1
|
Adedibu PA, Son O, Tekutyeva L, Balabanova L. Pathogenomic Insights into Xanthomonas oryzae pv. oryzae's Resistome, Virulome, and Diversity for Improved Rice Blight Management. Life (Basel) 2024; 14:1690. [PMID: 39768396 PMCID: PMC11678079 DOI: 10.3390/life14121690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Oryza sativa (rice) is a major staple food targeted for increased production to achieve food security. However, increased production is threatened by several biotic and abiotic factors, of which bacterial blight disease caused by Xanthomonas oryzae pathovar oryzae is severe. Developing effective control strategies requires an up-to-date understanding of its pathogenomics. This study analyzes the genomes of 30 X. oryzae strains collected from rice-producing regions across five continents to identify genetic elements critical for its pathogenicity and adaptability and for an intraspecific diversity assessment using advanced genomics and bioinformatics tools. Resistome analysis revealed 28 distinct types of antibiotic resistance genes (ARGs), both innate and acquired, indicating a growing threat from multidrug-resistant X. oryzae strains. Sixteen virulent genes, including type III and VI secretion systems, motility genes, and effector proteins, were identified. A unique 'MexCD-OprJ' multidrug efflux system was detected in the Tanzanian strains, conferring resistance to multiple antibiotic classes. To curb further ARG emergence, there is a need to regulate the use of antibiotics for X. oryzae control and adopt resistant rice varieties. Transposable elements were also discovered to contribute to X. oryzae pathogenicity, facilitating the horizontal transfer of virulence genes. Pangenome analysis revealed intraspecific variation among the population, with 112 unique CDS having diverse functional roles. Strains registered in the Philippines had the most unique genes. Phylogenetic analysis confirmed the divergent evolution of X. oryzae. This study's results will aid in identifying more effective management strategies and biocontrol alternatives for sustainable rice production.
Collapse
Affiliation(s)
- Peter Adeolu Adedibu
- Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| | - Oksana Son
- Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
- ARNIKA, Territory of PDA Nadezhdinskaya, Centralnaya St. 42, Volno-Nadezhdinskoye, Primorsky Krai, 692481 Vladivostok, Russia
| | - Liudmila Tekutyeva
- Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
- ARNIKA, Territory of PDA Nadezhdinskaya, Centralnaya St. 42, Volno-Nadezhdinskoye, Primorsky Krai, 692481 Vladivostok, Russia
| | - Larissa Balabanova
- Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
- ARNIKA, Territory of PDA Nadezhdinskaya, Centralnaya St. 42, Volno-Nadezhdinskoye, Primorsky Krai, 692481 Vladivostok, Russia
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-Letya Vladivostoka 152, 690022 Vladivostok, Russia
| |
Collapse
|
2
|
Zhong Y, Guo J, Zhang Z, Zheng Y, Yang M, Su Y. Exogenous NADH promotes the bactericidal effect of aminoglycoside antibiotics against Edwardsiella tarda. Virulence 2024; 15:2367647. [PMID: 38884466 PMCID: PMC11185186 DOI: 10.1080/21505594.2024.2367647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024] Open
Abstract
The global surge in multidrug-resistant bacteria owing to antibiotic misuse and overuse poses considerable risks to human and animal health. With existing antibiotics losing their effectiveness and the protracted process of developing new antibiotics, urgent alternatives are imperative to curb disease spread. Notably, improving the bactericidal effect of antibiotics by using non-antibiotic substances has emerged as a viable strategy. Although reduced nicotinamide adenine dinucleotide (NADH) may play a crucial role in regulating bacterial resistance, studies examining how the change of metabolic profile and bacterial resistance following by exogenous administration are scarce. Therefore, this study aimed to elucidate the metabolic changes that occur in Edwardsiella tarda (E. tarda), which exhibits resistance to various antibiotics, following the exogenous addition of NADH using metabolomics. The effects of these alterations on the bactericidal activity of neomycin were investigated. NADH enhanced the effectiveness of aminoglycoside antibiotics against E. tarda ATCC15947, achieving bacterial eradication at low doses. Metabolomic analysis revealed that NADH reprogrammed the ATCC15947 metabolic profile by promoting purine metabolism and energy metabolism, yielding increased adenosine triphosphate (ATP) levels. Increased ATP levels played a crucial role in enhancing the bactericidal effects of neomycin. Moreover, exogenous NADH promoted the bactericidal efficacy of tetracyclines and chloramphenicols. NADH in combination with neomycin was effective against other clinically resistant bacteria, including Aeromonas hydrophila, Vibrio parahaemolyticus, methicillin-resistant Staphylococcus aureus, and Listeria monocytogenes. These results may facilitate the development of effective approaches for preventing and managing E. tarda-induced infections and multidrug resistance in aquaculture and clinical settings.
Collapse
Affiliation(s)
- Yilin Zhong
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| | - Juan Guo
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| | - Ziyi Zhang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| | - Yu Zheng
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| | - Manjun Yang
- Xizang Key Laboratory of Veterinary Drug, Xizang Vocational Technical College, Lasa, Xizang, People’s Republic of China
| | - Yubin Su
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
3
|
Zhang Z, Pan Z, Fan L, Su Y, Fei J. Comparative Metabolomics Reveals Changes in the Metabolic Pathways of Ampicillin- and Gentamicin-Resistant Staphylococcus aureus. J Proteome Res 2024; 23:4480-4494. [PMID: 39294851 DOI: 10.1021/acs.jproteome.4c00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Antibiotic resistance is a major global challenge requiring new treatments and a better understanding of the bacterial resistance mechanisms. In this study, we compared ampicillin-resistant (R-AMP) and gentamicin-resistant (R-GEN) Staphylococcus aureus strains with a sensitive strain (ATCC6538) using metabolomics. We identified 109 metabolites; 28 or 31 metabolites in R-AMP or R-GEN differed from those in ATCC6538. Moreover, R-AMP and R-GEN were enriched in five and four pathways, respectively. R-AMP showed significantly up-regulated amino acid metabolism and down-regulated energy metabolism, whereas R-GEN exhibited an overall decrease in metabolism, including carbohydrate, energy, and amino acid metabolism. Furthermore, the activities of the metabolism-related enzymes pyruvate dehydrogenase and TCA cycle dehydrogenases were inhibited in antibiotic-resistant bacteria. Significant decreases in NADH and ATP levels were also observed. In addition, the arginine biosynthesis pathway, which is related to nitric oxide (NO) production, was enriched in both antibiotic-resistant strains. Enhanced NO synthase activity in S. aureus promoted NO production, which further reduced reactive oxygen species, mediating the development of bacterial resistance to ampicillin and gentamicin. This study reveals that bacterial resistance affects metabolic profile, and changes in energy metabolism and arginine biosynthesis are important factors leading to drug resistance in S. aureus.
Collapse
Affiliation(s)
- Ziyi Zhang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhiyu Pan
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lvyuan Fan
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yubin Su
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiao Fei
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
4
|
Li J, Liu Q, Li S, Zeng L, Yao J, Li H, Shen Z, Lu F, Wu Z, Song B, Song R. Design, Synthesis, Antibacterial Activity, and Mechanisms of Novel Benzofuran Derivatives Containing Disulfide Moieties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10195-10205. [PMID: 38662962 DOI: 10.1021/acs.jafc.3c08392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
The unsatisfactory effects of conventional bactericides and antimicrobial resistance have increased the challenges in managing plant diseases caused by bacterial pests. Here, we report the successful design and synthesis of benzofuran derivatives using benzofuran as the core skeleton and splicing the disulfide moieties commonly seen in natural substances with antibacterial properties. Most of our developed benzofurans displayed remarkable antibacterial activities to frequently encountered pathogens, including Xanthomonas oryzae pv oryzae (Xoo), Xanthomonas oryzae pv oryzicola (Xoc), and Xanthomonas axonopodis pv citri (Xac). With the assistance of the three-dimensional quantitative constitutive relationship (3D-QSAR) model, the optimal compound V40 was obtained, which has better in vitro antibacterial activity with EC50 values of 0.28, 0.56, and 10.43 μg/mL against Xoo, Xoc, and Xac, respectively, than those of positive control, TC (66.41, 78.49, and 120.36 μg/mL) and allicin (8.40, 28.22, and 88.04 μg/mL). Combining the results of proteomic analysis and enzyme activity assay allows the antibacterial mechanism of V40 to be preliminarily revealed, suggesting its potential as a versatile bactericide in combating bacterial pests in the future.
Collapse
Affiliation(s)
- Jianzhuan Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Qiu Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Sha Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Lu Zeng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Jiahui Yao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Hongde Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Zhongjie Shen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Funeng Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Zengxue Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Baoan Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Runjiang Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
5
|
Zhang M, Li L, Li C, Ma A, Li J, Yang C, Chen X, Cao P, Li S, Zhang Y, Yuchi Z, Du X, Liu C, Wang X, Wang X, Xiang W. Natural product guvermectin inhibits guanosine 5'-monophosphate synthetase and confers broad-spectrum antibacterial activity. Int J Biol Macromol 2024; 267:131510. [PMID: 38608989 DOI: 10.1016/j.ijbiomac.2024.131510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Bacterial diseases caused substantial yield losses worldwide, with the rise of antibiotic resistance, there is a critical need for alternative antibacterial compounds. Natural products (NPs) from microorganisms have emerged as promising candidates due to their potential as cost-effective and environmentally friendly bactericides. However, the precise mechanisms underlying the antibacterial activity of many NPs, including Guvermectin (GV), remain poorly understood. Here, we sought to explore how GV interacts with Guanosine 5'-monophosphate synthetase (GMPs), an enzyme crucial in bacterial guanine synthesis. We employed a combination of biochemical and genetic approaches, enzyme activity assays, site-directed mutagenesis, bio-layer interferometry, and molecular docking assays to assess GV's antibacterial activity and its mechanism targeting GMPs. The results showed that GV effectively inhibits GMPs, disrupting bacterial guanine synthesis. This was confirmed through drug-resistant assays and direct enzyme inhibition studies. Bio-layer interferometry assays demonstrated specific binding of GV to GMPs, with dependency on Xanthosine 5'-monophosphate. Site-directed mutagenesis identified key residues crucial for the GV-GMP interaction. This study elucidates the antibacterial mechanism of GV, highlighting its potential as a biocontrol agent in agriculture. These findings contribute to the development of novel antibacterial agents and underscore the importance of exploring natural products for agricultural disease management.
Collapse
Affiliation(s)
- Manman Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, Plant Pathology Department, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Lei Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Cheng Li
- College of Agriculture, Key Laboratory of Agricultural Microbiology of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Aifang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Junzhou Li
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chenyu Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xujun Chen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, Plant Pathology Department, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Peng Cao
- Key Laboratory of Drug Targets and Drug Leads for Degenerative Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xiangge Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, Plant Pathology Department, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Chongxi Liu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Xiaodan Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, Plant Pathology Department, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Wang H, Mi Q, Mao Y, Tan Y, Yang M, Liu W, Wang N, Tian X, Huang L. Streptothricin-F Inhibition of FtsZ Function: A Promising Approach for Controlling Pseudomonas syringae pv. actinidiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2624-2633. [PMID: 38277222 DOI: 10.1021/acs.jafc.3c08474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Pseudomonas syringae pv. actinidiae (Psa) is a significant pathogenic bacterium affecting the kiwifruit industry. This study investigated the target sites of streptothricin-F (ST-F), produced by Streptomyces lavendulae gCLA4. The inhibition of ST-F on Psa was examined by the microscopic structural differences of Psa before and after treatment with ST-F, as well as the interaction between ST-F and cell division-related proteins. The results revealed filamentation of Psa after ST-F treatment, and fluorescence microscopy showed that ST-F inhibited the formation of the Z-ring composed of FtsZ protein. In vitro experiments and molecular docking demonstrated that ST-F can bind to FtsZ with a binding energy of 0.4 μM and inhibit FtsZ's GTP-dependent polymerization reaction. In addition, ST-F does not exert inhibitory effects on cell division in Psa strains overexpressing ftsZ. In conclusion, FtsZ is one of the target sites for ST-F inhibition of Psa, highlighting its potential as a therapeutic target for controlling Psa-induced kiwifruit bacterial canker.
Collapse
Affiliation(s)
- Hua Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Plant Protection, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Qianqian Mi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Plant Protection, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Yiru Mao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Plant Protection, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Yunxiao Tan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Plant Protection, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Mingming Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Plant Protection, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Wei Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Plant Protection, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Nana Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Life Science, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Xiangrong Tian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Forestry, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Plant Protection, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| |
Collapse
|
7
|
Lan Y, Yan Z, Duan T. Luobuma Leaf Spot Disease Caused by Alternaria tenuissima in China. J Fungi (Basel) 2023; 9:1062. [PMID: 37998868 PMCID: PMC10671953 DOI: 10.3390/jof9111062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Luobuma (Apocynum venetum and Poacynum hendersonni) is widely cultivated for environmental conservation, medicinal purposes and the textile industry. In 2018, a severe leaf spot disease that attacked the leaves of Luobuma was observed in plants cultivated in Yuzhong County, Gansu Province, China. Symptoms of the disease appeared as white or off-white spots surrounded by brown margins on the leaves of A. venetum. The spots expanded and covered a large area of the leaf, presenting as "cankers" with progression of the disease, leading to leaf death. The initial symptoms of the disease on P. hendersonni were similar to the symptoms of A. venetum, with a larger disease spot than A. venetum, and the spot was black and thicker. The aim of this study was to identify the fungal species and evaluate the effectiveness of fungicides (hymexazol and zhongshengmycin) against the pathogen in vitro. The fungi species that caused the new disease was identified as Alternaria tenuissima based on the morphological characteristics, pathogenicity tests, and phylogenetic analysis of the internal transcribed spacer (ITS) region, glyceraldehyde 3-phosphate dehydrogenase (gpd), translation elongation factor 1-alpha (TEF) and the histone 3 (H3) gene sequences. The findings showed that hymexazol fungicide can be used to control leaf spot disease. This is the first report on Luobuma leaf spot disease caused by A. tenuissima in China.
Collapse
Affiliation(s)
- Yanru Lan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Zhichen Yan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Tingyu Duan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
8
|
Pan Z, Guo J, Zhong Y, Fan L, Su Y. Gentamicin resistance to Escherichia coli related to fatty acid metabolism based on transcriptome analysis. Can J Microbiol 2023; 69:328-338. [PMID: 37224563 DOI: 10.1139/cjm-2023-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Antibiotic overuse and misuse have promoted the emergence and spread of antibiotic-resistant bacteria. Increasing bacterial resistance to antibiotics is a major healthcare problem, necessitating elucidation of antibiotic resistance mechanisms. In this study, we explored the mechanism of gentamicin resistance by comparing the transcriptomes of antibiotic-sensitive and -resistant Escherichia coli. A total of 410 differentially expressed genes were identified, of which 233 (56.83%) were up-regulated and 177 (43.17%) were down-regulated in the resistant strain compared with the sensitive strain. Gene Ontology (GO) analysis classifies differential gene expression into three main categories: biological processes, cellular components, and molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the up-regulated genes were enriched in eight metabolic pathways, including fatty acid metabolism, which suggests that fatty acid metabolism may be involved in the development of gentamicin resistance in E. coli. This was demonstrated by measuring the acetyl-CoA carboxylase activity, plays a fundamental role in fatty acid metabolism, was increased in gentamicin-resistant E. coli. Treatment of fatty acid synthesis inhibitor, triclosan, promoted gentamicin-mediated killing efficacy to antibiotic-resistant bacteria. We also found that exogenous addition of oleic acid, which involved in fatty acid metabolism, reduced E. coli sensitivity to gentamicin. Overall, our results provide insight into the molecular mechanism of gentamicin resistance development in E. coli.
Collapse
Affiliation(s)
- Zhiyu Pan
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Juan Guo
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yilin Zhong
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Lvyuan Fan
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yubin Su
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
9
|
Verhaegen M, Bergot T, Liebana E, Stancanelli G, Streissl F, Mingeot-Leclercq MP, Mahillon J, Bragard C. On the use of antibiotics to control plant pathogenic bacteria: a genetic and genomic perspective. Front Microbiol 2023; 14:1221478. [PMID: 37440885 PMCID: PMC10333595 DOI: 10.3389/fmicb.2023.1221478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Despite growing attention, antibiotics (such as streptomycin, oxytetracycline or kasugamycin) are still used worldwide for the control of major bacterial plant diseases. This raises concerns on their potential, yet unknown impact on antibiotic and multidrug resistances and the spread of their genetic determinants among bacterial pathogens. Antibiotic resistance genes (ARGs) have been identified in plant pathogenic bacteria (PPB), with streptomycin resistance genes being the most commonly reported. Therefore, the contribution of mobile genetic elements (MGEs) to their spread among PPB, as well as their ability to transfer to other bacteria, need to be further explored. The only well-documented example of ARGs vector in PPB, Tn5393 and its highly similar variants (carrying streptomycin resistance genes), is concerning because of its presence outside PPB, in Salmonella enterica and Klebsiella pneumoniae, two major human pathogens. Although its structure among PPB is still relatively simple, in human- and animal-associated bacteria, Tn5393 has evolved into complex associations with other MGEs and ARGs. This review sheds light on ARGs and MGEs associated with PPB, but also investigates the potential role of antibiotic use in resistance selection in plant-associated bacteria.
Collapse
Affiliation(s)
- Marie Verhaegen
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Catholic University of Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Thomas Bergot
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Catholic University of Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | | | | | | | - Marie-Paule Mingeot-Leclercq
- Cellular and Molecular Pharmacology Unit, Louvain Drug Research Institute, UCLouvain, Woluwe-Saint-Lambert, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Catholic University of Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Claude Bragard
- Plant Health Laboratory, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
10
|
Du X, Zhang Y, Wu H, Tan W, Huang E, Guan X, Zhang L. ROS-mediated TCA cycle is greatly related to the UV resistance of Bacillus thuringiensis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105429. [PMID: 37248007 DOI: 10.1016/j.pestbp.2023.105429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023]
Abstract
Bacillus thuringiensis (Bt) is a popular and environment-friendly biopesticide. However, similar to other microbial pesticides, Bt is limited by ultraviolet (UV) radiation during its application, which greatly reduces its toxicity and persistence. To further know the mechanism of Bt against UV radiation, metabolomic profiles between Bt LLP29 and its UV-resistant mutant LLP29-M19 were compared, analyzed, and annotated in this study, and then a total of 61 metabolites with different abundances were detected. With P < 0.05 as the standard, a total of 12 metabolic pathways were enriched, including the TCA cycle. According to the result of RT-qPCR, the expression levels of the TCA cycle key genes in Bt LL29-M19, such as icd1 citZ, citB, sdhA, sdhB, sdhC, fumA, and mdh, were found down-regulated for 85.58%, 37.02%, 70.87%, 85.97%, 76.33%, 83.15%, 87.28%, and 35.77% than those in Bt LLP29. It was consistent with the down-regulation trend of the TCA cycle key enzymes activity in Bt LLP29-M19. Consistently, the enzyme activities of ICDH, SDH, and PDH in LLP29-M19 were detected 86.28%, 43.93%, and 83.03% lower than those in Bt LLP29. It was revealed that the reduced TCA cycle was required for Bt UV radiation resistance, which was also demonstrated by the addition of inhibitors furfural and malonic acid, respectively. Based on the result of RT-qPCR, the gene transcription levels of the main reactive oxygen species (ROS) generation pathways were down-regulated, such as EMP, however, the activity of the main degrading enzymes was up-regulated, which showed the reduction of ROS generation rate was a way for the TCA cycle to regulate the anti-ultraviolet resistance of Bt. All of these provide solid evidence for reprogramming metabolomics to strengthen Bt UV radiation resistance.
Collapse
Affiliation(s)
- Xi Du
- State Key Laboratory of Ecological Pest Control for Fujian, Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial, Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yile Zhang
- State Key Laboratory of Ecological Pest Control for Fujian, Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial, Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haonan Wu
- State Key Laboratory of Ecological Pest Control for Fujian, Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial, Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weilong Tan
- Center for Disease Control and Prevention of Eastern Command, Nanjing 210000, China
| | - Enjiong Huang
- Fuzhou International Travel HealthCare Center, Fuzhou 350001, China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian, Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial, Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lingling Zhang
- State Key Laboratory of Ecological Pest Control for Fujian, Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial, Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
11
|
Raza A, Zehra M, Ramzan M, Siddiqui AJ, Akbar A, Ahmed A, Musharraf SG. Untargeted Metabolomics Analysis of Gentamicin-Induced Tolerant Colonies of Klebsiella pneumoniae. Eur J Pharm Sci 2023; 185:106436. [PMID: 36965642 DOI: 10.1016/j.ejps.2023.106436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
PURPOSE Antibiotic resistance development in pathogenic bacteria like Klebsiella pneumoniae seriously threatens humankind. Therefore, it is important to understand the interaction of bacteria with antibiotic agents and how it acquires resistance at the molecular level. The current study describes metabolomics analysis of K. pneumoniae sensitive strains and its gentamicin-tolerant (resistant) strains. METHODS K. pneumoniae strains were treated at five different concentrations of gentamicin, increasing from a low dose (16.2 µg/mL) to the highest dose (250 µg/mL) at three incubation time periods (24h, 48h, and 72h). Colonies obtained at various concentrations and time intervals were subjected to metabolomic analysis using GC-MS. RESULTS A drastic change was observed in the morphology of K. pneumoniae colonies with the increasing gentamicin concentration. Moreover, K. pneumoniae strains grown at the highest concentration (250 µg/mL) were found tolerant to 1 mg/mL gentamicin (4-folds) and considered resistant strains. A total of 459 metabolites were identified. A sequential down/up-regulation in 4, 3, and 4 metabolites were observed in association with the increasing gentamicin concentration at 24h, 48h, and 72h, respectively. While with the comparative analysis of resistant and sensitive strains, a total of seven down- and sixteen up-regulated metabolites were observed. The concentration of some fatty acids and sugars have been found to increase while, a few metabolites like inosine, tyrosine, 1-propionylproline, and 2-hydroxyacetic acid have been found down-regulated in resistant samples. CONCLUSION These regulator metabolites might be associated with resistance development in K. pneumoniae against gentamicin and might be helpful in the rapid detection of gentamicin-resistant clinical strains.
Collapse
Affiliation(s)
- Ali Raza
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Moatter Zehra
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Ramzan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Amna Jabbar Siddiqui
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Azra Akbar
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ayaz Ahmed
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
12
|
Zou Z, Lin M, Shen P, Guan Y. Alanine-Dependent TCA Cycle Promotion Restores the Zhongshengmycin-Susceptibility in Xanthomonas oryzae. Int J Mol Sci 2023; 24:ijms24033004. [PMID: 36769324 PMCID: PMC9918224 DOI: 10.3390/ijms24033004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Xanthomonas oryzae pv. oryzicola (Xoo) is a plant pathogenic bacterium that can cause rice bacterial blight disease, which results in a severe reduction in rice production. Antimicrobial-dependent microbial controlling is a useful way to control the spread and outbreak of plant pathogenic bacteria. However, the abuse and long-term use of antimicrobials also cause microbial antimicrobial resistance. As far as known, the mechanism of antimicrobial resistance in agricultural plant pathogenic bacteria still lacks prospecting. In this study, we explore the mechanism of Zhongshengmycin (ZSM)-resistance in Xoo by GC-MS-based metabolomic analysis. The results showed that the down-regulation of the TCA cycle was characteristic of antimicrobial resistance in Xoo, which was further demonstrated by the reduction of activity and gene expression levels of key enzymes in the TCA cycle. Furthermore, alanine was proven to reverse the ZSM resistance in Xoo by accelerating the TCA cycle in vivo. Our results are essential for understanding the mechanisms of ZSM resistance in Xoo and may provide new strategies for controlling this agricultural plant pathogen at the metabolic level.
Collapse
|
13
|
Lu H, Shen Z, Xu Y, Wu L, Hu D, Song R, Song B. Immune Mechanism of Ethylicin-Induced Resistance to Xanthomonas oryzae pv. oryzae in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:288-299. [PMID: 36591973 DOI: 10.1021/acs.jafc.2c07385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ethylicin (ET) was reported to be promising in the control of rice bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo). The detailed mechanism for this process remains unknown. Disclosed here is an in-depth study on the action mode of ET to Xoo. Through plant physiological and biochemical analysis, it was found that ET could inhibit the proliferation of Xoo by increasing the content of defense enzymes and chlorophyll in rice (Oryza sativa ssp. Japonica cv. Nipponbare). Label-free quantitative proteomic analysis showed that ET affected the rice abscisic acid (ABA) signal pathway and made the critical differential calcium-dependent protein kinase 24 (OsCPK24) more active. In addition, the biological function of OsCPK24 as a mediator for rice resistance to Xoo was determined through the anti-Xoo phenotypic test of OsCPK24 transgenic rice and the affinity analysis of the OsCPK24 recombinant protein in vitro and ET. This study revealed the molecular mechanism of ET-induced resistance to Xoo in rice via OsCPK24, which provided a basis for the development of new bactericides based on the OsCPK24 protein.
Collapse
Affiliation(s)
- Hongxia Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Zhongjie Shen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Yujun Xu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Linjing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Deyu Hu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Runjiang Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| | - Baoan Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang550025, China
| |
Collapse
|
14
|
Feng X, Li D, Wang H, Yu X, Shentu X. Fitness costs of resistance to insecticide pymetrozine combined with antimicrobial zhongshengmycin in Nilaparvata lugens (Stål). Front Physiol 2023; 14:1160873. [PMID: 37123267 PMCID: PMC10133562 DOI: 10.3389/fphys.2023.1160873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
The brown planthopper, Nilaparvata lugens (Stål), is a major pest of rice crops, and its control is critical for food security. Pymetrozine has been recommended as an alternative to imidacloprid for controlling N. lugens, but the pest has developed high resistance to it, making its prohibition and restriction urgent. To address this issue, we conducted a study using a mixture of pymetrozine and zhongshengmycin with the effective ratio of 1:40, to evaluate the fitness costs in N. lugens. Our results showed that N. lugens had a relative fitness of 0.03 under this ratio, with significantly reduced longevity, female and male adult periods, total pre-oviposition days, and fecundity. Moreover, the expression levels of the uricase gene (EC1.7.3.3) and farnesyl diphosphate farnesyl transferase gene (EC2.5.1.21) were reduced in N. lugens. These genes are involved in urea metabolism and steroid biosynthesis pathway, respectively, and their suppression can interfere with the normal nutritional function of N. lugens. Our study demonstrates that the combination of chemical insecticides and antimicrobials can delay the development of resistance and improve the efficiency of pest control. This information is valuable for researchers developing management strategies to delay the development of pymetrozine resistance in N. lugens.
Collapse
Affiliation(s)
| | | | | | - Xiaoping Yu
- *Correspondence: Xiaoping Yu, ; Xuping Shentu,
| | | |
Collapse
|
15
|
Guan Y, Lin M, Shen P, Zou Z. Alanine-mediated P cycle boosting enhances the killing efficiency of kasugamycin on antibiotic-resistant Xanthomonas oryzae. Front Microbiol 2023; 14:1160702. [PMID: 37143533 PMCID: PMC10151481 DOI: 10.3389/fmicb.2023.1160702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
The outbreak of Bacterial blight (BB) caused by Xanthomonas oryzae (Xoo) generates substantial economic losses to agricultural production. Antibiotics application is a valuable measure to control this bacterial disease. However, microbial antibiotic resistance dramatically reduced antibiotic effectiveness. Identifying the resistance mechanism of Xoo to antibiotics and restoring antibiotic susceptibility is one of the crucial ways to solve this problem. This study employed a GC-MS-based metabolomic approach to reveal the differential metabolomics between a kasugamycin-susceptible Xoo strain (Z173-S) and a kasugamycin-resistant strain (Z173-RKA). The metabolic mechanism of kasugamycin (KA) resistance in Xoo by GC-MS showed that the downregulation of the pyruvate cycle (P cycle) is a crucial feature of Z173-RKA resistance to KA. This conclusion was confirmed by the decreased enzyme activities and the related gene transcriptional level in the P cycle. Furfural (an inhibitor of pyruvate dehydrogenase) can effectively inhibit the P cycle and increase the resistance of Z173-RKA to KA. Moreover, exogenous alanine can reduce the resistance of Z173-RKA to KA by promoting the P cycle. Our work seems to be the first exploration of the mechanism of KA resistance in Xoo by GC-MS-based metabonomics approach. These results provide a new idea for developing metabolic regulation to address KA resistance in Xoo.
Collapse
|
16
|
Singh R, Thakur L, Kumar A, Singh S, Kumar S, Kumar M, Kumar Y, Kumar N. Comparison of freeze-thaw and sonication cycle-based methods for extracting AMR-associated metabolites from Staphylococcus aureus. Front Microbiol 2023; 14:1152162. [PMID: 37180233 PMCID: PMC10174324 DOI: 10.3389/fmicb.2023.1152162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Emerging antimicrobial resistance (AMR) among Gram-positive pathogens, specifically in Staphylococcus aureus (S. aureus), is becoming a leading public health concern demanding effective therapeutics. Metabolite modulation can improve the efficacy of existing antibiotics and facilitate the development of effective therapeutics. However, it remained unexplored for drug-resistant S. aureus (gentamicin and methicillin-resistant), primarily due to the dearth of optimal metabolite extraction protocols including a protocol for AMR-associated metabolites. Therefore, in this investigation, we have compared the performance of the two most widely used methods, i.e., freeze-thaw cycle (FTC) and sonication cycle (SC), alone and in combination (FTC + SC), and identified the optimal method for this purpose. A total of 116, 119, and 99 metabolites were identified using the FTC, SC, and FTC + SC methods, respectively, leading to the identification of 163 metabolites cumulatively. Out of 163, 69 metabolites were found to be associated with AMR in published literature consisting of the highest number of metabolites identified by FTC (57) followed by SC (54) and FTC + SC (40). Thus, the performances of FTC and SC methods were comparable with no additional benefits of combining both. Moreover, each method showed biasness toward specific metabolite(s) or class of metabolites, suggesting that the choice of metabolite extraction method shall be decided based on the metabolites of interest in the investigation.
Collapse
Affiliation(s)
- Rita Singh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- Jawaharlal Nehru University, Delhi, India
| | - Lovnish Thakur
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- Jawaharlal Nehru University, Delhi, India
| | - Ashok Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Sevaram Singh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- Jawaharlal Nehru University, Delhi, India
| | - Shailesh Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Manoj Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Yashwant Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- *Correspondence: Yashwant Kumar,
| | - Niraj Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- Niraj Kumar,
| |
Collapse
|
17
|
Nitrite Promotes ROS Production to Potentiate Cefoperazone-Sulbactam-Mediated Elimination to Lab-Evolved and Clinical-Evolved Pseudomonas aeruginosa. Microbiol Spectr 2022; 10:e0232721. [PMID: 35863024 PMCID: PMC9430864 DOI: 10.1128/spectrum.02327-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cefoperazone-sulbactam (SCF)-resistant Pseudomonas aeruginosa poses a big challenge in the use of SCF to treat infection caused by the pathogen. We have recently shown exogenous nitrite-enabled killing of naturally and artificially evolved Pseudomonas aeruginosa strains (AP-RCLIN-EVO and AP-RLAB-EVO, respectively) by SCF. However, the underlying mechanism is unknown. Here, reprogramming metabolomics was adopted to investigate how nitrite enhanced the SCF-mediated killing efficacy. Nitrite-reprogrammed metabolome displayed an activated pyruvate cycle (P cycle), which was confirmed by elevated activity of pyruvate dehydrogenase (PDH), α-ketoglutarate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase. The activated P cycle provided NADH for the electron transport chain and thereby increased reactive oxygen species (ROS), which potentiated SCF to kill AP-RCLIN-EVO and AP-RLAB-EVO. The nitrite-enabled killing of AP-RCLIN-EVO and AP-RLAB-EVO by SCF was inhibited by PDH inhibitor furfural and ROS scavenger N-Acetyl-L-cysteine but promoted by ROS promoter Fe3+. SCF alone could not induce ROS, but SCF-mediated killing efficacy was enhanced by ROS. In addition, the present study demonstrated that nitrite repressed antioxidants, which were partly responsible for the elevated ROS. These results reveal a nitrite-reprogrammed metabolome mechanism by which AP-RCLIN-EVO and AP-RLAB-EVO sensitivity to SCF is elevated. IMPORTANCE Antibiotic-resistant Pseudomonas aeruginosa has become a real concern in hospital-acquired infections, especially in critically ill and immunocompromised patients. Understanding antibiotic resistance mechanisms and developing novel control measures are highly appreciated. We have recently shown that a reduced nitrite-dependent NO biosynthesis contributes to cefoperazone-sulbactam (SCF) resistance, which is reverted by exogenous nitrite, in both naturally and artificially evolved P. aeruginosa strains (AP-RCLIN-EVO and AP-RLAB-EVO, respectively). However, the mechanism is unknown. The present study reports that the nitrite-enabled killing of AP-RCLIN-EVO and AP-RLAB-EVO by SCF is attributed to the promoted production of reactive oxygen species (ROS). Nitrite activates the pyruvate cycle to generate NADH for the electron transport chain, which in turn promotes ROS generation. Nitrite-potentiated SCF-mediated killing is decreased by pyruvate dehydrogenase inhibitor furfural and ROS scavenger N-Acetyl-L-cysteine but increased by ROS promoter Fe3+. Furthermore, SCF-mediated killing is promoted by H2O2 in a dose-dependent manner. In addition, the combination of nitrite and H2O2 greatly enhances SCF-mediated killing. These results not only disclose a nitrite-ROS-potentiated SCF-mediated killing, but also show SCF-mediated killing is dependent upon ROS.
Collapse
|
18
|
Su YB, Tang XK, Zhu LP, Yang KX, Pan L, Li H, Chen ZG. Enhanced Biosynthesis of Fatty Acids Contributes to Ciprofloxacin Resistance in Pseudomonas aeruginosa. Front Microbiol 2022; 13:845173. [PMID: 35547113 PMCID: PMC9083408 DOI: 10.3389/fmicb.2022.845173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Antibiotic-resistant Pseudomonas aeruginosa is insensitive to antibiotics and difficult to deal with. An understanding of the resistance mechanisms is required for the control of the pathogen. In this study, gas chromatography-mass spectrometer (GC-MS)-based metabolomics was performed to identify differential metabolomes in ciprofloxacin (CIP)-resistant P. aeruginosa strains that originated from P. aeruginosa ATCC 27853 and had minimum inhibitory concentrations (MICs) that were 16-, 64-, and 128-fold (PA-R16CIP, PA-R64CIP, and PA-R128CIP, respectively) higher than the original value, compared to CIP-sensitive P. aeruginosa (PA-S). Upregulation of fatty acid biosynthesis forms a characteristic feature of the CIP-resistant metabolomes and fatty acid metabolome, which was supported by elevated gene expression and enzymatic activity in the metabolic pathway. The fatty acid synthase inhibitor triclosan potentiates CIP to kill PA-R128CIP and clinically multidrug-resistant P. aeruginosa strains. The potentiated killing was companied with reduced gene expression and enzymatic activity and the returned abundance of fatty acids in the metabolic pathway. Consistently, membrane permeability was reduced in the PA-R and clinically multidrug-resistant P. aeruginosa strains, which were reverted by triclosan. Triclosan also stimulated the uptake of CIP. These findings highlight the importance of the elevated biosynthesis of fatty acids in the CIP resistance of P. aeruginosa and provide a target pathway for combating CIP-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Yu-Bin Su
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China.,Department of Cell Biology, Ministry of Education Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xi-Kang Tang
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Ling-Ping Zhu
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Ke-Xin Yang
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Li Pan
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Hui Li
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Zhuang-Gui Chen
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Tang XK, Su YB, Ye HQ, Dai ZY, Yi H, Yang KX, Zhang TT, Chen ZG. Glucose-Potentiated Amikacin Killing of Cefoperazone/Sulbactam Resistant Pseudomonas aeruginosa. Front Microbiol 2022; 12:800442. [PMID: 35310395 PMCID: PMC8928219 DOI: 10.3389/fmicb.2021.800442] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Multidrug-resistant Pseudomonas aeruginosa has become one of global threat pathogens for human health due to insensitivity to antibiotics. Recently developed reprogramming metabolomics can identify biomarkers, and then, the biomarkers were used to revert the insensitivity and elevate antibiotic-mediated killing. Here, the methodology was used to study cefoperazone/sulbactam (SCF)-resistant P. aeruginosa (PA-RSCF) and identified reduced glycolysis and pyruvate cycle, a recent clarified cycle providing respiratory energy in bacteria, as the most key enriched pathways and the depressed glucose as one of the most crucial biomarkers. Further experiments showed that the depression of glucose was attributed to reduction of glucose transport. However, exogenous glucose reverted the reduction to elevate intracellular glucose via activating glucose transport. The elevated glucose fluxed to the glycolysis, pyruvate cycle, and electron transport chain to promote downstream proton motive force (PMF). Consistently, exogenous glucose did not promote SCF-mediated elimination but potentiated aminoglycosides-mediated killing since aminoglycosides uptake is PMF-dependent, where amikacin was the best one. The glucose-potentiated amikacin-mediated killing was effective to both lab-evolved PA-RSCF and clinical multidrug-resistant P. aeruginosa. These results reveal the depressed glucose uptake causes the reduced intracellular glucose and expand the application of metabolome-reprogramming on selecting conventional antibiotics to achieve the best killing efficacy.
Collapse
Affiliation(s)
- Xi-kang Tang
- Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu-bin Su
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Hui-qing Ye
- Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhen-yuan Dai
- Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huan Yi
- Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ke-xin Yang
- Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tian-tuo Zhang
- Department of Pulmonary & Critical Care Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuang-gui Chen
- Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Zhuang-gui Chen,
| |
Collapse
|
20
|
Exogenous Alanine Reverses the Bacterial Resistance to Zhongshengmycin with the Promotion of the P Cycle in Xanthomonas oryzae. Antibiotics (Basel) 2022; 11:antibiotics11020245. [PMID: 35203847 PMCID: PMC8868265 DOI: 10.3390/antibiotics11020245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
Microbial antibiotic resistance has become a worldwide concern, as it weakens the efficiency of the control of pathogenic microbes in both the fields of medicine and plant protection. A better understanding of antibiotic resistance mechanisms is helpful for the development of efficient approaches to settle this issue. In the present study, GC-MS-based metabolomic analysis was applied to explore the mechanisms of Zhongshengmycin (ZSM) resistance in Xanthomonas oryzae (Xoo), a bacterium that causes serious disease in rice. Our results show that the decline in the pyruvate cycle (the P cycle) was a feature for ZSM resistance in the metabolome of ZSM-resistant strain (Xoo-ZSM), which was further demonstrated as the expression level of genes involved in the P cycle and two enzyme activities were reduced. On the other hand, alanine was considered a crucial metabolite as it was significantly decreased in Xoo-ZSM. Exogenous alanine promoted the P cycle and enhanced the ZSM-mediated killing efficiency in Xoo-ZSM. Our study highlights that the depressed P cycle is a feature in Xoo-ZSM for the first time. Additionally, exogenous alanine is a candidate enhancer and can be applied with ZSM to improve the antibiotic-mediated killing efficiency in the control of infection caused by Xoo.
Collapse
|