1
|
Cloutier L, Galiot L, Sauvé B, Pierre C, Guay F, Dumas G, Gagnon P, Létourneau Montminy MP. Impact of Precision Feeding During Gestation on the Performance of Sows over Three Cycles. Animals (Basel) 2024; 14:3513. [PMID: 39682479 DOI: 10.3390/ani14233513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
This study evaluated the impact of precision feeding and bump feeding strategies during gestation on the reproductive performance of sows monitored over three cycles. Four treatments were compared: two constant-concentration feeding strategies (0.53% standardized ileal digestible lysine content; SID Lys) with the feed supply remaining constant (flat feeding; FF) or variable (bump feeding; BF) and two precision feeding strategies based on the InraPorc model considering performance by parity (precision feeding per parity; PFP) or the weight of each sow at breeding (precision feeding by individual; PFI). Sows were followed over three gestation and lactation cycles. In the first cycle (n = 502), the birth-to-weaning piglet mortality for PFP (8.7%) and PFI (10.3%) was lower than for BF (13.8%), with FF (11.3%) being intermediate (p = 0.001). No differences were observed in litter performance during the second cycle (n = 340). During the third cycle (n = 274), the stillborn rate was lower for PFP (6.2%) than for BF (9.1%) and FF (10.4%), with PFI (7.0%) being intermediate (p = 0.01). The BF strategy did not significantly improve sow or litter performance during lactation. Meanwhile, precision feeding could reduce nitrogen (10-13%) and total phosphorus intake (6-9%) with PFP and PFI strategies. Also, the results showed that it could even reduce piglet mortality during lactation.
Collapse
Affiliation(s)
- Laetitia Cloutier
- Centre de Développement du Porc du Québec Inc., 815 Rte Marie-Victorin, Lévis, QC G7A 3S6, Canada
| | - Lucie Galiot
- Centre de Développement du Porc du Québec Inc., 815 Rte Marie-Victorin, Lévis, QC G7A 3S6, Canada
| | - Béatrice Sauvé
- Centre de Développement du Porc du Québec Inc., 815 Rte Marie-Victorin, Lévis, QC G7A 3S6, Canada
- Département des Sciences Animales, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada
| | - Carole Pierre
- Département des Sciences Animales, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada
| | - Frédéric Guay
- Département des Sciences Animales, Université Laval, 2425 rue de l'Agriculture, Québec, QC G1V 0A6, Canada
| | - Gabrielle Dumas
- Centre de Développement du Porc du Québec Inc., 815 Rte Marie-Victorin, Lévis, QC G7A 3S6, Canada
| | - Patrick Gagnon
- Centre de Développement du Porc du Québec Inc., 815 Rte Marie-Victorin, Lévis, QC G7A 3S6, Canada
| | | |
Collapse
|
2
|
Liao J, Zhang P, Yin J, Zhang X. New insights into the effects of dietary amino acid composition on meat quality in pigs: A review. Meat Sci 2024; 221:109721. [PMID: 39642438 DOI: 10.1016/j.meatsci.2024.109721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/11/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Pork is an affordable protein source with higher nutrient density. In recent years, meat quality in pigs is getting increasing attention, which has a direct impact on the economic value of pork. Dietary amino acids play a key role in pig production, not only regulating pig growth and health, but also contributing significantly to meat quality. In this review, we discuss the effect of skeletal muscle composition on meat quality. Importantly, we summarize the levels of essential amino acids (EAAs), such as lysine, methionine, threonine, tryptophan and branched-chain amino acids (BCAAs), in diets for finishing pigs to improve meat quality. The beneficial effects of flavor amino acids on meat quality, including flavor production, muscle fiber-type composition and intramuscular fat deposition, are further systematically summarized. We also focus on the impact of dietary amino acid levels on environmental benefits, although research in this area is still limited. Considering that the previously established EAA requirements are based on the principle of maximizing growth rate and feed conversion, this review will provide new insights into the effects of dietary amino acids on aspects of meat quality and highlight the current gaps to promote future research.
Collapse
Affiliation(s)
- Jialong Liao
- Frontier Science Center of Molecular Design Breeding, Ministry of Education, Beijing 100193, China; State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Pengguang Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jingdong Yin
- Frontier Science Center of Molecular Design Breeding, Ministry of Education, Beijing 100193, China; State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xin Zhang
- Frontier Science Center of Molecular Design Breeding, Ministry of Education, Beijing 100193, China; State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Bello-Medina PC, Díaz-Muñoz M, Martín del Campo ST, Pacheco-Moisés FP, Flores Miguel C, Cobián Cervantes R, García Solano PB, Navarro-Meza M. A maternal low-protein diet results in sex-specific differences in synaptophysin expression and milk fatty acid profiles in neonatal rats. J Nutr Sci 2024; 13:e64. [PMID: 39469193 PMCID: PMC11514622 DOI: 10.1017/jns.2024.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 10/30/2024] Open
Abstract
The developmental origins of health and disease hypothesis have highlighted the link between early life environment and long-term health outcomes in offspring. For example, maternal protein restriction during pregnancy and lactation can result in adverse metabolic and cognitive outcomes in offspring postnatal. Hence, in the present study, we assess whether an isocaloric low-protein diet (ILPD) affects the fatty acid profile in breast milk, the hippocampal synaptophysin (Syn) ratio, and the oxidative stress markers in the neonatal stage of male and female offspring. The aim of this work was to assess the effect of an ILPD on the fatty acid profile in breast milk, quantified the hippocampal synaptophysin (Syn) ratio and oxidative stress markers in neonatal stage of male and female offspring. Female Wistar rats were fed with either a control diet or an ILPD during gestation to day 10 of lactation. Oxidative stress markers were assessed in serum and liver. All quantifications were done at postnatal day 10. The results showed: ILPD led to decreases of 38.5% and 17.4% in breast milk volume and polyunsaturated fatty acids content. Significant decreases of hippocampal Syn ratio in male offspring (decreases of 98% in hippocampal CA1 pyramidal and CA1 oriens, 83%, stratum pyramidal in CA3, 80%, stratum lucidum in CA3, and 81% stratum oriens in CA3). Male offspring showed an increase in pro-oxidant status in serum and liver. Thus, the data suggest that male offspring are more vulnerable than females to an ILPD during gestation and lactation.
Collapse
Affiliation(s)
- Paola C. Bello-Medina
- Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Sandra Teresita Martín del Campo
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Querétaro, México
- Food Engineering and Statistical Independent Consultant, Querétaro, México
| | | | - Claudia Flores Miguel
- Laboratorio Clínica de Memoria y Neuronutrición, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - Raquel Cobián Cervantes
- Laboratorio Clínica de Memoria y Neuronutrición, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - Perla Belén García Solano
- Laboratorio Clínica de Memoria y Neuronutrición, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - Mónica Navarro-Meza
- Laboratorio Clínica de Memoria y Neuronutrición, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
- Departamento de Ciencias Clínicas, División de Ciencias de Salud, Centro Universitario del Sur, Ciudad Guzmán, Jalisco, México
| |
Collapse
|
4
|
Karakus S, Dogan HO. Exploring altered free amino acids and metabolites: Insights into the metabolic landscape of preeclampsia. Placenta 2024; 154:18-27. [PMID: 38850593 DOI: 10.1016/j.placenta.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
INTRODUCTION Preeclampsia (PE) is a complex disease that poses a risk for maternal and perinatal morbidity and mortality. This study aimed to investigate the role of maternal serum amino acids (AAs) levels in PE. MATERIALS AND METHODS A total of 56 pregnant women (26 with PE and 30 controls) were included in the study. The participants had a confirmed gestational age between 24 and 37 weeks. The mean body mass index (BMI) for the PE group was 33.1 kg/m2, while the control group had a mean BMI of 29.6 kg/m2. AAs levels were quantified, and statistical analyses were performed to identify significant differences between the two groups. Receiver Operating Characteristic (ROC) curve analysis was employed the diagnostic potential of specific AAs. RESULTS We observed significantly elevated levels of multiple AAs in the PE group, including citrulline, lysine, ethanolamine, ornithine and histidine. Citrulline exhibited exceptional predictive power for PE with 100.0% sensitivity and specificity at a cutoff of 7.79 µmol/L, reflected in an area under the curve (AUC) of 1.000. DISCUSSION Our study highlights the crucial involvement of altered amino acid levels, specifically in the urea cycle, disruptions in lysine and ethanolamine metabolism in PE development. Exploring these changes may reveal new therapeutic targets, providing insights into the disease's molecular mechanisms. Understanding amino acid metabolism in PE not only informs therapeutic strategies but also holds the potential to revolutionize early diagnosis and intervention.
Collapse
Affiliation(s)
- Savas Karakus
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey.
| | - Halef Okan Dogan
- Department of Biochemistry, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey.
| |
Collapse
|
5
|
Mobedi E, Harati HRD, Allahyari I, Gharagozlou F, Vojgani M, Baghbanani RH, Akbarinejad A, Akbarinejad V. Developmental programming of production and reproduction in dairy cows: IV. Association of maternal milk fat and protein percentage and milk fat to protein ratio with offspring's birth weight, survival, productive and reproductive performance and AMH concentration from birth to the first lactation period. Theriogenology 2024; 220:12-25. [PMID: 38457855 DOI: 10.1016/j.theriogenology.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Although the association of maternal milk production with developmental programming of offspring has been investigated, there is limited information available on the relationship of maternal milk components with productive and reproductive performance of the offspring. Therefore, the present study was conducted to analyze the association of maternal milk fat and protein percentage and milk fat to protein ratio with birth weight, survival, productive and reproductive performance and AMH concentration in the offspring. In study I, data of birth weight, milk yield and reproductive variables of offspring born to lactating dams (n = 14,582) and data associated with average maternal milk fat percentage (MFP), protein percentage (MPP) and fat to protein ratio (MFPR) during 305-day lactation were retrieved. Afterwards, offspring were classified in various categories of MFP, MPP and MFPR. In study II, blood samples (n = 339) were collected from offspring in various categories of MFP, MPP and MFPR for measurement of serum AMH. Maternal milk fat percentage was positively associated with birth weight and average percentage of milk fat (APMF) and protein (APMP) and milk fat to protein ratio (FPR) during the first lactation, but negatively associated with culling rate during nulliparity in the offspring (P < 0.05). Maternal milk protein percentage was positively associated with birth weight, APMF, APMP, FPR and culling rate, but negatively associated with milk yield and fertility in the offspring (P < 0.05). Maternal FPR was positively associated with APMF and FPR, but negatively associated with culling rate, APMP and fertility in the offspring (P < 0.05). However, concentration of AMH in the offspring was not associated with MFP, MPP and MFPR (P > 0.05). In conclusion, the present study revealed that maternal milk fat and protein percentage and their ratio were associated with birth weight, survival, production and reproduction of the offspring. Yet it was a preliminary research and further studies are required to elucidate the mechanisms underlying these associations.
Collapse
Affiliation(s)
- Emadeddin Mobedi
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Iman Allahyari
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Faramarz Gharagozlou
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehdi Vojgani
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Hemmati Baghbanani
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Vahid Akbarinejad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
6
|
Li Q, Chen J, Liu J, Lin T, Liu X, Zhang S, Yue X, Zhang X, Zeng X, Ren M, Guan W, Zhang S. Leucine and arginine enhance milk fat and milk protein synthesis via the CaSR/G i/mTORC1 and CaSR/G q/mTORC1 pathways. Eur J Nutr 2023; 62:2873-2890. [PMID: 37392244 DOI: 10.1007/s00394-023-03197-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND AND AIMS Amino acids (AAs) not only constitute milk protein but also stimulate milk synthesis through the activation of mTORC1 signaling, but which amino acids that have the greatest impact on milk fat and protein synthesis is still very limited. In this study, we aimed to identify the most critical AAs involved in the regulation of milk synthesis and clarify how these AAs regulate milk synthesis through the G-protein-coupled receptors (GPCRs) signaling pathway. METHODS In this study, a mouse mammary epithelial cell line (HC11) and porcine mammary epithelial cells (PMECs) were selected as study subjects. After treatment with different AAs, the amount of milk protein and milk fat synthesis were detected. Activation of mTORC1 and GPCRs signaling induced by AAs was also investigated. RESULTS In this study, we demonstrate that essential amino acids (EAAs) are crucial to promote lactation by increasing the expression of genes and proteins related to milk synthesis, such as ACACA, FABP4, DGAT1, SREBP1, α-casein, β-casein, and WAP in HC11 cells and PMECs. In addition to activating mTORC1, EAAs uniquely regulate the expression of calcium-sensing receptor (CaSR) among all amino-acid-responsive GPCRs, which indicates a potential link between CaSR and the mTORC1 pathway in mammary gland epithelial cells. Compared with other EAAs, leucine and arginine had the greatest capacity to trigger GPCRs (p-ERK) and mTORC1 (p-S6K1) signaling in HC11 cells. In addition, CaSR and its downstream G proteins Gi, Gq, and Gβγ are involved in the regulation of leucine- and arginine-induced milk synthesis and mTORC1 activation. Taken together, our data suggest that leucine and arginine can efficiently trigger milk synthesis through the CaSR/Gi/mTORC1 and CaSR/Gq/mTORC1 pathways. CONCLUSION We found that the G-protein-coupled receptor CaSR is an important amino acid sensor in mammary epithelial cells. Leucine and arginine promote milk synthesis partially through the CaSR/Gi/mTORC1 and CaSR/Gq/mTORC1 signaling systems in mammary gland epithelial cells. Although this mechanism needs further verification, it is foreseeable that this mechanism may provide new insights into the regulation of milk synthesis.
Collapse
Affiliation(s)
- Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaxin Liu
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Tongbin Lin
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xinghong Liu
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shuchang Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xianhuai Yue
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoli Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China
| | - Man Ren
- Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
7
|
Iglesias-Vázquez L, Suliburska J, Kocyłowski R, Bakinowska E, Arija V. Nutrient Intake among Pregnant Women in Spain and Poland: A Comparative Analysis. Nutrients 2023; 15:3225. [PMID: 37513644 PMCID: PMC10386542 DOI: 10.3390/nu15143225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Prenatal nutrition plays a crucial role in maternal and child health. This study aims to compare nutrient intake and its adequacy to recommendations among pregnant women in Spain and Poland. The ECLIPSES study in Spain utilized a self-administered food frequency questionnaire, while the PREDISH study in Poland employed a 3-day interview method. We assessed energy and nutrient intake against recommended dietary allowances. The analysis included 583 participants in the first trimester and 465 participants in the third trimester from both countries. Our findings revealed insufficient intake of iron, vitamin D, and vitamin B9 among pregnant women in both Spain and Poland. Significant differences were observed in the intake of energy, carbohydrates, fiber, calcium, iron, and vitamins D, E, C, B6, B9, and B12. Notably, 81.6% and 21.5% of participants did not meet the recommended minimum carbohydrate intake, while 99.8% and 43.8% exceeded the limit for total fat, particularly monounsaturated fatty acids (MUFAs). Tailored dietary guidance based on regional differences is crucial for pregnant women. Although variations in dietary intake were observed, both Spain and Poland faced similar risks of nutritional deficiencies, particularly for iron, vitamin D, and vitamin B9. These findings emphasize the need for enhanced efforts in preventing these deficiencies and promoting optimal prenatal nutrition.
Collapse
Affiliation(s)
- Lucía Iglesias-Vázquez
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43204 Reus, Spain
- Institut d'Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain
| | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | | | - Ewa Bakinowska
- Institute of Mathematics, Poznan University of Technology, 60-965 Poznan, Poland
| | - Victoria Arija
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43204 Reus, Spain
- Institut d'Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain
- Collaborative Research Group on Lifestyles, Nutrition, and Smoking (CENIT), Tarragona-Reus Research Support Unit, IDIAP Jordi Gol, 43003 Tarragona, Spain
| |
Collapse
|
8
|
Wati LR, Sargowo D, Nurseta T, Zuhriyah L. The Role of Protein Intake on the Total Milk Protein in Lead-Exposed Lactating Mothers. Nutrients 2023; 15:nu15112584. [PMID: 37299547 DOI: 10.3390/nu15112584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Protein is an essential macronutrient for the growth and development of infants. Protein levels in lactating mothers are dynamic and influenced by various factors, particularly the environment and maternal characteristics. Therefore, this study aimed to evaluate the complex correlation between maternal blood lead levels (BLLs), maternal diet, and total milk protein. The Kruskal-Wallis test was used to compare total milk protein in the three groups of lead exposure, while Spearman's correlation was used to assess the correlation between maternal diet, BLLs, and total milk protein. The multivariate analysis used multiple linear regression. The results showed that the median of maternal BLLs and total milk protein were 3.3 µg/dL and 1.07 g/dL, respectively. Maternal protein intake and current BMI had a positive correlation with total milk protein, while BLLs had a negative correlation. BLLs ≥ 5 μg/dL had the most significant impact on reducing the total milk protein (p = 0.032). However, increasing maternal protein intake can effectively maintain total milk protein levels in mothers with BLLs under 5 μg/dL (p < 0.001). It is crucial to measure BLLs in lactating mothers residing in areas exposed to lead because high maternal protein intake can only maintain total milk protein levels when the BLLs are <5 μg/dL.
Collapse
Affiliation(s)
- Linda Ratna Wati
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang 65145, East Java, Indonesia
- Department of Midwifery, Faculty of Medicine, Universitas Brawijaya, Malang 65145, East Java, Indonesia
| | - Djanggan Sargowo
- Department of Cardiology, Faculty of Medicine, Universitas Brawijaya, Universitas Brawijaya Hospital, Malang 65145, East Java, Indonesia
| | - Tatit Nurseta
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Brawijaya, Malang 65145, East Java, Indonesia
| | - Lilik Zuhriyah
- Department of Public Health, Faculty of Medicine, Universitas Brawijaya, Malang 65145, East Java, Indonesia
| |
Collapse
|
9
|
Zhao H, Tian M, Xiong L, Lin T, Zhang S, Yue X, Liu X, Chen F, Zhang S, Guan W. Maternal supplementation with glycerol monolaurate improves the intestinal health of suckling piglets by inhibiting the NF-κB/MAPK pathways and improving oxidative stability. Food Funct 2023; 14:3290-3303. [PMID: 36938595 DOI: 10.1039/d3fo00068k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Glycerol monolaurate (GML) is a food safe emulsifier and a kind of MCFA monoglyceride that has been proven to confer positive benefits in improving animal health, production and feed digestibility as a feed additive. This study aims to evaluate whether supplementation of a sow diet with GML could affect the intestinal barrier function and antioxidant status of newborn piglets and to explore its regulatory mechanism. A total of 80 multiparous sows were divided into two groups, which were fed a basal diet or a basal diet supplemented with 0.1% GML. The results indicated that maternal supplementation with GML significantly increased fat, lactose and protein in sow colostrum, as well as fat and protein in sow 14-day milk (P < 0.05). The results showed that GML significantly reduced the concentrations of IL-12 in the duodenum, TNF-α, IL-1β and IL-12 in the jejunum, and IL-1β in the ileum of piglets (P < 0.05). Higher concentrations of T-AOC, T-SOD, GSH and GSH-Px and lower MDA in the intestine were observed in the GML group than in the control group. Correspondingly, the villi height, crypt depth and the ratio of villi height to crypt depth (V/C) in the jejunum and the V/C in the ileum in the GML group were significantly higher than those in the control group (P < 0.05). Moreover, the GML group displayed significantly increased protein abundance of zonula occludens (ZO)-1, occludin, and claudin-1 in the small intestine (P < 0.05), mRNA expression of mucins (MUCs) in the small intestine (MUC-1, MUC-3 and MUC-4), and mRNA expression of porcine beta defensins (pBDs) in the duodenum (pBD1 and pBD2), jejunum (pBD1, pBD2 and pBD129) (P < 0.05), and ileum (pBD2, pBD3 and pBD114) (P < 0.05). Further research showed that GML significantly reduced the phosphorylation of the NF-κB/MAPK pathways in the small intestine (P < 0.05). In addition, the results of 16S rDNA sequencing showed that maternal supplementation with GML altered the colonic microbiotic structure of piglets, and reduced the relative abundance of Escherichia shigella. In summary, a sow diet supplemented with GML enhanced the offspring's intestinal oxidative stability and barrier function and attenuated the offspring's intestinal inflammatory response, possibly by suppressing the activation of the NF-κB/MAPK pathways.
Collapse
Affiliation(s)
- Hao Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Min Tian
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Liang Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Tongbin Lin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Shuchang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xianhuai Yue
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xinghong Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
10
|
Wang HL, Liu Y, Zhou T, Gao L, Li J, Wu X, Yin YL. Uridine affects amino acid metabolism in sow-piglets model and increases viability of pTr2 cells. Front Nutr 2022; 9:1018349. [DOI: 10.3389/fnut.2022.1018349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAs an important nucleoside precursor in salvage synthesis pathway of uridine monophosphate, uridine (UR) is the most abundant nucleotide in sow milk. This study aimed to investigate the effects of maternal UR supplementation during second trimester of gestation on reproductive performance and amino acid metabolism of Sows.ResultsResults showed that compared to CON group, the average number of stillborn piglets per litter was significantly reduced (P < 0.05) with higher average piglet weight at birth in UR group (P = 0.083). Besides, dietary UR supplementation significantly increased TP in sow serum, BUN content in cord serum, and TP and ALB in newborn piglet serum (P < 0.05); but decreased AST level in sow serum and BUN level in piglet serum (P < 0.05). Importantly, free amino acids profile in sow serum newborn piglet serum and colostrum was changed by maternal UR supplementation during day 60 of pregnancy, as well as the expression of amino acids transporter (P < 0.05). In addition, from 100 to 2,000 μM UR can increased the viability of pTr2 cells. The UR exhibited higher distribution of G1/M phase of cell cycle at 400 μM compared with 0 μM, and reduced S-phases of cell cycle compared with 0 and 100μM (P < 0.05).ConclusionSupplementation of uridine during day 60 of pregnancy can improve reproductive performance, regulate amino acid metabolism of sows and their offspring, and increase the viability of pTr2 cells.
Collapse
|
11
|
Plant-derived polyphenols in sow nutrition: An update. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:96-107. [PMID: 36632620 PMCID: PMC9823128 DOI: 10.1016/j.aninu.2022.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/07/2022]
Abstract
Oxidative stress is a potentially critical factor that affects productive performance in gestating and lactating sows. Polyphenols are a large class of plant secondary metabolites that possess robust antioxidant capacity. All polyphenols are structurally characterized by aromatic rings with multiple hydrogen hydroxyl groups; those make polyphenols perfect hydrogen atoms and electron donors to neutralize free radicals and other reactive oxygen species. In the past decade, increasing attention has been paid to polyphenols as functional feed additives for sows. Polyphenols have been found to alleviate inflammation and oxidative stress in sows, boost their reproductivity, and promote offspring growth and development. In this review, we provided a systematical summary of the latest research advances in plant-derived polyphenols in sow nutrition, and mainly focused on the effects of polyphenols on the (1) antioxidant and immune functions of sows, (2) placental functions and the growth and development of fetal piglets, (3) mammary gland functions and the growth and development of suckling piglets, and (4) the long-term growth and development of progeny pigs. The output of this review provides an important foundation, from more than 8,000 identified plant phenols, to screen potential polyphenols (or polyphenol-enriched plants) as functional feed additives suitable for gestating and lactating sows.
Collapse
|
12
|
Zhang L, Tan C, Xin Z, Huang S, Ma J, Zhang M, Shu G, Luo H, Deng B, Jiang Q, Deng J. UPLC-Orbitrap-MS/MS Combined With Biochemical Analysis to Determine the Growth and Development of Mothers and Fetuses in Different Gestation Periods on Tibetan Sow Model. Front Nutr 2022; 9:836938. [PMID: 35425793 PMCID: PMC9001880 DOI: 10.3389/fnut.2022.836938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/16/2022] [Indexed: 11/24/2022] Open
Abstract
Pregnancy is a complex and dynamic process, the physiological and metabolite changes of the mother are affected by different pregnancy stages, but little information is available about their changes and potential mechanisms during pregnancy, especially in blood and amniotic fluid. Here, the maternal metabolism rules at different pregnancy stages were investigated by using a Tibetan sow model to analyze the physiological hormones and nutrient metabolism characteristics of maternal serum and amniotic fluid as well as their correlations with each other. Our results showed that amniotic fluid had a decrease (P < 0.05) in the concentrations of glucose, insulin and hepatocyte growth factor as pregnancy progressed, while maternal serum exhibited the highest concentrations of glucose and insulin at 75 days of gestation (P < 0.05), and a significant positive correlation (P < 0.05) between insulin and citric acid. Additionally, T4 and cortisol had the highest levels during late gestation (P < 0.05). Furthermore, metabolomics analysis revealed significant enrichment in the citrate cycle pathway and the phenylalanine/tyrosine/tryptophan biosynthesis pathway (P < 0.05) with the progress of gestation. This study clarified the adaptive changes of glucose, insulin and citric acid in Tibetan sows during pregnancy as well as the influence of aromatic amino acids, hepatocyte growth factor, cortisol and other physiological indicators on fetal growth and development, providing new clues for the normal development of the mother and the fetus, which may become a promising target for improving the well-being of pregnancy.
Collapse
Affiliation(s)
- Longmiao Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhongquan Xin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shuangbo Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junwu Ma
- State Key Laboratory of Pig Genetic Improvement and Production Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Meiyu Zhang
- College of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou, China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hefeng Luo
- Dekon Food and Agriculture Group, Chengdu, China
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Baichuan Deng,
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- Qingyan Jiang,
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- Jinping Deng,
| |
Collapse
|
13
|
Lugarà R, Realini L, Kreuzer M, Giller K. Effects of maternal high-energy diet and spirulina supplementation in pregnant and lactating sows on performance, quality of carcass and meat, and its fatty acid profile in male and female offspring. Meat Sci 2022; 187:108769. [DOI: 10.1016/j.meatsci.2022.108769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
|
14
|
Azad MAK, Gao Q, Ma C, Wang K, Kong X. Betaine hydrochloride addition in Bama mini-pig's diets during gestation and lactation enhances immunity and alters intestine microbiota of suckling piglets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:607-616. [PMID: 34151432 DOI: 10.1002/jsfa.11389] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/11/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Maternal nutrition during gestation and lactation is essential for offspring's health. The present study aimed to investigate the effects of betaine hydrochloride addition to sow diets during gestation and lactation on suckling piglet's immunity and intestine microbiota composition. Forty Bama mini-pigs were randomly allocated into two groups and fed a basal diet (control group) and a basal diet supplemented with 3.50 kg ton-1 betaine hydrochloride (betaine group) from day 3 after mating to day 21 of lactation. After 21 days of the delivery, 12 suckling piglets from each group with similar body weight were selected for sample collection. RESULTS The results showed that maternal betaine hydrochloride addition decreased (P < 0.05) the plasma levels of interleukin (IL)-1β, IL-2, IL-6, and tumor necrosis factor-α in suckling piglets. Furthermore, dietary betaine hydrochloride addition in sow diets increased (P < 0.05) the villus height (VH) and VH to crypt depth ratio in the jejunum and ileum of suckling piglets. In the piglets' intestinal microbiota community, the relative abundances of Roseburia (P < 0.05) and Clostridium (P = 0.059) were lower in the betaine group compared to those in the control group. Moreover, betaine hydrochloride addition in sow diets decreased the colonic tyramine (P = 0.091) and skatole (P = 0.070) concentrations in suckling piglets. CONCLUSION Betaine hydrochloride addition in sow diets enhanced the intestinal morphology, improved immunity, and altered intestinal microbiota of suckling piglets. These findings indicated that betaine hydrochloride addition in sow diets during gestation and lactation will impact suckling piglets' health. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Md Abul Kalam Azad
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-ecological Process in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiankun Gao
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-ecological Process in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Cui Ma
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-ecological Process in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Kai Wang
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-ecological Process in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiangfeng Kong
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-ecological Process in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
15
|
Zhao X, Liu Y, Ding H, Huang P, Yin Y, Deng J, Kong X. Effects of Different Dietary Protein Levels on the Growth Performance, Serum Biochemical Parameters, Fecal Nitrogen, and Carcass Traits of Huanjiang Mini-Pigs. Front Vet Sci 2022; 8:777671. [PMID: 34988141 PMCID: PMC8720777 DOI: 10.3389/fvets.2021.777671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/18/2021] [Indexed: 11/15/2022] Open
Abstract
The Huanjiang mini-pig is a Chinese local breed and, the optimal dietary crude protein (CP) level for this breed is still unknown. Therefore, the present study was conducted to investigate its optimum dietary CP level upon the growth performance, serum biochemical parameters, fecal nitrogen content, and carcass traits. Three independent trials with 360 pigs were included. A total of 220 pigs (5.32 ± 0.46 kg) were fed ad libitum, either a 14, 16, 18, 20, or 22% CP diet from about 5- to 10-kg (trial 1); 84 pigs (11.27 ± 1.43 kg) were fed either a 12, 14, 16, 18, or 20% CP diet from about 10- to 20-kg (trial 2); and 56 pigs (18.80 ± 2.21 kg) were fed either a 10, 12, 14, 16, or 18% CP diet from about 20- to 30-kg (trial 3). In trial 1, as dietary CP levels increased, the feed-to-gain ratio (F/G) quadratically decreased (p < 0.05) and was minimal at the 18.42% CP level. The average daily feed intake (ADFI) and final body weight (BW) were not affected by dietary CP levels while the fat percentage decreased (p < 0.05). Besides, a linear decrease in slaughter rate (p = 0.06) and a linear increase in bone percentage (p < 0.05), serum urea nitrogen (UN) (P < 0.05), and fecal nitrogen content (p = 0.07) of pigs were observed. In trial 2, as dietary CP levels increased, the average daily gain quadratically increased (p < 0.05) and was maximum at the 16.70% CP level. The slaughter rate linearly decreased (p < 0.05) whereas the skin rate, serum UN, and NH3-N increased (p < 0.05) linearly, as well as fecal nitrogen content (p = 0.06). In trial 3, as dietary CP levels increased, the F/G increased (p < 0.05), while the ADFI and ADG quadratically decreased (p < 0.05) and was maximum at nearly 14.00% CP level. The bone percentage and serum UN increased (p < 0.05) linearly but the slaughter rate decreased (P < 0.05) linearly, and the fecal nitrogen content quadratically decreased (p = 0.07) whereas the albumin increased (p < 0.05) quadratically. Taken together, the optimal dietary CP levels for growth performance of Huanjiang mini-pigs from 5- to 10-kg, 10- to 20-kg, and 20- to 30-kg were 18.42, 16.70, and 14.00%, respectively.
Collapse
Affiliation(s)
- Xichen Zhao
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolism Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yating Liu
- Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolism Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Hao Ding
- Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolism Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Pan Huang
- Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolism Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolism Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jinping Deng
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolism Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,Research Center of Mini-Pig, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, China
| |
Collapse
|
16
|
Kroeske K, Arévalo Sureda E, Uerlings J, Deforce D, Van Nieuwerburgh F, Heyndrickx M, Millet S, Everaert N, Schroyen M. The Impact of Maternal and Piglet Low Protein Diet and Their Interaction on the Porcine Liver Transcriptome around the Time of Weaning. Vet Sci 2021; 8:233. [PMID: 34679062 PMCID: PMC8540021 DOI: 10.3390/vetsci8100233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023] Open
Abstract
Maternal diet during early gestation affects offspring phenotype, but it is unclear whether maternal diet during late gestation influences piglet metabolism. We evaluated the impact of two dietary protein levels in sow late gestation diet and piglet nursery diet on piglet metabolism. Diets met or exceeded the crude protein and amino acid requirements. Sows received either 12% (Lower, L) or 17% (Higher, H) crude protein (CP) during the last five weeks of gestation, and piglets received 16.5% (L) or 21% (H) CP from weaning at age 3.5 weeks. This resulted in a 2 × 2 factorial design with four sow/piglet diet treatment groups: HH and LL (match), HL and LH (mismatch). Piglet hepatic tissues were sampled and differentially expressed genes (DEGs) were determined by RNA sequencing. At age 4.5 weeks, 25 genes were downregulated and 22 genes were upregulated in the mismatch compared to match groups. Several genes involved in catabolic pathways were upregulated in the mismatch compared to match groups, as were genes involved in lipid metabolism and inflammation. The results show a distinct interaction effect between maternal and nursery diets, implying that sow late gestation diet could be used to optimize piglet metabolism.
Collapse
Affiliation(s)
- Kikianne Kroeske
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium; (K.K.); (E.A.S.); (J.U.); (N.E.)
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; (M.H.); (S.M.)
| | - Ester Arévalo Sureda
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium; (K.K.); (E.A.S.); (J.U.); (N.E.)
| | - Julie Uerlings
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium; (K.K.); (E.A.S.); (J.U.); (N.E.)
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (D.D.); (F.V.N.)
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (D.D.); (F.V.N.)
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; (M.H.); (S.M.)
- Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, 9820 Merelbeke, Belgium
| | - Sam Millet
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; (M.H.); (S.M.)
- Department of Nutrition, Genetics and Ethology, Ghent University, 9820 Merelbeke, Belgium
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium; (K.K.); (E.A.S.); (J.U.); (N.E.)
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium; (K.K.); (E.A.S.); (J.U.); (N.E.)
| |
Collapse
|
17
|
Reyes-Camacho D, Pérez JF, Vinyeta E, Aumiller T, Criado-Mesas L, Folch JM, Van der Klis JD, Solà-Oriol D. Phytogenic Compounds Supplemented to Gestating Hyperprolific Sows Affects the Gut Health-Related Gene Expression and Histological Responses in Neonate Piglets. Front Vet Sci 2021; 8:639719. [PMID: 34195241 PMCID: PMC8237712 DOI: 10.3389/fvets.2021.639719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
This research aims to determine whether a specific blend of phytogenic compounds (BPC) supplemented in gestating hyperprolific sow diets can promote prenatal maternal effects in terms of piglet gut function and morphology. Twenty-eight (Landrace × Yorkshire) gilts and sows (parity 0 to 7) were randomly distributed by parity number and body weight into two dietary treatments: unsupplemented Control (CON) (n = 14) or CON diet supplemented with 1 g/kg feed of BPC during gestation (n = 14). The BPC supplementation during gestation of sows downregulated the neonate piglets' jejunal genes involved in oxidation (SOD2) and nutrient transport (SLC16A1/MCT1, SLC11A2/DMT1, and SLC39A/ZIP4), while IFNG and CLDN4 related to immune response and barrier function, respectively, were upregulated (q < 0.10). In addition, the jejunal villus height and the ratio of the villus height to crypt depth tended to increase (p < 0.10), while goblet cell volume density was higher (p < 0.05) in BPC compared to CON. In conclusion, dietary supplementation of BPC in gestating diets for hyperprolific sows influences neonatal histomorphology and expression of genes related to the intestinal function and health.
Collapse
Affiliation(s)
- David Reyes-Camacho
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - José Francisco Pérez
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | - Lourdes Criado-Mesas
- Department of Animal Genomics, Centre for Research in Agricultural Genomics, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Josep Maria Folch
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Department of Animal Genomics, Centre for Research in Agricultural Genomics, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - David Solà-Oriol
- Animal Nutrition and Welfare Service, Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
18
|
Jang KB, Kim JH, Purvis JM, Chen J, Ren P, Vazquez-Anon M, Kim SW. Effects of mineral methionine hydroxy analog chelate in sow diets on epigenetic modification and growth of progeny. J Anim Sci 2020; 98:5897043. [PMID: 32841352 PMCID: PMC7507415 DOI: 10.1093/jas/skaa271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
The study was conducted to determine the effects of mineral methionine hydroxy analog chelate (MMHAC) partially replacing inorganic trace minerals in sow diets on epigenetic and transcriptional changes in the muscle and jejunum of progeny. The MMHAC is zinc (Zn), manganese (Mn), and copper (Cu) chelated with methionine hydroxy analog (Zn-, Mn-, and Cu-methionine hydroxy analog chelate [MHAC]). On day 35 of gestation, 60 pregnant sows were allotted to two dietary treatments in a randomized completed block design using parity as a block: 1) ITM: inorganic trace minerals with zinc sulfate (ZnSO4), manganese oxide (MnO), and copper sulfate (CuSO4) and 2) CTM: 50% of ITM was replaced with MMHAC (MINTREX trace minerals, Novus International Inc., St Charles, MO). Gestation and lactation diets were formulated to meet or exceed NRC requirements. On days 1 and 18 of lactation, milk samples from 16 sows per treatment were collected to measure immunoglobulins (immunoglobulin G, immunoglobulin A, and immunoglobulin M) and micromineral concentrations. Two pigs per litter were selected to collect blood to measure the concentration of immunoglobulins in the serum, and then euthanized to collect jejunal mucosa, jejunum tissues, and longissimus muscle to measure global deoxyribonucleic acid methylation, histone acetylation, cytokines, and jejunal histomorphology at birth and day 18 of lactation. Data were analyzed using Proc MIXED of SAS. Supplementation of MMHAC tended to decrease (P = 0.059) body weight (BW) loss of sows during lactation and tended to increase (P = 0.098) piglet BW on day 18 of lactation. Supplementation of MMHAC increased (P < 0.05) global histone acetylation and tended to decrease myogenic regulatory factor 4 messenger ribonucleic acid (mRNA; P = 0.068) and delta 4-desaturase sphingolipid1 (DEGS1) mRNA (P = 0.086) in longissimus muscle of piglets at birth. Supplementation of MMHAC decreased (P < 0.05) nuclear factor kappa B mRNA in the jejunum and DEGS1 mRNA in longissimus muscle and tended to decrease mucin-2 (MUC2) mRNA (P = 0.057) and transforming growth factor-beta 1 (TGF-β1) mRNA (P = 0.057) in the jejunum of piglets on day 18 of lactation. There were, however, no changes in the amounts of tumor necrosis factor-alpha, interleukin-8, TGF-β, MUC2, and myogenic factor 6 in the tissues by MMHAC. In conclusion, maternal supplementation of MMHAC could contribute to histone acetylation and programming in the fetus, which potentially regulates intestinal health and skeletal muscle development of piglets at birth and weaning, possibly leading to enhanced growth of their piglets.
Collapse
Affiliation(s)
- Ki Beom Jang
- Department of Animal Science, North Carolina State University, Raleigh, NC
| | - Jong Hyuk Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC
| | | | | | - Ping Ren
- Novus International, Inc., St. Charles, MO
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC
| |
Collapse
|
19
|
Sohel MMH, Akyuz B, Konca Y, Arslan K, Gurbulak K, Abay M, Kaliber M, Cinar MU. Differential protein input in the maternal diet alters the skeletal muscle transcriptome in fetal sheep. Mamm Genome 2020; 31:309-324. [PMID: 33164111 DOI: 10.1007/s00335-020-09851-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
Maternal nutrition during pregnancy is one of the major intrauterine environmental factors that influence fetal development by significantly altering the expression of genes that might have a consequence on the physiological, morphological, and metabolic performance of the offspring in the postnatal period. The impact of maternal dietary protein on the expression of genes in sheep fetal skeletal muscle development is not well understood. The current study aims to investigate the impact of high and low maternal dietary protein on the holistic mRNA expression in the sheep fetal skeletal muscle. Dams were exposed to an isoenergetic high-protein diet (HP, 160-270 g/day), low-protein diet (LP, 73-112 g/day), and standard protein (SP, 119-198 g/day) diets during pregnancy. Fetal skeletal muscles were obtained at the 105th day of pregnancy and mRNA expression profiles were evaluated using Affymetrix GeneChip™ Ovine Gene 1.0 ST Array. The transcriptional analysis revealed a total of 323, 354, and 14 genes were differentially regulated (fold change > 2 and false discovery rate ≤ 0.05) in HP vs. SP, LP vs. HP, and SP vs. LP, respectively. Several myogenic genes, including MYOD1, MYH2, MYH1, are significantly upregulated, while genes related to the immune system, such as CXCL11, HLA-E, CXCL10, CXCL9, TLRs, are significantly downregulated in the fetal muscle of the HP group compared to those of SP and LP group. Bioinformatic analysis revealed that the majority of these genes are involved in pathways related to the immune system and diseases. The results of our study demonstrate that both augmented and restricted dietary proteins in maternal diet during pregnancy alter the expression of genes as well as the offspring's genetic marks.
Collapse
Affiliation(s)
- Md Mahmodul Hasan Sohel
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey.,Genome and Stem Cell Centre, Erciyes University, 38039, Kayseri, Turkey
| | - Bilal Akyuz
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Yusuf Konca
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Melikgazi, 38039, Kayseri, Turkey
| | - Korhan Arslan
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Kutlay Gurbulak
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Murat Abay
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Mahmut Kaliber
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Melikgazi, 38039, Kayseri, Turkey
| | - Mehmet Ulas Cinar
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Melikgazi, 38039, Kayseri, Turkey.
| |
Collapse
|
20
|
Peltoniemi O, Oliviero C, Yun J, Grahofer A, Björkman S. Management practices to optimize the parturition process in the hyperprolific sow. J Anim Sci 2020; 98:S96-S106. [PMID: 32810239 DOI: 10.1093/jas/skaa140] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/24/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Olli Peltoniemi
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Saarentaus, Finland
| | - Claudio Oliviero
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Saarentaus, Finland
| | - Jinhyeon Yun
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Saarentaus, Finland
| | - Alexander Grahofer
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Switzerland
| | - Stefan Björkman
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Saarentaus, Finland
| |
Collapse
|
21
|
Hoyle AS, Menezes ACB, Nelson MA, Swanson KC, Vonnahme KA, Berg EP, Ward AK. Fetal expression of genes related to metabolic function is impacted by supplementation of ground beef and sucrose during gestation in a swine model. J Anim Sci 2020; 98:skaa232. [PMID: 32687162 PMCID: PMC7431213 DOI: 10.1093/jas/skaa232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/14/2020] [Indexed: 11/13/2022] Open
Abstract
To determine the effects of maternal supplementation on the mRNA abundance of genes associated with metabolic function in fetal muscle and liver, pregnant sows (Landrace × Yorkshire; initial body weight (BW) 221.58 ± 33.26 kg; n = 21) fed a complete gestation diet (corn-soybean meal based diet, CSM) were randomly assigned to 1 of 4 isocaloric supplementation treatments: control (CON, 378 g/d CSM, n = 5), sucrose (SUGAR, 255 g/d crystalized sugar, n = 5), cooked ground beef (BEEF, 330 g/d n = 6), or BEEF + SUGAR (B+S, 165 g/d cooked ground beef and 129 g/d crystalized sugar, n = 5), from days 40 to 110 of gestation. Sows were euthanized on day 111 of gestation. Two male and 2 female fetuses of median BW were selected from each litter, and samples of the longissimus dorsi muscle and liver were collected. Relative transcript level was quantified via qPCR with HPRT1 as the reference gene for both muscle and liver samples. The following genes were selected and analyzed in the muscle: IGF1R, IGF2, IGF2R, GYS-1, IRS-1, INSR, SREBP-1C, and LEPR; while the following were analyzed in the liver: IGF2, IGF2R, FBFase, G6PC, PC, PCK1, FGF21, and LIPC. No effect of fetal sex by maternal treatment interaction was observed in mRNA abundance of any of the genes evaluated (P > 0.11). In muscle, the maternal nutritional treatment influenced (P = 0.02) IGF2 mRNA abundance, with B+S and SUGAR fetuses having lower abundance than CON, which was not different from BEEF. Additionally, SREBP-1 mRNA abundance was greater (P < 0.01) for B+S compared with CON, BEEF, or SUGAR fetuses; and females tended (P = 0.06) to have an increased abundance of SREBP-1 than males. In fetal liver, IGF2R mRNA abundance was greater (P = 0.01) for CON and BEEF than SUGAR and B+S; while FBPase mRNA abundance was greater (P = 0.03) for B+S compared with the other groups. In addition, maternal nutritional tended (P = 0.06) to influence LIPC mRNA abundance, with increased abundance in CON compared with SUGAR and B+S. These data indicate limited changes in transcript abundance due to substitution of supplemental sugar by ground beef during mid to late gestation. However, the differential expression of FBPase and SREBP-1c in response to the simultaneous supplementation of sucrose and ground beef warrants further investigations, since these genes may play important roles in determining the offspring susceptibility to metabolic diseases.
Collapse
Affiliation(s)
- Ashley S Hoyle
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| | | | - Megan A Nelson
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| | - Kendall C Swanson
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| | | | - Eric P Berg
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| | - Alison K Ward
- Department of Animal Sciences, North Dakota State University, Fargo, ND
| |
Collapse
|
22
|
Garcia IS, Teixeira SA, Costa KA, Marques DBD, Rodrigues GDA, Costa TC, Guimarães JD, Otto PI, Saraiva A, Ibelli AMG, Cantão ME, de Oliveira HC, Ledur MC, Peixoto JDO, Guimarães SEF. l-Arginine supplementation of gilts during early gestation modulates energy sensitive pathways in pig conceptuses. Mol Reprod Dev 2020; 87:819-834. [PMID: 32592179 DOI: 10.1002/mrd.23397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/12/2020] [Indexed: 11/09/2022]
Abstract
Dietary l-arginine (ARG) supplementation has been studied as a nutritional strategy to improve reproductive performance of pregnant sows, since arginine is a conditionally essential amino acid. However, reports addressing the molecular mechanisms that mediate supplementation effects on embryos and fetuses development are still scarce. Therefore, we aimed to evaluate the effects of 1.0% ARG supplementation of commercial pregnant gilts on genes and proteins from energy metabolism and antioxidant defense pathways in embryos and fetuses. We also analyzed the global transcriptome profile of 25- and 35-day-old conceptuses. At Day 25, we observed a lower abundance of phospho-AMP-activated protein kinase (phospho-AMPK) protein and downregulation of oxidative phosphorylation system genes in ARG embryos. On the other hand, ARG fetuses showed greater expression of MLST8 and lower expression of MTOR genes, in addition to lower abundance of phospho-AMPK and phospho-mammalian target of rapamycin (phospho-mTOR) proteins. Transcriptome analysis at Day 35 did not present differentially expressed genes. For the antioxidant defense pathway, no differences were found between CON and ARG conceptuses, only trends. In general, supplementation of gilts with 1.0% ARG during early gestation affects energy sensitive pathways in 25- and 35-day conceptuses; however, no effects of supplementation were found on the antioxidative defense pathway in 25-day embryos.
Collapse
Affiliation(s)
- Ingrid S Garcia
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Susana A Teixeira
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Karine A Costa
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Daniele B D Marques
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Thaís C Costa
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - José D Guimarães
- Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Pamela I Otto
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Alysson Saraiva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Adriana M G Ibelli
- Animal Genetics Laboratory, Embrapa Swine and Poultry Nacional Research Center, Concordia, Brazil
| | - Maurício E Cantão
- Animal Genetics Laboratory, Embrapa Swine and Poultry Nacional Research Center, Concordia, Brazil
| | | | - Mônica C Ledur
- Animal Genetics Laboratory, Embrapa Swine and Poultry Nacional Research Center, Concordia, Brazil
| | - Jane de O Peixoto
- Animal Genetics Laboratory, Embrapa Swine and Poultry Nacional Research Center, Concordia, Brazil
| | | |
Collapse
|
23
|
Sulfur-containing amino acid supplementation to gilts from late pregnancy to lactation altered offspring's intestinal microbiota and plasma metabolites. Appl Microbiol Biotechnol 2019; 104:1227-1242. [PMID: 31853564 DOI: 10.1007/s00253-019-10302-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/14/2019] [Accepted: 12/08/2019] [Indexed: 12/14/2022]
Abstract
Maternal nutrition during late pregnancy and lactation is highly involved with the offspring's health status. The study was carried out to evaluate the effects of different ratios of methionine and cysteine (Met/Cys: 46% Met, 51% Met, 56% Met, and 62% Met; maintained with 0.78% of total sulfur-containing amino acids; details in "Materials and methods") supplements in the sows' diet from late pregnancy to lactation on offspring's plasma metabolomics and intestinal microbiota. The results revealed that the level of serum albumin, calcium, iron, and magnesium was increased in the 51% Met group compared with the 46% Met, 56% Met, and 62% Met groups. Plasma metabolomics results indicated that the higher ratios of methionine and cysteine (0.51% Met, 0.56% Met, and 0.62% Met)-supplemented groups enriched the level of hippuric acid, retinoic acid, riboflavin, and δ-tocopherol than in the 46% Met group. Furthermore, the 51% Met-supplemented group had a higher relative abundance of Firmicutes compared with the other three groups (P < 0.05), while the 62% Met-supplemented group increased the abundance of Proteobacteria compared with the other three groups (P < 0.05) in piglets' intestine. These results indicated that a diet consisting with 51% Met is the optimum Met/Cys ratio from late pregnancy to lactation can maintain the offspring's health by improving the serum biochemical indicators and altering the plasma metabolomics profile and intestinal gut microbiota composition, but higher proportion of Met/Cys may increase the possible risk to offspring's health.
Collapse
|
24
|
Sex Determination Using RNA-Sequencing Analyses in Early Prenatal Pig Development. Genes (Basel) 2019; 10:genes10121010. [PMID: 31817322 PMCID: PMC6947224 DOI: 10.3390/genes10121010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/20/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
Sexual dimorphism is a relevant factor in animal science, since it can affect the gene expression of economically important traits. Eventually, the interest in the prenatal phase in a transcriptome study may not comprise the period of development in which male and female conceptuses are phenotypically divergent. Therefore, it would be interesting if sex differentiation could be performed using transcriptome data, with no need for extra techniques. In this study, the sex of pig conceptuses (embryos at 25 days-old and fetuses at 35 days-old) was determined by reads counts per million (CPM) of Y chromosome-linked genes that were discrepant among samples. Thus, ten genes were used: DDX3Y, KDM5D, ZFY, EIF2S3Y, EIF1AY, LOC110255320, LOC110257894, LOC396706, LOC100625207, and LOC110255257. Conceptuses that presented reads CPM sum for these genes (ΣCPMchrY) greater than 400 were classified as males and those with ΣCPMchrY below 2 were classified as females. It was demonstrated that the sex identification can be performed at early stages of pig development from RNA-sequencing analysis of genes mapped on Y chromosome. Additionally, these results reinforce that sex determination is a mechanism conserved across mammals, highlighting the importance of using pigs as an animal model to study sex determination during human prenatal development.
Collapse
|