1
|
Warring SL, Sisson HM, Fineran PC, Rabiey M. Strategies for the biocontrol Pseudomonas infections pre-fruit harvest. Microb Biotechnol 2024; 17:e70017. [PMID: 39364588 PMCID: PMC11450377 DOI: 10.1111/1751-7915.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024] Open
Abstract
The efficiency of global crop production is under threat from microbial pathogens which is likely to be worsened by climate change. Major contributors to plant disease are Pseudomonas syringae (P. syringae) pathovars which affect a variety of important crops. This opinion piece focuses on P. syringae pathovars actinidiae and syringae, which affect kiwifruit and stone fruits, respectively. We discuss some of the current control strategies for these pathogens and highlight recent research developments in combined biocontrol agents such as bacteriophages and combinations of bacteriophages with known anti-microbials such as antibiotics and bacteriocins.
Collapse
Affiliation(s)
- Suzanne L. Warring
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of OtagoDunedinNew Zealand
| | - Hazel M. Sisson
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
- Bioprotection Aotearoa, University of OtagoDunedinNew Zealand
- Genetics OtagoDunedinNew Zealand
| | - Peter C. Fineran
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
- Bioprotection Aotearoa, University of OtagoDunedinNew Zealand
- Genetics OtagoDunedinNew Zealand
| | - Mojgan Rabiey
- School of Life SciencesUniversity of WarwickCoventryUK
| |
Collapse
|
2
|
E S, Gummadi SN. Advances in the applications of Bacteriophages and phage products against food-contaminating bacteria. Crit Rev Microbiol 2024; 50:702-727. [PMID: 37861086 DOI: 10.1080/1040841x.2023.2271098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/21/2023] [Accepted: 09/17/2023] [Indexed: 10/21/2023]
Abstract
Food-contaminating bacteria pose a threat to food safety and the economy by causing foodborne illnesses and spoilage. Bacteriophages, a group of viruses that infect only bacteria, have the potential to control bacteria throughout the "farm-to-fork continuum". Phage application offers several advantages, including targeted action against specific bacterial strains and minimal impact on the natural microflora of food. This review covers multiple aspects of bacteriophages applications in the food industry, including their use as biocontrol and biopreservation agents to fight over 20 different genera of food-contaminating bacteria, reduce cross-contamination and the risk of foodborne diseases, and also to prolong shelf life and preserve freshness. The review also highlights the benefits of using bacteriophages in bioprocesses to selectively inhibit undesirable bacteria, such as substrate competitors and toxin producers, which is particularly valuable in complex microbial bioprocesses where physical or chemical methods become inadequate. Furthermore, the review briefly discusses other uses of bacteriophages in the food industry, such as sanitizing food processing environments and detecting specific bacteria in food products. The review also explores strategies to enhance the effectiveness of phages, such as employing multi-phage cocktails, encapsulated phages, phage products, and synergistic hurdle approaches by combining them with antimicrobials.
Collapse
Affiliation(s)
- Suja E
- Applied and Industrial Microbiology Laboratory (AIM Lab), Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Laboratory (AIM Lab), Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
3
|
Zhydzetski A, Głowacka-Grzyb Z, Bukowski M, Żądło T, Bonar E, Władyka B. Agents Targeting the Bacterial Cell Wall as Tools to Combat Gram-Positive Pathogens. Molecules 2024; 29:4065. [PMID: 39274911 PMCID: PMC11396672 DOI: 10.3390/molecules29174065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
The cell wall is an indispensable element of bacterial cells and a long-known target of many antibiotics. Penicillin, the first discovered beta-lactam antibiotic inhibiting the synthesis of cell walls, was successfully used to cure many bacterial infections. Unfortunately, pathogens eventually developed resistance to it. This started an arms race, and while novel beta-lactams, either natural or (semi)synthetic, were discovered, soon upon their application, bacteria were developing resistance. Currently, we are facing the threat of losing the race since more and more multidrug-resistant (MDR) pathogens are emerging. Therefore, there is an urgent need for developing novel approaches to combat MDR bacteria. The cell wall is a reasonable candidate for a target as it differentiates not only bacterial and human cells but also has a specific composition unique to various groups of bacteria. This ensures the safety and specificity of novel antibacterial agents that target this structure. Due to the shortage of low-molecular-weight candidates for novel antibiotics, attention was focused on peptides and proteins that possess antibacterial activity. Here, we describe proteinaceous agents of various origins that target bacterial cell wall, including bacteriocins and phage and bacterial lysins, as alternatives to classic antibiotic candidates for antimicrobial drugs. Moreover, advancements in protein chemistry and engineering currently allow for the production of stable, specific, and effective drugs. Finally, we introduce the concept of selective targeting of dangerous pathogens, exemplified by staphylococci, by agents specifically disrupting their cell walls.
Collapse
Affiliation(s)
- Aliaksandr Zhydzetski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Zuzanna Głowacka-Grzyb
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Michal Bukowski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Tomasz Żądło
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Emilia Bonar
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Benedykt Władyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| |
Collapse
|
4
|
Arora R, Nadar K, Bajpai U. Discovery and characterization of a novel LysinB from F2 sub-cluster mycobacteriophage RitSun. Sci Rep 2024; 14:18073. [PMID: 39103410 PMCID: PMC11300654 DOI: 10.1038/s41598-024-68636-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024] Open
Abstract
The escalating antibiotic resistance in mycobacterial species poses a significant threat globally, necessitating an urgent need to find alternative solutions. Bacteriophage-derived endolysins, which facilitate phage progeny release by attacking bacterial cell walls, present promising antibacterial candidates due to their rapid lytic action, high specificity and low risk of resistance development. In mycobacteria, owing to the complex, hydrophobic cell wall, mycobacteriophages usually synthesize two endolysins: LysinA, which hydrolyzes peptidoglycan; LysinB, which delinks mycolic acid-containing outer membrane and arabinogalactan, releasing free mycolic acid. In this study, we conducted domain analysis and functional characterization of a novel LysinB from RitSun, an F2 sub-cluster mycobacteriophage from our phage collection. Several key properties of RitSun LysinB make it an important antimycobacterial agent: its ability to lyse Mycobacterium smegmatis from without, a higher than previously reported specific activity of 1.36 U/mg and its inhibitory effect on biofilm formation. Given the impermeable nature of the mycobacterial cell envelope, dissecting RitSun LysinB at the molecular level to identify its cell wall-destabilizing sequence could be utilized to engineer other native lysins as fusion proteins, broadening their activity spectrum.
Collapse
Affiliation(s)
- Ritu Arora
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Kanika Nadar
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India.
| |
Collapse
|
5
|
Vander Elst N. Bacteriophage-derived endolysins as innovative antimicrobials against bovine mastitis-causing streptococci and staphylococci: a state-of-the-art review. Acta Vet Scand 2024; 66:20. [PMID: 38769566 PMCID: PMC11106882 DOI: 10.1186/s13028-024-00740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/05/2024] [Indexed: 05/22/2024] Open
Abstract
Bacteriophage-encoded endolysins, peptidoglycan hydrolases breaking down the Gram-positive bacterial cell wall, represent a groundbreaking class of novel antimicrobials to revolutionize the veterinary medicine field. Wild-type endolysins exhibit a modular structure, consisting of enzymatically active and cell wall-binding domains, that enable genetic engineering strategies for the creation of chimeric fusion proteins or so-called 'engineered endolysins'. This biotechnological approach has yielded variants with modified lytic spectrums, introducing new possibilities in antimicrobial development. However, the discovery of highly similar endolysins by different groups has occasionally resulted in the assignment of different names that complicate a straightforward comparison. The aim of this review was to perform a homology-based comparison of the wild-type and engineered endolysins that have been characterized in the context of bovine mastitis-causing streptococci and staphylococci, grouping homologous endolysins with ≥ 95.0% protein sequence similarity. Literature is explored by homologous groups for the wild-type endolysins, followed by a chronological examination of engineered endolysins according to their year of publication. This review concludes that the wild-type endolysins encountered persistent challenges in raw milk and in vivo settings, causing a notable shift in the field towards the engineering of endolysins. Lead candidates that display robust lytic activity are nowadays selected from screening assays that are performed under these challenging conditions, often utilizing advanced high-throughput protein engineering methods. Overall, these recent advancements suggest that endolysins will integrate into the antibiotic arsenal over the next decade, thereby innovating antimicrobial treatment against bovine mastitis-causing streptococci and staphylococci.
Collapse
Affiliation(s)
- Niels Vander Elst
- Department of Neuroscience, Karolinska Institutet, Biomedicum 7D, Solnavägen 9, 17165, Solna, Stockholm, Sweden.
| |
Collapse
|
6
|
Khan FM, Rasheed F, Yang Y, Liu B, Zhang R. Endolysins: a new antimicrobial agent against antimicrobial resistance. Strategies and opportunities in overcoming the challenges of endolysins against Gram-negative bacteria. Front Pharmacol 2024; 15:1385261. [PMID: 38831886 PMCID: PMC11144922 DOI: 10.3389/fphar.2024.1385261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/16/2024] [Indexed: 06/05/2024] Open
Abstract
Antibiotic-resistant bacteria are rapidly emerging, and the increasing prevalence of multidrug-resistant (MDR) Acinetobacter baumannii poses a severe threat to humans and healthcare organizations, due to the lack of innovative antibacterial drugs. Endolysins, which are peptidoglycan hydrolases encoded by a bacteriophage, are a promising new family of antimicrobials. Endolysins have been demonstrated as an effective therapeutic agent against bacterial infections of A. baumannii and many other Gram-positive and Gram-negative bacteria. Endolysin research has progressed from basic in vitro characterization to sophisticated protein engineering methodologies, including advanced preclinical and clinical testing. Endolysin are therapeutic agent that shows antimicrobial properties against bacterial infections caused by drug-resistant Gram-negative bacteria, there are still barriers to their implementation in clinical settings, such as safety concerns with outer membrane permeabilizers (OMP) use, low efficiency against stationary phase bacteria, and stability issues. The application of protein engineering and formulation techniques to improve enzyme stability, as well as combination therapy with other types of antibacterial drugs to optimize their medicinal value, have been reviewed as well. In this review, we summarize the clinical development of endolysin and its challenges and approaches for bringing endolysin therapies to the clinic. This review also discusses the different applications of endolysins.
Collapse
Affiliation(s)
- Fazal Mehmood Khan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Fazal Rasheed
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Yunlan Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
7
|
Liu H, Wei X, Wang Z, Huang X, Li M, Hu Z, Zhang K, Hu Q, Peng H, Shang W, Yang Y, Wang Y, Lu S, Rao X. LysSYL: a broad-spectrum phage endolysin targeting Staphylococcus species and eradicating S. aureus biofilms. Microb Cell Fact 2024; 23:89. [PMID: 38528536 DOI: 10.1186/s12934-024-02359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/07/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Staphylococcus aureus and its single or mixed biofilm infections seriously threaten global public health. Phage therapy, which uses active phage particles or phage-derived endolysins, has emerged as a promising alternative strategy to antibiotic treatment. However, high-efficient phage therapeutic regimens have yet to be established. RESULTS In this study, we used an enrichment procedure to isolate phages against methicillin-resistant S. aureus (MRSA) XN108. We characterized phage SYL, a new member of the Kayvirus genus, Herelleviridae family. The phage endolysin LysSYL was expressed. LysSYL demonstrated stability under various conditions and exhibited a broader range of efficacy against staphylococcal strains than its parent phage (100% vs. 41.7%). Moreover, dynamic live/dead bacterial observation demonstrated that LysSYL could completely lyse MRSA USA300 within 10 min. Scan and transmission electron microscopy revealed evident bacterial cell perforation and deformation. In addition, LysSYL displayed strong eradication activity against single- and mixed-species biofilms associated with S. aureus. It also had the ability to kill bacterial persisters, and proved highly effective in eliminating persistent S. aureus when combined with vancomycin. Furthermore, LysSYL protected BALB/c mice from lethal S. aureus infections. A single-dose treatment with 50 mg/kg of LysSYL resulted in a dramatic reduction in bacterial loads in the blood, liver, spleen, lungs, and kidneys of a peritonitis mouse model, which resulted in rescuing 100% of mice challenged with 108 colony forming units of S. aureus USA300. CONCLUSIONS Overall, the data provided in this study highlight the strong therapeutic potential of endolysin LysSYL in combating staphylococcal infections, including mono- and mixed-species biofilms related to S. aureus.
Collapse
Affiliation(s)
- He Liu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Xuemei Wei
- Medical Research Institute, Southwest University, Chongqing, 400700, China
| | - Zhefen Wang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Xiaonan Huang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Mengyang Li
- Department of Microbiology, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Kexin Zhang
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 400700, China
| | - Qiwen Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Yuting Wang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Shuguang Lu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
- Medical Research Institute, Southwest University, Chongqing, 400700, China.
| |
Collapse
|
8
|
Liu B, Chang Z, Li Z, Liu R, Liu X. Prediction of key amino acids of Salmonella phage endolysin LysST-3 and detection of its mutants' activity. Arch Microbiol 2024; 206:151. [PMID: 38467842 DOI: 10.1007/s00203-024-03915-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Salmonella Typhimurium, a zoonotic pathogen, causes systemic and localized infection. The emergence of drug-resistant S. Typhimurium has increased; treating bacterial infections remains challenging. Phage endolysins derived from phages have a broader spectrum of bacteriolysis and better bacteriolytic activity than phages, and are less likely to induce drug resistance than antibiotics. LysST-3, the endolysin of Salmonella phage ST-3, was chosen in our study for its high lytic activity, broad cleavage spectrum, excellent bioactivity, and moderate safety profile. LysST-3 is a promising antimicrobial agent for inhibiting the development of drug resistance in Salmonella. The aim of this study is to investigate the molecular characteristics of LysST-3 through the prediction of key amino acid sites of LysST-3 and detection of its mutants' activity. We investigated its lytic effect on Salmonella and identified its key amino acid sites of interaction with substrate. LysST-3 may be a Ca2+, Mg2+ - dependent metalloenzyme. Its concave structure of the bottom "gripper" was found to be an important part of its amino acid active site. We identified its key sites (29P, 30T, 86D, 88 L, and 89 V) for substrate binding and activity using amino acid-targeted mutagenesis. Alterations in these sites did not affect protein secondary structure, but led to a significant reduction in the cleavage activity of the mutant proteins. Our study provides a basis for phage endolysin modification to target drug-resistant bacteria. Identifying the key amino acid site of the endolysin LysST-3 provides theoretical support for the functional modification of the endolysin and the development of subsequent effective therapeutic solutions.
Collapse
Affiliation(s)
- Bingxin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Academy IV, Yanqihu Campus, Beijing, 101314, China.
| | - Zhankun Chang
- College of Resources and Environment, University of Chinese Academy of Sciences, Academy IV, Yanqihu Campus, Beijing, 101314, China
| | - Zong Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Academy IV, Yanqihu Campus, Beijing, 101314, China
| | - Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Academy IV, Yanqihu Campus, Beijing, 101314, China
| | - Xinchun Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Academy IV, Yanqihu Campus, Beijing, 101314, China.
- Binzhou Institute of Technology, Building 9, Zhonghai Hotel, West of Huanghe 8th Road, Bincheng District, Binzhou, 256600, China.
| |
Collapse
|
9
|
Samir S. Molecular Machinery of the Triad Holin, Endolysin, and Spanin: Key Players Orchestrating Bacteriophage-Induced Cell Lysis and their Therapeutic Applications. Protein Pept Lett 2024; 31:85-96. [PMID: 38258777 DOI: 10.2174/0109298665181166231212051621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 01/24/2024]
Abstract
Phage therapy, a promising alternative to combat multidrug-resistant bacterial infections, harnesses the lytic cycle of bacteriophages to target and eliminate bacteria. Key players in this process are the phage lysis proteins, including holin, endolysin, and spanin, which work synergistically to disrupt the bacterial cell wall and induce lysis. Understanding the structure and function of these proteins is crucial for the development of effective therapies. Recombinant versions of these proteins have been engineered to enhance their stability and efficacy. Recent progress in the field has led to the approval of bacteriophage-based therapeutics as drugs, paving the way for their clinical use. These proteins can be combined in phage cocktails or combined with antibiotics to enhance their activity against bacterial biofilms, a common cause of treatment failure. Animal studies and clinical trials are being conducted to evaluate the safety and efficacy of phage therapy in humans. Overall, phage therapy holds great potential as a valuable tool in the fight against multidrug- resistant bacteria, offering hope for the future of infectious disease treatment.
Collapse
Affiliation(s)
- Safia Samir
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
10
|
Arbel-Groissman M, Menuhin-Gruman I, Naki D, Bergman S, Tuller T. Fighting the battle against evolution: designing genetically modified organisms for evolutionary stability. Trends Biotechnol 2023; 41:1518-1531. [PMID: 37442714 DOI: 10.1016/j.tibtech.2023.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
Synthetic biology has made significant progress in many areas, but a major challenge that has received limited attention is the evolutionary stability of synthetic constructs made of heterologous genes. The expression of these constructs in microorganisms, that is, production of proteins that are not necessary for the organism, is a metabolic burden, leading to a decrease in relative fitness and make the synthetic constructs unstable over time. This is a significant concern for the synthetic biology community, particularly when it comes to bringing this technology out of the laboratory. In this review, we discuss the issue of evolutionary stability in synthetic biology and review the available tools to address this challenge.
Collapse
Affiliation(s)
- Matan Arbel-Groissman
- Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Itamar Menuhin-Gruman
- School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Doron Naki
- Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shaked Bergman
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; The Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
11
|
Zhao X, Li L, Zhang Q, Li M, Hu M, Luo Y, Xu X, Chen Y, Liu Y. Characterization of the Clostridium perfringens phage endolysin cpp-lys and its application on lettuce. Int J Food Microbiol 2023; 405:110343. [PMID: 37523902 DOI: 10.1016/j.ijfoodmicro.2023.110343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
Clostridium perfringens is an important foodborne pathogen that can have severe consequences, including mortality and economic losses. In this study, the gene encoding cpp-lys, an endolysin from the C. perfringens phage cpp has been cloned and overexpressed. The encoded protein was characterized, and then its efficacy in controlling C. perfringens on lettuce was evaluated. The endolysin cpp-lys presented lytic activity against seven strains of C. perfringens that produce different types of toxins. It maintained stability across a wide range of temperatures (4 °C - 50 °C), and demonstrated tolerance to varying pH levels (4-9). Storage of endolysin cpp-lys under room-temperature conditions (16 °C-25 °C) and cold-temperature conditions (4 °C, -20 °C, and -80 °C) for 30 days did not affect its lytic activity. However, the lytic activity of cpp-lys decreased by 40 % and 18 % after storage for 30 d at 42 °C and 37 °C, respectively. The endolysin cpp-lys did not display cytotoxic activity against normal eukaryotic cells. The bacterial viability on lettuce was significantly lower in the group treated with endolysin cpp-lys than in the PBS group, and >4-log of C. perfringens J1 were removed within 15 min. Cpp-lys plus Zn2+ inhibited the activity of cpp-lys. The EDTA-treated cpp-lys significantly reduced the number of bacteria by up to 0.6-log CFU compared with the endolysin cpp-lys group. The findings of this study demonstrated that endolysin cpp-lys has potential applications in controlling C. perfringens in the food industry.
Collapse
Affiliation(s)
- Xiaonan Zhao
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Lulu Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Qing Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Mengxuan Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Ming Hu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Yanbo Luo
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Xiaohui Xu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Yibao Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China.
| | - Yuqing Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China.
| |
Collapse
|
12
|
Khan FM, Chen JH, Zhang R, Liu B. A comprehensive review of the applications of bacteriophage-derived endolysins for foodborne bacterial pathogens and food safety: recent advances, challenges, and future perspective. Front Microbiol 2023; 14:1259210. [PMID: 37869651 PMCID: PMC10588457 DOI: 10.3389/fmicb.2023.1259210] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Foodborne diseases are caused by food contaminated by pathogenic bacteria such as Escherichia coli, Salmonella, Staphylococcus aureus, Listeria monocytogenes, Campylobacter, and Clostridium, a critical threat to human health. As a novel antibacterial agent against foodborne pathogens, endolysins are peptidoglycan hydrolases encoded by bacteriophages that lyse bacterial cells by targeting their cell wall, notably in Gram-positive bacteria due to their naturally exposed peptidoglycan layer. These lytic enzymes have gained scientists' interest in recent years due to their selectivity, mode of action, engineering potential, and lack of resistance mechanisms. The use of endolysins for food safety has undergone significant improvements, which are summarized and discussed in this review. Endolysins can remove bacterial biofilms of foodborne pathogens and their cell wall-binding domain can be employed as a tool for quick detection of foodborne pathogens. We explained the applications of endolysin for eliminating pathogenic bacteria in livestock and various food matrices, as well as the limitations and challenges in use as a dietary supplement. We also highlight the novel techniques of the development of engineering endolysin for targeting Gram-negative bacterial pathogens. In conclusion, endolysin is safe and effective against foodborne pathogens and has no adverse effect on human cells and beneficial microbiota. As a result, endolysin could be employed as a functional bio-preservative agent to improve food stability and safety and maintain the natural taste of food quality.
Collapse
Affiliation(s)
- Fazal Mehmood Khan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Jie-Hua Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| |
Collapse
|
13
|
Shah S, Das R, Chavan B, Bajpai U, Hanif S, Ahmed S. Beyond antibiotics: phage-encoded lysins against Gram-negative pathogens. Front Microbiol 2023; 14:1170418. [PMID: 37789862 PMCID: PMC10542408 DOI: 10.3389/fmicb.2023.1170418] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
Antibiotics remain the frontline agents for treating deadly bacterial pathogens. However, the indiscriminate use of these valuable agents has led to an alarming rise in AMR. The antibiotic pipeline is insufficient to tackle the AMR threat, especially with respect to the WHO critical category of priority Gram-negative pathogens, which have become a serious problem as nosocomial and community infections and pose a threat globally. The AMR pandemic requires solutions that provide novel antibacterial agents that are not only effective but against which bacteria are less likely to gain resistance. In this regard, natural or engineered phage-encoded lysins (enzybiotics) armed with numerous features represent an attractive alternative to the currently available antibiotics. Several lysins have exhibited promising efficacy and safety against Gram-positive pathogens, with some in late stages of clinical development and some commercially available. However, in the case of Gram-negative bacteria, the outer membrane acts as a formidable barrier; hence, lysins are often used in combination with OMPs or engineered to overcome the outer membrane barrier. In this review, we have briefly explained AMR and the initiatives taken by different organizations globally to tackle the AMR threat at different levels. We bring forth the promising potential and challenges of lysins, focusing on the WHO critical category of priority Gram-negative bacteria and lysins under investigation for these pathogens, along with the challenges associated with developing them as therapeutics within the existing regulatory framework.
Collapse
Affiliation(s)
- Sanket Shah
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Ritam Das
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Bhakti Chavan
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Sarmad Hanif
- Techinvention Lifecare Private Limited, Mumbai, India
| | - Syed Ahmed
- Techinvention Lifecare Private Limited, Mumbai, India
| |
Collapse
|
14
|
Stevens RH, Zhang H, Kajsik M, Płoski R, Rydzanicz M, Sabaka P, Šutovský S. Successful use of a phage endolysin for treatment of chronic pelvic pain syndrome/chronic bacterial prostatitis. Front Med (Lausanne) 2023; 10:1238147. [PMID: 37649979 PMCID: PMC10462781 DOI: 10.3389/fmed.2023.1238147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/26/2023] [Indexed: 09/01/2023] Open
Abstract
Chronic prostatitis (CP) is a common inflammatory condition of the prostate that is estimated to effect 2%-10% of the world's male population. It can manifest as perineal, suprapubic, or lower back pain and urinary symptoms occurring with either recurrent bacterial infection [chronic bacterial prostatitis (CBP)] or in the absence of evidence of bacterial infection [chronic pelvic pain syndrome (CPPS)]. Here, in the case of a 39 years-old CBP patient, we report the first successful use of a bacteriophage-derived muralytic enzyme (endolysin) to treat and resolve the disease. Bacteriological analysis of the patient's prostatic secretion and semen samples revealed a chronic Enterococcus faecalis prostate infection, supporting a diagnosis of CBP. The patient's E. faecalis strain was resistant to several antibiotics and developed resistance to others during the course of treatment. Previous treatment with multiple courses of antibiotics, bacteriophages, probiotics, and immunologic stimulation had failed to achieve long term eradication of the infection or lasting mitigation of the symptoms. A cloned endolysin gene, encoded by E. faecalis bacteriophage ϕEf11, was expressed, and the resulting gene product was purified to electrophoretic homogeneity. A seven-day course of treatment with the endolysin resulted in the elimination of the E. faecalis infection to below culturally detectable levels, and the abatement of symptoms to near normal levels. Furthermore, during the endolysin treatment, the patient experienced no untoward reactions. The present report demonstrates the effectiveness of an endolysin as a novel modality in managing a recalcitrant infection that could not be controlled by conventional antibiotic therapy.
Collapse
Affiliation(s)
- Roy H. Stevens
- Laboratory of Oral Infectious Diseases, Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Hongming Zhang
- Laboratory of Oral Infectious Diseases, Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Michal Kajsik
- Department of Bacteriology, Comenius University Science Park, Bratislava, Slovakia
- Department of Molecular Biology, Comenius University Faculty of Natural Sciences, Bratislava, Slovakia
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Peter Sabaka
- Department of Infectiology and Geographical Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Stanislav Šutovský
- 1st Department of Neurology, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| |
Collapse
|
15
|
Zhao Y, Li B, Zhang W, Zhang L, Zhao H, Wang S, Huang C. Recent Advances in Sustainable Antimicrobial Food Packaging: Insights into Release Mechanisms, Design Strategies, and Applications in the Food Industry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11806-11833. [PMID: 37467345 DOI: 10.1021/acs.jafc.3c02608] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
In response to the issues of foodborne microbial contamination and carbon neutrality goals, sustainable antimicrobial food packaging (SAFP) composed of renewable or biodegradable biopolymer matrices with ecofriendly antimicrobial agents has emerged. SAFP offers longer effectiveness, wider coverage, more controllability, and better environmental performance. Analyzing SAFP information, including the release profile of each antimicrobial agent for each food, the interaction of each biomass matrix with each food, the material size, form, and preparation methods, and its service quality in real foods, is crucial. While encouraging reports exist, a comprehensive review summarizing these developments is lacking. Therefore, this review critically examines recent release-antimicrobial mechanisms, kinetics models, preparation methods, and key regulatory parameters for SAFPs based on slow- or controlled-release theory. Furthermore, it discusses fundamental physicochemical characteristics, effective concentrations, advantages, release approaches, and antimicrobial and preservative effects of various materials in food simulants or actual food. Lastly, inadequacies and future trends are explored, providing practical references to regulate the movement of active substances in different media, reduce the reliance on petrochemical-based materials, and advance food packaging and preservation technologies.
Collapse
Affiliation(s)
- Yuan Zhao
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Bo Li
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Wenping Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Lanyu Zhang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Hui Zhao
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Shuangfei Wang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Chongxing Huang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| |
Collapse
|
16
|
Li X, Xu C, Liang B, Kastelic JP, Han B, Tong X, Gao J. Alternatives to antibiotics for treatment of mastitis in dairy cows. Front Vet Sci 2023; 10:1160350. [PMID: 37404775 PMCID: PMC10315858 DOI: 10.3389/fvets.2023.1160350] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/26/2023] [Indexed: 07/06/2023] Open
Abstract
Mastitis is considered the costliest disease on dairy farms and also adversely affects animal welfare. As treatment (and to a lesser extent prevention) of mastitis rely heavily on antibiotics, there are increasing concerns in veterinary and human medicine regarding development of antimicrobial resistance. Furthermore, with genes conferring resistance being capable of transfer to heterologous strains, reducing resistance in strains of animal origin should have positive impacts on humans. This article briefly reviews potential roles of non-steroidal anti-inflammatory drugs (NSAIDs), herbal medicines, antimicrobial peptides (AMPs), bacteriophages and their lytic enzymes, vaccination and other emerging therapies for prevention and treatment of mastitis in dairy cows. Although many of these approaches currently lack proven therapeutic efficacy, at least some may gradually replace antibiotics, especially as drug-resistant bacteria are proliferating globally.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chuang Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bingchun Liang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - John P. Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaofang Tong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Zhang Q, Zhou L, Zhao Y, Gao S, Yang Y, Chen Q, Li W, Qi Q, Dong Q, Lei J, Guo X, Gao Q, Yang Y. Uncovering the virome and its interaction with antibiotic resistome during compost fertilization. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131763. [PMID: 37311294 DOI: 10.1016/j.jhazmat.2023.131763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/15/2023]
Abstract
Antibiotic resistance is a pressing global health issue, leading to increased illnesses and fatalities. The contribution of viruses to the acquisition, preservation, and dissemination of antibiotic resistance genes (ARGs) is not yet fully understood. By using a high-throughput functional gene-based microarray (GeoChip 5.0), this study examines the prevalence and relative abundance of bacteriophage and eukaryotic viral genes in swine manure, compost, compost-amended agricultural soil, and unamended soil from suburban regions of Beijing, China. Our findings reveal a significantly elevated presence of biomarker viral genes in compost-amended soils compared to unamended soils, suggesting potential health risks associated with compost fertilization. We also observed stronger ecological interactions between ARGs and viral genes in manure and compost than in soils. Network analysis identified arabinose efflux permeases and EmrB/QacA resistance genes, linked to CRISPR encoding sequences, as keystone nodes, indicating possible ARG acquisition via virus infections. Moreover, positive correlations were found between viral genes, antibiotic concentrations, and ARG diversity in manure, compost, and compost-amended soils, highlighting a likely pathway for virus-mediated ARG transfer. In summary, our results indicate that use of compost as a fertilizer in agricultural settings could facilitate the spread of ARGs through viral mechanisms, allowing for time-delayed genetic exchanges over broader temporal and spatial scales than ARGs within bacterial genomes.
Collapse
Affiliation(s)
- Qingxia Zhang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Lei Zhou
- Center for professional training and service, China Association for Science and Technology, China
| | - Yilong Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuhong Gao
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yanjun Yang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Qingyun Chen
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wenhui Li
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Qi Qi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Dong
- Institute of Chemical Defense, Beijing 102205, China
| | - Jiesi Lei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xue Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
18
|
Zia S, Alkheraije KA. Recent trends in the use of bacteriophages as replacement of antimicrobials against food-animal pathogens. Front Vet Sci 2023; 10:1162465. [PMID: 37303721 PMCID: PMC10247982 DOI: 10.3389/fvets.2023.1162465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/06/2023] [Indexed: 06/13/2023] Open
Abstract
A major public health impact is associated with foodborne illnesses around the globe. Additionally, bacteria are becoming more resistant to antibiotics, which pose a global threat. Currently, many scientific efforts have been made to develop and implement new technologies to combat bacteria considering the increasing emergence of multidrug-resistant bacteria. In recent years, there has been considerable interest in using phages as biocontrol agents for foodborne pathogens in animals used for food production and in food products themselves. Foodborne outbreaks persist, globally, in many foods, some of which lack adequate methods to control any pathogenic contamination (like fresh produce). This interest may be attributed both to consumers' desire for more natural food and to the fact that foodborne outbreaks continue to occur in many foods. Poultry is the most common animal to be treated with phage therapy to control foodborne pathogens. A large number of foodborne illnesses worldwide are caused by Salmonella spp. and Campylobacter, which are found in poultry and egg products. Conventional bacteriophage-based therapy can prevent and control humans and animals from various infectious diseases. In this context, describing bacteriophage therapy based on bacterial cells may offer a breakthrough for treating bacterial infections. Large-scale production of pheasants may be economically challenging to meet the needs of the poultry market. It is also possible to produce bacteriophage therapy on a large scale at a reduced cost. Recently, they have provided an ideal platform for designing and producing immune-inducing phages. Emerging foodborne pathogens will likely be targeted by new phage products in the future. In this review article, we will mainly focus on the Bacteriophages (phages) that have been proposed as an alternative strategy to antibiotics for food animal pathogens and their use for public health and food safety.
Collapse
Affiliation(s)
- Sana Zia
- Department of Zoology, Government Sadiq College Women University Bahawalpur, Bahawalpur, Pakistan
| | - Khalid A. Alkheraije
- Department of Veterinary Medicine College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
19
|
Varotsou C, Premetis GE, Labrou NE. Characterization and Engineering Studies of a New Endolysin from the Propionibacterium acnes Bacteriophage PAC1 for the Development of a Broad-Spectrum Artilysin with Altered Specificity. Int J Mol Sci 2023; 24:ijms24108523. [PMID: 37239874 DOI: 10.3390/ijms24108523] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The emergence of multidrug-resistant (MDR) bacteria has risen rapidly, leading to a great threat to global public health. A promising solution to this problem is the exploitation of phage endolysins. In the present study, a putative N-acetylmuramoyl-L-alanine type-2 amidase (NALAA-2, EC 3.5.1.28) from Propionibacterium bacteriophage PAC1 was characterized. The enzyme (PaAmi1) was cloned into a T7 expression vector and expressed in E. coli BL21 cells. Kinetics analysis using turbidity reduction assays allowed the determination of the optimal conditions for lytic activity against a range of Gram-positive and negative human pathogens. The peptidoglycan degradation activity of PaAmi1 was confirmed using isolated peptidoglycan from P. acnes. The antibacterial activity of PaAmi1 was investigated using live P. acnes cells growing on agar plates. Two engineered variants of PaAmi1 were designed by fusion to its N-terminus two short antimicrobial peptides (AMPs). One AMP was selected by searching the genomes of Propionibacterium bacteriophages using bioinformatics tools, whereas the other AMP sequence was selected from the antimicrobial peptide databases. Both engineered variants exhibited improved lytic activity towards P. acnes and the enterococci species Enterococcus faecalis and Enterococcus faecium. The results of the present study suggest that PaAmi1 is a new antimicrobial agent and provide proof of concept that bacteriophage genomes are a rich source of AMP sequences that can be further exploited for designing novel or improved endolysins.
Collapse
Affiliation(s)
- Christina Varotsou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece
| | - Georgios E Premetis
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece
| | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece
| |
Collapse
|
20
|
Makhlouf Z, Ali AA, Al-Sayah MH. Liposomes-Based Drug Delivery Systems of Anti-Biofilm Agents to Combat Bacterial Biofilm Formation. Antibiotics (Basel) 2023; 12:antibiotics12050875. [PMID: 37237778 DOI: 10.3390/antibiotics12050875] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
All currently approved antibiotics are being met by some degree of resistance by the bacteria they target. Biofilm formation is one of the crucial enablers of bacterial resistance, making it an important bacterial process to target for overcoming antibiotic resistance. Accordingly, several drug delivery systems that target biofilm formation have been developed. One of these systems is based on lipid-based nanocarriers (liposomes), which have shown strong efficacy against biofilms of bacterial pathogens. Liposomes come in various types, namely conventional (charged or neutral), stimuli-responsive, deformable, targeted, and stealth. This paper reviews studies employing liposomal formulations against biofilms of medically salient gram-negative and gram-positive bacterial species reported recently. When it comes to gram-negative species, liposomal formulations of various types were reported to be efficacious against Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, and members of the genera Klebsiella, Salmonella, Aeromonas, Serratia, Porphyromonas, and Prevotella. A range of liposomal formulations were also effective against gram-positive biofilms, including mostly biofilms of Staphylococcal strains, namely Staphylococcus aureus, Staphylococcus epidermidis, and Staphylococcus saprophyticus subspecies bovis, followed by Streptococcal strains (pneumonia, oralis, and mutans), Cutibacterium acnes, Bacillus subtilis, Mycobacterium avium, Mycobacterium avium subsp. hominissuis, Mycobacterium abscessus, and Listeria monocytogenes biofilms. This review outlines the benefits and limitations of using liposomal formulations as means to combat different multidrug-resistant bacteria, urging the investigation of the effects of bacterial gram-stain on liposomal efficiency and the inclusion of pathogenic bacterial strains previously unstudied.
Collapse
Affiliation(s)
- Zinb Makhlouf
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Amaal Abdulraqeb Ali
- Biomedical Engineering Program, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Mohammad Hussein Al-Sayah
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
21
|
Liu H, Kheirvari M, Tumban E. Potential Applications of Thermophilic Bacteriophages in One Health. Int J Mol Sci 2023; 24:8222. [PMID: 37175929 PMCID: PMC10179064 DOI: 10.3390/ijms24098222] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Bacteriophages have a wide range of applications such as combating antibiotic resistance, preventing food contamination for food safety, and as biomarkers to indirectly assess the quality of water. Additionally, bacteriophage components (endolysins and coat proteins) have a lot of applications in food processing, vaccine design, and the delivery of cargo to the body. Therefore, bacteriophages/components have a multitude of applications in human, plant/veterinary, and environmental health (One Health). Despite their versatility, bacteriophage/component use is mostly limited to temperatures within 4-40 °C. This limits their applications (e.g., in food processing conditions, pasteurization, and vaccine design). Advances in thermophilic bacteriophage research have uncovered novel thermophilic endolysins (e.g., ΦGVE2 amidase and MMPphg) that can be used in food processing and in veterinary medicine. The endolysins are thermostable at temperatures > 65 °C and have broad antimicrobial activities. In addition to thermophilic endolysins, enzymes (DNA polymerase and ligases) derived from thermophages have different applications in molecular biology/biotechnology: to generate DNA libraries and develop diagnostics for human and animal pathogens. Furthermore, coat proteins from thermophages are being explored to develop virus-like particle platforms with versatile applications in human and animal health. Overall, bacteriophages, especially those that are thermophilic, have a plethora of applications in One Health.
Collapse
Affiliation(s)
| | | | - Ebenezer Tumban
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| |
Collapse
|
22
|
Liu H, Hu Z, Li M, Yang Y, Lu S, Rao X. Therapeutic potential of bacteriophage endolysins for infections caused by Gram-positive bacteria. J Biomed Sci 2023; 30:29. [PMID: 37101261 PMCID: PMC10131408 DOI: 10.1186/s12929-023-00919-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Gram-positive (G+) bacterial infection is a great burden to both healthcare and community medical resources. As a result of the increasing prevalence of multidrug-resistant G+ bacteria such as methicillin-resistant Staphylococcus aureus (MRSA), novel antimicrobial agents must urgently be developed for the treatment of infections caused by G+ bacteria. Endolysins are bacteriophage (phage)-encoded enzymes that can specifically hydrolyze the bacterial cell wall and quickly kill bacteria. Bacterial resistance to endolysins is low. Therefore, endolysins are considered promising alternatives for solving the mounting resistance problem. In this review, endolysins derived from phages targeting G+ bacteria were classified based on their structural characteristics. The active mechanisms, efficacy, and advantages of endolysins as antibacterial drug candidates were summarized. Moreover, the remarkable potential of phage endolysins in the treatment of G+ bacterial infections was described. In addition, the safety of endolysins, challenges, and possible solutions were addressed. Notwithstanding the limitations of endolysins, the trends in development indicate that endolysin-based drugs will be approved in the near future. Overall, this review presents crucial information of the current progress involving endolysins as potential therapeutic agents, and it provides a guideline for biomaterial researchers who are devoting themselves to fighting against bacterial infections.
Collapse
Affiliation(s)
- He Liu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Mengyang Li
- Department of Microbiology, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Shuguang Lu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
23
|
Shen K, Shu M, Zhong C, Zhao Y, Bao S, Pan H, Wang S, Wu G. Characterization of a broad-spectrum endolysin rLysJNwz and its utility against Salmonella in foods. Appl Microbiol Biotechnol 2023; 107:3229-3241. [PMID: 37039849 DOI: 10.1007/s00253-023-12500-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023]
Abstract
Salmonella is a common foodborne pathogen worldwide. The use of bacteriophage-encoded endolysins as antimicrobial agents is a promising approach for controlling pathogenic contamination. In this context, a recombinant endolysin named rLysJNwz, consisting of a single domain falling with the L-alanogyl-D-glutamate peptidase-like family, was cloned, expressed, and characterized. The yield of rLysJNwz was about 25 mg/L. Synergy between 7.5 μg/mL rLysJNwz and 0.5 mmol/L EDTA could decrease the viable counts of Salmonella NCTC 8271 by 93.28%. A synergistic effect between rLysJNwz and polymyxin B was demonstrated, exhibiting the MIC of polymyxin B decreased by twofold. Specifically, rlysJNwz had strong thermostability at temperatures (4-95 °C) and maintained high activity at pHs from 5.0 to 11.0. rlysJNwz was a metal ion-dependent peptidase, which activated by divalent metal ions such as Zn2+, Mn2+, or Ca2+. Moreover, it was also found that the synergism of rlysJNwz and EDTA had bactericidal activities against a broad range of Gram-negative bacteria, including several multidrug-resistant bacteria. The application of rLysJNwz combined with EDTA was evaluated on contaminated eggs and lettuce for 60 min, displaying more than 86.7% and 86.5% reduction of viable Salmonella, respectively. Hence, these results suggest that rLysJNwz is a potential antibacterial agent to control Salmonella, especially antibiotic-resistant pathogen contamination in the field of food safety. KEY POINTS: • rLysJNwz shows lytic activities against a broad range of Gram-negative bacteria. • Endolysin rLysJNwz is a stable metalloenzyme and has high thermostability. • rLysJNwz and 0.5 mmol/L EDTA synergistically inactivate Salmonella on eggs and lettuce.
Collapse
Affiliation(s)
- Kaisheng Shen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Mei Shu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chan Zhong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yuanyang Zhao
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shiwei Bao
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hong Pan
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shuchao Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Guoping Wu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
24
|
Kim H, Seo J. A Novel Strategy to Identify Endolysins with Lytic Activity against Methicillin-Resistant Staphylococcus aureus. Int J Mol Sci 2023; 24:ijms24065772. [PMID: 36982851 PMCID: PMC10059956 DOI: 10.3390/ijms24065772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
The increasing prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in the dairy industry has become a fundamental concern. Endolysins are bacteriophage-derived peptidoglycan hydrolases that induce the rapid lysis of host bacteria. Herein, we evaluated the lytic activity of endolysin candidates against S. aureus and MRSA. To identify endolysins, we used a bioinformatical strategy with the following steps: (1) retrieval of genetic information, (2) annotation, (3) selection of MRSA, (4) selection of endolysin candidates, and (5) evaluation of protein solubility. We then characterized the endolysin candidates under various conditions. Approximately 67% of S. aureus was detected as MRSA, and 114 putative endolysins were found. These 114 putative endolysins were divided into three groups based on their combinations of conserved domains. Considering protein solubility, we selected putative endolysins 117 and 177. Putative endolysin 117 was the only successfully overexpressed endolysin, and it was renamed LyJH1892. LyJH1892 showed potent lytic activity against both methicillin-susceptible S. aureus and MRSA and showed broad lytic activity against coagulase-negative staphylococci. In conclusion, this study demonstrates a rapid strategy for the development of endolysin against MRSA. This strategy could also be used to combat other antibiotic-resistant bacteria.
Collapse
|
25
|
Helmy YA, Taha-Abdelaziz K, Hawwas HAEH, Ghosh S, AlKafaas SS, Moawad MMM, Saied EM, Kassem II, Mawad AMM. Antimicrobial Resistance and Recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an Emphasis on Foodborne Pathogens. Antibiotics (Basel) 2023; 12:274. [PMID: 36830185 PMCID: PMC9952301 DOI: 10.3390/antibiotics12020274] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the most important global public health problems. The imprudent use of antibiotics in humans and animals has resulted in the emergence of antibiotic-resistant bacteria. The dissemination of these strains and their resistant determinants could endanger antibiotic efficacy. Therefore, there is an urgent need to identify and develop novel strategies to combat antibiotic resistance. This review provides insights into the evolution and the mechanisms of AMR. Additionally, it discusses alternative approaches that might be used to control AMR, including probiotics, prebiotics, antimicrobial peptides, small molecules, organic acids, essential oils, bacteriophage, fecal transplants, and nanoparticles.
Collapse
Affiliation(s)
- Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
- Department of Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Khaled Taha-Abdelaziz
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - Hanan Abd El-Halim Hawwas
- Department of Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Samar Sami AlKafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31511, Egypt
| | | | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Issmat I. Kassem
- Centre for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA 30609, USA
| | - Asmaa M. M. Mawad
- Department of Biology, College of Science, Taibah University, Madinah 42317, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
26
|
Kim Y, Lee SM, Nong LK, Kim J, Kim SB, Kim D. Characterization of Klebsiella pneumoniae bacteriophages, KP1 and KP12, with deep learning-based structure prediction. Front Microbiol 2023; 13:990910. [PMID: 36762092 PMCID: PMC9902359 DOI: 10.3389/fmicb.2022.990910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/19/2022] [Indexed: 01/26/2023] Open
Abstract
Concerns over Klebsiella pneumoniae resistance to the last-line antibiotic treatment have prompted a reconsideration of bacteriophage therapy in public health. Biotechnological application of phages and their gene products as an alternative to antibiotics necessitates the understanding of their genomic context. This study sequenced, annotated, characterized, and compared two Klebsiella phages, KP1 and KP12. Physiological validations identified KP1 and KP12 as members of Myoviridae family. Both phages showed that their activities were stable in a wide range of pH and temperature. They exhibit a host specificity toward K. pneumoniae with a broad intraspecies host range. General features of genome size, coding density, percentage GC content, and phylogenetic analyses revealed that these bacteriophages are distantly related. Phage lytic proteins (endolysin, anti-/holin, spanin) identified by the local alignment against different databases, were subjected to further bioinformatic analyses including three-dimensional (3D) structure prediction by AlphaFold. AlphaFold models of phage lysis proteins were consistent with the published X-ray crystal structures, suggesting the presence of T4-like and P1/P2-like bacteriophage lysis proteins in KP1 and KP12, respectively. By providing the primary sequence information, this study contributes novel bacteriophages for research and development pipelines of phage therapy that ultimately, cater to the unmet clinical and industrial needs against K. pneumoniae pathogens.
Collapse
Affiliation(s)
- Youngju Kim
- Optipharm Inc., Cheongju-si, Chungcheongbuk-do, Republic of Korea,Department of Microbiology and Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Sang-Mok Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Linh Khanh Nong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jaehyung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Seung Bum Kim
- Department of Microbiology and Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea,*Correspondence: Donghyuk Kim,
| |
Collapse
|
27
|
Tyagi JL, Sharma M, Gulati K, Kairamkonda M, Kumar D, Poluri KM. Engineering of a T7 Bacteriophage Endolysin Variant with Enhanced Amidase Activity. Biochemistry 2023; 62:330-344. [PMID: 35060722 DOI: 10.1021/acs.biochem.1c00710] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The therapeutic use of bacteriophage-encoded endolysins as enzybiotics has increased significantly in recent years due to the emergence of antibiotic resistant bacteria. Phage endolysins lyse the bacteria by targeting their cell wall. Various engineering strategies are commonly used to modulate or enhance the utility of therapeutic enzymes. This study employed a structure-guided mutagenesis approach to engineer a T7 bacteriophage endolysin (T7L) with enhanced amidase activity and lysis potency via replacement of a noncatalytic gating residue (His 37). Two H37 variants (H37A and H37K) were designed and characterized comprehensively using integrated biophysical and biochemical techniques to provide mechanistic insights into their structure-stability-dynamics-activity paradigms. Among the studied proteins, cell lysis data suggested that the obtained H37A variant exhibits amidase activity (∼35%) enhanced compared to that of wild-type T7 endolysin (T7L-WT). In contrast to this, the H37K variant is highly unstable, prone to aggregation, and less active. Comparison of the structure and dynamics of the H37A variant to those of T7L-WT evidenced that the alteration at the site of H37 resulted in long-range structural perturbations, attenuated the conformational heterogeneity, and quenched the microsecond to millisecond time scale motions. Stability analysis confirmed the altered stability of H37A compared to that of its WT counterpart. All of the obtained results established that the H37A variant enhances the lysis activity by regulating the stability-activity trade-off. This study provided deeper atomic level insights into the structure-function relationships of endolysin proteins, thus aiding researchers in the rational design of engineered endolysins with enhanced therapeutic properties.
Collapse
Affiliation(s)
- Jaya Lakshmi Tyagi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Meenakshi Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Khushboo Gulati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Manikyaprabhu Kairamkonda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, Uttar Pradesh, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.,Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
28
|
Interrogation of the contribution of (endo)lysin domains to tune their bacteriolytic efficiency provides a novel clue to design superior antibacterials. Int J Biol Macromol 2022; 223:1042-1053. [PMID: 36370862 DOI: 10.1016/j.ijbiomac.2022.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
Abstract
Bacteriophage-derived endolysins and bacterial autolysins (hereinafter lysins) represent a completely new class of efficient antibacterials. They prevent the development of bacterial resistance and help protect commensal microbiota, producing cell wall lysis. Here we have investigated whether the acquisition of enzymatic active domains (EADs) and cell wall binding domains (CWBDs) of balancing efficiencies could be a way of tuning natural lysin activity. The concept was applied to produce a chimeric lysin of superior antibacterial capacity using the endolysin Skl and the major pneumococcal autolysin LytA. Combination of the Skl EAD and the cell wall choline-binding domain (CBD) of LytA in the chimera QSLA increased the bacterial killing by 2 logs or more compared to parental enzymes at an equal concentration and extended the substrate range to resistant and emergent pneumococci and other pathogens of the mitis group. Contrarily, QLAS, containing LytA EAD and Skl CBD, was inactive against all tested strains, although domain structures were preserved and hydrolysis of purified cell walls maintained in both chimeras. As a whole, our study provides a novel clue to design superior lysins to fight multidrug-resistant pathogens based on domain selection, and a powerful in-vivo active lysin (QSLA) with promising therapeutic perspectives.
Collapse
|
29
|
Shymialevich D, Wójcicki M, Wardaszka A, Świder O, Sokołowska B, Błażejak S. Application of Lytic Bacteriophages and Their Enzymes to Reduce Saprophytic Bacteria Isolated from Minimally Processed Plant-Based Food Products-In Vitro Studies. Viruses 2022; 15:9. [PMID: 36680050 PMCID: PMC9865725 DOI: 10.3390/v15010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to isolate phage enzymes and apply them in vitro for eradication of the dominant saprophytic bacteria isolated from minimally processed food. Four bacteriophages-two Enterobacter-specific and two Serratia-specific, which produce lytic enzymes-were used in this research. Two methods of phage enzyme isolation were tested, namely precipitation with acetone and ultracentrifugation. It was found that the number of virions could be increased almost 100 times due to the extension of the cultivation time (72 h). The amplification of phage particles and lytic proteins was dependent on the time of cultivation. Considering the influence of isolated enzymes on the growth kinetics of bacterial hosts, proteins isolated with acetone after 72-hour phage propagation exhibited the highest inhibitory effect. The reduction of bacteria count was dependent on the concentration of enzymes in the lysates. The obtained results indicate that phages and their lytic enzymes could be used in further research aiming at the improvement of microbiological quality and safety of minimally processed food products.
Collapse
Affiliation(s)
- Dziyana Shymialevich
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Artur Wardaszka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Stanisław Błażejak
- Department of Biotechnology and Food Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences (WULS–SGGW), Nowoursynowska 166 Street, 02-776 Warsaw, Poland
| |
Collapse
|
30
|
Anyaegbunam NJ, Anekpo CC, Anyaegbunam ZKG, Doowuese Y, Chinaka CB, Odo OJ, Sharndama HC, Okeke OP, Mba IE. The resurgence of phage-based therapy in the era of increasing antibiotic resistance: From research progress to challenges and prospects. Microbiol Res 2022; 264:127155. [PMID: 35969943 DOI: 10.1016/j.micres.2022.127155] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/23/2022]
Abstract
Phage therapy was implemented almost a century ago but was subsequently abandoned when antibiotics emerged. However, the rapid emergence of drug-resistant, which has brought to the limelight situation reminiscent of the pre-antibiotic era, coupled with the unavailability of new drugs, has triggered the quest for an alternative therapeutic approach, and this has led to the rebirth of phage-derived therapy. Phages are viruses that infect and replicate in bacterial cells. Phage therapy, especially phage-derived proteins, is being given considerable attention among scientists as an antimicrobial agent. They are used alone or in combination with other biomaterials for improved biological activity. Over the years, much has been learned about the genetics and diversity of bacteriophages. Phage cocktails are currently being exploited for treating several infectious diseases as preliminary studies involving animal models and clinical trials show promising therapeutic efficacy. However, despite its numerous advantages, this approach has several challenges and unaddressed limitations. Addressing these issues requires lots of creativity and innovative ideas from interdisciplinary fields. However, with all available indications, phage therapy could hold the solution in this era of increasing antibiotic resistance. This review discussed the potential use of phages and phage-derived proteins in treating drug-resistant bacterial infections. Finally, we highlight the progress, challenges, and knowledge gaps and evaluate key questions requiring prompt attention for the full clinical application of phage therapy.
Collapse
Affiliation(s)
| | - Chijioke Chinedu Anekpo
- Department of Ear Nose and Throat (ENT), College of Medicine, Enugu state University of Science and Technology, Enugu, Nigeria
| | - Zikora Kizito Glory Anyaegbunam
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria Nsukka, Nigeria; Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Yandev Doowuese
- Department of Microbiology, Federal University of Health Sciences, Otukpo, Nigeria
| | | | | | | | | | | |
Collapse
|
31
|
Hibstu Z, Belew H, Akelew Y, Mengist HM. Phage Therapy: A Different Approach to Fight Bacterial Infections. Biologics 2022; 16:173-186. [PMID: 36225325 PMCID: PMC9550173 DOI: 10.2147/btt.s381237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
Abstract
Phage therapy is one of the alternatives to treat infections caused by both antibiotic-sensitive and antibiotic-resistant bacteria, with no or low toxicity to patients. It was started a century ago, although rapidly growing bacterial antimicrobial resistance, resulting in high levels of morbidity, mortality, and financial cost, has initiated the revival of phage therapy. It involves the use of live lytic, bioengineered, phage-encoded biological products, in combination with chemical antibiotics to treat bacterial infections. Importantly, phages will be removed from the body within seven days of clearing an infection. They target specific bacterial strains and cause minimal disruption to the microbial balance in humans. Phages for medication must be screened for the absence of resistant genes, virulent genes, cytotoxicity, and their interaction with the host tissue and organs. Since they are immunogenic, applying a high phage titer for therapy exposes them and activates the host immune system. To date, no serious side effects have been reported with human phage therapy. In this review, we describe phage–phagocyte interaction, bacterial resistance to phages, how phages conquer bacterial resistance, the role of genetic engineering and other technologies in phage therapy, and the therapeutic application of modified phages and phage-encoded products. We also highlight the comparison of antibiotics and lytic phage therapy, the pros and cons of phage therapy, determinants of human phage therapy trials, phage quality and safety requirements, phage storage and handling, and current challenges in phage therapy.
Collapse
Affiliation(s)
- Zigale Hibstu
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia,Correspondence: Zigale Hibstu, Email
| | - Habtamu Belew
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Akelew
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Hylemariam Mihiretie Mengist
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
32
|
Lee W, Matthews A, Moore D. Safety Evaluation of a Novel Algal Feed Additive for Poultry Production. Avian Dis 2022; 66:1-11. [PMID: 36214407 DOI: 10.1637/aviandiseases-d-22-00043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022]
Abstract
Feed additives are critical components for poultry health and the economic viability of antibiotic-free poultry production. The aim of the present study is to evaluate the safety of a novel algal-derived feed additive, a dried biomass powder produced from Chlamydomonas reinhardtii strain crAL082, modified to express an N-acetylmuramoyl-L-alanine amidase (EC 3.5.1.28) and a lysozyme-type enzyme (EC 3.2.1.17). A 42-day oral toxicity study showed that the crAL082 dried biomass powder was fully tolerated by broiler chicken based on the lack of detrimental effects found in performance, mortality, hematology, blood clinical chemistry, and histopathologic results compared with those of a nontreated control group, resulting in a "No Observed Adverse Effect Level" of 5000 ppm, the highest dose tested. The study demonstrates the first-ever safety result of a C. reinhardtii microalgae dried biomass powder used as a feed additive in broiler chickens. Furthermore, safety is shown for the two additional enzymes expressed within the C. reinhardtii crAL082 strain and ingested by the birds.
Collapse
Affiliation(s)
- Weiluo Lee
- Axitan Ltd., Ground Floor Offices, Whittle Way, SG1 2FS, Stevenage, United Kingdom,
| | | | - Daniel Moore
- Colorado Quality Research, Inc., Wellington, CO 80549
| |
Collapse
|
33
|
Wong KY, Megat Mazhar Khair MH, Song AAL, Masarudin MJ, Chong CM, In LLA, Teo MYM. Endolysins against Streptococci as an antibiotic alternative. Front Microbiol 2022; 13:935145. [PMID: 35983327 PMCID: PMC9378833 DOI: 10.3389/fmicb.2022.935145] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Multi-drug resistance has called for a race to uncover alternatives to existing antibiotics. Phage therapy is one of the explored alternatives, including the use of endolysins, which are phage-encoded peptidoglycan hydrolases responsible for bacterial lysis. Endolysins have been extensively researched in different fields, including medicine, food, and agricultural applications. While the target specificity of various endolysins varies greatly between species, this current review focuses specifically on streptococcal endolysins. Streptococcus spp. causes numerous infections, from the common strep throat to much more serious life-threatening infections such as pneumonia and meningitis. It is reported as a major crisis in various industries, causing systemic infections associated with high mortality and morbidity, as well as economic losses, especially in the agricultural industry. This review highlights the types of catalytic and cell wall-binding domains found in streptococcal endolysins and gives a comprehensive account of the lytic ability of both native and engineered streptococcal endolysins studied thus far, as well as its potential application across different industries. Finally, it gives an overview of the advantages and limitations of these enzyme-based antibiotics, which has caused the term enzybiotics to be conferred to it.
Collapse
Affiliation(s)
- Kuan Yee Wong
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Megat Hamzah Megat Mazhar Khair
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Chou Min Chong
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia
| | - Lionel Lian Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
- Lionel Lian Aun In,
| | - Michelle Yee Mun Teo
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
- *Correspondence: Michelle Yee Mun Teo,
| |
Collapse
|
34
|
Shen KS, Shu M, Tang MX, Yang WY, Wang SC, Zhong C, Wu GP. Molecular cloning, expression and characterization of a bacteriophage JN01 endolysin and its antibacterial activity against E. coli O157:H7. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
35
|
Liu B, Lu H, Li Z, Yan P, Liu R, Liu X. Expression and biological activity of lytic proteins HolST-3 and LysST-3 of Salmonella phage ST-3. Microb Pathog 2022; 169:105624. [PMID: 35697172 DOI: 10.1016/j.micpath.2022.105624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 10/18/2022]
Abstract
Salmonella infection is a major public health concern. Several strategies for Salmonella infection prevention and control are currently available including vaccines and antibiotics. However, vaccines are expensive and inefficient, and the use of antibiotics can lead to antibiotic resistance. Thus, alternative strategies for the treatment of Salmonella remain warrant. In this study, recombinant holin HolST-3 and lysin LysST-3 from Salmonella phage ST-3 were expressed and purified, and their bactericidal properties were analyzed. HolST-3 and LysST-3 possessed a wider lysis spectrum and more efficient bactericidal effect than phage ST-3, and a synergistic bactericidal effect was observed when combined in vitro. In addition, we explored the bactericidal properties of HolST-3 and LysST-3 in vivo using zebrafish as a model organism, and found that the bactericidal effects of both HolST-3 and LysST-3 in vivo were comparable to those of cefotaxime, an antibiotic. This study provides a basis for the development of HolST-3 and LysST-3 as novel bactericidal agents for the prevention and treatment of infectious diseases caused by Salmonella spp.
Collapse
Affiliation(s)
- Bingxin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Han Lu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zong Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Peihan Yan
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| | - Xinchun Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
36
|
Mechanisms of interactions between bacteria and bacteriophage mediate by quorum sensing systems. Appl Microbiol Biotechnol 2022; 106:2299-2310. [PMID: 35312824 DOI: 10.1007/s00253-022-11866-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/02/2022]
Abstract
Bacteriophage (phage) and their host bacteria coevolve with each other over time. Quorum sensing (QS) systems play an important role in the interaction between bacteria and phage. In this review paper, we summarized the function of QS systems in bacterial biofilm formation, phage adsorption, lysis-lysogeny conversion of phage, coevolution of bacteria and phage, and information exchanges in phage, which may provide reference to future research on alternative control strategies for antibiotic-resistant and biofilm-forming pathogens by phage. KEY POINTS: • Quorum sensing (QS) systems influence bacteria-phage interaction. • QS systems cause phage adsorption and evolution and lysis-lysogeny conversion. • QS systems participate in biofilm formation and co-evolution with phage of bacteria.
Collapse
|
37
|
The Antibacterial Effect of PEGylated Carbosilane Dendrimers on P. aeruginosa Alone and in Combination with Phage-Derived Endolysin. Int J Mol Sci 2022; 23:ijms23031873. [PMID: 35163794 PMCID: PMC8836974 DOI: 10.3390/ijms23031873] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
The search for new microbicide compounds is of an urgent need, especially against difficult-to-eradicate biofilm-forming bacteria. One attractive option is the application of cationic multivalent dendrimers as antibacterials and also as carriers of active molecules. These compounds require an adequate hydrophilic/hydrophobic structural balance to maximize the effect. Herein, we evaluated the antimicrobial activity of cationic carbosilane (CBS) dendrimers unmodified or modified with polyethylene glycol (PEG) units, against planktonic and biofilm-forming P. aeruginosa culture. Our study revealed that the presence of PEG destabilized the hydrophilic/hydrophobic balance but reduced the antibacterial activity measured by microbiological cultivation methods, laser interferometry and fluorescence microscopy. On the other hand, the activity can be improved by the combination of the CBS dendrimers with endolysin, a bacteriophage-encoded peptidoglycan hydrolase. This enzyme applied in the absence of the cationic CBS dendrimers is ineffective against Gram-negative bacteria because of the protective outer membrane shield. However, the endolysin-CBS dendrimer mixture enables the penetration through the membrane and then deterioration of the peptidoglycan layer, providing a synergic antimicrobial effect.
Collapse
|
38
|
Zhang Y, Huang HH, Duc HM, Masuda Y, Honjoh KI, Miyamoto T. Application of endolysin LysSTG2 as a potential biocontrol agent against planktonic and biofilm cells of Pseudomonas on various food and food contact surfaces. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
39
|
The Structure and Function of Modular Escherichia coli O157:H7 Bacteriophage FTBEc1 endolysin, LysT84: Defining a New Endolysin Catalytic Subfamily. Biochem J 2021; 479:207-223. [PMID: 34935873 DOI: 10.1042/bcj20210701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/12/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
Bacteriophage endolysins degrade peptidoglycan and have been identified as antibacterial candidates to combat antimicrobial resistance. Considering the catalytic and structural diversity of endolysins, there is a paucity of structural data to inform how these enzymes work at the molecular level-key data that is needed to realize the potential of endolysin-based antibacterial agents. Here, we determine the atomic structure and define the enzymatic function of Escherichia coli O157:H7 phage FTEBc1 endolysin, LysT84. Bioinformatic analysis reveals that LysT84 is a modular endolysin, which is unusual for Gram-negative endolysins, comprising a peptidoglycan binding domain and an enzymatic domain. The crystal structure of LysT84 (2.99 Å) revealed a mostly α-helical protein with two domains connected by a linker region but packed together. LysT84 was determined to be a monomer in solution using analytical ultracentrifugation. Small-angle X-ray scattering data revealed that LysT84 is a flexible protein but does not have the expected bimodal P(r) function of a multidomain protein, suggesting that the domains of LysT84 pack closely creating a globular protein as seen in the crystal structure. Structural analysis reveals two key glutamate residues positioned on either side of the active site cavity; mutagenesis demonstrating these residues are critical for peptidoglycan degradation. Molecular dynamic simulations suggest that the enzymatically active domain is dynamic, allowing the appropriate positioning of these catalytic residues for hydrolysis of the β(1-4) bond. Overall, our study defines the structural basis for peptidoglycan degradation by LysT84 which supports rational engineering of related endolysins into effective antibacterial agents.
Collapse
|
40
|
Danis-Wlodarczyk KM, Wozniak DJ, Abedon ST. Treating Bacterial Infections with Bacteriophage-Based Enzybiotics: In Vitro, In Vivo and Clinical Application. Antibiotics (Basel) 2021; 10:1497. [PMID: 34943709 PMCID: PMC8698926 DOI: 10.3390/antibiotics10121497] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Over the past few decades, we have witnessed a surge around the world in the emergence of antibiotic-resistant bacteria. This global health threat arose mainly due to the overuse and misuse of antibiotics as well as a relative lack of new drug classes in development pipelines. Innovative antibacterial therapeutics and strategies are, therefore, in grave need. For the last twenty years, antimicrobial enzymes encoded by bacteriophages, viruses that can lyse and kill bacteria, have gained tremendous interest. There are two classes of these phage-derived enzymes, referred to also as enzybiotics: peptidoglycan hydrolases (lysins), which degrade the bacterial peptidoglycan layer, and polysaccharide depolymerases, which target extracellular or surface polysaccharides, i.e., bacterial capsules, slime layers, biofilm matrix, or lipopolysaccharides. Their features include distinctive modes of action, high efficiency, pathogen specificity, diversity in structure and activity, low possibility of bacterial resistance development, and no observed cross-resistance with currently used antibiotics. Additionally, and unlike antibiotics, enzybiotics can target metabolically inactive persister cells. These phage-derived enzymes have been tested in various animal models to combat both Gram-positive and Gram-negative bacteria, and in recent years peptidoglycan hydrolases have entered clinical trials. Here, we review the testing and clinical use of these enzymes.
Collapse
Affiliation(s)
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
41
|
Gallego-Páramo C, Hernández-Ortiz N, Buey RM, Rico-Lastres P, García G, Díaz JF, García P, Menéndez M. Structural and Functional Insights Into Skl and Pal Endolysins, Two Cysteine-Amidases With Anti-pneumococcal Activity. Dithiothreitol (DTT) Effect on Lytic Activity. Front Microbiol 2021; 12:740914. [PMID: 34777288 PMCID: PMC8586454 DOI: 10.3389/fmicb.2021.740914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/16/2021] [Indexed: 01/21/2023] Open
Abstract
We have structurally and functionally characterized Skl and Pal endolysins, the latter being the first endolysin shown to kill effectively Streptococcus pneumoniae, a leading cause of deathly diseases. We have proved that Skl and Pal are cysteine-amidases whose catalytic domains, from CHAP and Amidase_5 families, respectively, share an α3β6-fold with papain-like topology. Catalytic triads are identified (for the first time in Amidase_5 family), and residues relevant for substrate binding and catalysis inferred from in silico models, including a calcium-binding site accounting for Skl dependence on this cation for activity. Both endolysins contain a choline-binding domain (CBD) with a β-solenoid fold (homology modeled) and six conserved choline-binding loci whose saturation induced dimerization. Remarkably, Pal and Skl dimers display a common overall architecture, preserved in choline-bound dimers of pneumococcal lysins with other catalytic domains and bond specificities, as disclosed using small angle X-ray scattering (SAXS). Additionally, Skl is proved to be an efficient anti-pneumococcal agent that kills multi-resistant strains and clinical emergent-serotype isolates. Interestingly, Skl and Pal time-courses of pneumococcal lysis were sigmoidal, which might denote a limited access of both endolysins to target bonds at first stages of lysis. Furthermore, their DTT-mediated activation, of relevance for other cysteine-peptidases, cannot be solely ascribed to reversal of catalytic-cysteine oxidation.
Collapse
Affiliation(s)
- Cristina Gallego-Páramo
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Noelia Hernández-Ortiz
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Rubén M. Buey
- Metabolic Engineering Group, Universidad de Salamanca, Salamanca, Spain
| | - Palma Rico-Lastres
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Guadalupe García
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - J. Fernando Díaz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pedro García
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Margarita Menéndez
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
42
|
Rahman MU, Wang W, Sun Q, Shah JA, Li C, Sun Y, Li Y, Zhang B, Chen W, Wang S. Endolysin, a Promising Solution against Antimicrobial Resistance. Antibiotics (Basel) 2021; 10:1277. [PMID: 34827215 PMCID: PMC8614784 DOI: 10.3390/antibiotics10111277] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global crisis for human public health which threatens the effective prevention and control of ever-increasing infectious diseases. The advent of pandrug-resistant bacteria makes most, if not all, available antibiotics invalid. Meanwhile, the pipeline of novel antibiotics development stagnates, which prompts scientists and pharmacists to develop unconventional antimicrobials. Bacteriophage-derived endolysins are cell wall hydrolases which could hydrolyze the peptidoglycan layer from within and outside of bacterial pathogens. With high specificity, rapid action, high efficiency, and low risk of resistance development, endolysins are believed to be among the best alternative therapeutic agents to treat multidrug resistant (MDR) bacteria. As of now, endolysins have been applied to diverse aspects. In this review, we comprehensively introduce the structures and activities of endolysins and summarize the latest application progress of recombinant endolysins in the fields of medical treatment, pathogen diagnosis, food safety, and agriculture.
Collapse
Affiliation(s)
- Mujeeb ur Rahman
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Weixiao Wang
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China;
| | - Qingqing Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Junaid Ali Shah
- College of Life Sciences, Jilin University, Changchun 130012, China;
| | - Chao Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Yuanrui Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Bailing Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China;
| | - Wei Chen
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China;
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| |
Collapse
|
43
|
Gontijo MTP, Jorge GP, Brocchi M. Current Status of Endolysin-Based Treatments against Gram-Negative Bacteria. Antibiotics (Basel) 2021; 10:1143. [PMID: 34680724 PMCID: PMC8532960 DOI: 10.3390/antibiotics10101143] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/31/2022] Open
Abstract
The prevalence of multidrug-resistant Gram-negative bacteria is a public health concern. Bacteriophages and bacteriophage-derived lytic enzymes have been studied in response to the emergence of multidrug-resistant bacteria. The availability of tRNAs and endolysin toxicity during recombinant protein expression is circumvented by codon optimization and lower expression levels using inducible pET-type plasmids and controlled cultivation conditions, respectively. The use of polyhistidine tags facilitates endolysin purification and alters antimicrobial activity. Outer membrane permeabilizers, such as organic acids, act synergistically with endolysins, but some endolysins permeate the outer membrane of Gram-negative bacteria per se. However, the outer membrane permeation mechanisms of endolysins remain unclear. Other strategies, such as the co-administration of endolysins with polymyxins, silver nanoparticles, and liposomes confer additional outer membrane permeation. Engineered endolysins comprising domains for outer membrane permeation is also a strategy used to overcome the current challenges on the control of multidrug-resistant Gram-negative bacteria. Metagenomics is a new strategy for screening endolysins with interesting antimicrobial properties from uncultured phage genomes. Here, we review the current state of the art on the heterologous expression of endolysin, showing the potential of bacteriophage endolysins in controlling bacterial infections.
Collapse
Affiliation(s)
- Marco Túlio Pardini Gontijo
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas 13083-862, Brazil; (G.P.J.); (M.B.)
| | | | | |
Collapse
|
44
|
Structural Investigations on the SH3b Domains of Clostridium perfringens Autolysin through NMR Spectroscopy and Structure Simulation Enlighten the Cell Wall Binding Function. Molecules 2021; 26:molecules26185716. [PMID: 34577187 PMCID: PMC8470621 DOI: 10.3390/molecules26185716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Clostridium perfringens autolysin (CpAcp) is a peptidoglycan hydrolase associated with cell separation, division, and growth. It consists of a signal peptide, ten SH3b domains, and a catalytic domain. The structure and function mechanisms of the ten SH3bs related to cell wall peptidoglycan binding remain unclear. Here, the structures of CpAcp SH3bs were studied through NMR spectroscopy and structural simulation. The NMR structure of SH3b6 was determined at first, which adopts a typical β-barrel fold and has three potential ligand-binding pockets. The largest pocket containing eight conserved residues was suggested to bind with peptide ligand in a novel model. The structures of the other nine SH3bs were subsequently predicted to have a fold similar to SH3b6. Their ligand pockets are largely similar to those of SH3b6, although with varied size and morphology, except that SH3b1/2 display a third pocket markedly different from those in other SH3bs. Thus, it was supposed that SH3b3-10 possess similar ligand-binding ability, while SH3b1/2 have a different specificity and additional binding site for ligand. As an entirety, ten SH3bs confer a capacity for alternatively binding to various peptidoglycan sites in the cell wall. This study presents an initial insight into the structure and potential function of CpAcp SH3bs.
Collapse
|
45
|
Kim H, Park T, Kwon I, Seo J. Specific inhibition of Streptococcus bovis by endolysin LyJH307 supplementation shifts the rumen microbiota and metabolic pathways related to carbohydrate metabolism. J Anim Sci Biotechnol 2021; 12:93. [PMID: 34344466 PMCID: PMC8335910 DOI: 10.1186/s40104-021-00614-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Background Endolysins, the bacteriophage-originated peptidoglycan hydrolases, are a promising replacement for antibiotics due to immediate lytic activity and no antibiotic resistance. The objectives of this study were to investigate the lytic activity of endolysin LyJH307 against S. bovis and to explore changes in rumen fermentation and microbiota in an in vitro system. Two treatments were used: 1) control, corn grain without LyJH307; and 2) LyJH307, corn grain with LyJH307 (4 U/mL). An in vitro fermentation experiment was performed using mixture of rumen fluid collected from two cannulated Holstein steers (450 ± 30 kg) and artificial saliva buffer mixed as 1:3 ratio for 12 h incubation time. In vitro dry matter digestibility, pH, volatile fatty acids, and lactate concentration were estimated at 12 h, and the gas production was measured at 6, 9, and 12 h. The rumen bacterial community was analyzed using 16S rRNA amplicon sequencing. Results LyJH307 supplementation at 6 h incubation markedly decreased the absolute abundance of S. bovis (approximately 70% compared to control, P = 0.0289) and increased ruminal pH (P = 0.0335) at the 12 h incubation. The acetate proportion (P = 0.0362) was significantly increased after LyJH307 addition, whereas propionate (P = 0.0379) was decreased. LyJH307 supplementation increased D-lactate (P = 0.0340) without any change in L-lactate concentration (P > 0.10). There were no significant differences in Shannon’s index, Simpson’s index, Chao1 estimates, and evenness (P > 0.10). Based on Bray-Curtis dissimilarity matrices, the LyJH307 affected the overall shift in microbiota (P = 0.097). LyJH307 supplementation induced an increase of 11 genera containing Lachnoclostridium, WCHB1–41, unclassified genus Selenomonadaceae, Paraprevotella, vadinBE97, Ruminococcus gauvreauii group, Lactobacillus, Anaerorhabdus furcosa group, Victivallaceae, Desulfuromonadaceae, and Sediminispirochaeta. The predicted functional features represented by the Kyoto Encyclopedia of Genes and Genomes pathways were changed by LyJH307 toward a decrease of carbohydrate metabolism. Conclusions LyJH307 caused a reduction of S. bovis and an increase of pH with shifts in minor microbiota and its metabolic pathways related to carbohydrate metabolism. This study provides the first insight into the availability of endolysin as a specific modulator for rumen and shows the possibility of endolysin degradation by rumen microbiota. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00614-x.
Collapse
Affiliation(s)
- Hanbeen Kim
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, 1268-50 Samrangjin-ro, Miryang, 50463, Republic of Korea
| | - Tansol Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | | | - Jakyeom Seo
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, 1268-50 Samrangjin-ro, Miryang, 50463, Republic of Korea.
| |
Collapse
|
46
|
Xu Y. Phage and phage lysins: New era of bio-preservatives and food safety agents. J Food Sci 2021; 86:3349-3373. [PMID: 34302296 DOI: 10.1111/1750-3841.15843] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 01/21/2023]
Abstract
There has been an increase in the search and application of new antimicrobial agents as alternatives to use of chemical preservatives and antibiotic-like compounds by the food industry. The massive use of antibiotic has created a reservoir of antibiotic-resistant bacteria that find their way from farm to humans. Thus, there exists an imperative need to explore new antibacterial options and bacteriophages perfectly fit into the class of safe and potent antimicrobials. Phage bio-control has come a long way owing to advances with use of phage cocktails, recombinant phages, and phage lysins; however, there still exists unmet challenges that restrict the number of phage-based products reaching the market. Hence, further studies are required to explore for more efficient phage-based bio-control strategies that can become an integral part of food safety protocols. This review thus aims to highlight the recent developments made in the application of phages and phage enzymes covering pre-harvest as well as post-harvest usage. It further focuses on the major issues in both phage and phage lysin research hindering their optimum use while detailing out the advances made by researchers lately in this direction for full exploitation of phages and phage lysins in the food sector.
Collapse
Affiliation(s)
- Yingmin Xu
- Food Technology College Jiangsu Vocational College of Agriculture and Forestry, China
| |
Collapse
|
47
|
Rai A, Khairnar K. Overview of the risks of Staphylococcus aureus infections and their control by bacteriophages and bacteriophage-encoded products. Braz J Microbiol 2021; 52:2031-2042. [PMID: 34251609 DOI: 10.1007/s42770-021-00566-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is the leading cause of secondary infections in hospitals and a challenging pathogen in food industries. Decades after it was first reported, β-lactam-resistant S. aureus remains a subject of intense research owing to the ever-increasing issue of drug resistance. S. aureus bacteriophages (phages) or their encoded products are considered an alternative to antibiotics as they have been shown to be effective in treating some S. aureus-associated infections. In this review, we present a concise collection of the literature on the pathogenic potential of S. aureus and examine the prospects of using S. aureus phages and their encoded products as antimicrobials.
Collapse
Affiliation(s)
- Akanksha Rai
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute (CSIR NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Krishna Khairnar
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute (CSIR NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
48
|
King H, Ajay Castro S, Pohane AA, Scholte CM, Fischetti VA, Korotkova N, Nelson DC, Dorfmueller HC. Molecular basis for recognition of the Group A Carbohydrate backbone by the PlyC streptococcal bacteriophage endolysin. Biochem J 2021; 478:2385-2397. [PMID: 34096588 PMCID: PMC8555655 DOI: 10.1042/bcj20210158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 11/17/2022]
Abstract
Endolysins are peptidoglycan (PG) hydrolases that function as part of the bacteriophage (phage) lytic system to release progeny phage at the end of a replication cycle. Notably, endolysins alone can produce lysis without phage infection, which offers an attractive alternative to traditional antibiotics. Endolysins from phage that infect Gram-positive bacterial hosts contain at least one enzymatically active domain (EAD) responsible for hydrolysis of PG bonds and a cell wall binding domain (CBD) that binds a cell wall epitope, such as a surface carbohydrate, providing some degree of specificity for the endolysin. Whilst the EADs typically cluster into conserved mechanistic classes with well-defined active sites, relatively little is known about the nature of the CBDs and only a few binding epitopes for CBDs have been elucidated. The major cell wall components of many streptococci are the polysaccharides that contain the polyrhamnose (pRha) backbone modified with species-specific and serotype-specific glycosyl side chains. In this report, using molecular genetics, microscopy, flow cytometry and lytic activity assays, we demonstrate the interaction of PlyCB, the CBD subunit of the streptococcal PlyC endolysin, with the pRha backbone of the cell wall polysaccharides, Group A Carbohydrate (GAC) and serotype c-specific carbohydrate (SCC) expressed by the Group A Streptococcus and Streptococcus mutans, respectively.
Collapse
Affiliation(s)
- Harley King
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, U.S.A
| | - Sowmya Ajay Castro
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, U.K
| | - Amol Arunrao Pohane
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, U.S.A
| | - Cynthia M Scholte
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, U.S.A
| | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, U.S.A
| | - Natalia Korotkova
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, U.S.A
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, U.S.A
| | - Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, U.S.A
| | - Helge C Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, U.K
| |
Collapse
|
49
|
The Molecular Basis for Escherichia coli O157:H7 Phage FAHEc1 Endolysin Function and Protein Engineering to Increase Thermal Stability. Viruses 2021; 13:v13061101. [PMID: 34207694 PMCID: PMC8228626 DOI: 10.3390/v13061101] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 02/02/2023] Open
Abstract
Bacteriophage-encoded endolysins have been identified as antibacterial candidates. However, the development of endolysins as mainstream antibacterial agents first requires a comprehensive biochemical understanding. This study defines the atomic structure and enzymatic function of Escherichia coli O157:H7 phage FAHEc1 endolysin, LysF1. Bioinformatic analysis suggests this endolysin belongs to the T4 Lysozyme (T4L)-like family of proteins and contains a highly conserved catalytic triad. We then solved the structure of LysF1 with x-ray crystallography to 1.71 Å. LysF1 was confirmed to exist as a monomer in solution by sedimentation velocity experiments. The protein architecture of LysF1 is conserved between T4L and related endolysins. Comparative analysis with related endolysins shows that the spatial orientation of the catalytic triad is conserved, suggesting the catalytic mechanism of peptidoglycan degradation is the same as that of T4L. Differences in the sequence illustrate the role coevolution may have in the evolution of this fold. We also demonstrate that by mutating a single residue within the hydrophobic core, the thermal stability of LysF1 can be increased by 9.4 °C without compromising enzymatic activity. Overall, the characterization of LysF1 provides further insight into the T4L-like class of endolysins. Our study will help advance the development of related endolysins as antibacterial agents, as rational engineering will rely on understanding mutable positions within this protein fold.
Collapse
|
50
|
Chen Z, Guo Z, Lin H, Tian Y, Zhang P, Chen H, Wang Y, Shen Y. The feasibility of phage therapy for periodontitis. Future Microbiol 2021; 16:649-656. [PMID: 34098742 DOI: 10.2217/fmb-2020-0161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Periodontitis, a chronic progressive inflammation caused by plaque biofilm, is the main cause of tooth loss in adults. For certain refractory periodontitis cases, it is difficult to achieve a good curative effect using the existing periodontal treatment approaches, which may be due to periodontal pathogenic mechanism in the affected periodontal tissue that the host cannot resist and eliminate. Various pieces of evidence collectively revealed that most studies are focusing on phages in periodontal disease. Several studies have reported periodontitis treatment using phage therapy, highlighting its features including specificity, rapid propagation, and effectiveness on bacteriophage biofilms. In this study, we focus on these reports, aiming to lay the foundation for improved periodontal treatment approaches.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key laboratory of Basic & Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Zhimin Guo
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hongbing Lin
- Department of Periodontics, School and hospital of Stomatology, Jilin University, Jilin Province, Changchun, 130021, China
| | - Yue Tian
- Department of Periodontics, School and hospital of Stomatology, Jilin University, Jilin Province, Changchun, 130021, China
| | - Peipei Zhang
- Department of Periodontics, School and hospital of Stomatology, Jilin University, Jilin Province, Changchun, 130021, China
| | - Huishan Chen
- Department of Periodontics, School and hospital of Stomatology, Jilin University, Jilin Province, Changchun, 130021, China
| | - Yawei Wang
- Department of Periodontics, School and hospital of Stomatology, Jilin University, Jilin Province, Changchun, 130021, China
| | - Yuqin Shen
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key laboratory of Basic & Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| |
Collapse
|