1
|
Luo Q, Lu P, Chen Y, Shen P, Zheng B, Ji J, Ying C, Liu Z, Xiao Y. ESKAPE in China: epidemiology and characteristics of antibiotic resistance. Emerg Microbes Infect 2024; 13:2317915. [PMID: 38356197 PMCID: PMC10896150 DOI: 10.1080/22221751.2024.2317915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The escalation of antibiotic resistance and the diminishing antimicrobial pipeline have emerged as significant threats to public health. The ESKAPE pathogens - Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. - were initially identified as critical multidrug-resistant bacteria, demanding urgently effective therapies. Despite the introduction of various new antibiotics and antibiotic adjuvants, such as innovative β-lactamase inhibitors, these organisms continue to pose substantial therapeutic challenges. People's Republic of China, as a country facing a severe bacterial resistance situation, has undergone a series of changes and findings in recent years in terms of the prevalence, transmission characteristics and resistance mechanisms of antibiotic resistant bacteria. The increasing levels of population mobility have not only shaped the unique characteristics of antibiotic resistance prevalence and transmission within People's Republic of China but have also indirectly reflected global patterns of antibiotic-resistant dissemination. What's more, as a vast nation, People's Republic of China exhibits significant variations in the levels of antibiotic resistance and the prevalence characteristics of antibiotic resistant bacteria across different provinces and regions. In this review, we examine the current epidemiology and characteristics of this important group of bacterial pathogens, delving into relevant mechanisms of resistance to recently introduced antibiotics that impact their clinical utility in China.
Collapse
Affiliation(s)
- Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Ping Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jinru Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Chaoqun Ying
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zhiying Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
2
|
Kent AG, Spicer LM, Campbell D, Breaker E, McAllister GA, Ewing TO, Longo C, Balbuena R, Burroughs M, Burgin A, Padilla J, Johnson JK, Halpin AL, McKay SL, Rasheed JK, Elkins CA, Karlsson M, Lutgring JD, Gargis AS. Sentinel Surveillance reveals phylogenetic diversity and detection of linear plasmids harboring vanA and optrA among enterococci collected in the United States. Antimicrob Agents Chemother 2024; 68:e0059124. [PMID: 39404260 PMCID: PMC11539240 DOI: 10.1128/aac.00591-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/09/2024] [Indexed: 11/07/2024] Open
Abstract
Enterococcus faecalis and Enterococcus faecium are frequent causes of healthcare-associated infections. Antimicrobial-resistant enterococci pose a serious public health threat, particularly vancomycin-resistant enterococci (VRE), for which treatment options are limited. The Centers for Disease Control and Prevention's Division of Healthcare Quality Promotion Sentinel Surveillance system conducted surveillance from 2018 to 2019 to evaluate antimicrobial susceptibility profiles and molecular epidemiology of 205 E. faecalis and 180 E. faecium clinical isolates collected from nine geographically diverse sites in the United States. Whole genome sequencing revealed diverse genetic lineages, with no single sequence type accounting for more than 15% of E. faecalis or E. faecium. Phylogenetic analysis distinguished E. faecium from 19 E. lactis (previously known as E. faecium clade B). Resistance to vancomycin was 78.3% among E. faecium, 7.8% among E. faecalis, and did not occur among E. lactis isolates. Resistance to daptomycin and linezolid was rare: E. faecium (5.6%, 0.6%, respectively), E. faecalis (2%, 2%), and E. lactis (5.3%, 0%). All VRE harbored the vanA gene. Three of the seven isolates that were not susceptible to linezolid harbored optrA, one chromosomally located and two on linear plasmids that shared a conserved backbone with other multidrug-resistant conjugative linear plasmids. One of these isolates contained optrA and vanA co-localized on the linear plasmid. By screening all enterococci, 20% of E. faecium were predicted to harbor linear plasmids, whereas none were predicted among E. faecalis or E. lactis. Continued surveillance is needed to assess the future emergence and spread of antimicrobial resistance by linear plasmids and other mechanisms.IMPORTANCEThis work confirms prior reports of E. faecium showing higher levels of resistance to more antibiotics than E. faecalis and identifies that diverse sequence types are contributing to enterococcal infections in the United States. All VRE harbored the vanA gene. We present the first report of the linezolid resistance gene optrA on linear plasmids in the United States, one of which co-carried a vanA cassette. Additional studies integrating epidemiological, antimicrobial susceptibility, and genomic methods to characterize mechanisms of resistance, including the role of linear plasmids, will be critical to understanding the changing landscape of enterococci in the United States.
Collapse
Affiliation(s)
- Alyssa G. Kent
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lori M. Spicer
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Goldbelt C6, LLC, Chesapeake, Virginia, USA
| | - Davina Campbell
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Erin Breaker
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Gillian A. McAllister
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Thomas O. Ewing
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Goldbelt C6, LLC, Chesapeake, Virginia, USA
| | - Cynthia Longo
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Goldbelt C6, LLC, Chesapeake, Virginia, USA
| | - Rocio Balbuena
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Goldbelt C6, LLC, Chesapeake, Virginia, USA
| | - Mark Burroughs
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alex Burgin
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jasmine Padilla
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - J. Kristie Johnson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alison Laufer Halpin
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Susannah L. McKay
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - J. Kamile Rasheed
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christopher A. Elkins
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Maria Karlsson
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Goldbelt C6, LLC, Chesapeake, Virginia, USA
| | - Joseph D. Lutgring
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Amy S. Gargis
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Valenza G, Eisenberger D, Esse J, Held J, Lehner-Reindl V, Plaumann PL, Ziegler T, Knauer M, Bogdan C, Dudler P. High prevalence of the recently identified clonal lineage ST1299/CT3109 vanA among vancomycin-resistant Enterococcus faecium strains isolated from municipal wastewater. mSphere 2024; 9:e0039624. [PMID: 39189779 PMCID: PMC11423563 DOI: 10.1128/msphere.00396-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Previously, we demonstrated that the majority of vancomycin-resistant Enterococcus faecium (VREfm) strains from in-patients of the University Hospital Erlangen, Germany, belonged to only three clonal lineages, namely ST117/CT71 vanB and two novel ST1299 vanA lineages classified as CT3109 and CT1903. The goal of the current study was (i) to investigate whether VREfm is also detectable in wastewater of the city of Erlangen, (ii) to identify their molecular features, and (iii) to clarify whether VREfm could arise from the community of the city of Erlangen or can be (directly) connected to nosocomial infections in the hospital setting. From April to May 2023, a total of 244 VREfm strains from raw wastewater of the city of Erlangen were analyzed by core genome multilocus sequence typing (cgMLST). Moreover, 20 of them were further investigated for single nucleotide polymorphisms (SNPs). The molecular characterization of the wastewater VREfm strains revealed a high prevalence (27.9%) of the recently identified clonal lineage ST1299/CT3109 vanA, which is mainly characterized by the presence of the tetracycline-resistance determinant tet(M) and the virulence genes pilA and prpA. The SNPs analysis revealed the presence of two major clusters, namely cluster I (≤65 SNPs), which included well-known hospital-adapted vanB clonal lineages such as ST117/CT71 and ST80/CT1065 and cluster II (≤70 SNPs), which were mainly characterized by the lineage ST1299/CT3109 vanA. Based on the concomitant resistance to vancomycin and tetracycline, we propose that ST1299/CT3109 vanA primarily originated and spread outside of hospital settings.IMPORTANCEThis study provides a detailed genomic analysis of vancomycin-resistant Enterococcus faecium (VREfm) strains isolated from municipal wastewater with a particular focus on clonal lineages, antimicrobial resistance, and the presence of virulence genes. The high wastewater prevalence of the recently identified clonal lineage ST1299/CT3109 vanA, which has been previously detected in hospitals, suggests an enormous potential for future spread in Germany.
Collapse
Affiliation(s)
- Giuseppe Valenza
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - David Eisenberger
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Erlangen, Germany
| | - Jan Esse
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Held
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Verena Lehner-Reindl
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Erlangen, Germany
| | - Peter-Louis Plaumann
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Erlangen, Germany
| | - Tobias Ziegler
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Erlangen, Germany
| | - Max Knauer
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- FAU Profilzentrum Immunmedizin, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Patrick Dudler
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Erlangen, Germany
| |
Collapse
|
4
|
Ventero MP, Marin C, Migura-Garcia L, Tort-Miro C, Giler N, Gomez I, Escribano I, Marco-Fuertes A, Montoro-Dasi L, Lorenzo-Rebenaque L, Vega S, Pérez-Gracia MT, Rodríguez JC. Identification of Antimicrobial-Resistant Zoonotic Bacteria in Swine Production: Implications from the One Health Perspective. Antibiotics (Basel) 2024; 13:883. [PMID: 39335056 PMCID: PMC11428682 DOI: 10.3390/antibiotics13090883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial resistance poses a major threat to global health and food security and is primarily driven by antimicrobial use in human and veterinary medicine. Understanding its epidemiology at farm level is crucial for effective control measures. Despite the significant reduction in antibiotic use in conventional livestock production, the swine sector traditionally has a higher level of antibiotic use in veterinary medicine. Consequently, multidrug resistance (MDR) among microbial isolates of swine origin has been relatively frequent. The aim of this study was to assess the presence of multidrug-resistant (MDR) bacteria, enteric pathogens and resistance genes to the main antibiotics used in clinical practice, both within the environment and in animals across pig farms characterized by varying degrees of sanitary status. A total of 274 samples were collected. Of these, 34 samples were collected from the environment (wall swabs, slat swabs and slurry pit), and 240 samples were collected from animals (sows' and piglets' rectal faeces). All samples were analysed for MDR bacteria and enteric pathogens. The study revealed a high frequency of extended-spectrum beta-lactamases (ESBL)-producing Enterobacterales and Campylobacter spp., with ESBL-producing Enterobacterales predominating in high health status farms (environment and animals) and Campylobacter spp. in both high health status and low health status environments. Additionally, a high percentage of methicillin-resistant Staphylococcus aureus (MRSA) was found, mainly in environmental samples from high health status farms, and Clostridioides difficile was distributed ubiquitously among farms and samples. Furthermore, though less frequently, vancomycin-resistant Enterococcus faecium (VRE) was isolated only in high health status farms, and Gram-negative bacilli resistant to carbapenems were isolated only in environmental samples of high health status and low health status farms. This study underscores the importance of surveillance for MDR bacteria in farm animals and their environment, including their waste. Such ecosystems serve as crucial reservoirs of bacteria, requiring national-level surveillance to promote responsible antibiotic use and pandemic control.
Collapse
Affiliation(s)
- Maria Paz Ventero
- Servicio de Microbiología, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (I.G.); (I.E.); (J.C.R.)
| | - Clara Marin
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera—CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (A.M.-F.); (L.M.-D.); (S.V.)
| | - Lourdes Migura-Garcia
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (C.T.-M.); (N.G.)
- IRTA. Programa de Sanitat Animal, CReSA, Collaborating Centre of the World Organisation for Animal Health for Research and Control of Emerging and Re-Emerging Pig Diseases, Europe Campus de la UAB, 08193 Bellaterra, Spain
| | - Carla Tort-Miro
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (C.T.-M.); (N.G.)
- IRTA. Programa de Sanitat Animal, CReSA, Collaborating Centre of the World Organisation for Animal Health for Research and Control of Emerging and Re-Emerging Pig Diseases, Europe Campus de la UAB, 08193 Bellaterra, Spain
| | - Noemi Giler
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (C.T.-M.); (N.G.)
- IRTA. Programa de Sanitat Animal, CReSA, Collaborating Centre of the World Organisation for Animal Health for Research and Control of Emerging and Re-Emerging Pig Diseases, Europe Campus de la UAB, 08193 Bellaterra, Spain
| | - Inmaculada Gomez
- Servicio de Microbiología, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (I.G.); (I.E.); (J.C.R.)
| | - Isabel Escribano
- Servicio de Microbiología, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (I.G.); (I.E.); (J.C.R.)
| | - Ana Marco-Fuertes
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera—CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (A.M.-F.); (L.M.-D.); (S.V.)
| | - Laura Montoro-Dasi
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera—CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (A.M.-F.); (L.M.-D.); (S.V.)
| | - Laura Lorenzo-Rebenaque
- Institute of Science and Animal Technology, Universitat Politècnica de Valencia, 46022 Valencia, Spain;
| | - Santiago Vega
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera—CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (A.M.-F.); (L.M.-D.); (S.V.)
| | - Maria Teresa Pérez-Gracia
- Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera–CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain;
| | - Juan Carlos Rodríguez
- Servicio de Microbiología, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (I.G.); (I.E.); (J.C.R.)
- Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández de Elche, 03010 Alicante, Spain
| |
Collapse
|
5
|
Madani WAM, Ramos Y, Cubillos-Ruiz JR, Morales DK. Enterococcal-host interactions in the gastrointestinal tract and beyond. FEMS MICROBES 2024; 5:xtae027. [PMID: 39391373 PMCID: PMC11466040 DOI: 10.1093/femsmc/xtae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
The gastrointestinal tract (GIT) is typically considered the natural niche of enterococci. However, these bacteria also inhabit extraintestinal tissues, where they can disrupt organ physiology and cause life-threatening infections. Here, we discuss how enterococci, primarily Enterococcus faecalis, interact with the intestine and other host anatomical locations such as the oral cavity, heart, liver, kidney, and vaginal tract. The metabolic flexibility of these bacteria allows them to quickly adapt to new environments, promoting their persistence in diverse tissues. In transitioning from commensals to pathogens, enterococci must overcome harsh conditions such as nutrient competition, exposure to antimicrobials, and immune pressure. Therefore, enterococci have evolved multiple mechanisms to adhere, colonize, persist, and endure these challenges in the host. This review provides a comprehensive overview of how enterococci interact with diverse host cells and tissues across multiple organ systems, highlighting the key molecular pathways that mediate enterococcal adaptation, persistence, and pathogenic behavior.
Collapse
Affiliation(s)
- Wiam Abdalla Mo Madani
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, NY 10065, United States
| | - Yusibeska Ramos
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
| | - Juan R Cubillos-Ruiz
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, NY 10065, United States
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, NY 10065, United States
| | - Diana K Morales
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
| |
Collapse
|
6
|
Abdullahi IN, Lozano C, Zarazaga M, Latorre-Fernández J, Hallstrøm S, Rasmussen A, Stegger M, Torres C. Genomic Characterization and Phylogenetic Analysis of Linezolid-Resistant Enterococcus from the Nostrils of Healthy Hosts Identifies Zoonotic Transmission. Curr Microbiol 2024; 81:225. [PMID: 38877167 PMCID: PMC11178607 DOI: 10.1007/s00284-024-03737-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/08/2024] [Indexed: 06/16/2024]
Abstract
Linezolid resistance in Enterococcus spp. is increasingly considered critically important and a public health threat which mandates the need to understand their genomic contents and dissemination patterns. Here, we used whole-genome sequencing to characterize the resistome, virulome and mobile genetic elements of nine linezolid-resistant (LZDR) enterococci (seven optrA-E. faecalis, one poxtA-E. faecium and one optrA-E. casseliflavus) previously obtained from the nares of healthy dogs, pigs, pig farmers and tracheal samples of nestling storks in Spain. Also, the relatedness of the isolates with publicly available genomes was accessed by core-genome single nucleotide polymorphism (SNP) analysis. The optrA gene of the E. faecalis and E. casseliflavus isolates was located downstream of the fexA gene. The optrA gene in the E. casseliflavus isolate was carried in a plasmid (pURX4962), while those in the seven E. faecalis isolates were chromosomally located. The OptrA proteins were mostly variants of wild type (DP-2: Y176D/T481P; RDK: I104R/Y176D/E256K; DD-3: Y176D/G393D; and EDD: K3E/Y176D/G393D), except two that were wild type (one E. faecalis and one E. casseliflavus). The poxtA gene in the E. faecium isolate was found alone within its contig. The cfrD was upstream of ermB gene in the E. casseliflavus isolate and flanked by ISNCY and IS1216. All the LZDR enterococci carried plasmid rep genes (2-3) containing tetracycline, chloramphenicol and aminoglycoside resistance genes. All isolates except E. casseliflavus carried at least one intact prophage, of which E. faecalis-ST330 (X4957) from a pig carried the highest (n = 5). Tn6260 was associated with lnuG in E. faecalis-ST330 while Tn554 was with fexA in E. feaecalis-ST59 isolates. All except E. casseliflavus (n = 0) carried at least two metal resistance genes (MRGs), of which poxtA-carrying E. faecium-ST1739 isolate contained the most (arsA, copA, fief, ziaA, znuA, zosA, zupT, and zur). SNP-based analyses identified closely related optrA-E. faecalis isolates from a pig and a pig farmer on the same farm (SNP = 4). Moreover, optrA- carrying E. faecalis-ST32, -ST59, and -ST474 isolates from pigs were related to those previously described from humans (sick and healthy) and cattle in Spain, Belgium, and Switzerland (SNP range 43-86). These findings strongly suggest the transmission of LZDR-E. faecalis between a pig and a pig farmer and potential inter-country dissemination. These highlight the need to strengthen molecular surveillance of LZDR enterococci in all ecological niches and body parts to direct appropriate control strategies.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, Ahmadu Bello University, PMB 05 , Zaria, Nigeria
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| | - Javier Latorre-Fernández
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| | - Søren Hallstrøm
- Department of Bacteria, Parasites and Fungi, Statens Serum Institute, Copenhagen, Denmark
| | - Astrid Rasmussen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institute, Copenhagen, Denmark
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institute, Copenhagen, Denmark
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| |
Collapse
|
7
|
Al Bshabshe A, Algarni A, Shabi Y, Alwahhabi A, Asiri M, Alasmari A, Alshehry A, Mousa WF, Noreldin N. Characterization and Antimicrobial Susceptibility Patterns of Enterococcus Species Isolated from Nosocomial Infections in a Saudi Tertiary Care Hospital over a Ten-Year Period (2012-2021). Diagnostics (Basel) 2024; 14:1190. [PMID: 38893716 PMCID: PMC11171566 DOI: 10.3390/diagnostics14111190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
INTRODUCTION The Enterococcus genus is a common cause of nosocomial infections, with vancomycin-resistant enterococci (VRE) posing a significant treatment challenge. METHOD This retrospective study, spanning ten years (2012 to 2021), analyzes antimicrobial susceptibility patterns of Enterococcus species from clinical samples in a Saudi Arabian tertiary care hospital. RESULT A total of 1034 Enterococcus isolates were collected, 729 from general wards and 305 from intensive care unit (ICU) patients. VRE accounted for 15.9% of isolates. E. faecalis was the most common species (54.3% of isolates and 2.7% of VRE), followed by E. faecium (33.6% of isolates and 41.2% of VRE). E. faecium exhibited the highest resistance to ciprofloxacin (84.1%), ampicillin (81.6%), and rifampicin (80%), with daptomycin (0.6%) and linezolid (3.1%) showing the lowest resistance. In E. faecalis, ciprofloxacin resistance was highest (59.7%), followed by rifampicin (20.1%) and ampicillin (11.8%). Daptomycin (0%), linezolid (1.5%), and vancomycin (2.7%) had the lowest resistance. VRE cases had higher mortality rates compared to vancomycin-sensitive enterococci (VSE). CONCLUSION Eight different strains of Enterocci were identified. E. faecalis was the most commonly identified strain, while E. faecium had the highest percentage of VRE. VRE cases had a significantly higher mortality rate than VSE cases.
Collapse
Affiliation(s)
- Ali Al Bshabshe
- Department of Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia;
| | - Abdullah Algarni
- Department of Family Medicine, Aseer Central Hospital, Abha 62523, Saudi Arabia;
| | - Yahya Shabi
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia;
| | - Abdulrahman Alwahhabi
- Department of Internal Medicine, Aseer Central Hospital, Abha 62523, Saudi Arabia; (A.A.); (M.A.)
| | - Mohammed Asiri
- Department of Internal Medicine, Aseer Central Hospital, Abha 62523, Saudi Arabia; (A.A.); (M.A.)
| | - Ahmed Alasmari
- Department of Internal Medicine, Aseer Central Hospital, Abha 62523, Saudi Arabia; (A.A.); (M.A.)
| | - Adil Alshehry
- Department of Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia;
| | - Wesam F. Mousa
- Department of Anesthesia and ICU, College of Medicine, Tanta University, Tanta 31512, Egypt
| | - Nashwa Noreldin
- Department of Internal Medicine, College of Medicine, Tanta University, Tanta 31512, Egypt;
| |
Collapse
|
8
|
Bouhrour N, Nibbering PH, Bendali F. Medical Device-Associated Biofilm Infections and Multidrug-Resistant Pathogens. Pathogens 2024; 13:393. [PMID: 38787246 PMCID: PMC11124157 DOI: 10.3390/pathogens13050393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Medical devices such as venous catheters (VCs) and urinary catheters (UCs) are widely used in the hospital setting. However, the implantation of these devices is often accompanied by complications. About 60 to 70% of nosocomial infections (NIs) are linked to biofilms. The main complication is the ability of microorganisms to adhere to surfaces and form biofilms which protect them and help them to persist in the host. Indeed, by crossing the skin barrier, the insertion of VC inevitably allows skin flora or accidental environmental contaminants to access the underlying tissues and cause fatal complications like bloodstream infections (BSIs). In fact, 80,000 central venous catheters-BSIs (CVC-BSIs)-mainly occur in intensive care units (ICUs) with a death rate of 12 to 25%. Similarly, catheter-associated urinary tract infections (CA-UTIs) are the most commonlyhospital-acquired infections (HAIs) worldwide.These infections represent up to 40% of NIs.In this review, we present a summary of biofilm formation steps. We provide an overview of two main and important infections in clinical settings linked to medical devices, namely the catheter-asociated bloodstream infections (CA-BSIs) and catheter-associated urinary tract infections (CA-UTIs), and highlight also the most multidrug resistant bacteria implicated in these infections. Furthermore, we draw attention toseveral useful prevention strategies, and advanced antimicrobial and antifouling approaches developed to reduce bacterial colonization on catheter surfaces and the incidence of the catheter-related infections.
Collapse
Affiliation(s)
- Nesrine Bouhrour
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| |
Collapse
|