1
|
Jiang H, Wang Z, Zhai X, Ma G, Wang T, Kong F, Luo W, Yu Z, Li H, Ren Y, Guo R, Jian L, Zhao L, Zuo Z, Pan S, Qi Z, Zhang Y, Liu Z, Rao D, Li Y, Wang J. Chromosome-level genome of diamondback terrapin provides insight into the genetic basis of salinity adaptation. Integr Zool 2024. [PMID: 39391967 DOI: 10.1111/1749-4877.12898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Diamondback terrapins (Malaclemys terrapin centrata) exhibit strong environmental adaptability and live in both freshwater and saltwater. However, the genetic basis of this adaptability has not been the focus of research. In this study, we successfully constructed a ∼2.21-Gb chromosome-level genome assembly for M. t. centrata using high-coverage and high-depth genomic sequencing data generated on multiple platforms. The M. t. centrata genome contains 25 chromosomes and the scaffold N50 of ∼143.75 Mb, demonstrating high continuity and accuracy. In total, 53.82% of the genome assembly was composed of repetitive sequences, and 22 435 protein-coding genes were predicted. Our phylogenetic analysis indicated that M. t. centrata was closely related to the red-eared slider turtle (Trachemys scripta elegans), with divergence approximately ∼23.6 million years ago (Mya) during the early Neogene period of the Cenozoic era. The population size of M. t. centrata decreased significantly over the past ∼14 Mya during the Cenozoic era. Comparative genomic analysis indicated that 36 gene families related to ion transport were expanded and several genes (AQP3, solute carrier subfamily, and potassium channel genes) underwent specific amino acid site mutations in the M. t. centrata genome. Changes to these ion transport-related genes may have contributed to the remarkable salinity adaptability of diamondback terrapin. The results of this study not only provide a high-quality reference genome for M. t. centrata but also elucidate the possible genetic basis for salinity adaptation in this species.
Collapse
Affiliation(s)
- Hui Jiang
- College of Life Science, Hainan Normal University, Haikou, China
| | - Zhongkai Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Xiaofei Zhai
- College of Life Science, Hainan Normal University, Haikou, China
| | - Guangwei Ma
- College of Life Science, Hainan Normal University, Haikou, China
| | - Tongliang Wang
- College of Life Science, Hainan Normal University, Haikou, China
| | - Fei Kong
- Shaanxi Institute of Zoology, Xian, China
| | - Wenkai Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Ziwei Yu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Haorong Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yandong Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Rui Guo
- College of Life Science, Hainan Normal University, Haikou, China
| | - Li Jian
- College of Life Science, Hainan Normal University, Haikou, China
| | - Longhui Zhao
- College of Life Science, Hainan Normal University, Haikou, China
| | - Ziye Zuo
- College of Life Science, Hainan Normal University, Haikou, China
| | - Shoupeng Pan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zan Qi
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yuxin Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zhuoya Liu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Dingqi Rao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yongxin Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Jichao Wang
- College of Life Science, Hainan Normal University, Haikou, China
| |
Collapse
|
2
|
Boehm T. Understanding vertebrate immunity through comparative immunology. Nat Rev Immunol 2024:10.1038/s41577-024-01083-9. [PMID: 39317775 DOI: 10.1038/s41577-024-01083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/26/2024]
Abstract
Evolutionary immunology has entered a new era. Classical studies, using just a handful of model animal species, combined with clinical observations, provided an outline of how innate and adaptive immunity work together to ensure tissue homeostasis and to coordinate the fight against infections. However, revolutionary advances in cellular and molecular biology, genomics and methods of genetic modification now offer unprecedented opportunities. They provide immunologists with the possibility to consider, at unprecedented scale, the impact of the astounding phenotypic diversity of vertebrates on immune system function. This Perspective is intended to highlight some of the many interesting, but largely unexplored, biological phenomena that are related to immune function among the roughly 60,000 existing vertebrate species. Importantly, hypotheses arising from such wide-ranging comparative studies can be tested in representative and genetically tractable species. The emerging general principles and the discovery of their evolutionarily selected variations may inspire the future development of novel therapeutic strategies for human immune disorders.
Collapse
Affiliation(s)
- Thomas Boehm
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center, Freiburg, Germany.
- Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Roberts JR, Bernstein JM, Austin CC, Hains T, Mata J, Kieras M, Pirro S, Ruane S. Whole snake genomes from eighteen families of snakes (Serpentes: Caenophidia) and their applications to systematics. J Hered 2024; 115:487-497. [PMID: 38722259 DOI: 10.1093/jhered/esae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/08/2024] [Indexed: 08/21/2024] Open
Abstract
We present genome assemblies for 18 snake species representing 18 families (Serpentes: Caenophidia): Acrochordus granulatus, Aparallactus werneri, Boaedon fuliginosus, Calamaria suluensis, Cerberus rynchops, Grayia smithii, Imantodes cenchoa, Mimophis mahfalensis, Oxyrhabdium leporinum, Pareas carinatus, Psammodynastes pulverulentus, Pseudoxenodon macrops, Pseudoxyrhopus heterurus, Sibynophis collaris, Stegonotus admiraltiensis, Toxicocalamus goodenoughensis, Trimeresurus albolabris, and Tropidonophis doriae. From these new genome assemblies, we extracted thousands of loci commonly used in systematic and phylogenomic studies on snakes, including target-capture datasets composed of ultraconserved elements (UCEs) and anchored hybrid enriched loci (AHEs), as well as traditional Sanger loci. Phylogenies inferred from the two target-capture loci datasets were identical with each other and strongly congruent with previously published snake phylogenies. To show the additional utility of these non-model genomes for investigative evolutionary research, we mined the genome assemblies of two New Guinea island endemics in our dataset (S. admiraltiensis and T. doriae) for the ATP1a3 gene, a thoroughly researched indicator of resistance to toad toxin ingestion by squamates. We find that both these snakes possess the genotype for toad toxin resistance despite their endemism to New Guinea, a region absent of any toads until the human-mediated introduction of Cane Toads in the 1930s. These species possess identical substitutions that suggest the same bufotoxin resistance as their Australian congenerics (Stegonotus australis and Tropidonophis mairii) which forage on invasive Cane Toads. Herein, we show the utility of short-read high-coverage genomes, as well as improving the deficit of available squamate genomes with associated voucher specimens.
Collapse
Affiliation(s)
- Jackson R Roberts
- Division of Zoology, Sternberg Museum of Natural History, Fort Hays State University, Hays, KS 67601, United States
- Division of Herpetology, Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, United States
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Justin M Bernstein
- Center for Genomics, University of Kansas, Lawrence, KS 66045, United States
- Department of Biology, University of Texas at Arlington, Arlington, TX 76010, United States
| | - Christopher C Austin
- Division of Herpetology, Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, United States
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Taylor Hains
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, United States
- Life Sciences Section, Negaunee Integrative Research Center, The Field Museum of Natural History, Chicago, IL 60637, United States
| | - Joshua Mata
- Amphibian and Reptile Collection, The Field Museum of Natural History, Chicago, IL 60605, United States
| | - Michael Kieras
- Iridian Genomes, Inc., Bethesda, MD 20817, United States
| | - Stacy Pirro
- Iridian Genomes, Inc., Bethesda, MD 20817, United States
| | - Sara Ruane
- Life Sciences Section, Negaunee Integrative Research Center, The Field Museum of Natural History, Chicago, IL 60637, United States
- Amphibian and Reptile Collection, The Field Museum of Natural History, Chicago, IL 60605, United States
| |
Collapse
|
4
|
Gable SM, Bushroe NA, Mendez JM, Wilson A, Pinto BJ, Gamble T, Tollis M. Differential Conservation and Loss of Chicken Repeat 1 (CR1) Retrotransposons in Squamates Reveal Lineage-Specific Genome Dynamics Across Reptiles. Genome Biol Evol 2024; 16:evae157. [PMID: 39031594 PMCID: PMC11303007 DOI: 10.1093/gbe/evae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/22/2024] Open
Abstract
Transposable elements (TEs) are repetitive DNA sequences which create mutations and generate genetic diversity across the tree of life. In amniote vertebrates, TEs have been mainly studied in mammals and birds, whose genomes generally display low TE diversity. Squamates (Order Squamata; including ∼11,000 extant species of lizards and snakes) show as much variation in TE abundance and activity as they do in species and phenotypes. Despite this high TE activity, squamate genomes are remarkably uniform in size. We hypothesize that novel, lineage-specific genome dynamics have evolved over the course of squamate evolution. To understand the interplay between TEs and host genomes, we analyzed the evolutionary history of the chicken repeat 1 (CR1) retrotransposon, a TE family found in most tetrapod genomes which is the dominant TE in most reptiles. We compared 113 squamate genomes to the genomes of turtles, crocodilians, and birds and used ancestral state reconstruction to identify shifts in the rate of CR1 copy number evolution across reptiles. We analyzed the repeat landscapes of CR1 in squamate genomes and determined that shifts in the rate of CR1 copy number evolution are associated with lineage-specific variation in CR1 activity. We then used phylogenetic reconstruction of CR1 subfamilies across amniotes to reveal both recent and ancient CR1 subclades across the squamate tree of life. The patterns of CR1 evolution in squamates contrast other amniotes, suggesting key differences in how TEs interact with different host genomes and at different points across evolutionary history.
Collapse
Affiliation(s)
- Simone M Gable
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Nicholas A Bushroe
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Jasmine M Mendez
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Adam Wilson
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Brendan J Pinto
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI, USA
| | - Tony Gamble
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI, USA
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
- Bell Museum of Natural History, University of Minnesota, St. Paul, MN, USA
| | - Marc Tollis
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
5
|
Burriel-Carranza B, Mochales-Riaño G, Talavera A, Els J, Estarellas M, Al Saadi S, Urriago Suarez JD, Olsson PO, Matschiner M, Carranza S. Clinging on the brink: Whole genomes reveal human-induced population declines and severe inbreeding in the Critically Endangered Emirati Leaf-toed Gecko (Asaccus caudivolvulus). Mol Ecol 2024; 33:e17451. [PMID: 38970417 DOI: 10.1111/mec.17451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 07/08/2024]
Abstract
Human-mediated habitat destruction has had a profound impact on increased species extinction rates and population declines worldwide. The coastal development in the United Arab Emirates (UAE) over the last two decades, serves as an example of how habitat transformation can alter the landscape of a country in just a few years. Here, we study the genomic implications of habitat transformation in the Critically Endangered Emirati Leaf-toed Gecko (Asaccus caudivolvulus), the only endemic vertebrate of the UAE. We generate a high-quality reference genome for this gecko, representing the first reference genome for the family Phyllodactylidae, and produce whole-genome resequencing data for 23 specimens from 10 different species of leaf-toed geckos. Our results show that A. caudivolvulus has consistently lower genetic diversity than any other Arabian species of Asaccus, suggesting a history of ancient population declines. However, high levels of recent inbreeding are recorded among populations in heavily developed areas, with a more than 50% increase in long runs of homozygosity within a 9-year period. Moreover, results suggest that this species does not effectively purge deleterious mutations, hence making it more vulnerable to future stochastic threats. Overall, results show that A. caudivolvulus is in urgent need of protection, and habitat preservation must be warranted to ensure the species' survival.
Collapse
Affiliation(s)
- Bernat Burriel-Carranza
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Museu de Ciències Naturals de Barcelona, Barcelona, Spain
| | | | - Adrián Talavera
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Johannes Els
- Breeding Centre for Endangered Arabian Wildlife, Environment and Protected Areas Authority, Sharjah, United Arab Emirates
| | - Maria Estarellas
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | | | | | | | | | - Salvador Carranza
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
6
|
Ludington AJ, Hammond JM, Breen J, Deveson IW, Sanders KL. New chromosome-scale genomes provide insights into marine adaptations of sea snakes (Hydrophis: Elapidae). BMC Biol 2023; 21:284. [PMID: 38066641 PMCID: PMC10709897 DOI: 10.1186/s12915-023-01772-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Sea snakes underwent a complete transition from land to sea within the last ~ 15 million years, yet they remain a conspicuous gap in molecular studies of marine adaptation in vertebrates. RESULTS Here, we generate four new annotated sea snake genomes, three of these at chromosome-scale (Hydrophis major, H. ornatus and H. curtus), and perform detailed comparative genomic analyses of sea snakes and their closest terrestrial relatives. Phylogenomic analyses highlight the possibility of near-simultaneous speciation at the root of Hydrophis, and synteny maps show intra-chromosomal variations that will be important targets for future adaptation and speciation genomic studies of this system. We then used a strict screen for positive selection in sea snakes (against a background of seven terrestrial snake genomes) to identify genes over-represented in hypoxia adaptation, sensory perception, immune response and morphological development. CONCLUSIONS We provide the best reference genomes currently available for the prolific and medically important elapid snake radiation. Our analyses highlight the phylogenetic complexity and conserved genome structure within Hydrophis. Positively selected marine-associated genes provide promising candidates for future, functional studies linking genetic signatures to the marine phenotypes of sea snakes and other vertebrates.
Collapse
Affiliation(s)
- Alastair J Ludington
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Jillian M Hammond
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, Australia
| | - James Breen
- Indigenous Genomics, Telethon Kids Institute, Adelaide, Australia
- John Curtin School of Medical Research, College of Health & Medicine, Australian National University, Canberra, Australia
| | - Ira W Deveson
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Kate L Sanders
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
- The South Australian Museum, Adelaide, Australia.
| |
Collapse
|
7
|
Taft JM, Tolley KA, Alexander GJ, Geneva AJ. De Novo Whole Genome Assemblies for Two Southern African Dwarf Chameleons (Bradypodion, Chamaeleonidae). Genome Biol Evol 2023; 15:evad182. [PMID: 37847614 PMCID: PMC10603767 DOI: 10.1093/gbe/evad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
A complete and high-quality reference genome has become a fundamental tool for the study of functional, comparative, and evolutionary genomics. However, efforts to produce high-quality genomes for African taxa are lagging given the limited access to sufficient resources and technologies. The southern African dwarf chameleons (Bradypodion) are a relatively young lineage, with a large body of evidence demonstrating the highly adaptive capacity of these lizards. Bradypodion are known for their habitat specialization, with evidence of convergent phenotypes across the phylogeny. However, the underlying genetic architecture of these phenotypes remains unknown for Bradypodion, and without adequate genomic resources, many evolutionary questions cannot be answered. We present de novo assembled whole genomes for Bradypodion pumilum and Bradypodion ventrale, using Pacific Biosciences long-read sequencing data. BUSCO analysis revealed that 96.36% of single copy orthologs were present in the B. pumilum genome and 94% in B. ventrale. Moreover, these genomes boast scaffold N50 of 389.6 and 374.9 Mb, respectively. Based on a whole genome alignment of both Bradypodion genomes, B. pumilum is highly syntenic with B. ventrale. Furthermore, Bradypodion is also syntenic with Anolis lizards, despite the divergence between these lineages estimated to be nearly 170 Ma. Coalescent analysis of the genomic data also suggests that historical changes in effective population size for these species correspond to notable shifts in the southern African environment. These high-quality Bradypodion genome assemblies will support future research on the evolutionary history, diversification, and genetic underpinnings of adaptation in Bradypodion.
Collapse
Affiliation(s)
- Jody M Taft
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Claremont, South Africa
| | - Krystal A Tolley
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Claremont, South Africa
- Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg, South Africa
| | - Graham J Alexander
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anthony J Geneva
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University–Camden, Camden, New Jersey, USA
| |
Collapse
|
8
|
Pinto BJ, Gamble T, Smith CH, Wilson MA. A lizard is never late: Squamate genomics as a recent catalyst for understanding sex chromosome and microchromosome evolution. J Hered 2023; 114:445-458. [PMID: 37018459 PMCID: PMC10445521 DOI: 10.1093/jhered/esad023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/03/2023] [Indexed: 04/07/2023] Open
Abstract
In 2011, the first high-quality genome assembly of a squamate reptile (lizard or snake) was published for the green anole. Dozens of genome assemblies were subsequently published over the next decade, yet these assemblies were largely inadequate for answering fundamental questions regarding genome evolution in squamates due to their lack of contiguity or annotation. As the "genomics age" was beginning to hit its stride in many organismal study systems, progress in squamates was largely stagnant following the publication of the green anole genome. In fact, zero high-quality (chromosome-level) squamate genomes were published between the years 2012 and 2017. However, since 2018, an exponential increase in high-quality genome assemblies has materialized with 24 additional high-quality genomes published for species across the squamate tree of life. As the field of squamate genomics is rapidly evolving, we provide a systematic review from an evolutionary genomics perspective. We collated a near-complete list of publicly available squamate genome assemblies from more than half-a-dozen international and third-party repositories and systematically evaluated them with regard to their overall quality, phylogenetic breadth, and usefulness for continuing to provide accurate and efficient insights into genome evolution across squamate reptiles. This review both highlights and catalogs the currently available genomic resources in squamates and their ability to address broader questions in vertebrates, specifically sex chromosome and microchromosome evolution, while addressing why squamates may have received less historical focus and has caused their progress in genomics to lag behind peer taxa.
Collapse
Affiliation(s)
- Brendan J Pinto
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI, United States
| | - Tony Gamble
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI, United States
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
- Bell Museum of Natural History, University of Minnesota, St Paul, MN, United States
| | - Chase H Smith
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
| | - Melissa A Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States
- Center for Mechanisms of Evolution, Biodesign Institute, Tempe, AZ, United States
| |
Collapse
|
9
|
Olmo E. Reptile Evolution and Genetics: An Overview. Animals (Basel) 2023; 13:1924. [PMID: 37370434 PMCID: PMC10295626 DOI: 10.3390/ani13121924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The study of evolution has been indissolubly linked to the study of heredity since its inception [1]. [...].
Collapse
Affiliation(s)
- Ettore Olmo
- Department of Life and Environmental Sciences, Università Politecnica delle Marche via Brecce Bianche Ancona, 60121 Ancona, Italy
| |
Collapse
|
10
|
Pinto BJ, Gamble T, Smith CH, Wilson MA. A lizard is never late: squamate genomics as a recent catalyst for understanding sex chromosome and microchromosome evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524006. [PMID: 37034614 PMCID: PMC10081179 DOI: 10.1101/2023.01.20.524006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In 2011, the first high-quality genome assembly of a squamate reptile (lizard or snake) was published for the green anole. Dozens of genome assemblies were subsequently published over the next decade, yet these assemblies were largely inadequate for answering fundamental questions regarding genome evolution in squamates due to their lack of contiguity or annotation. As the "genomics age" was beginning to hit its stride in many organismal study systems, progress in squamates was largely stagnant following the publication of the green anole genome. In fact, zero high-quality (chromosome-level) squamate genomes were published between the years 2012-2017. However, since 2018, an exponential increase in high-quality genome assemblies has materialized with 24 additional high-quality genomes published for species across the squamate tree of life. As the field of squamate genomics is rapidly evolving, we provide a systematic review from an evolutionary genomics perspective. We collated a near-complete list of publicly available squamate genome assemblies from more than half-a-dozen international and third-party repositories and systematically evaluated them with regard to their overall quality, phylogenetic breadth, and usefulness for continuing to provide accurate and efficient insights into genome evolution across squamate reptiles. This review both highlights and catalogs the currently available genomic resources in squamates and their ability to address broader questions in vertebrates, specifically sex chromosome and microchromosome evolution, while addressing why squamates may have received less historical focus and has caused their progress in genomics to lag behind peer taxa.
Collapse
Affiliation(s)
- Brendan J Pinto
- School of Life Sciences, Arizona State University, Tempe, AZ USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ USA
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI USA
| | - Tony Gamble
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI USA
- Department of Biological Sciences, Marquette University, Milwaukee WI USA
- Bell Museum of Natural History, University of Minnesota, St Paul, MN USA
| | - Chase H Smith
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Melissa A Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ USA
- Center for Mechanisms of Evolution, Biodesign Institute, Tempe, AZ USA
| |
Collapse
|