University, Bareilly 243006, India
| | - Adeel Ahmad Khan
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Shefalee Singh
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Kamlesh K Yadav
- Department of Zoology, Government Degree College, Bakkha Kheda, Unnao 209801, India
| | - Vivek Kumar
- Department of Zoology, Isabella Thoburn PG College, Lucknow 226007, India
| | - Shraddha Dwivedi
- Department of Zoology, Netaji Subhash Chandra Bose Govt. Girls P. G. College, Aliganj, Lucknow, India
| | - Vidyanand Tiwari
- Institute of Food Processing and Technology, University of Lucknow, Lucknow 226007, India
| | - Yashika Awasthi
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
6
|
Sirati R, Khajehrahimi AE, Kazempoor R, Kakoolaki S, Ghorbanzadeh A. Development, physicochemical characterization, and antimicrobial evaluation of niosome-loaded oregano essential oil against fish-borne pathogens. Heliyon 2024; 10:e26486. [PMID: 38463865 PMCID: PMC10920168 DOI: 10.1016/j.heliyon.2024.e26486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 03/12/2024] Open
Abstract
Objective Niosomes have gained attention as a promising drug delivery system for enhancing the antimicrobial and anti-biofilm effects of natural compounds. Oregano essential oil has demonstrated potent antimicrobial and anti-biofilm properties against food-borne pathogens. Methods In this study, researchers aimed to explore the use of niosomes as a delivery system to improve the efficacy of oregano essential oil against food-borne pathogens. The structural and morphological properties of different niosome formulations were examined. Different formulations of niosomes were prepared and their structural and morphological properties were examined. The antimicrobial and anti-biofilm effects of niosomes containing oregano essential oil were evaluated using microbroth-dilution and microtiter-plate methods, respectively. The biocompatibility of the synthesized niosomes was assessed using the MTT method on human foreskin fibroblasts normal cell line (HFF). Results The optimal formulation of niosomes had an average size of 219 nm and an encapsulation efficiency of 61.22%. The release study demonstrated that 58% of the essential oil was released from niosomes, while 100% was released from free essential oil. Furthermore, the antimicrobial and anti-biofilm effects of the essential oil were found to be 2-4 times higher when loaded in niosomes. The biocompatibility test confirmed that the synthesized empty niosomes had no cytotoxic effects on HFF cell line. Conclusion Niosomes encapsulating oregano essential oil demonstrated the capacity to inhibit the activity of genes associated with biofilm formation in pathogenic bacteria. This study highlights the significant antimicrobial and anti-biofilm effects of niosomes containing oregano essential oil, suggesting their potential as a suitable drug delivery system.
Collapse
Affiliation(s)
- Rameen Sirati
- Department of Aquatic Animal Health and Diseases, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Eghbal Khajehrahimi
- Department of Aquatic Animal Health and Diseases, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Reza Kazempoor
- Department of Aquatic Animal Health and Diseases, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shapoor Kakoolaki
- Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
| | - Arman Ghorbanzadeh
- Department of Aquatic Animal Health and Diseases, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Peng K, Chen M, Wang Y, Tian Z, Deng L, Li T, Feng Y, Ouyang P, Huang X, Chen D, Geng Y. Genotype diversity and antibiotic resistance risk in Aeromonas hydrophila in Sichuan, China. Braz J Microbiol 2024; 55:901-910. [PMID: 37999911 PMCID: PMC10920602 DOI: 10.1007/s42770-023-01187-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Sichuan is a significant aquaculture province in China, with a total aquaculture output of 1.72 × 106 tons in 2022. One of the most significant microorganisms hurting the Sichuan aquaculture is Aeromonas hydrophila, whose genotype and antibiotic resistance are yet unknown. This study isolated a total of 64 strains of A. hydrophila from various regions during September 2019 to June 2021 within Sichuan province, China. The technique of Multi-Locus Sequence Typing (MLST) was used for the purpose of molecular typing. Meanwhile, identification of antibiotic resistance phenotype and antibiotic resistance gene was performed. The findings of the study revealed that 64 isolates exhibited 29 sequence types (ST) throughout different regions in Sichuan, with 25 of these ST types being newly identified. Notably, the ST251 emerged as the predominant sequence type responsible for the pandemic. The resistance rate of isolated strains to roxithromycin was as high as 98.3%, followed by co-trimoxazole (87.5%), sulfafurazole (87.5%), imipenem (80%), amoxicillin (60%), and clindamycin (57.8%). Fifteen strains of A. hydrophila exhibited resistance to medicines across a minimum of three categories, suggesting the development of multidrug resistance in these isolates. A total of 63 ARGs were detected from the isolates, which mediated a range of antibiotic resistance mechanisms, with deactivation and efflux potentially serving as the primary mechanisms of antibiotic resistance. This study revealed the diversity of A. hydrophila genotypes and the risk of antibiotic resistance in Sichuan, providing reference for scientific and effective control of A. hydrophila infection.
Collapse
Affiliation(s)
- Kun Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Chengdu, 611130, Sichuan, China
| | - Mengzhu Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Chengdu, 611130, Sichuan, China
- Chengdu Animal Disease Prevention and Control Center, Chengdu, 60041, Sichuan, China
| | - Yilin Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Chengdu, 611130, Sichuan, China
| | - Ziqi Tian
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Chengdu, 611130, Sichuan, China
| | - Longjun Deng
- Yalong River Hydropower Development Company Ltd, Chengdu, Sichuan, China
| | - Tiancai Li
- Yalong River Hydropower Development Company Ltd, Chengdu, Sichuan, China
| | - Yang Feng
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Chengdu, 611130, Sichuan, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Chengdu, 611130, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
8
|
Hoseini M, Paknejad H, Sudagar M, Anvarifar H, Shekarabi SPH. Nucleotides supplementation (Nucleoforce fish™) in Caspian roach (Rutilus caspicus) diet: Growth performance, skin mucosal immune response, and resistance to salinity stress. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109381. [PMID: 38246268 DOI: 10.1016/j.fsi.2024.109381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
In this study, the growth, epidermal mucosal immunity, expression of growth-related genes, cross-protection, and resistance to salinity stress of Caspian roach were scrutinized in response to dietary levels of nucleotides (NT). Accordingly, 1200 fish (0.51 ± 0.01 g) were fed ad libitum with a basal diet (38.88 % crude protein and 10.04 % crude lipid in dry basis) containing incremental levels of NT at 0 (NT-0; control), 0.3 g kg-1 (NT-0.3), 0.6 g kg-1 (NT-0.6), and 1.2 g kg-1 (NT-1.2) for 8 weeks in triplicates. The growth performance was significantly increased in the fish fed with NT-0.6 and NT-1.2 diets compared to the control group (p < 0.05). A significant elevation in the growth hormone and insulin-like growth factor-I gene expression was recorded in NT-added groups at 0.6 and 1.2 g kg-1 compared to the control group (p < 0.05). In contrast to the control group, feeding on NT-0.6 and NT-1.2 diets had a remarkable effect on the skin mucus soluble protein and immunoglobulin levels (p < 0.05). After the feeding trial, we examined how salinity stress (15 g/l salinity) lonely and salinity stress under non-lethal thermal shock (+10 °C) affected heat shock protein (HSP70). Then, the mRNA expression of HSP70 gene from the gill was analyzed at 0, 2, 8, and 24 h post-challenge tests. The HSP70 gene expression level was approximately up-regulated more than 2-fold in NT-6 and NT-1.2 treatments compared to the control group under the salinity stress. Altogether, this research represents that the addition of NT at 0.6 and 1.2 g kg-1 in Caspian roach diet can improve overall performance and resistance to salinity stress.
Collapse
Affiliation(s)
- Marjan Hoseini
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hamed Paknejad
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Mohammad Sudagar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hossein Anvarifar
- University of Applied Science and Technology, Provincial Unit, Gorgan, Golestan, Iran
| | - Seyed Pezhman Hosseini Shekarabi
- National Research Center of Saltwater Aquatic Animals, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Bafq, Iran
| |
Collapse
|
9
|
Habib SS, Batool AI, Rehman MFU, Naz S. Evaluation of the antibacterial activity and protein profiling of Nile tilapia (Oreochromis niloticus) epidermal mucus under different feeds and culture systems (biofloc technology and earthen pond). JOURNAL OF FISH DISEASES 2024; 47:e13884. [PMID: 37929301 DOI: 10.1111/jfd.13884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
The mucus layers of fish serve as the main interface between the organism and the environment. They play an important biological and ecological role. The current study focuses on Nile tilapia epidermal mucus reared under different commercial feeds (coded A and B) and environments (biofloc technology and earthen pond systems). Crude protein levels in feed A and B were 30% and 28%, respectively. Water parameters in all culturing systems were suitable for tilapia throughout the study period. The antimicrobial potency of tilapia (n = 5 from each) epidermal mucus was tested in vitro against human and fish pathogenic strains viz. Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Francisella noatunensis, and Aeromonas hydrophila. To determine the antimicrobial activity, zones of inhibition (ZOI) were measured in millimetres and compared with two antibiotics (chloramphenicol and ciprofloxacin). SDS-PAGE analysis was performed on skin mucus samples of tilapia to determine protein quantity and size (molecular weight). Results of tilapia skin mucus (crude and aqueous) revealed a strong antibacterial effect against all the selected pathogenic strains. However, variation has been observed in the mucus potency and ZOI values between the biofloc and pond tilapia mucus. The crude mucus of tilapia fed on feed A and cultured in the pond exhibited strong antibacterial effects and high ZOI values compared to the mucus of biofloc tilapia, aqueous mucus extracts and positive control chloramphenicol (antibiotic). The SDS-PAGE results showed that the high molecular weight proteins were found in the collected epidermal mucus of BFT-B (240 kDa) and EP-B (230 kDa). Several peptides in fish skin mucus may play a crucial role in the protection of fish against disease-causing pathogens. Thus, it can be utilized in the human and veterinary sectors as an 'antimicrobial' for treating various bacterial infections.
Collapse
Affiliation(s)
| | - Aima Iram Batool
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | | | - Saira Naz
- Institute of Molecular Biology and Biotechnology, University of Lahore Sargodha Campus, Sargodha, Pakistan
| |
Collapse
|
10
|
Adel M, Sakhaie F, Hosseini Shekarabi SP, Gholamhosseini A, Impellitteri F, Faggio C. Dietary Mentha piperita essential oil loaded in chitosan nanoparticles mediated the growth performance and humoral immune responses in Siberian sturgeon (Acipenserbaerii). FISH & SHELLFISH IMMUNOLOGY 2024; 145:109321. [PMID: 38122952 DOI: 10.1016/j.fsi.2023.109321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Siberian sturgeon (Acipenser baerii) fry often face environmental stressors that can compromise their immune system, rendering them susceptible to opportunistic pathogens in intensive aquaculture systems. In this study, we explored the innovative use of chitosan nanoparticles loaded with Mentha piperita essential oil (MPO/CNPs) as a dietary supplement to improve the growth and immune responses of A. baerii. The results demonstrated that the addition of MPO/CNPs to the diet led to significant improvements in growth, as evidenced by increased red blood cell count, hematocrit, haemoglobin concentration, and reduced triglyceride levels. Furthermore, significant differences were observed in the immune parameters for the treatment groups receiving Mentha piperita essential oil loaded in chitosan nanoparticles (MPO/CNPs), including enhanced lysozyme activity, immunoglobulin M (IgM) levels, respiratory burst activity, and ACH50 activity. Additionally, gene expression analysis revealed upregulation of key immune-related genes in the MPO/CNPs-treated groups. These findings suggest that the use of MPO/CNPs can enhance the growth and bolster the immune defences of Siberian sturgeon fry, contributing to more sustainable production in intensive aquaculture environments.
Collapse
Affiliation(s)
- Milad Adel
- Department of Aquatic Animal Health and Diseases, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
| | - Fahimeh Sakhaie
- School of Pharmacy, Shahid Beheshti University, Tehran, Iran
| | - Seyed Pezhman Hosseini Shekarabi
- National Research Center of Saltwater Aquatic Animals, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Bafq, Iran
| | - Amin Gholamhosseini
- Department of Aquatic Animal Health and Diseases, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina, Messina, Italy; Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
11
|
Wang Q, Sun D, Wang D, Ye B, Wang S, Zhou A, Dong Z, Zou J. Effect of dietary koumine on the immune and antioxidant status of carp (Cyprinus carpio) after Aeromonas hydrophila infection. Microb Pathog 2024; 186:106464. [PMID: 38043626 DOI: 10.1016/j.micpath.2023.106464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
Koumine (KM) has anxiolytic, anti-inflammatory and growth-promoting effects in pigs and sheep. Based on the growth-promoting and immunological effects of koumine, the present study was conducted on Cyprinus carpio (C. carpio) with four KM concentrations: 0 mg/kg, 0.2 mg/kg, 2 mg/kg, and 20 mg/kg for 10 weeks, followed by a 1-week Aeromonas hydrophila (A. hydrophila) infection experiment. The effect of KM on the immunity of A. hydrophila infected carp was analyzed by histopathology, biochemical assay, and qRT-PCR to assess the feasibility of KM in aquaculture. The results showed that the presence of KM alleviated pathogen damage to carp tissues. At 2 mg/kg and 20 mg/kg concentrations of KM successively and significantly elevated (p < 0.05) the SOD activities in the intestinal tract, hepatopancreas and kidney of carp. The expression levels of hepatopancreatic antioxidant genes Nrf2 and IGF-1 were significantly up-regulated in the same group (p < 0.05), while the expression levels of immune genes IL-8 and IL-10 were down-regulated. In summary, KM at concentrations of 2 mg/kg and 20 mg/kg could regulate the expression of antioxidant and immune genes in various tissues in an orderly and rapid manner, and significantly improve the antioxidant and immune abilities of carp, which is conducive to the improvement of the resilience of carp.
Collapse
Affiliation(s)
- Qiujie Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Di Sun
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Dongjie Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Ye
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shaodan Wang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Aiguo Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Zhang F, Yang J, Zhan Q, Shi H, Li Y, Li D, Li Y, Yang X. Dietary oregano aqueous extract improves growth performance and intestinal health of broilers through modulating gut microbial compositions. J Anim Sci Biotechnol 2023; 14:77. [PMID: 37653529 PMCID: PMC10472629 DOI: 10.1186/s40104-023-00857-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/01/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Intestinal health plays a pivotal role in broiler chicken growth. Oregano aqueous extract (OAE) effectively exerts anti-inflammatory and antibacterial effects. However, the protective effects of OAE on intestinal health in broilers and the underlying mechanism remain unclear. This study aimed to investigate the potential effects of OAE on growth performance, the gut microbiota and intestinal health. A total of 840 1-d-old male and female broilers (Arbor Acres) were randomly allocated into 6 groups as follows: basal diet (Con), Con + antibiotics (Anti, colistin sulfate 7 g/kg, roxarsone 35 g/kg), Con + 400, 500, 600 and 700 mg/kg OAE (OAE400, OAE500, OAE600 and OAE700). Subsequently, fermentation in vitro together with oral administration trials were carried out to further assess the function of OAE on intestinal health of broilers. RESULTS Dietary 700 mg/kg OAE supplementation resulted in an increase (P < 0.05) in body weight and a decrease (P < 0.05) in feed conversion ratio when compared with the control during d 22 to 42 of the trial. OAE addition resulted in lower (P < 0.05) jejunal crypt depth and mRNA expression of IL-4 and IL-10 at d 42. In addition, dietary OAE addition increased the abundance of Firmicutes (P = 0.087) and Lactobacillus (P < 0.05) in the cecum, and increased (P < 0.05) the content of acetic acid and butyric acid. In the in vitro fermentation test, OAE significantly increased (P < 0.05) the abundance of Lactobacillus, decreased (P < 0.05) the abundance of unspecified_Enterobacteriaceae, and increased the content of acetic acid (P < 0.05). In the oral administration trial, higher (P < 0.05) IL-4 expression was found in broilers when oral inoculation with oregano fermentation microorganisms at d 42. And SIgA content in the ileum was significantly increased (P = 0.073) when giving OAE fermentation supernatant. CONCLUSIONS Dietary OAE addition could maintain intestinal health and improve growth performance through enhancing intestinal mucosal immunity and barrier function mediated by gut microbiota changes.
Collapse
Affiliation(s)
- Fan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi China
| | - Jiantao Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi China
| | - Qinyi Zhan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi China
| | - Hao Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi China
| | - Yanhe Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi China
| | - Dinggang Li
- Baoding Jizhong Pharmaceutical Corporation, LTD, Baoding, Hebei China
| | - Yingge Li
- Shaanxi Province Animal Husbandry Technology Extension Station, Xi’an, Shaanxi China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi China
| |
Collapse
|
13
|
Hassan M, Melad AAN, Zakariah MI, Yusoff NAH. Histopathological Alterations in Gills, Liver and Kidney of African Catfish ( Clarias gariepinus, Burchell 1822) Exposed to Melaleuca cajuputi Extract. Trop Life Sci Res 2023; 34:177-196. [PMID: 38144386 PMCID: PMC10735260 DOI: 10.21315/tlsr2023.34.2.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 10/03/2022] [Indexed: 12/26/2023] Open
Abstract
This study evaluated the histopathological changes in the gill, liver and kidney of African catfish (Clarias gariepinus) intoxicated with a sub-lethal dose of Melaleuca cajuputi leaves extract (MCLE) for 96 h. The acute toxicity test has been determined previously with a value of 96-h LC50 = 127 mg/L, hence the selection of sub-lethal ranges from 60 mg/L to 160 mg/L of MCLE. Degenerative alterations were prominent in all tested organs, particularly after exposure to a high concentration of MCLE. Gill exhibited haemorrhage, epithelial lifting, lamellar disorganisation, and necrosis after exposure to a high MCLE concentration. Alterations in the liver include congestion, hydropic degeneration, and vacuolation, whereas lesions in the kidney were pyknosis, vacuolation, hydropic degeneration, and tubular necrosis. The obtained data showed that the organs experienced severe changes proportional to the increase in MCLE concentration. In addition, fish exposed to higher concentrations than the LC50 value experienced irreversible lesions. The present study suggests that the use of MCLE below the LC50 is recommended to avoid severe alterations to organs, particularly in African catfish. This study demonstrated that the use of MCLE above the LC50 promotes severe damage to the gills, liver and kidney of African catfish. However, further investigations are needed to define the causing-mechanisms underlying these effects.
Collapse
Affiliation(s)
- Marina Hassan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21300 Kuala Nerus, Terengganu, Malaysia
| | - Anuar Abdalah Nagi Melad
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21300 Kuala Nerus, Terengganu, Malaysia
- Department of Biological Science, Faculty of Science, Azzaytuna University, Tarhunah, Libya
| | - Mohd Ihwan Zakariah
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21300 Kuala Nerus, Terengganu, Malaysia
| | - Nor Asma Husna Yusoff
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21300 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
14
|
Banaee M, Sagvand S, Sureda A, Amini M, Haghi BN, Sopjani M, Faggio C. Evaluation of single and combined effects of mancozeb and metalaxyl on the transcriptional and biochemical response of zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109597. [PMID: 36889533 DOI: 10.1016/j.cbpc.2023.109597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Mancozeb and metalaxyl are fungicidal agents frequently used in combination to control fungi in crops that may affect non-target organisms when entering ecosystems. This study aims to evaluate the environmental effects of Mancozeb (MAN) and Metalaxyl (MET), alone and in combination, on zebrafish (Danio rerio) as an experimental model. The oxidative stress biomarkers and the transcription of genes involved in detoxification in zebrafish (Danio rerio) were assessed after co-exposure to MAN (0, 5.5, and 11 μg L-1) and MET (0, 6.5, and 13 mg L-1) for 21 days. Exposure to MAN and MET induced a significant increase in the expression of genes related to detoxification mechanisms (Ces2, Cyp1a, and Mt2). Although Mt1 gene expression increased in fish exposed to 11 μg L-1 of MAN combined with 13 mg L-1 of MET, Mt1 expression was down-regulated significantly in other experimental groups (p < 0.05). The combined exposure to both fungicides showed synergistic effects in the expression levels that are manifested mainly at the highest concentration. Although a significant (p < 0.05) increase in alkaline phosphatase (ALP) and transaminases (AST and ALT), catalase activities, the total antioxidant capacity, and malondialdehyde (MDA) contents in the hepatocytes of fish exposed to MAN and MET alone and in combination was detected, lactate dehydrogenase (LDH), gamma-glutamyl transferase (GGT) activities, and hepatic glycogen content decreased significantly (p < 0.05). Overall, these results emphasize that combined exposure to MET and MAN can synergistically affect the transcription of genes involved in detoxification (except Mt1 and Mt2) and biochemical indicators in zebrafish.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Shiva Sagvand
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Health Research Institute of the Balearic Islands (IdISBa), and CIBEROBN Fisiopatología de la Obesidad la Nutrición, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Mohammad Amini
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Behzad Nematdoost Haghi
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Mentor Sopjani
- Faculty of Medicine of the University of Prishtina, Prishtina, Kosovo.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
15
|
Caioni G, Benedetti E, Perugini M, Amorena M, Merola C. Personal Care Products as a Contributing Factor to Antimicrobial Resistance: Current State and Novel Approach to Investigation. Antibiotics (Basel) 2023; 12:724. [PMID: 37107085 PMCID: PMC10135053 DOI: 10.3390/antibiotics12040724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the world's industrialized nations' biggest issues. It has a significant influence on the ecosystem and negatively affects human health. The overuse of antibiotics in the healthcare and agri-food industries has historically been defined as a leading factor, although the use of antimicrobial-containing personal care products plays a significant role in the spread of AMR. Lotions, creams, shampoos, soaps, shower gels, toothpaste, fragrances, and other items are used for everyday grooming and hygiene. However, in addition to the primary ingredients, additives are included to help preserve the product by lowering its microbial load and provide disinfection properties. These same substances are released into the environment, escaping traditional wastewater treatment methods and remaining in ecosystems where they contact microbial communities and promote the spread of resistance. The study of antimicrobial compounds, which are often solely researched from a toxicological point of view, must be resumed considering the recent discoveries, to highlight their contribution to AMR. Parabens, triclocarban, and triclosan are among the most worrying chemicals. To investigate this issue, more effective models must be chosen. Among them, zebrafish is a crucial study system because it allows for the assessment of both the risks associated with exposure to these substances as well as environmental monitoring. Furthermore, artificial intelligence-based computer systems are useful in simplifying the handling of antibiotic resistance data and speeding up drug discovery processes.
Collapse
Affiliation(s)
- Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Monia Perugini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy; (M.P.); (M.A.); (C.M.)
| | - Michele Amorena
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy; (M.P.); (M.A.); (C.M.)
| | - Carmine Merola
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy; (M.P.); (M.A.); (C.M.)
| |
Collapse
|
16
|
Ibrahim AM, Gad El-Karim RM, Ali RE, Nasr SM. Toxicological effects of Saponin on the free larval stages of Schistosoma mansoni, infection rate, some biochemical and molecular parameters of Biomphalaria alexandrina snails. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105357. [PMID: 36963932 DOI: 10.1016/j.pestbp.2023.105357] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Saponins have been used as biopesticides. The objective of the present study is to investigate the toxic effects of Saponin against Biomphalaria alexandrina snails. Results showed that Saponin exhibited a molluscicidal activity against adult B. alexandrina snails at LC50 (70.05 mg/l) and had a larvicidal effect on the free larval stages of Schistosoma mansoni. To evaluate the lethal effects, snails were exposed to either LC10 (51.8 mg/l) or LC25 (60.4 mg/l) concentrations of Saponin. The survival, the infection rates, protein, albumin, and total fat levels were decreased, while glucose levels were increased in exposed snails compared to control snails. Also, these concentrations significantly raised Malondialdehyde (MDA) and Glutathione S Transferase (GST) levels, whereas reduced Superoxide dismutase (SOD) activity and the total antioxidant capacity (TAC) in exposed snails. Furthermore, these concentrations resulted in endocrine disruptions where it caused a significant increase in testosterone (T) level; while a significant decrease in Estradiol (E2) levels were noticed. As for Estrogen (E) level, it was increased after exposure to LC10 Saponin concentration while after exposure to LC25 concentration, it was decreased. Also, LC10 and LC25 concentrations of Saponin caused a genotoxic effect and down-regulation of metabolic cycles in the snails. In conclusion, Saponins caused deleterious effects on the intermediate host of schistosomiasis mansoni. Therefore, B. alexandrina snails could be used as models to screen the toxic effects of Saponins in the aquatic environment and if it was used as a molluscicide, it should be used cautiously and under controlled circumstances.
Collapse
Affiliation(s)
- Amina M Ibrahim
- Medical Malacology Department, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt.
| | - Rasha M Gad El-Karim
- Medical Malacology Department, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Rasha E Ali
- Medical Malacology Department, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Sami M Nasr
- Biochemistry, Molecular Biology and Medicinal chemistry Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
17
|
Banaee M, Impellitteri F, Evaz-Zadeh Samani H, Piccione G, Faggio C. Dietary Arthrospira platensis in Rainbow Trout ( Oncorhynchus mykiss): A Means to Reduce Threats Caused by CdCl 2 Exposure? TOXICS 2022; 10:toxics10120731. [PMID: 36548564 PMCID: PMC9781257 DOI: 10.3390/toxics10120731] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 05/24/2023]
Abstract
The rainbow trout (Oncorhynchus mykiss) is one of the most commercially sought-after freshwater fish species and one of the most farmed in the world. On the other hand, aquaculture breeding frequently results in outbreaks of infectious diseases and pests, and compromises the production and welfare of fish. Arthrospira platensis (known as "Spirulina") has been used as a supplement in diets to enhance fish welfare in recent years because of its beneficial properties. This study aimed to assess the possible protective effects of Arthrospira platensis on rainbow trout specimens exposed to three different doses of the toxicant CdCl2. The experiment was carried out using five experimental treatments of 40 individuals each: control group; group II (0.2 mg CdCl2 per kg of commercial fish feed); group III (0.2 mg Kg-1 of CdCl2 plus 2.5 g per kg of A. platensis); group IV (0.2 mg Kg-1 of CdCl2 plus 5 g per kg of A. platensis); group V (0.2 mg Kg-1 of CdCl2 plus 10 g per kg of A. platensis). During the experiment, dietary supplementation of A. platensis normalized all serum and blood parameters altered by the presence of CdCl2. A. platensis also had a protective effect on markers of oxidative stress.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan 47189, Iran
| | - Federica Impellitteri
- Department of Veterinary Sciences, Polo Universitario dell’Annunziata, University of Messina, 98168 Messina, Italy
| | - Hamid Evaz-Zadeh Samani
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan 47189, Iran
| | - Giuseppe Piccione
- Department of Veterinary Sciences, Polo Universitario dell’Annunziata, University of Messina, 98168 Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno, d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
18
|
Xia YT, Wu QY, Hok-Chi Cheng E, Ting-Xia Dong T, Qin QW, Wang WX, Wah-Keung Tsim K. The inclusion of extract from aerial part of Scutellaria baicalensis in feeding of pearl gentian grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceo-latus♂) promotes growth and immunity. FISH & SHELLFISH IMMUNOLOGY 2022; 127:521-529. [PMID: 35792347 DOI: 10.1016/j.fsi.2022.06.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The root of Scutellaria baicalensis (Scutellaria Radix) has been used as herbal medicine for years in China; however, its stem and leaf (aerial part) are considered as waste. The water extract of aerial part of S. baicalensis, named as SBA, having anti-microbial property has been applied in fish aquaculture. To extend the usage of SBA in fish feeding, SBA was employed to feed pearl gentian grouper (a hybrid of Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂), and subsequently the total fish output, the levels of digestive enzymes and inflammatory cytokines were determined. Feeding the fish with different doses of SBA for two months, the body length and weight were significantly increased by 5%-10%. In parallel, the expressions of alkaline phosphatase and growth-related factors in bone, liver and muscle of SBA-fed fish were doubled, which could account the growth promoting effect of SBA. Besides, the activity of digestive enzyme, lipase, and the expressions of anti-inflammatory cytokines were markedly stimulated by 2-3 times under the feeding of 3% SBA-containing diet. The results indicated the growth promoting activity of SBA in culture of pearl gentian grouper, as well as the effect of SBA in strengthening the immunity. These beneficial effects of SBA feeding can increase the total yield of pearl gentian grouper in aquaculture. Thus, the re-cycle of waste products during the farming of S. baicalensis herb in serving as fish feeding should be encouraged.
Collapse
Affiliation(s)
- Yi-Teng Xia
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Nanshan, Shenzhen, China; Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qi-Yun Wu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Nanshan, Shenzhen, China; Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Edwin Hok-Chi Cheng
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Nanshan, Shenzhen, China; Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Tina Ting-Xia Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Nanshan, Shenzhen, China; Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qi-Wei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Wen-Xiong Wang
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Nanshan, Shenzhen, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China; School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Karl Wah-Keung Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Nanshan, Shenzhen, China; Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
19
|
Abdel Rahman AN, Van Doan H, Elsheshtawy HM, Dawood A, Salem SMR, Sheraiba NI, Masoud SR, Abdelnaeim NS, Khamis T, Alkafafy M, Mahboub HH. Dietary Salvia officinalis leaves enhances antioxidant-immune-capacity, resistance to Aeromonas sobria challenge, and growth of Cyprinus carpio. FISH & SHELLFISH IMMUNOLOGY 2022; 127:340-348. [PMID: 35772675 DOI: 10.1016/j.fsi.2022.06.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/26/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
The current perspective is a pioneer to assess the efficacy of Salvia officinalis leave powder (SOLP) on growth, intestinal enzymes, physiological and antioxidant status, immunological response, and gene expression of Common carp (Cyprinus carpio). We also looked into fish resistance after being challenged with Aeromonas sobria, a pathogenic zoonotic bacteria. Fish (N = 120) were fed four different experimental diets in triplicate for 8 weeks. The control diet (SOLP0 - without SOLP); meanwhile, the other three diets included SOLP of 2, 4, and 8 g kg-1 concentrations (SOLP2, SOLP4, and SOLP8), respectively. Findings demonstrated that fish fed SOLP4 and SOLP8 diets had better growth performance and improved digestion by noticeable enhancing lipase and amylase enzymes activity than other groups. Additionally, the antioxidant (superoxide dismutase and glutathione peroxidase) and immune activities (immunoglobulin M, nitric oxide, and antiprotease) clarified a significant increase (p < 0.05) in SOLP4 and SOLP8 groups. Enriched diets with SOLP4 and SOLP8 exhibited better expression of splenic genes (IL-1β, IL-6, IL-10, TLR-2, and SOD), intestinal genes (Slc26a6) and (PepT1 or Slc15a1), and muscular genes (IGF-1 and SOD), while MSTN was down-regulated. After 8 weeks of the experimental trial, C. carpio challenged by A. sobria exhibited the highest cumulative mortality (66.67%), while SOLP8-dietary intervention showed the best results in enhancing the fish resistance against A. sobria by lessening mortalities to 13.33% followed by SOLP4 diet (20%). The outcomes indicate that the expression of splenic, muscular, and intestinal genes confirm the efficacy of SOLP on enhancing growth, digestion, and immune-antioxidant status, and recommend the potential use of SOLP especially at 4 g kg-1 level as a valuable natural economic diet additive in C. carpio culture for sustaining aquaculture.
Collapse
Affiliation(s)
- Afaf N Abdel Rahman
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt.
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hassnaa Mahmoud Elsheshtawy
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Suez Canal University, P.O. Box 41522, Ismailia, Egypt
| | - Ali Dawood
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, 32897, Egypt; The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shimaa M R Salem
- Department of Animal Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansura University, P.O. Box 35516, Mansoura, Dakahlia, Egypt
| | - Nagwa I Sheraiba
- Department of Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, University of Sadat City, P.O. Box 32897, Sadat City, Menofia, Egypt
| | - Shimaa R Masoud
- Department of Physiology, Faculty of Veterinary Medicine, University of Sadat City, P.O. Box 32897, Sadat City, Menofia, Egypt
| | - Noha S Abdelnaeim
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, P.O. Box 41522, Ismailia, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt
| | - Mohamed Alkafafy
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Heba H Mahboub
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt.
| |
Collapse
|
20
|
Hafsan H, Bokov D, Abdelbasset WK, Kadhim M, Suksatan W, Majdi HS, Widjaja G, Jalil AT, Qasim MT, Balvardi M. Dietary
Dracocephalum kotschyi
essential oil improved growth, haematology, immunity and resistance to
Aeromonas hydrophila
in rainbow trout (
Oncorhynchus mykiss
). AQUACULTURE RESEARCH 2022; 53:3164-3175. [DOI: 10.1111/are.15829] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/27/2022] [Indexed: 01/03/2025]
Affiliation(s)
- Hafsan Hafsan
- Biology Department Faculty of Science and Technology Universitas Islam Negeri Alauddin Makassar Gowa Indonesia
| | - Dmitry Bokov
- Institute of Pharmacy Sechenov First Moscow State Medical University Moscow Russian Federation
- Laboratory of Food Chemistry Federal Research Center of Nutrition, Biotechnology and Food Safety Moscow Russian Federation
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences College of Applied Medical Sciences Prince Sattam bin Abdulaziz University Al Kharj Saudi Arabia
- Department of Physical Therapy Kasr Al‐Aini Hospital Cairo University Giza Egypt
| | - Mustafa M. Kadhim
- Department of Dentistry Kut University College Kut Iraq
- College of Technical Engineering The Islamic University Najaf Iraq
- Department of Pharmacy Osol Aldeen University College Baghdad Iraq
| | - Wanich Suksatan
- Faculty of Nursing HRH Princess Chulabhorn College of Medical Science Chulabhorn Royal Academy Bangkok Thailand
| | - Hasan Sh. Majdi
- Department of Chemical Engineering and Petroleum Industries Al‐Mustaqbal University College Babylon Iraq
| | - Gunawan Widjaja
- Faculty of Public Health Universitas Indonesia Depok Indonesia
- Faculty of Law Universitas Krisnadwipayana Indonesia Jatiwaringin Indonesia
| | - Abduladheem Turki Jalil
- Faculty of Biology and Ecology Yanka Kupala State University of Grodno Grodno Belarus
- College of Technical Engineering The Islamic University Najaf Iraq
| | - Maytham T. Qasim
- Ministry of Education Directorate Thi‐Qar Education Thi‐Qar Iraq
- Department of Anesthesia College of Health and Medical Technology Al‐Ayen University Thi‐Qar Iraq
| | | |
Collapse
|
21
|
Khayal EES, Alabiad MA, Elkholy MR, Shalaby AM, Nosery Y, El-Sheikh AA. The immune modulatory role of marjoram extract on imidacloprid induced toxic effects in thymus and spleen of adult rats. Toxicology 2022; 471:153174. [PMID: 35398170 DOI: 10.1016/j.tox.2022.153174] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 01/24/2023]
Abstract
Imidacloprid (IMID), one of environmental persistent neonicotinoid insecticides, has been used a long time ago and categorized from insecticide induced moderate toxicity by World Health Organization (WHO). Marjoram, is one of the most worldwide used herbs in Egypt due to its antioxidant, anti-inflammatory, anti-genotoxic, anti-mutagenic, anticoagulant, and beneficial effects. This study aimed to evaluate the protective role of marjoram extract on the immunotoxic response and oxidative stress induced by IMID in the immune lymphoid organs (thymus and spleen) of rats. Fifty adult male albino rats were divided randomly into five groups; negative and positive (distilled water) control, marjoram extract (200 mg/kg/day), IMID (22.5 mg/kg/day), marjoram extract + IMID (200 mg/kg +22.5 mg/kg) orally for 8 weeks. Marjoram pretreatment reversed reduced animals body, thymus and spleen weights attributed to IMID. It amended the significantly elevated total leukocytes, neutrophils percentage, increased immunoglobulin G and the significantly reduction of lymphocytes percentage, phagocytic activity, phagocytic index and lysozyme activity induced by IMID. Moreover, marjoram administration significantly reduced thymic and splenic gene expression of interleukin-1β, interleukin-6, tumor necrosis factor-α and increased interleukin-10, in addition, it decreased thymic and splenic contents of malondialdehyde and restored the reduced antioxidant enzymes' activities following IMID exposure. Marjoram ameliorated IMID induced histopathological alterations in thymus and spleen and adjusted IMID immunomodulatory effects by increased the downregulation of CD4 and CD8 immune reactive cell expression. Conclusion, Marjoram has a protective role to reverse IMID immune toxic effects in thymus and spleen tissues of rats by its antioxidant, anti-inflammatory and immunomodulatory defense mechanisms.
Collapse
Affiliation(s)
- Eman El-Sayed Khayal
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Mahmoud Ramadan Elkholy
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| | - Yousef Nosery
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Arwa A El-Sheikh
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
22
|
Mansour AT, Hamed HS, El-Beltagi HS, Mohamed WF. Modulatory Effect of Papaya Extract against Chlorpyrifos-Induced Oxidative Stress, Immune Suppression, Endocrine Disruption, and DNA Damage in Female Clarias gariepinus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4640. [PMID: 35457505 PMCID: PMC9032737 DOI: 10.3390/ijerph19084640] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 02/01/2023]
Abstract
Chlorpyrifos (CPF) is one of the widely used organophosphorus pesticides in agriculture activities and its presence in the aquatic environment has been broadly recorded. In the present study, we investigated the effect of CPF exposure on oxidative stress, innate immunity, sexual hormones, and DNA integrity of female African catfish, Clarias gariepinus, in addition to the potential use of dietary supplementation of papaya, Carica papaya (CP), extract against CPF toxicity. Apparent healthy female catfish (300 ± 10 g) were divided into four groups with three replicates each. The first group served as the negative control (fed on a basal diet) and the other groups exposed to CPF (8.75 µg/L) with or without CP extract (250 mg/kg body weight) for six weeks. The results revealed that CPF exposure exhibited marked elevations in stress markers (glucose and cortisol), serum aspartate aminotransferase, alanine aminotransferase activities, testosterone, and luteinizing hormone level. Moreover, CPF increased the percentage of hepatic DNA damage. In addition, catfish exposed to CPF experienced significant decline in serum total protein, albumin, follicles stimulating hormone, estradiol hormone levels, AChE, immunoglobulin, and lysozyme activity. CPF induced significantly oxidative stress in hepatic and renal tissues. The dietary supplementation with CP extract at a level of 250 mg/kg body weight succeeded to alleviate the negative effects of CPF on the physiological, immunological, and antioxidant status of female catfish. In addition, CP extract alleviated the endocrine disruption and hepatic DNA damage and counteracted the subchronic CPF toxicity in female African catfish. Finally, the CP extract may be used as a feed additive in the aquatic diet.
Collapse
Affiliation(s)
- Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Heba S. Hamed
- Department of Zoology, Faculty of Women for Arts, Science & Education, Ain Shams University, Cairo 11757, Egypt
| | - Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia;
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Walid Fathy Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo 11757, Egypt;
| |
Collapse
|
23
|
Ghetas HA, Abdel-Razek N, Shakweer MS, Abotaleb MM, Ahamad Paray B, Ali S, Eldessouki EA, Dawood MA, Khalil RH. Antimicrobial activity of chemically and biologically synthesized silver nanoparticles against some fish pathogens. Saudi J Biol Sci 2022; 29:1298-1305. [PMID: 35280558 PMCID: PMC8913374 DOI: 10.1016/j.sjbs.2021.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/24/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022] Open
Abstract
Pathogens isolated from fish appear to possess considerable antimicrobial resistance and represent a problem for the economy and public health. Natural antimicrobial substitutes to traditional antibiotics represent an essential tool in the fight against antibiotic resistance. Nanotechnology has shown considerable potential in different research fields, and the antimicrobial properties of silver nanoparticles are known. Silver has been used for medical purposes since ancient times because of its bactericidal properties, and the highly reactive surfaces of silver nanoparticles (AgNPs) indicate that they might have a function in antimicrobial applications. This work aimed to study the antimicrobial properties of biologically produced AgNPs from Origanum vulgare leaves compared to chemically produced AgNPs. Both types were characterized by UV-vis spectrophotometry, TEM, and dynamic light scattering and tested against three bacterial strains (Streptococcus agalactiae, and Aeromonas hydrophila, both isolated from Nile tilapia and Vibrio alginolyticus, isolated from sea bass) and three fungal strains (Aspergillus flavus, Fusarium moniliforme, and Candida albicans, all isolated from Nile tilapia). Disk diffusion test and evaluation of ultrastructure changes of tested microorganisms treated with AgNPs by transmission electron microscopy were performed. Moreover, the hemolytic properties of AgNPs were studied on chicken and goat red blood cells. The results obtained declare that the green biological production of silver nanoparticles is safer and more effective than the chemical one; moreover, AgNPs have interesting dose-dependent antimicrobial properties, with better results for biologically produced ones; their effectiveness against tested bacterial and fungal strains opens the way to their use to limit fish diseases, increase economy and improve human health.
Collapse
Affiliation(s)
- Hanan A. Ghetas
- Aquatic Animal Medicine and Management Department, Faculty of Veterinary Medicine, Sadat City University, Egypt
| | - Nashwa Abdel-Razek
- Fish Health and Management Department, Central Laboratory for Aquaculture Research, Abbassa, Abo-Hammad, Sharqia, Agriculture Research Center, Egypt
| | - Medhat S. Shakweer
- Internal Medicine, Infectious and Fish Diseases Department, Faculty of Veterinary Medicine, Mansoura University, Egypt
| | | | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| | - Elsayed A. Eldessouki
- Department of Fish Health and Diseases, Faculty of Fish Resources, Suez University, Egypt
| | - Mahmoud A.O. Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Riad H. Khalil
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Alexandria University, Egypt
| |
Collapse
|
24
|
Yan J, Zhao Z, Xia M, Chen S, Wan X, He A, Daniel Sheng G, Wang X, Qian Q, Wang H. Induction of lipid metabolism dysfunction, oxidative stress and inflammation response by tris(1-chloro-2-propyl)phosphate in larval/adult zebrafish. ENVIRONMENT INTERNATIONAL 2022; 160:107081. [PMID: 35021149 DOI: 10.1016/j.envint.2022.107081] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
As an important organophosphate flame retardant, tris(1-chloro-2-propyl)phosphate (TCPP) is ubiquitous in the environment leading to inevitable human exposure. However, there is a paucity of information regarding its acute/chronic effects on obesity, lipid homeostasis, and hepatocellular carcinoma, especially regarding the underlying molecular mechanisms in humans. Herein, we investigated the effects of TCPP exposure (5-25 mg/L) on lipid homeostasis in larval and adult zebrafish (Danio rerio). TCPP exposure caused remarkable lipid-metabolism dysfunction, which was reflected in obesity and excessive lipid accumulation in zebrafish liver. Mechanistically, TCPP induced the over-expression of adipogenesis genes and suppressed the expression of fatty-acid β-oxidation genes. Consequently, excess lipid synthesis and deficient expenditure triggered oxidative damage and an inflammation response by disrupting the antioxidant system and over-expressing proinflammatory cytokine. Based on high-throughput transcriptome sequencing, we found that TCPP exposure led to enrichment of several pathways involved in lipid metabolism and inflammation, as well as several genes related to pathways of cancer. Notably, increasing expressions of Ki-67 and 53BP1 proteins, which are reliable biomarkers for recognition and risk prediction of cellular proliferation in cancer cells, were observed in liver tissues of adult zebrafish. These results imply that chronic TCPP exposure triggers a potential risk of hepatocellular carcinogenesis (HCC) progression. Collectively, these findings offer new insights into our mechanistic understanding for the health effects of organophosphorus flame retardants on humans.
Collapse
Affiliation(s)
- Jin Yan
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China
| | - Zijia Zhao
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China
| | - Min Xia
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China
| | - Shuya Chen
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China
| | - Xiancheng Wan
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China
| | - Anfei He
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China
| | - Guangyao Daniel Sheng
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China
| | - Xuedong Wang
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China
| | - Qiuhui Qian
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China
| | - Huili Wang
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China.
| |
Collapse
|
25
|
Dhara K, Chukwuka AV, Saha S, Saha NC, Faggio C. Effects of short-term selenium exposure on respiratory activity and proximate body composition of early-life stages of Catla catla, Labeo rohita and Cirrhinus mrigala. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103805. [PMID: 34974167 DOI: 10.1016/j.etap.2021.103805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Metal exposure impairs respiration, increases metabolic demand, and reduces energy storage/fitness in aquatic species. Respiratory impairment and energy storage was examined in acute selenium-exposed Indian major carps, Catla catla, Labeo rohita and Cirrhinus mrigala fry and were correlated with exposure concentrations. Toxicity effects were determined in a renewal bioassay using 96 h lethal selenium concentrations. Species sensitivity distribution (SSD) was also used to derive predicted no-effect concentrations, toxicity exposure ratios, for selenium exposures to early-life fish stages. Mortality was proportional with increasing concentrations. Oxygen consumption and lipid content compared to moisture and ash and of all protein content in tissues of C. catla and C. mrigala indicates that lowered oxygen consumption is directly predictive of lowered lipid content and selenium-induced hypoxia impacts the energy/nutritional status of the early-life stage of carp. This cross-taxa comparison will have major implications for advancing impact assessment and allow better targeting of species for conservation measures.
Collapse
Affiliation(s)
- Kishore Dhara
- Freshwater Fisheries Research & Training Centre, Directorate of Fisheries, Govt. of West Bengal, Kulia, Kalyani, Nadia 741 235, West Bengal, India
| | - Azubuike V Chukwuka
- National Environmental Standards and Regulations Enforcement Agency (NESREA), Osogbo, Osun State, Nigeria
| | - Shubhajit Saha
- Department of Zoology, Sundarban Hazi Desarat College, Pathankhali, South 24 Parganas 743611, West Bengal, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory, Department of Zoology, University of Burdwan, Purba Barddhaman, West Bengal, India
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
26
|
Dietary Lactobacillus acidophilus ATCC 4356 Relieves the Impacts of Aflatoxin B 1 Toxicity on the Growth Performance, Hepatorenal Functions, and Antioxidative Capacity of Thinlip Grey Mullet (Liza ramada) (Risso 1826). Probiotics Antimicrob Proteins 2022; 14:189-203. [PMID: 35048326 DOI: 10.1007/s12602-021-09888-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 01/15/2023]
Abstract
Dietary Lactobacillus acidophilus ATCC 4356 was used to relieve the impacts of aflatoxin B1 toxicity on the performances of Liza ramada. The control diet was without any additives, while the second and third diets were supplemented with aflatoxin B1 at 0.5 and 1 mg/kg. The fourth diet was supplemented with Lb. acidophilus ATCC 4356 at 1 × 106 CFU/mL per kg diet, while the fifth with aflatoxin B1 at 1 mg/kg and Lb. acidophilus ATCC 4356 at 1 × 106 CFU/mL per kg diet. The growth performance markedly increased (p < 0.05) in L. ramada fed Lb. acidophilus ATCC 4356, while aflatoxin B1 at 0.5 and 1 mg/kg groups showed a severe reduction. The red blood cells, hemoglobulin, hematocrit, and white blood cells were markedly increased in L. ramada fed Lb. acidophilus ATCC 4356 while decreased (p < 0.05) in fish fed aflatoxin B1 at 0.5 and 1 mg/kg. The blood total protein and albumin were markedly increased (p < 0.05) in L. ramada fed Lb. acidophilus ATCC 4356 while reduced in aflatoxin B1 at 0.5 and 1 mg/kg groups. The levels of total cholesterol and triglycerides were meaningfully increased in fish of the Lb. acidophilus ATCC 4356 and aflatoxin B1 at 1 mg/kg groups while decreased in aflatoxin B1 at 0.5 and 1 mg/kg groups. Alanine aminotransferase, aspartate aminotransferase, creatinine, and urea levels were markedly decreased (p < 0.05) in fish-fed Lb. acidophilus ATCC 4356 while increased in aflatoxin B1 at 0.5 and 1 mg/kg groups. The highest levels of blood glucose and cortisol were seen in fish contaminated with aflatoxin B1 at 1 mg/kg, while the lowest levels were observed in the fish fed Lb. acidophilus ATCC 4356 group (p < 0.05). The catalase and superoxide dismutase were markedly enhanced in the Lb. acidophilus ATCC 4356 group and severely declined in aflatoxin B1 at 0.5 and 1 mg/kg groups (p < 0.05). The malondialdehyde level was markedly reduced in fish fed Lb. acidophilus ATCC 4356 with or without aflatoxin B1 at 1 mg/kg diets while increased in fish contaminated with aflatoxin B1 at 0.5 and 1 mg/kg (p < 0.05). The control group had lower malondialdehyde levels than the aflatoxin B1 at 1 mg/kg group and higher than the Lb. acidophilus ATCC 4356 with or without aflatoxin B1 toxicity (p < 0.05). Histopathological examination revealed impaired intestines and livers in fish contaminated with aflatoxin B1 while Lb. acidophilus ATCC 4356 relieves the inflammation and protected the intestines and livers. In conclusion, dietary Lb. acidophilus ATCC 4356 is recommended to relieve the impacts of aflatoxicosis-induced hepatorenal failure and oxidative stress in L. ramada.
Collapse
|
27
|
Rashidian G, Mahboub HH, Fahim A, Hefny AA, Prokić MD, Rainis S, Boldaji JT, Faggio C. Mooseer (Allium hirtifolium) boosts growth, general health status, and resistance of rainbow trout (Oncorhynchus mykiss) against Streptococcus iniae infection. FISH & SHELLFISH IMMUNOLOGY 2022; 120:360-368. [PMID: 34910977 DOI: 10.1016/j.fsi.2021.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
In large-scale aquaculture, the fast growth rate of fish is positively influenced by feed additives such as medicinal plants. This is however; infectious disease may reduce fish growth and cause devastating economic loss. The present study investigated in vitro antibacterial efficacy of Mooseer (Allium hirtifolium) extract against Streptococcus iniae and its in vivo effects on growth, biochemical parameters, innate immunity of rainbow trout (Oncorhynchus mykiss). Therefore, six experimental diets were designed to include different levels of Mooseer from zero (as control), 5, 10, 15, 20, and 25 g per kg diet respectively referred to as M1 to M5. Results from the antibacterial evaluation showed that Mooseer extract inhibits S. iniae growth with MIC and MBC values of 128 and 256 μg ml-1. Appreciable results were obtained in the groups supplemented with Mooseer. Mooseer enhanced growth performance, and modulated serum biochemical and immunological parameters (total protein, albumin, triglyceride, glucose, cortisol, cholesterol, lysozyme, Ig, ACH50, ALP, and protease activity), and liver enzymes (ALT, AST and ALP). The greatest effects were found for higher doses of Mooseer supplementation (M4 and M5). Meanwhile, results from the survival rate of fish challenged with S. iniae showed higher survival in M2 and M4 treatments. The present findings suggest the beneficial use of Mooseer in rainbow trout diet, with 20 g kg-1 inclusion as the recommended dose.
Collapse
Affiliation(s)
- Ghasem Rashidian
- Department of Aquaculture, Faculty of Marine Sciences, Tarbiat Modares University, Noor, 4641776489, Iran.
| | - Heba H Mahboub
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Azin Fahim
- Department of Aquaculture, Faculty of Marine Sciences, Tarbiat Modares University, Noor, 4641776489, Iran
| | - Ahmed A Hefny
- Colleague of Microbiology, Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia.
| | | | - Javad Tahmasebi Boldaji
- Dipartimento di Scienze Biomolecolare (DISB), Facoltà di Farmacia, Università degli Studi di Urbino "Carlo Bo", Via Aurelio Saffi 2, 61029, Urbino, PU, Italy.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, ME, Italy.
| |
Collapse
|
28
|
Mohammadi G, Hafezieh M, Karimi AA, Azra MN, Van Doan H, Tapingkae W, Abdelrahman HA, Dawood MAO. The synergistic effects of plant polysaccharide and Pediococcus acidilactici as a synbiotic additive on growth, antioxidant status, immune response, and resistance of Nile tilapia (Oreochromis niloticus) against Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2022; 120:304-313. [PMID: 34838702 DOI: 10.1016/j.fsi.2021.11.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the growth performance, immune responses, and disease resistance of Nile tilapia upon pistachio hulls derived polysaccharide (PHDP) and Pediococcus acidilactici (PA) separately or as synbiotic. Fish received four types of diets: T1, control; T2, PHDP (0.1%); T3, PA (0.2%); T4, PHDP (0.1%) +PA (0.2%) for 56 days. The results showed that final weight and weight gain were markedly higher in fish fed T4 diet than that given T1 and T2 diets (P ≤ 0.05). In addition, a significantly greater specific growth rate was obtained by the T4 diet compared to the control. Fish survival was significantly improved in all supplemented diets compared to the control. On the other hand, the activities of lipase, protease, and amylase showed significant increases in the T4 group compared with other feeding groups. The total leucocytes and lymphocytes proportion significantly elevated in T3 and T4 than remaining groups (P ≤ 0.05). Further, fish fed T3 diet presented significantly higher serum total protein, total immunoglobulin, lysozyme activity (LYZ), alternative complement activity (ACH50), and alkaline phosphatase activity compared to fish fed T1 and T2 diets, while the mentioned indices were found significantly highest in T4 group than others. Fish received T3 and T4 diets had higher skin mucus LYZ and ACH50 than those fed T1 and T2 diets (P ≤ 0.05). The malondialdehyde levels were significantly declined in T3 and T4 when compared to the control. Fish fed T3 and T4 diets demonstrated significantly enhanced superoxide dismutase, catalase, and glutathione peroxidase activities compared to the control. The intestinal propionic acid significantly increased by T2 and T4 diets, while the highest levels of acetic acid detected in fish given T4 diet. The expression levels of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and interleukin 10 (IL-10) were significantly affected by T3 and T4 supplements. The efficacy of T4 diet against Aeromonas hydrophila infection was documented by a significantly lower mortality rate. In conclusion, the combination of PHDP and PA presented promising results as a synbiotic feed additive for Nile tilapia.
Collapse
Affiliation(s)
- Ghasem Mohammadi
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Bandar Abbas, Iran; Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Mahmoud Hafezieh
- Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Ali Akbar Karimi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
| | - Mohamad Nor Azra
- Institute for Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Wanaporn Tapingkae
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hisham A Abdelrahman
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Mahmoud A O Dawood
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt; The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, 11835, Cairo, Egypt.
| |
Collapse
|
29
|
El Basuini MF, Teiba II, Shahin SA, Mourad MM, Zaki MAA, Labib EMH, Azra MN, Sewilam H, El-Dakroury MF, Dawood MAO. Dietary Guduchi (Tinospora cordifolia) enhanced the growth performance, antioxidative capacity, immune response and ameliorated stress-related markers induced by hypoxia stress in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2022; 120:337-344. [PMID: 34883256 DOI: 10.1016/j.fsi.2021.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 06/13/2023]
Abstract
Nile tilapia can tolerate a wide range of farming conditions; however, fluctuations in the environmental conditions may impair their health status. The incorporation of medicinal herbs in aquafeed is suggested to overcome stressful conditions. In this study, dietary Guduchi (Tinospora cordifolia) was evaluated on the growth performance, antioxidative capacity, immune response, and resistance of Nile tilapia against hypoxia stress. Fish fed five diets incorporated with Guduchi at 0, 2, 4, 6, and 8 g/kg for 56 days then exposed with hypoxia stress for 72 h. The growth performance, feed intake, and feed efficiency ratio were significantly (P < 0.05) increased by including Guduchi in tilapia diets regardless of the inclusion level. Similarly, the lipase and protease activities were markedly (P < 0.05) increased in tilapia fed dietary Guduchi. The activities of lysozyme and bactericidal activities in serum and mucus, nitro-blue tetrazolium (NBT), and alternative complement activity (ACH50) were markedly (P < 0.05) enhanced in tilapia treated with Guduchi supplements regardless of the dose. Additionally, the activities of liver and intestinal superoxide dismutase, catalase, and glutathione peroxidase were markedly enhanced (P < 0.05) by including Guduchi in tilapia diets compared with the control. Before and after hypoxia stress, tilapia-fed dietary Guduchi had lower glucose and cortisol levels than fish-fed Guduchi-free diets (P < 0.05). In all groups, glucose and cortisol levels were markedly higher after hypoxia compared before hypoxia stress (P < 0.05). In conclusion, dietary Guduchi can be included at 5.17-5.49 g/kg to enhance the growth performance, digestive enzyme activity, immune and antioxidative responses, and the resistance of Nile tilapia against hypoxia stress.
Collapse
Affiliation(s)
- Mohammed F El Basuini
- Animal Production Department, Faculty of Agriculture, Tanta University, 31527, Tanta, Egypt; Faculty of Desert Agriculture, King Salman International University, South Sinai, Egypt.
| | - Islam I Teiba
- Microbiology, Botany Department, Faculty of Agriculture, Tanta University, 31527, Tanta, Egypt
| | - Shimaa A Shahin
- Animal and Fish Production Department, Faculty of Agriculture- Saba Basha, Alexandria University, Egypt
| | - Mona M Mourad
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Mohamed A A Zaki
- Animal and Fish Production Department, Faculty of Agriculture - El Shatby, Alexandria University, Egypt
| | - Eman M H Labib
- Animal Production Research Institute, Agriculture Research Center, Dokki, Giza, Egypt
| | - Mohamad Nor Azra
- Institute for Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Hani Sewilam
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, 11835, Cairo, Egypt; Department of Engineering Hydrology, RWTH Aachen University, Aachen, Germany
| | - M F El-Dakroury
- Department of Pharmacology, Faculty of Veterinary Medicine, Matrouh University, Egypt
| | - Mahmoud A O Dawood
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, 11835, Cairo, Egypt; Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| |
Collapse
|
30
|
Zhao WJ, Li X, Xu ZQ, Fang KM, Hong HC, Sun HJ, Guan DX, Yu XW. Environmentally relevant concentrations of arsenic induces apoptosis in the early life stage of zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112883. [PMID: 34653941 DOI: 10.1016/j.ecoenv.2021.112883] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) in the aquatic environment is a considerable environmental issue, previous studies have reported the toxic effects of low concentrations (≤ 150 μg/L) of As on fish. However, limited information is available regarding the impact of low levels of As on apoptosis. To evaluate this, zebrafish embryos were exposed to different concentrations (0, 25, 50, 75, and 150 μg/L) of As (arsenite [AsIII] and arsenate [AsV]) for 120 h. Our results indicated that low concentrations of AsIII exposure significantly inhibited the survival of zebrafish larvae, and significantly increased the transcription of Caspase-9 and Caspase-3, the ratio of Bax/Bcl-2 transcription, and protein levels of Caspase-3. In contrast, AsV decreased the ratios of Bax/Bcl-2 transcription and protein levels, as well as protein levels of Caspase-3. Our data demonstrated that AsIII and AsV exert different toxic effects, AsIII induced apoptosis via the mitochondrial pathway and the extrinsic pathway, while AsV induced apoptosis only via the mitochondrial pathway.
Collapse
Affiliation(s)
- Wen-Jun Zhao
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Xiang Li
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Ze-Qiong Xu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Ke-Ming Fang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Hua-Chang Hong
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Hong-Jie Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China; Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Dong-Xing Guan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin-Wei Yu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang 316021, China; College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316021, China.
| |
Collapse
|
31
|
Zhou Y, Kong Q, Lin Z, Ma J, Zhang H. Transcriptome aberration associated with altered locomotor behavior of zebrafish (Danio rerio) caused by Waterborne Benzo[a]pyrene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112928. [PMID: 34710819 DOI: 10.1016/j.ecoenv.2021.112928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Waterborne Benzo[a]pyrene (B[a]P) pollution is a global threat to aquatic organisms. The exposure to waterborne B[a]P can disrupt the normal locomotor behavior of zebrafish (Danio rerio), however, how it affect the locomotor behavior of adult zebrafish remains unclear. Herein, B[a]P at two concentrations (0.8 μg/L and 2.0 μg/L) were selected to investigate the molecular mechanisms of the affected locomotor behavior of zebrafish by B[a]P based on transcriptome profiling. Adverse effects of B[a]P exposure affecting locomotor behavior in zebrafish were studied by RNA sequencing, and the locomotion phenotype was acquired. The gene enrichment results showed that the differentially highly expressed genes (atp2a1, cdh2, aurka, fxyd1, clstn1, apoc1, mt-co1, tnnt3b, and fads2) of zebrafish are mainly enriched in adrenergic signaling in cardiomyocytes (dre04261) and locomotory behavior (GO:0007626). The movement trajectory plots showed an increase in the locomotor distance and velocity of zebrafish in the 0.8 μg/L group and the opposite in the 2.0 μg/L group. The results showed that B[a]P affects the variety of genes in zebrafish, including motor nerves, muscles, and energy supply, and ultimately leads to altered locomotor behavior.
Collapse
Affiliation(s)
- Yumiao Zhou
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China.
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China.
| | - Zhihao Lin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China.
| | - Jinyue Ma
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China.
| | - Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China.
| |
Collapse
|
32
|
Rashidian G, Moosazadeh Moghaddam M, Mirnejad R, Mohammadi Azad Z. Supplementation of zebrafish (Danio rerio) diet using a short antimicrobial peptide: Evaluation of growth performance, immunomodulatory function, antioxidant activity, and disease resistance. FISH & SHELLFISH IMMUNOLOGY 2021; 119:42-50. [PMID: 34597813 DOI: 10.1016/j.fsi.2021.09.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/11/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Short-chain bioactive peptides are new and promising antimicrobial, immune moderating, and antioxidant agents. Therefore, the present study was conducted to evaluate in vitro antibacterial activity of CM11, a short antimicrobial peptide (AMP), against Streptococcus iniae and Yersinia ruckeri as fish pathogenic bacteria using standard disk diffusion and microdilution assays. In addition, in vivo effects of CM11 on fish growth, immunity, antioxidant activity, and disease resistance were evaluated using zebrafish (Danio rerio) as an animal model. For in vivo study, based on in vitro susceptibility results, four diets were designed to include zero (as control), 10, 20, and 50 μg of CM11 per g diet referred to as control, P1, P2, and P3 treatments, respectively. After eight weeks of dietary trial, fish were challenged with Streptococcus iniae, and the survival rate was calculated for a period of two weeks. Results showed that CM11 effectively inhibited the growth of S. iniae and Y. ruckeri on agar plates at a concentration of eight μg/ml. Minimum inhibitory and minimum bactericidal concentrations of CM11 were measured at 8 and 32 μg/ml for S. iniae and 16 and 64 μg/ml Y. ruckeri, respectively. In vivo results showed no noticeable effects on fish growth parameters, however, feed conversion ratio (FCR) was found lower in P3 and P2 compared to control (P < 0.05). Immunological and antioxidant responses were found strongly affected by CM11 in all treatment groups in which the highest values were found in the P3 treated group. Key immune and antioxidant genes were up-regulated particularly in fish receiving the highest level of CM11 (P3). Fish receiving the CM11 peptide showed better survival when challenged with S. iniae. These findings suggest the potential of CM11 for use in aquaculture as an antibacterial and immunostimulant agent.
Collapse
Affiliation(s)
- Ghasem Rashidian
- Department of Aquaculture, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, 64414-356, Noor, Iran
| | | | - Reza Mirnejad
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zohreh Mohammadi Azad
- Department of Microbiology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
33
|
Mohamadi Yalsuyi A, Forouhar Vajargah M, Hajimoradloo A, Mohammadi Galangash M, Prokić MD, Faggio C. Can Betadine (10% povidone-iodine solution) act on the survival rate and gill tissue structure of Oranda goldfish (Carassius auratus)? Vet Res Commun 2021; 46:389-396. [PMID: 34816339 DOI: 10.1007/s11259-021-09862-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/07/2021] [Indexed: 11/25/2022]
Abstract
Industrial chemical solutions are widely used as a method to disinfection of aquaculture water and environments. The aim of the present study was to evaluate the toxicity effect of Betadine (10% solution of povidone-iodine) as a disinfectant solution on the survival and gill tissue of Oranda goldfish (Carassius auratus). For these purposes, 225 fingerling Oranda goldfish with an average weight 5 ± 0.67 g were divided into 15 groups with 3 replications. Fish were exposed to series of concentrations (0, 10, 20, 40, 60, 80, 90, 100, 120, 140, 160, 180, 200, 220 and 240 mg/L) of Betadine for 96 h. The mortality of fish and the samples of gill were observed at 6, 12, 18, 24, 48, 72 and 96 h after exposure. The results of the present study showed that the half-life of Betadine was less than 24 h and mortality were not record after 24 h. The highest mortality rate was at 240 mg/L, and LC50 24 h of Betadine was 158.800 mg/L. Histopathological results showed that lethal concentrations of Betadine lead to hyperemia, hypertrophy, hyperplasia and adhesion of secondary lamellar of the gill. Moreover, fish that were exposed to these concentrations displayed clinical signs such as anxiety, darkening of the skin. Overall results showed that Betadine have short half-life in the aquatic environment and are toxic to fish at very high concentrations, therefore it can be considered as practically non-toxic and useful for disinfection of the aquatic environment.
Collapse
Affiliation(s)
- Ahmad Mohamadi Yalsuyi
- Department of Fisheries Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | | | - Abdolmajid Hajimoradloo
- Department of Fisheries Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Mohsen Mohammadi Galangash
- Department of Environmental Sciences and Engineering, Faculty of Natural Resources, University of Guilan, Sowmehsara, Iran
| | - Marko D Prokić
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
34
|
DeiviArunachalam K, Kuruva JK, Pradhoshini KP, Musthafa MS, Faggio C. Antioxidant and antigenotoxic potential of Morinda tinctoria Roxb. leaf extract succeeding cadmium exposure in Asian catfish, Pangasius sutchi. Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109149. [PMID: 34352397 DOI: 10.1016/j.cbpc.2021.109149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/11/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022]
Abstract
The present study investigated the protective effect of methanolic leaf extract of Morinda tinctoria. Roxb (MEMT) (200 mg/kg) via feed in supplementation with standard compound silymarin (400 mg/kg). M. tinctoria (Roxb.) belonging to Rubiaceae, is an evergreen shrub indigenous to unfarmed lands of tropical countries. It is considered as an essential traditional medicine attributing for the potential antioxidant and anti-inflammatory properties. The enhancements of antioxidant and antigenotoxic status in different tissues of cadmium (Cd) intoxicated Pangasius sutchi were evaluated by using various antioxidant assays (superoxide dismutase (SOD) and catalase (CAT) and lipid peroxidation) in addition to micronuclei (MN), binuclei (BN) and comet assay. The cadmium toxicated fish showed a significant (p < 0.001) increase in lipid peroxidation (LPO) activities in liver, gills, muscle and kidney whereas significant (p < 0.001) decline were observed in superoxide dismutase (SOD) and catalase (CAT) contents in all fish tissues. The results also revealed that, Cd exposure induced the formation of genotoxic endpoints like MN, BN, notched nuclei, kidney shaped nuclei and DNA damage in the fish erythrocytes. Maximum of 26.8% MN frequencies and maximum of 66.74% tail DNA damage were observed on the 7th day of Cd exposure. A time-dependent significant increase (p < 0.001) in the frequencies of MN, BN and tail DNA damage were observed in all treated groups against the control which started to decline from 14th day onwards. There was a decline in the LPO content, frequencies of MN, BN and percentage of tail DNA in contrast to significant elevation in SOD and CAT content in all tissues due to the combined treatment of M. tinctoria feed and water borne Cd exposure. It can be concluded from our observations that, supplementation of M. tinctoria leaf extract through feed alone produced enhanced antioxidant and antigenotoxic status in cadmium treated fish by diminishing oxidative stress and genotoxicity effects in a time dependent manner.
Collapse
Affiliation(s)
- Kantha DeiviArunachalam
- Center for Environmental and Nuclear Research (CENR), SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Jaya Krishna Kuruva
- Center for Environmental and Nuclear Research (CENR), SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Kumara Perumal Pradhoshini
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Mohamed Saiyad Musthafa
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
35
|
Kumar J, Priyadharshini M, Madhavi M, Begum SS, Ali AJ, Musthafa MS, Faggio C. Impact of Hygrophila auriculata supplementary diets on the growth, survival, biochemical and haematological parameters in fingerlings of freshwater fish Cirrhinus mrigala (Hamilton, 1822). Comp Biochem Physiol A Mol Integr Physiol 2021; 263:111097. [PMID: 34688885 DOI: 10.1016/j.cbpa.2021.111097] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022]
Abstract
The present study investigates the effects of Supplementary diet Hygrophila auriculata on the growth, survival, biochemical and haematological parameters of Cirrhinus mrigala. The seaweed was administered to the fish possessing an initial average weight of 14.063 ± 1.828 g. Fish were fed with supplementary diet H. auriculata exhibited significant difference (P < 0.05) in the growth performance, haematological indices such as RBC count, haematocrit volume, haemoglobin, WBC, MCV, MCH and MCHC concentration in contrast to the control after a period of 8 weeks. Also, there were significant differences in biochemical parameters (P < 0.05), between the fish supplemented with dietary H. auriculata extract and the control group. These findings suggest that the administration of H. auriculata extract has a positive effect on the immunological indices and the immune system activity in Mrigal fish.
Collapse
Affiliation(s)
- Johnsundhar Kumar
- Unit of Aquaculture & Aquatic Toxicology, P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Marckasagayam Priyadharshini
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - M Madhavi
- P.G. & Research Department of Zoology, Ethiraj College for Women, Affiliated to University of Madras, Chennai 600 008, Tamil Nadu, India
| | - S Subeena Begum
- Department of Animal Health and Management, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - A Jawahar Ali
- Unit of Aquaculture & Aquatic Toxicology, P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Mohamed Saiyad Musthafa
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina-Viale Ferdinando Stagno d'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
36
|
Harikrishnan R, Devi G, Van Doan H, Balasundaram C, Thamizharasan S, Hoseinifar SH, Abdel-Tawwab M. Effect of diet enriched with Agaricus bisporus polysaccharides (ABPs) on antioxidant property, innate-adaptive immune response and pro-anti inflammatory genes expression in Ctenopharyngodon idella against Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2021; 114:238-252. [PMID: 33989765 DOI: 10.1016/j.fsi.2021.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
The effect of Agaricus bisporus polysaccharides (ABPs) supplemented diet on growth rate, antioxidant capacity, innate-adaptive immune response, proinflammatory and antiinflammatory genes expression in Ctenopharyngodon idella against Aeromonas hydrophila is reported. In both normal and challenged groups fed with 1.0 and 1.5 mg kg-1 ABPs diets resulted in a significant weight gain and feed intake. The survival was 100% in normal fish fed without or with any ABPs diet; the challenged fish fed with 1.0 mg kg-1 ABPs diet had 98.6% survival. The RBC and WBC counts, Hb, and Hct levels were significant in both normal and challenged groups fed with 1.0 and 1.5 mg kg-1 ABPs diets. A significant increase in total protein and albumin level was observed in both groups fed with 1.0 and 1.5 mg kg-1 ABPs diets. Significant increase in GPx, ROS, GR, GSH, PC, and MnSOD activity was observed in HK of both groups fed with 1.0 and 1.5 mg kg-1 ABPs diets; similarly both groups when fed with the same ABPs diets showed significant Lz, C3, and C4 activity. However, both groups fed with 1.0 mg kg-1 ABPs diet showed significant β-defensin, LEAP-2A, IL-6, and NF-κB P65 mRNA expression. Similarly, IFN-γ2, IL-10, and TNFα mRNA expressions were significant in both groups fed with 1.0 mg kg-1 ABPs diet. The results indicate that both normal and challenged C. idella fed with a 1.0 mg kg-1 ABPs diet had better growth, antioxidant status, immune response, and pro-anti-inflammatory gene modulation against A. hydrophila.
Collapse
Affiliation(s)
- Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram 631 501, Tamil Nadu, India
| | - Gunapathy Devi
- Department of Zoology, Nehru Memorial College, Puthanampatti 621 007, Tamil Nadu, India
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai 50200, Thailand.
| | - Chellam Balasundaram
- Department of Herbal and Environmental Science, Tamil University, Thanjavur, 613 005, Tamil Nadu, India
| | - Subramanian Thamizharasan
- Department of Biotechnology, Bharath College of Science and Management, Thanjavur, 613-005, Tamil Nadu, India
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohsen Abdel-Tawwab
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Abbassa, Abo-Hammad, Sharqia, Egypt
| |
Collapse
|
37
|
Firmino JP, Galindo-Villegas J, Reyes-López FE, Gisbert E. Phytogenic Bioactive Compounds Shape Fish Mucosal Immunity. Front Immunol 2021; 12:695973. [PMID: 34220858 PMCID: PMC8252966 DOI: 10.3389/fimmu.2021.695973] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Aquaculture growth will unavoidably involve the implementation of innovative and sustainable production strategies, being functional feeds among the most promising ones. A wide spectrum of phytogenics, particularly those containing terpenes and organosulfur compounds, are increasingly studied in aquafeeds, due to their growth promoting, antimicrobial, immunostimulant, antioxidant, anti-inflammatory and sedative properties. This trend relies on the importance of the mucosal barrier in the fish defense. Establishing the phytogenics' mode of action in mucosal tissues is of importance for further use and safe administration. Although the impact of phytogenics upon fish mucosal immunity has been extensively approached, most of the studies fail in addressing the mechanisms underlying their pharmacological effects. Unstandardized testing as an extended practice also questions the reproducibility and safety of such studies, limiting the use of phytogenics at commercial scale. The information presented herein provides insight on the fish mucosal immune responses to phytogenics, suggesting their mode of action, and ultimately encouraging the practice of reliable and reproducible research for novel feed additives for aquafeeds. For proper screening, characterization and optimization of their mode of action, we encourage the evaluation of purified compounds using in vitro systems before moving forward to in vivo trials. The formulation of additives with combinations of compounds previously characterized is recommended to avoid bacterial resistance. To improve the delivery of phytogenics and overcome limitations associated to compounds volatility and susceptibility to degradation, the use of encapsulation is advisable. Besides, newer approaches and dedicated methodologies are needed to elucidate the phytogenics pharmacokinetics and mode of action in depth.
Collapse
Affiliation(s)
- Joana P. Firmino
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA) Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
- PhD Program in Aquaculture, Universitat Autònoma de Barcelona, Bellaterra, Spain
- R&D Technical Department, TECNOVIT – FARMFAES, S.L., Alforja, Spain
| | | | - Felipe E. Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Enric Gisbert
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA) Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
| |
Collapse
|
38
|
Jijie R, Mihalache G, Balmus IM, Strungaru SA, Baltag ES, Ciobica A, Nicoara M, Faggio C. Zebrafish as a Screening Model to Study the Single and Joint Effects of Antibiotics. Pharmaceuticals (Basel) 2021; 14:ph14060578. [PMID: 34204339 PMCID: PMC8234794 DOI: 10.3390/ph14060578] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
The overuse of antibiotics combined with the limitation of wastewater facilities has resulted in drug residue accumulation in the natural environment. Thus, in recent years, the presence of antibiotic residues in the environment has raised concerns over the potential harmful effects on ecosystems and human health. The in vivo studies represent an essential step to study the potential impact induced by pharmaceutical exposure. Due to the limitations of traditional vertebrate model systems, zebrafish (Danio rerio) has recently emerged as a promising animal model to study the toxic effects of drugs and their therapeutic efficacy. The present review summarizes the recent advances made on the toxicity of seven representative classes of antibiotics, namely aminoglycosides, β-lactams, macrolides, quinolones, sulfonamides, tetracyclines and polyether antibiotics, in zebrafish, as well as the combined effects of antibiotic mixtures, to date. Despite a significant amount of the literature describing the impact of single antibiotic exposure, little information exists on the effects of antibiotic mixtures using zebrafish as an animal model. Most of the research papers on this topic have focused on antibiotic toxicity in zebrafish across different developmental stages rather than on their efficacy assessment.
Collapse
Affiliation(s)
- Roxana Jijie
- Marine Biological Station “Prof. dr. I. Borcea”, “Alexandru Ioan Cuza” University of Iasi, Nicolae Titulescu Street, No. 163, 9007018 Agigea, Romania;
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, 11 Carol I, 700506 Iasi, Romania; (I.-M.B.); (S.-A.S.)
- Correspondence: (R.J.); (C.F.)
| | - Gabriela Mihalache
- Integrated Center of Environmental Science Studies in the North Eastern Region (CERNESIM), “Alexandru Ioan Cuza” University of Iasi, 11 Carol I, 700506 Iasi, Romania;
- Department of Horticultural Technologies, “Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, 700440 Iasi, Romania
| | - Ioana-Miruna Balmus
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, 11 Carol I, 700506 Iasi, Romania; (I.-M.B.); (S.-A.S.)
| | - Stefan-Adrian Strungaru
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, 11 Carol I, 700506 Iasi, Romania; (I.-M.B.); (S.-A.S.)
| | - Emanuel Stefan Baltag
- Marine Biological Station “Prof. dr. I. Borcea”, “Alexandru Ioan Cuza” University of Iasi, Nicolae Titulescu Street, No. 163, 9007018 Agigea, Romania;
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, B-dul Carol I, 700505 Iasi, Romania; (A.C.); (M.N.)
| | - Mircea Nicoara
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, B-dul Carol I, 700505 Iasi, Romania; (A.C.); (M.N.)
- Doctoral School of Geosciences, Faculty of Geography-Geology, “Alexandru Ioan Cuza” University of Iasi, B-dul Carol I, 700505 Iasi, Romania
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno, d’Alcontres, 31 98166 S. Agata-Messina, Italy
- Correspondence: (R.J.); (C.F.)
| |
Collapse
|
39
|
Liu M, Tang L, Hu C, Sun B, Huang Z, Chen L. Interaction between probiotic additive and perfluorobutanesulfonate pollutant on offspring growth and health after parental exposure using zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112107. [PMID: 33667734 DOI: 10.1016/j.ecoenv.2021.112107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Perfluorobutanesulfonate (PFBS) pollutant and probiotic bacteria can interact to affect the reproductive outcomes of zebrafish. However, it is still unexplored how the growth and health of offspring are modulated by the combination of PFBS and probiotic. In the present study, adult zebrafish were exposed to 0 and 10 μg/L PFBS for 40 days, with or without dietary supplementation of probiotic Lactobacillus rhamnosus. After parental exposure, the development, growth and viability of offspring larvae were examined, with the integration of molecular clues across proteome fingerprint, growth hormone/insulin-like growth factor (GH/IGF) axis, calcium homeostasis, hypothalamic-pituitary-adrenal (HPA) axis and nutrient metabolism. Parental probiotic supplementation significantly increased the body weight and body length of offspring larvae. Despite the spiking of PFBS, larvae from the combined exposure group still had longer body length. RNA processing and ribosomal assembly pathways may underlie the enhancement of offspring growth by probiotic bacteria. However, the presence of PFBS remarkably increased the concentrations of cortisol hormone in offspring larvae as means to cope with the xenobiotic stress, which required more energy production. As evidenced by the proteomic analysis, the addition of probiotic bacteria likely alleviated the energy metabolism disorders of PFBS, thus allocating more energy for the larval offspring growth from the combined group. It was noteworthy that multiple molecular disturbances caused by PFBS were antagonized by probiotic additive. Overall, the present study elucidated the intergenerational interaction between PFBS and probiotic on offspring growth and health after parental exposure.
Collapse
Affiliation(s)
- Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zileng Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|