1
|
Zhao Z, Song H, Qi M, Liu Y, Zhang Y, Li S, Zhang H, Sun Y, Sun Y, Gao Z. Brain targeted polymeric micelles as drug carriers for ischaemic stroke treatment. J Drug Target 2025; 33:232-248. [PMID: 39403962 DOI: 10.1080/1061186x.2024.2417190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Ischaemic stroke is a central nervous system disease with high morbidity, recurrence and mortality rates. Thrombolytic and neuroprotective therapies are the main therapeutic strategies for ischaemic stroke, however, the poor delivery efficiency of thrombolytic and neuroprotective drugs to the brain limits their clinical application. So far, the development of nanomedicine has brought opportunities for the above challenges, which can not only realise the effective accumulation of drugs in the target site, but also improve the pharmacokinetic behaviour of the drugs. Among the most rapidly developing nanoparticles, micelles gradually emerging as an effective strategy for ischaemic stroke treatment due to their own unique advantages. This review provided an overview of targeted and response-release micelles based on the physicochemical properties of the ischaemic stroke microenvironment, summarised the targeting strategies for delivering micellar formulations to the thrombus, blood-brain barrier, and brain parenchyma, and finally described the potentials and challenges of polymeric micelles in the treatment of ischaemic stroke.
Collapse
Affiliation(s)
- Zirui Zhao
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Huijia Song
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Mengge Qi
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yurong Liu
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yanchao Zhang
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Shuo Li
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Huimin Zhang
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yongjun Sun
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yanping Sun
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Zibin Gao
- Department of Pharmacy, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| |
Collapse
|
2
|
Dănilă AI, Romînu M, Munteanu K, Moacă EA, Geamantan-Sîrbu A, Olariu I, Marian D, Olariu T, Talpoş-Niculescu IC, Cosoroabă RM, Popovici R, Dinu Ş. Development of Solid Nanosystem for Delivery of Chlorhexidine with Increased Antimicrobial Activity and Decreased Cytotoxicity: Characterization and In Vitro and In Ovo Toxicological Screening. Molecules 2025; 30:162. [PMID: 39795218 PMCID: PMC11721946 DOI: 10.3390/molecules30010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/22/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
The evaluation of chlorhexidine-carrier nanosystems based on iron oxide magnetic nanoparticles (IOMNPs), has gained significant attention in recent years due to the unique properties of the magnetic nanoparticles (NPSs). Chlorhexidine (CHX), a well-established antimicrobial agent, has been widely used in medical applications, including oral hygiene and surgical antisepsis. This study aims to report an in vitro and in ovo toxicological screening of the synthesized CHX-NPS nanosystem, of the carrier matrix (maghemite NPSs) and of the drug to be delivered (CHX solution), by employing two types of cell lines-HaCaT immortalized human keratinocytes and JB6 Cl 41-5a murine epidermal cells. After the characterization of the CHX-NPS nanosystem through infrared spectroscopy and electronic microscopy, the in vitro results showed that the CHX antimicrobial efficacy was enhanced when delivered through a nanoscale system, with improved bioavailability and reduced toxicity when this was tested as the newly CHX-NPS nanosystem. The in ovo screening exhibited that the CHX-NPS nanosystem did not cause any sign of irritation on the chorioallantoic membrane vasculature and was classified as a non-irritant substance. Despite this, future research should focus on optimizing this type of nanosystem and conducting comprehensive in vivo studies to validate its therapeutic efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Alexandra-Ioana Dănilă
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.-I.D.); (K.M.)
| | - Mihai Romînu
- Research Center of Digital and Advanced Technique for Endodontic, Restorative and Prosthetic Treatment (TADERP), Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.-C.T.-N.); (R.M.C.); (R.P.); (Ş.D.)
| | - Krisztina Munteanu
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.-I.D.); (K.M.)
| | - Elena-Alina Moacă
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation (FARMTOX), Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Andreea Geamantan-Sîrbu
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation (FARMTOX), Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Iustin Olariu
- Faculty of Dental Medicine, Vasile Goldiş Western University of Arad, 310414 Arad, Romania;
| | - Diana Marian
- Faculty of Dental Medicine, Vasile Goldiş Western University of Arad, 310414 Arad, Romania;
| | - Teodora Olariu
- Faculty of Medicine, Vasile Goldiş Western University of Arad, 310414 Arad, Romania;
| | - Ioana-Cristina Talpoş-Niculescu
- Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.-C.T.-N.); (R.M.C.); (R.P.); (Ş.D.)
| | - Raluca Mioara Cosoroabă
- Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.-C.T.-N.); (R.M.C.); (R.P.); (Ş.D.)
| | - Ramona Popovici
- Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.-C.T.-N.); (R.M.C.); (R.P.); (Ş.D.)
| | - Ştefania Dinu
- Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.-C.T.-N.); (R.M.C.); (R.P.); (Ş.D.)
- Pediatric Dentistry Research Center, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
3
|
Abu-Huwaij R, Abed M, Hamed R. Innovative transdermal doxorubicin patches prepared using greenly synthesized iron oxide nanoparticles for breast cancer treatment. MATERIALS TECHNOLOGY 2024; 39. [DOI: 10.1080/10667857.2024.2330278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/09/2024] [Indexed: 01/06/2025]
Affiliation(s)
| | - Maimonah Abed
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Al-Salt, Jordan
| | - Rania Hamed
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| |
Collapse
|
4
|
Zhang D, Zhang J, Bian X, Zhang P, Wu W, Zuo X. Iron Oxide Nanoparticle-Based T 1 Contrast Agents for Magnetic Resonance Imaging: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 15:33. [PMID: 39791792 PMCID: PMC11722098 DOI: 10.3390/nano15010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
This review highlights recent progress in utilizing iron oxide nanoparticles (IONPs) as a safer alternative to gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging (MRI). It consolidates findings from multiple studies, discussing current T1 contrast agents (CAs), the synthesis techniques for IONPs, the theoretical principles for designing IONP-based MRI CAs, and the key factors that impact their T1 contrast efficacy, such as nanoparticle size, morphology, surface modifications, valence states, and oxygen vacancies. Furthermore, we summarize current strategies to achieve IONP-based responsive CAs, including self-assembly/disassembly and distance adjustment. This review also evaluates the biocompatibility, organ accumulation, and clearance pathways of IONPs for clinical applications. Finally, the challenges associated with the clinical translation of IONP-based T1 CAs are included.
Collapse
Affiliation(s)
- Dongmei Zhang
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Jing Zhang
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Xianglin Bian
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Pei Zhang
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Weihua Wu
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Xudong Zuo
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
- The Jiangsu Key Laboratory of Clean Energy Storage and Conversion, Jiangsu University of Technology, Changzhou 213100, China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
5
|
Peng F, Wang Z, Qiu Z, Zhang W, Zhao Y, Li C, Shi B. Nanomedicine in cardiology: Precision drug delivery for enhanced patient outcomes. Life Sci 2024; 358:123199. [PMID: 39488265 DOI: 10.1016/j.lfs.2024.123199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Cardiovascular diseases as a primary driver of global morbidity and mortality. Despite the array of therapeutic avenues in clinical practice, predominantly pharmaceutical and surgical interventions, they often fall short of fully addressing the clinical exigencies of cardiovascular patients. In recent years, nanocarriers have shown great potential in the treatment and diagnose of cardiovascular diseases. They can enhance drug targeting and bioavailability while reducing side effects. Additionally, by improving imaging and detection technologies, they enhance early diagnosis and disease monitoring capabilities. These advancements in technology offer new solutions for precision medicine in cardiovascular diseases, advancing treatment efficacy and disease management. Crafted from biomaterials, metals, or their amalgamations, these nanocarriers approximate the dimensions of biologically active molecules like proteins and DNA. Cardiovascular nanomedicine, in its infancy, has only recently burgeoned. Yet, with continual refinement in nanocarrier architecture, drug delivery mechanisms, and therapeutic outcomes, the potential of nanomedical technologies in clinical contexts becomes increasingly evident. This review aims to consolidate the strides made in nanocarrier research concerning the treatment and diagnose of cardiovascular diseases.
Collapse
Affiliation(s)
- Fengli Peng
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zimu Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Zhimei Qiu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wei Zhang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Chaofu Li
- Department of cardiology, Chongqing University Central Hospital (Chongqing Emergency Medical Center), College of Bioengineering, Chongqing University, Chongqing, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
6
|
Liu L, Yang M, Chen Z. Surface functionalized nanomaterial systems for targeted therapy of endocrine related tumors: a review of recent advancements. Drug Deliv 2024; 31:2390022. [PMID: 39138394 PMCID: PMC11328606 DOI: 10.1080/10717544.2024.2390022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/03/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
The application of multidisciplinary techniques in the management of endocrine-related cancers is crucial for harnessing the advantages of multiple disciplines and their coordinated efforts in eliminating tumors. Due to the malignant characteristics of cancer cells, they possess the capacity to develop resistance to traditional treatments such as chemotherapy and radiotherapy. Nevertheless, despite diligent endeavors to enhance the prediction of outcomes, the overall survival rate for individuals afflicted with endocrine-related malignancy remains quite miserable. Hence, it is imperative to investigate innovative therapy strategies. The latest advancements in therapeutic tactics have offered novel approaches for the therapy of various endocrine tumors. This paper examines the advancements in nano-drug delivery techniques and the utilization of nanomaterials for precise cancer cures through targeted therapy. This review provides a thorough analysis of the potential of combined drug delivery strategies in the treatment of thyroid cancer, adrenal gland tumors, and pancreatic cancer. The objective of this study is to gain a deeper understanding of current therapeutic approaches, stimulate the development of new drug DDS, and improve the effectiveness of treatment for patients with these diseases. The intracellular uptake of pharmaceuticals into cancer cells can be significantly improved through the implantation of synthetic or natural substances into nanoparticles, resulting in a substantial reduction in the development of endocrine malignancies.
Collapse
Affiliation(s)
- Limei Liu
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Miao Yang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ziyang Chen
- Department of Gastroenterology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Ibrahim Fouad G, Mabrouk M, El-Sayed SAM, Abdelhameed MF, Rizk MZ, Beherei HH. Berberine-loaded iron oxide nanoparticles alleviate cuprizone-induced astrocytic reactivity in a rat model of multiple sclerosis. Biometals 2024:10.1007/s10534-024-00648-4. [PMID: 39543075 DOI: 10.1007/s10534-024-00648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/20/2024] [Indexed: 11/17/2024]
Abstract
Berberine (BBN) is a naturally occurring alkaloid as a secondary metabolite in many plants and exhibits several benefits including neuroprotective activities. However, data on the neuromodulating potential of nanoformulated BBN are still lacking. In the present study, BBN loaded within iron oxide nanoparticles (BBN-IONP) were prepared and characterized by transmission electron microscopy FTIR, X-ray photoelectron spectroscopy particle-size distribution, zeta potential, and HPLC. The remyelinating neuroprotective potential of BBN-IONP relative to free BBN was evaluated against cuprizone (CPZ)-induced neurotoxicity (rats administered 0.2% CPZ powder (w/w) for five weeks). CPZ rats were treated with either free BBN or IONP-BBN (50 mg/kg/day, orally) for 14 days. Cognitive function was estimated using Y-maze. Biochemically, total antioxidant capacity lipid peroxides and reduced glutathione in the brain tissue, as well as, serum interferon-gamma levels were estimated. Moreover, the genetic expression contents of myelin basic protein Matrix metallopeptidase-9 Tumor necrosis factor-α (TNF-α), and S100β were measured. The histopathological patterns and immunohistochemical assessment of Glial Fibrillary Acidic Protein in both cerebral cortex and hippocampus CA1 regions were investigated. CPZ-rats treated with either free BBN or IONP-BBN demonstrated memory restoring, anti-oxidative, anti-inflammatory, anti-astrocytic, and remyelinating activities. Comparing free BBN with IONP-BBN revealed that the latter altered the neuromodulating activities of BBN, showing superior neuroprotective activities of IONP-BBN relative to BBN. In conclusion, both forms of BBN possess neuroprotective potential. However, the use of IONPs for brain delivery and the safety of these nano-based forms need further investigation.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Sara A M El-Sayed
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Mohamed F Abdelhameed
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt
| | - Maha Z Rizk
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| |
Collapse
|
8
|
Salehirozveh M, Dehghani P, Mijakovic I. Synthesis, Functionalization, and Biomedical Applications of Iron Oxide Nanoparticles (IONPs). J Funct Biomater 2024; 15:340. [PMID: 39590545 PMCID: PMC11595413 DOI: 10.3390/jfb15110340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Iron oxide nanoparticles (IONPs) have garnered significant attention in biomedical applications due to their unique magnetic properties, biocompatibility, and versatility. This review comprehensively examines the synthesis methods, surface functionalization techniques, and diverse biomedical applications of IONPs. Various chemical and physical synthesis techniques, including coprecipitation, sol-gel processes, thermal decomposition, hydrothermal synthesis, and sonochemical routes, are discussed in detail, highlighting their advantages and limitations. Surface functionalization strategies, such as ligand exchange, encapsulation, and silanization, are explored to enhance the biocompatibility and functionality of IONPs. Special emphasis is placed on the role of IONPs in biosensing technologies, where their magnetic and optical properties enable significant advancements, including in surface-enhanced Raman scattering (SERS)-based biosensors, fluorescence biosensors, and field-effect transistor (FET) biosensors. The review explores how IONPs enhance sensitivity and selectivity in detecting biomolecules, demonstrating their potential for point-of-care diagnostics. Additionally, biomedical applications such as magnetic resonance imaging (MRI), targeted drug delivery, tissue engineering, and stem cell tracking are discussed. The challenges and future perspectives in the clinical translation of IONPs are also addressed, emphasizing the need for further research to optimize their properties and ensure safety and efficacy in medical applications. This review aims to provide a comprehensive understanding of the current state and future potential of IONPs in both biosensing and broader biomedical fields.
Collapse
Affiliation(s)
- Mostafa Salehirozveh
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden;
| | - Parisa Dehghani
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden;
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
9
|
Hasan E, Manzar Z, Haroon N, Raza A, Ali SN, Lateef M, Begum S. A facile synthesis of iron oxide nanoparticles as a nano-sensor to detect levofloxacin and ciprofloxacin in human blood and evaluation of their biological activities. RSC Adv 2024; 14:36093-36100. [PMID: 39529741 PMCID: PMC11551917 DOI: 10.1039/d4ra05024j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
A rapid synthesis of a pH-stable magnetic nano-sensor (iron oxide nanoparticles, Fe-NPs, ∼2.6 nm) encapsulated with 3-aminobenzoic acid (3-ABA) was achieved. 3-ABA was prepared for the first time through the reduction of 3-nitrobenzoic acid (3-NBA) in the presence of HCl and tin. Electron-impact mass spectrometry (EIMS), Fourier-transform infrared (FTIR), nuclear magnetic resonance (NMR), ultraviolet visible (UV) spectroscopy and atomic force microscopy (AFM) were used for characterization. Ten drugs, namely, ciprofloxacin (CPF), levocetirizine (LCT), levofloxacin (LVF), sulbactam sodium (SBS), ephedrine (EPH), thymine (THM), sertraline (SRT), pyridoxine (PRX), cefotaxime (CFX) and ceftriaxone (CFT) were screened with Fe-NPs. A pronounced hypsochromic shift was observed for levofloxacin and ciprofloxacin, proving that 3-ABA-coated Fe-NPs were an efficient nano-sensor for levofloxacin and ciprofloxacin up to the limit of 0.5 and 0.7 μM, respectively. The stoichiometry of the complexes was conclusively determined as 1 : 1 using Job's plot analysis. Furthermore, the drugs were successfully detected in real samples, including tap water, well water, and human blood. Moreover, the antioxidant activity, urease and lipoxygenase inhibitory potential of these nanoparticles were evaluated, exhibiting promising antioxidant potential.
Collapse
Affiliation(s)
- Erum Hasan
- Department of Chemistry, University of Karachi Karachi-75270 Pakistan
| | - Ziana Manzar
- Department of Chemistry, University of Karachi Karachi-75270 Pakistan
| | - Nabeel Haroon
- Department of Chemistry, University of Karachi Karachi-75270 Pakistan
| | - Ali Raza
- Department of Chemistry, University of Karachi Karachi-75270 Pakistan
| | - Syed Nawazish Ali
- Department of Chemistry, University of Karachi Karachi-75270 Pakistan
| | - Mehreen Lateef
- Department of Biochemistry, Multi-Disciplinary Research Laboratory, Bahria University Medical and Dental College Karachi-75640 Pakistan
| | - Sabira Begum
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi Karachi-75270 Pakistan
| |
Collapse
|
10
|
Angela S, Ludmila M, Cornelia-Ioana I, Denisa F, Cristina C, Natalia P, Sabina G, Mateusz M, Joanna K, Adrian-Vasile S, Doina Roxana T, Ovidiu Cristian O, Anton F. Aminoacid functionalised magnetite nanoparticles Fe 3O 4@AA (AA = Ser, Cys, Pro, Trp) as biocompatible magnetite nanoparticles with potential therapeutic applications. Sci Rep 2024; 14:26228. [PMID: 39482399 PMCID: PMC11528115 DOI: 10.1038/s41598-024-76552-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024] Open
Abstract
Magnetic nanoparticles (MNPs) are of great interest for their wide applications in biomedical applications, such as bioimaging, antitumoral therapies, regenerative medicine, and drug delivery. The work aimed to obtain biocompatible magnetite nanoparticles coated with amino acids of the general formula Fe3O4@AA (AA = L-tryptophan, L-serine, L-proline and L-cysteine) for potential therapeutic application in anticancer drug delivery. The obtained materials were characterised using XRD, FTIR, DLS analysis, SEM, thermogravimetry (TG), differential scanning calorimetry (DSC), and UV-vis spectroscopy. The photocatalytic, cytotoxic and antimicrobial activity tests of the obtained materials were carried out. The choice of amino acid determines the properties of the material and its future use, for example, Fe3O4@Cys supports radical production, which may increase the efficiency of catalytic degradation, while tryptophan captures radicals, which may be an advantage in several biomedical applications. Fe3O4@Trp exhibited good antimicrobial activity (MBEC and MIC) against E. coli ATCC 25922, P. aeruginosa ATCC 27853 and C. albicans ATCC 10231 while Fe3O4@Pro exhibited the best results against S. aureus ATCC 25923.
Collapse
Affiliation(s)
- Spoială Angela
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh Polizu Street, 011061, Bucharest, Romania
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042, Bucharest, Romania
| | - Motelica Ludmila
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh Polizu Street, 011061, Bucharest, Romania
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042, Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045, Bucharest, Romania
| | - Ilie Cornelia-Ioana
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh Polizu Street, 011061, Bucharest, Romania
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042, Bucharest, Romania
| | - Ficai Denisa
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042, Bucharest, Romania.
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh Polizu Street, 050054, Bucharest, Romania.
- Academy of Romanian Scientists, 3 Ilfov Street, 050045, Bucharest, Romania.
| | - Chircov Cristina
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh Polizu Street, 011061, Bucharest, Romania
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042, Bucharest, Romania
| | - Pieńkowska Natalia
- Institute of Medical Sciences, University of Rzeszów, Warzywna 1a, 35-310, Rzeszów, Poland
| | - Galiniak Sabina
- Institute of Medical Sciences, University of Rzeszów, Warzywna 1a, 35-310, Rzeszów, Poland
| | - Mołoń Mateusz
- Institute of Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszów, Poland
| | - Kisala Joanna
- Institute of Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszów, Poland
| | - Surdu Adrian-Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh Polizu Street, 011061, Bucharest, Romania
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042, Bucharest, Romania
| | - Trușcă Doina Roxana
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh Polizu Street, 011061, Bucharest, Romania
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042, Bucharest, Romania
| | - Oprea Ovidiu Cristian
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042, Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh Polizu Street, 050054, Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045, Bucharest, Romania
| | - Ficai Anton
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh Polizu Street, 011061, Bucharest, Romania
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042, Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045, Bucharest, Romania
| |
Collapse
|
11
|
Moglia I, Santiago M, Arellano A, Salazar Sandoval S, Olivera-Nappa Á, Kogan MJ, Soler M. Synthesis of dumbbell-like heteronanostructures encapsulated in ferritin protein: Towards multifunctional protein based opto-magnetic nanomaterials for biomedical theranostic. Colloids Surf B Biointerfaces 2024; 245:114332. [PMID: 39486373 DOI: 10.1016/j.colsurfb.2024.114332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Dumbbell-like hetero nanostructures based on gold and iron oxides is a promising material for biomedical applications, useful as versatile theranostic agents due the synergistic effect of their optical and magnetic properties. However, achieving precise control on their morphology, size dispersion, colloidal stability, biocompatibility and cell targeting remains as a current challenge. In this study, we address this challenge by employing biomimetic routes, using ferritin protein nanocages as template for these nanoparticles' synthesis. We present the development of an opto-magnetic nanostructures using the ferritin protein, wherein gold and iron oxide nanostructures were produced within its cavity. Initially, we investigated the synthesis of gold nanostructures within the protein, generating clusters and plasmonic nanoparticles. Subsequently, we optimized the conditions for the superparamagnetic nanoparticles synthesis through controlled iron oxidation, thereby enhancing the magnetic properties of the resulting system. Finally, we produce magnetic nanoparticles in the protein with gold clusters, achieving the coexistence of both nanostructures within a single protein molecule, a novel material unprecedented to date. We observed that factors such as temperature, metal/protein ratios, pH, dialysis, and purification processes all have an impact on protein recovery, loading efficiency, morphology, and nanoparticle size. Our findings highlight the development of ferritin-based nanomaterials as versatile platforms for potential biomedical use as multifunctional theranostic agents.
Collapse
Affiliation(s)
- Italo Moglia
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medioambiente, Universidad Tecnológica Metropolitana-UTEM, Chile.
| | | | - Andreas Arellano
- Instituto Universitario de Investigación y Desarrollo Tecnológico-IDT, Universidad Tecnológica Metropolitana-UTEM, Chile; Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile; Millennium Nucleus in NanoBioPhysics-N2BP, Chile
| | | | - Álvaro Olivera-Nappa
- Centre for Biotechnology and Bioengineering-CEBiB, Chile; Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Chile
| | - Marcelo J Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile; Advanced Center for Chronic Diseases-ACCDiS, Chile
| | - Mónica Soler
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Chile
| |
Collapse
|
12
|
Polyzou CD, Zygouri E, Lalioti N, Malina O, Polaskova M, Bednar J, Tangoulis V. Water stable colloidal PVP coated spin crossover nanoparticles. Dalton Trans 2024; 53:16821-16825. [PMID: 39373555 DOI: 10.1039/d4dt02670e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Stable aqueous dispersions of spin-crossover (SCO) doped [FeII(Htrz)2(trz)](BF4) nanoparticles (NPs) were prepared by using water-soluble polyvinylpyrrolidone (PVP) as protecting polymer. The metal or ligand substitution percentage regulated the ultra-small size and morphology of the NPs. At the same time, the colloidal dispersions showed a complete conversion of the LS state to the HS state of the FeII ion.
Collapse
Affiliation(s)
- Christina D Polyzou
- Department of Chemistry, Laboratory of Inorganic Chemistry, University of Patras, 26504 Patras, Greece.
| | - Eleni Zygouri
- Department of Chemistry, Laboratory of Inorganic Chemistry, University of Patras, 26504 Patras, Greece.
| | - Nikolia Lalioti
- Department of Chemistry, Laboratory of Inorganic Chemistry, University of Patras, 26504 Patras, Greece.
| | - Ondrej Malina
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Křížkovského 511/8, 77900, Czech Republic.
- CEET, Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, Poruba 708 00, Czech Republic.
| | - Michaela Polaskova
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Křížkovského 511/8, 77900, Czech Republic.
| | - Jiri Bednar
- CEET, Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, Poruba 708 00, Czech Republic.
| | - Vassilis Tangoulis
- Department of Chemistry, Laboratory of Inorganic Chemistry, University of Patras, 26504 Patras, Greece.
| |
Collapse
|
13
|
Hlapisi N, Songca SP, Ajibade PA. Capped Plasmonic Gold and Silver Nanoparticles with Porphyrins for Potential Use as Anticancer Agents-A Review. Pharmaceutics 2024; 16:1268. [PMID: 39458600 PMCID: PMC11510308 DOI: 10.3390/pharmaceutics16101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Photothermal therapy (PTT) and photodynamic therapy (PDT) are potential cancer treatment methods that are minimally invasive with high specificity for malignant cells. Emerging research has concentrated on the application of metal nanoparticles encapsulated in porphyrin and their derivatives to improve the efficacy of these treatments. Gold and silver nanoparticles have distinct optical properties and biocompatibility, which makes them efficient materials for PDT and PTT. Conjugation of these nanoparticles with porphyrin derivatives increases their light absorption and singlet oxygen generation that create a synergistic effect that increases phototoxicity against cancer cells. Porphyrin encapsulation with gold or silver nanoparticles improves their solubility, stability, and targeted tumor delivery. This paper provides comprehensive review on the design, functionalization, and uses of plasmonic silver and gold nanoparticles in biomedicine and how they can be conjugated with porphyrins for synergistic therapeutic effects. Furthermore, it investigates this dual-modal therapy's potential advantages and disadvantages and offers perspectives for future prospects. The possibility of developing gold, silver, and porphyrin nanotechnology-enabled biomedicine for combination therapy is also examined.
Collapse
Affiliation(s)
| | | | - Peter A. Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa; (N.H.); (S.P.S.)
| |
Collapse
|
14
|
Albukhaty S, Sulaiman GM, Al-Karagoly H, Mohammed HA, Hassan AS, Alshammari AAA, Ahmad AM, Madhi R, Almalki FA, Khashan KS, Jabir MS, Yusuf M, Al-aqbi ZT, Sasikumar P, Khan RA. Iron oxide nanoparticles: The versatility of the magnetic and functionalized nanomaterials in targeting drugs, and gene deliveries with effectual magnetofection. J Drug Deliv Sci Technol 2024; 99:105838. [DOI: 10.1016/j.jddst.2024.105838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Duan X, Wang P, He L, He Z, Wang S, Yang F, Gao C, Ren W, Lin J, Chen T, Xu C, Li J, Wu A. Peptide-Functionalized Inorganic Oxide Nanomaterials for Solid Cancer Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311548. [PMID: 38333964 DOI: 10.1002/adma.202311548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/15/2024] [Indexed: 02/10/2024]
Abstract
The diagnosis and treatment of solid tumors have undergone significant advancements marked by a trend toward increased specificity and integration of imaging and therapeutic functions. The multifaceted nature of inorganic oxide nanomaterials (IONs), which boast optical, magnetic, ultrasonic, and biochemical modulatory properties, makes them ideal building blocks for developing multifunctional nanoplatforms. A promising class of materials that have emerged in this context are peptide-functionalized inorganic oxide nanomaterials (PFIONs), which have demonstrated excellent performance in multifunctional imaging and therapy, making them potential candidates for advancing solid tumor diagnosis and treatment. Owing to the functionalities of peptides in tumor targeting, penetration, responsiveness, and therapy, well-designed PFIONs can specifically accumulate and release therapeutic or imaging agents at the solid tumor sites, enabling precise imaging and effective treatment. This review provides an overview of the recent advances in the use of PFIONs for the imaging and treatment of solid tumors, highlighting the superiority of imaging and therapeutic integration as well as synergistic treatment. Moreover, the review discusses the challenges and prospects of PFIONs in depth, aiming to promote the intersection of the interdisciplinary to facilitate their clinical translation and the development of personalized diagnostic and therapeutic systems by optimizing the material systems.
Collapse
Affiliation(s)
- Xiaolin Duan
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pin Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lulu He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Zhen He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiwei Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Yang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Changyong Gao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Wenzhi Ren
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Jie Lin
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Tianxiang Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Chen Xu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Juan Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| |
Collapse
|
16
|
Zhan Y, Hu H, Yu Y, Chen C, Zhang J, Jarnda KV, Ding P. Therapeutic strategies for drug-resistant Pseudomonas aeruginosa: Metal and metal oxide nanoparticles. J Biomed Mater Res A 2024; 112:1343-1363. [PMID: 38291785 DOI: 10.1002/jbm.a.37677] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/25/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Pseudomonas aeruginosa (PA) is a widely prevalent opportunistic pathogen. Multiple resistant strains of PA have emerged from excessive or inappropriate use of antibiotics, making their eradication increasingly difficult. Therefore, the search for highly efficient and secure novel antimicrobial agents is crucial. According to reports, there is an increasing exploration of nanometals for antibacterial purposes. The antibacterial mechanisms involving the nanomaterials themselves, the release of ions, and the induced oxidative stress causing leakage and damage to biomolecules are widely accepted. Additionally, the study of the cytotoxicity of metal nanoparticles is crucial for their antibacterial applications. This article summarizes the types of metal nanomaterials and metal oxide nanomaterials that can be used against PA, their respective unique antibacterial mechanisms, cytotoxicity, and efforts made to improve antibacterial performance and reduce toxicity, including combination therapy with other materials and antibiotics, as well as green synthesis approaches.
Collapse
Affiliation(s)
- Yujuan Zhan
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Huiting Hu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Ying Yu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Cuimei Chen
- School of Public Health, Xiangnan University, Chenzhou, Hunan, China
| | - Jingwen Zhang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Kermue Vasco Jarnda
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| |
Collapse
|
17
|
Tang C, Zhou K, Wu D, Zhu H. Nanoparticles as a Novel Platform for Cardiovascular Disease Diagnosis and Therapy. Int J Nanomedicine 2024; 19:8831-8846. [PMID: 39220195 PMCID: PMC11365508 DOI: 10.2147/ijn.s474888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular disease (CVD) is a major global health issue with high mortality and morbidity rates. With the advances in nanotechnology, nanoparticles are receiving increasing attention in diagnosing and treating CVD. Previous studies have explored the use of nanoparticles in noninvasive diagnostic technologies, such as magnetic resonance imaging and computed tomography. Nanoparticles have been extensively studied as drug carriers and prognostic factors, demonstrating synergistic efficacy. This review summarized the current applications of nanoparticles in CVD and discussed their opportunities and challenges for further exploration.
Collapse
Affiliation(s)
- Chuanyun Tang
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Di Wu
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
18
|
Kameni SL, Dlamini NH, Feugang JM. Exploring the full potential of sperm function with nanotechnology tools. Anim Reprod 2024; 21:e20240033. [PMID: 39176004 PMCID: PMC11340799 DOI: 10.1590/1984-3143-ar2024-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/20/2024] [Indexed: 08/24/2024] Open
Abstract
Sperm quality is essential to guarantee the success of assisted reproduction. However, selecting high-quality sperm and maintaining it during (cryo)preservation for high efficiency remains challenging in livestock reproduction. A comprehensive understanding of sperm biology allows for better assessment of sperm quality, which could replace conventional sperm analyses used today to predict fertility with low accuracy. Omics approaches have revealed numerous biomarkers associated with various sperm phenotypic traits such as quality, survival during storage, freezability, and fertility. At the same time, nanotechnology is emerging as a new biotechnology with high potential for use in preparing sperm intended to improve reproduction in livestock. The unique physicochemical properties of nanoparticles make them exciting tools for targeting (e.g., sperm damage and sexing) and non-targeting bioapplications. Recent advances in sperm biology have led to the discovery of numerous biomarkers, making it possible to target specific subpopulations of spermatozoa within the ejaculate. In this review, we explore potential biomarkers associated with sperm phenotypes and highlight the benefits of combining these biomarkers with nanoparticles to further improve sperm preparation and technology.
Collapse
Affiliation(s)
- Serge Leugoué Kameni
- Mississippi State University, Department of Animal and Dairy Sciences, Mississippi State, MS, USA
| | - Notsile Hleliwe Dlamini
- Mississippi State University, Department of Animal and Dairy Sciences, Mississippi State, MS, USA
| | - Jean Magloire Feugang
- Mississippi State University, Department of Animal and Dairy Sciences, Mississippi State, MS, USA
| |
Collapse
|
19
|
Zhao F, Fan M, Jing Z, Zhang Y, Wang Y, Zhou C, Liu Y, Aitken RJ, Xia X. Engineered nanoparticles potentials in male reproduction. Andrology 2024. [PMID: 39120563 DOI: 10.1111/andr.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/06/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND The escalating prevalence of fertility problems in the aging population necessitates a comprehensive exploration of contributing factors, extending beyond environmental concerns, work-related stress, and unhealthy lifestyles. Among these, the rising incidence of testicular disorders emerges as a pivotal determinant of fertility issues. Current treatment challenges are underscored by the limitations of high-dose and frequent drug administration, coupled with substantial side effects and irreversible trauma inflicted by surgical interventions on testicular tissue. MATERIAL AND METHODS The formidable barrier posed by the blood-testis barrier compounds the complexities of treating testicular diseases, presenting a significant therapeutic obstacle. The advent of nanocarriers, with their distinctive attributes, holds promise in overcoming this impediment. These nanocarriers exhibit exceptional biocompatibility, and membrane penetration capabilities, and can strategically target the blood-testis barrier through surface ligand modification, thereby augmenting drug bioavailability and enhancing therapeutic efficacy. RESULTS AND DISCUSSION This review concentrates on the transformative potential of nanocarriers in the delivery of therapeutic agents to testicular tissue. By summarizing key applications, we illuminate the strides made in utilizing nanocarriers as a novel avenue to effectively treat testicular diseases. CONCLUSIONS Nanocarriers are critical in delivering therapeutic agents to testicular tissue.
Collapse
Affiliation(s)
- Feifei Zhao
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengyu Fan
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Zhiyang Jing
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Yanxu Zhang
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Yanlin Wang
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Congli Zhou
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Yang Liu
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, China
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, China
| | - Robert John Aitken
- School of Environmental and Life Sciences, College of Engineering, Science and Environmental Science, University of Newcastle, Callaghan, Australia
| | - Xue Xia
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, China
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, China
| |
Collapse
|
20
|
Shoudho K, Uddin S, Rumon MMH, Shakil MS. Influence of Physicochemical Properties of Iron Oxide Nanoparticles on Their Antibacterial Activity. ACS OMEGA 2024; 9:33303-33334. [PMID: 39130596 PMCID: PMC11308002 DOI: 10.1021/acsomega.4c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
The increasing occurrence of infectious diseases caused by antimicrobial resistance organisms urged the necessity to develop more potent, selective, and safe antimicrobial agents. The unique magnetic and tunable properties of iron oxide nanoparticles (IONPs) make them a promising candidate for different theragnostic applications, including antimicrobial agents. Though IONPs act as a nonspecific antimicrobial agent, their antimicrobial activities are directly or indirectly linked with their synthesis methods, synthesizing precursors, size, shapes, concentration, and surface modifications. Alteration of these parameters could accelerate or decelerate the production of reactive oxygen species (ROS). An increase in ROS role production disrupts bacterial cell walls, cell membranes, alters major biomolecules (e.g., lipids, proteins, nucleic acids), and affects metabolic processes (e.g., Krebs cycle, fatty acid synthesis, ATP synthesis, glycolysis, and mitophagy). In this review, we will investigate the antibacterial activity of bare and surface-modified IONPs and the influence of physiochemical parameters on their antibacterial activity. Additionally, we will report the potential mechanism of IONPs' action in driving this antimicrobial activity.
Collapse
Affiliation(s)
- Kishan
Nandi Shoudho
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
- Department
of Chemical Engineering, Bangladesh University
of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Shihab Uddin
- Department
of Bioengineering, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Kingdom
of Saudi Arabia
| | - Md Mahamudul Hasan Rumon
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
| | - Md Salman Shakil
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
| |
Collapse
|
21
|
Mušič B, Pečnik JG, Pondelak A. Stabilization of Fish Protein-Based Adhesive by Reduction of Its Hygroscopicity. Polymers (Basel) 2024; 16:2195. [PMID: 39125221 PMCID: PMC11314626 DOI: 10.3390/polym16152195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Protein-based fish adhesives have historically been used in various bonding applications; however, due to the protein's high affinity for water absorption, these adhesives become destabilized in high-moisture environments, resulting in reduced bondline strength and early failure. This limitation makes them unsuitable for industrial applications with higher demands. To address this issue, water-insoluble raw powder materials such as iron, copper, or zeolite were incorporated into natural fish adhesives. In this study, the hygroscopicity, dry matter content, thermal analysis (TGA/DSC), FT-IR spectroscopy, surface tension measurements, vapour permeability, and scanning electron microscope (SEM) of the modified adhesives were determined. In addition, the bonding properties of the modified adhesives were evaluated by the tensile shear strength of the lap joints, and mould growth was visually inspected. The resulting modified protein-based adhesives demonstrated improved stability in high humidity environments. Enhancing the hygroscopic properties of protein-based fish adhesives has the potential to unlock new opportunities and applications, providing a healthier and more environmentally sustainable alternative to petroleum-based adhesives.
Collapse
Affiliation(s)
- Branka Mušič
- Slovenian National Building and Civil Engineering Institute, Dimičeva Ulica 12, 1000 Ljubljana, Slovenia;
| | | | - Andreja Pondelak
- Slovenian National Building and Civil Engineering Institute, Dimičeva Ulica 12, 1000 Ljubljana, Slovenia;
| |
Collapse
|
22
|
Hancharova M, Halicka-Stępień K, Dupla A, Lesiak A, Sołoducho J, Cabaj J. Antimicrobial activity of metal-based nanoparticles: a mini-review. Biometals 2024; 37:773-801. [PMID: 38286956 DOI: 10.1007/s10534-023-00573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 12/15/2023] [Indexed: 01/31/2024]
Abstract
The resistance of pathogenic microorganisms to antibiotics is one of the main problems of world health. Of particular concern are multidrug-resistant (MDR) bacteria. Infections caused by these microorganisms affect the appearance of acute or chronic diseases. In this regard, modern technologies, such as nanomaterials (NMs), especially promising nanoparticles (NPs), can possess antimicrobial properties or improve the effectiveness and delivery of known antibiotics. Their diversity and characteristics, combined with surface functionalization, enable multivalent interactions with microbial biomolecules. This article presents an overview of the most current research on replacing antibiotics with NPs, including the prospects and risks involved.
Collapse
Affiliation(s)
- Marharyta Hancharova
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Kinga Halicka-Stępień
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Aleksandra Dupla
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Anna Lesiak
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
- Laboratoire de Chimie, École Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR 5182, 46 Allée d'Italie, 69364, Lyon, France
| | - Jadwiga Sołoducho
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Joanna Cabaj
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| |
Collapse
|
23
|
Liu S, Sun J. Magnetic nanomaterials mediate precise magnetic therapy. Biomed Phys Eng Express 2024; 10:052001. [PMID: 38981447 DOI: 10.1088/2057-1976/ad60cb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Magnetic nanoparticle (MNP)-mediated precision magnet therapy plays a crucial role in treating various diseases. This therapeutic strategy compensates for the limitations of low spatial resolution and low focusing of magnetic stimulation, and realizes the goal of wireless teletherapy with precise targeting of focal areas. This paper summarizes the preparation methods of magnetic nanomaterials, the properties of magnetic nanoparticles, the biological effects, and the measurement methods for detecting magnetism; discusses the research progress of precision magnetotherapy in the treatment of psychiatric disorders, neurological injuries, metabolic disorders, and bone-related disorders, and looks forward to the future development trend of precision magnet therapy.
Collapse
Affiliation(s)
- Sha Liu
- Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, People's Republic of China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| | - Jianfei Sun
- Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, People's Republic of China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| |
Collapse
|
24
|
Pirușcă IA, Balaure PC, Grumezescu V, Irimiciuc SA, Oprea OC, Bîrcă AC, Vasile B, Holban AM, Voinea IC, Stan MS, Trușcă R, Grumezescu AM, Croitoru GA. New Fe 3O 4-Based Coatings with Enhanced Anti-Biofilm Activity for Medical Devices. Antibiotics (Basel) 2024; 13:631. [PMID: 39061313 PMCID: PMC11273941 DOI: 10.3390/antibiotics13070631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
With the increasing use of invasive, interventional, indwelling, and implanted medical devices, healthcare-associated infections caused by pathogenic biofilms have become a major cause of morbidity and mortality. Herein, we present the fabrication, characterization, and in vitro evaluation of biocompatibility and anti-biofilm properties of new coatings based on Fe3O4 nanoparticles (NPs) loaded with usnic acid (UA) and ceftriaxone (CEF). Sodium lauryl sulfate (SLS) was employed as a stabilizer and modulator of the polarity, dispersibility, shape, and anti-biofilm properties of the magnetite nanoparticles. The resulting Fe3O4 functionalized NPs, namely Fe3O4@SLS, Fe3O4@SLS/UA, and Fe3O4@SLS/CEF, respectively, were prepared by co-precipitation method and fully characterized by XRD, TEM, SAED, SEM, FTIR, and TGA. They were further used to produce nanostructured coatings by matrix-assisted pulsed laser evaporation (MAPLE) technique. The biocompatibility of the coatings was assessed by measuring the cell viability, lactate dehydrogenase release, and nitric oxide level in the culture medium and by evaluating the actin cytoskeleton morphology of murine pre-osteoblasts. All prepared nanostructured coatings exhibited good biocompatibility. Biofilm growth inhibition ability was tested at 24 h and 48 h against Staphylococcus aureus and Pseudomonas aeruginosa as representative models for Gram-positive and Gram-negative bacteria. The coatings demonstrated good biocompatibility, promoting osteoblast adhesion, migration, and growth without significant impact on cell viability or morphology, highlighting their potential for developing safe and effective antibacterial surfaces.
Collapse
Affiliation(s)
- Ioana Adelina Pirușcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (I.A.P.); (A.C.B.); (B.V.); (R.T.)
| | - Paul Cătălin Balaure
- Department of Organic Chemistry, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania
| | - Valentina Grumezescu
- Lasers Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania; (V.G.)
| | - Stefan-Andrei Irimiciuc
- Lasers Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania; (V.G.)
| | - Ovidiu-Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania;
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (I.A.P.); (A.C.B.); (B.V.); (R.T.)
| | - Bogdan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (I.A.P.); (A.C.B.); (B.V.); (R.T.)
| | - Alina Maria Holban
- Microbiology and Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (I.C.V.); (M.S.S.)
| | - Ionela C. Voinea
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (I.C.V.); (M.S.S.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Miruna S. Stan
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (I.C.V.); (M.S.S.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Roxana Trușcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (I.A.P.); (A.C.B.); (B.V.); (R.T.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (I.A.P.); (A.C.B.); (B.V.); (R.T.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (I.C.V.); (M.S.S.)
| | - George-Alexandru Croitoru
- Department II, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
25
|
Hong J, Wang L, Zheng Q, Cai C, Yang X, Liao Z. The Recent Applications of Magnetic Nanoparticles in Biomedical Fields. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2870. [PMID: 38930238 PMCID: PMC11204782 DOI: 10.3390/ma17122870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Magnetic nanoparticles (MNPs) have found extensive application in the biomedical domain due to their enhanced biocompatibility, minimal toxicity, and strong magnetic responsiveness. MNPs exhibit great potential as nanomaterials in various biomedical applications, including disease detection and cancer therapy. Typically, MNPs consist of a magnetic core surrounded by surface modification coatings, such as inorganic materials, organic molecules, and polymers, forming a nucleoshell structure that mitigates nanoparticle agglomeration and enhances targeting capabilities. Consequently, MNPs exhibit magnetic responsiveness in vivo for transportation and therapeutic effects, such as enhancing medical imaging resolution and localized heating at the site of injury. MNPs are utilized for specimen purification through targeted binding and magnetic separation in vitro, thereby optimizing efficiency and expediting the process. This review delves into the distinctive functional characteristics of MNPs as well as the diverse bioactive molecules employed in their surface coatings and their corresponding functionalities. Additionally, the advancement of MNPs in various applications is outlined. Additionally, we discuss the advancements of magnetic nanoparticles in medical imaging, disease treatment, and in vitro assays, and we anticipate the future development prospects and obstacles in this field. The objective is to furnish readers with a thorough comprehension of the recent practical utilization of MNPs in biomedical disciplines.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenlin Liao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (L.W.); (Q.Z.); (C.C.); (X.Y.)
| |
Collapse
|
26
|
S Y, N P, M C. Optimization and chemical free fabrication of green synthesized iron nanoparticles as potential MRI contrast agent. Biotechnol Appl Biochem 2024; 71:596-608. [PMID: 38298147 DOI: 10.1002/bab.2561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024]
Abstract
The current research article has investigated the synthesis and characterization of novel iron nanoparticles (INPs) from neem and betel leaves extract combination using response surface methodology-central composite design and coated with chitosan-curcumin (CCINPs) as a biocompatible and contrast agent for magnetic resonance imaging (MRI). The coating of INPs with chitosan and curcumin (CCINPs) was carried out using a simple, easy, chemical-free ultrasonication method and characteristics were confirmed by UV-visible (Vis) spectrophotometer (UV-Vis), Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, atomic force microscopy, and vibrating sample magnetometer. The biocompatibility of the particles was ensured by conducting hemolytic and cell viability assays. The nanoparticle was found to be nonhemolytic (<5%) up to 150 μg/mL for both INPs and CCINPs. The cell viability was stable (peripheral blood mononuclear cells-PBMCs) till 48 h at 150 μg/mL of INPs and CCINPs. Both the test results produced were found to be biocompatible and additionally, an in vitro MRI study of INPs and CCINPs demonstrated the efficiency of the nanoparticle as a negative contrast agent with enhanced contrast nature in CCINPs. Thus, overall results indicate that the green synthesized chemical-free novel CCINPs could be a potential candidate for a wide range of applications such as MRI, drug delivery, and in magnetic fluid hyperthermia.
Collapse
Affiliation(s)
- Yuwvaranni S
- St. Joseph's College of Engineering, Chennai, Tamil Nadu, India
| | - Punitha N
- Department of Physics, St. Joseph's College of Engineering, Chennai, Tamil Nadu, India
| | | |
Collapse
|
27
|
Divya M, Chen J, Durán-Lara EF, Kim KS, Vijayakumar S. Revolutionizing healthcare: Harnessing nano biotechnology with zinc oxide nanoparticles to combat biofilm and bacterial infections-A short review. Microb Pathog 2024; 191:106679. [PMID: 38718953 DOI: 10.1016/j.micpath.2024.106679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/25/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
A crucial pathogenic mechanism in many bacterial diseases is the ability to create biofilms. Biofilms are suspected to play a role in over 80 % of microbial illnesses in humans. In light of the critical requirement for efficient management of bacterial infections, researchers have explored alternative techniques for treating bacterial disorders. One of the most promising ways to address this issue is through the development of long-lasting coatings with antibacterial properties. In recent years, antibacterial treatments based on metallic nanoparticles (NPs) have emerged as an effective strategy in the fight over bacterial drug resistance. Zinc oxide nanoparticles (ZnO-NPs) are the basis of a new composite coating material. This article begins with a brief overview of the mechanisms that underlie bacterial resistance to antimicrobial drugs. A detailed examination of the properties of metallic nanoparticles (NPs) and their potential use as antibacterial drugs for curing drug-sensitive and resistant bacteria follows. Furthermore, we assess metal nanoparticles (NPs) as powerful agents to fight against antibiotic-resistant bacteria and the growth of biofilm, and we look into their potential toxicological effects for the development of future medicines.
Collapse
Affiliation(s)
- Mani Divya
- BioMe-Live Analytical Centre, Karaikudi, Tamil Nadu, India.
| | - Jingdi Chen
- Marine College, Shandong University, Weihai, 264209, PR China.
| | - Esteban F Durán-Lara
- Bio&NanoMaterialsLab| Drug Delivery and Controlled Release, Universidad de Talca, Talca, 3460000, Maule, Chile; Departamento de Microbiología, Facultad de Ciencias de La Salud, Universidad de Talca, Talca, 3460000, Maule, Chile
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, 462s41, Republic of Korea.
| | | |
Collapse
|
28
|
Sil M, Mukherjee D, Goswami A, Nag M, Lahiri D, Bhattacharya D. Antibiofilm activity of mesoporous silica nanoparticles against the biofilm associated infections. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3617-3633. [PMID: 38051365 DOI: 10.1007/s00210-023-02872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
In pharmaceutical industries, various chemical carriers are present which are used for drug delivery to the correct target sites. The most popular and upcoming drug delivery carriers are mesoporous silica nanoparticles (MSN). The main reason for its popularity is its ability to be specific and optimize the drug delivery process in a controlled manner. Nowadays, MSNs are widely used to eradicate various microbial infections, especially the ones related to biofilms. Biofilms are sessile groups of cells that live by forming a consortium and exhibit antibacterial resistance (AMR). They exhibit AMR by extracellular polymeric substances (EPS) and various quorum sensing (QS) signaling molecules. Usually, bacterial and fungal cells are capable of forming biofilms. These biofilms are pathogenic. In the majority of the cases, biofilms cause nosocomial diseases. This review will focus on the antibiofilm activities of MSN, its mechanism of target-specific drug delivery, and its ability to disrupt the bacterial biofilms inhibiting the infection. The review will also discuss various mechanisms for the delivery of pharmaceutical molecules by the MSNs to inhibit the bacterial biofilms, and lastly, we will talk about the different types of MSNs and their antibiofilm activities.
Collapse
Affiliation(s)
- Moumita Sil
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, India
| | - Dipro Mukherjee
- Agricultural and Ecological Research Unit, Biological Sciences Division, Indian Statistical Institute, Kolkata, India
| | - Arunava Goswami
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, India
| | - Moupriya Nag
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, New Town, University of Engineering and Management, Kolkata, India
| | - Dibyajit Lahiri
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, New Town, University of Engineering and Management, Kolkata, India.
| | - Debasmita Bhattacharya
- Department of Basic Science and Humanities, Institute of Engineering and Management, Kolkata, Salt Lake, University of Engineering and Management, Kolkata, India
| |
Collapse
|
29
|
Hammami I, Jakka SK, Sá-Nogueira I, Borges JP, Graça MPF. The Effect of Iron Oxide Insertion on the In Vitro Bioactivity, and Antibacterial Properties of the 45S5 Bioactive Glass. Biomimetics (Basel) 2024; 9:325. [PMID: 38921205 PMCID: PMC11201570 DOI: 10.3390/biomimetics9060325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
The aging population and increasing incidence of trauma among younger age groups have heightened the increasing demand for reliable implant materials. Effective implant materials must demonstrate rapid osseointegration and strong antibacterial properties to ensure optimal patient outcomes and decrease the chance of implant rejection. This study aims to enhance the bone-implant interface by utilizing 45S5 bioglass modified with various concentrations of Fe3O4 as a coating material. The effect of the insertion of Fe3O4 into the bioglass structure was studied using Raman spectroscopy which shows that with the increase in Fe3O4 concentration, new vibration bands associated with Fe-related structural units appeared within the sample. The bioactivity of the prepared glasses was evaluated using immersion tests in simulated body fluid, revealing the formation of a calcium phosphate-rich layer within 24 h on the samples, indicating their potential for enhanced tissue integration. However, the sample modified with 8 mol% of Fe3O4 showed low reactivity, developing a calcium phosphate-rich layer within 96 h. All the bioglasses showed antibacterial activity against the Gram-positive and Gram-negative bacteria. The modified bioglass did not present significant antibacterial properties compared to the bioglass base.
Collapse
Affiliation(s)
- Imen Hammami
- I3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal; (I.H.); (S.K.J.)
| | - Suresh Kumar Jakka
- I3N and Physics Department, Aveiro University, 3810-193 Aveiro, Portugal; (I.H.); (S.K.J.)
| | - Isabel Sá-Nogueira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - João Paulo Borges
- I3N-CENIMAT and Materials Science Department, NOVA School of Science and Technology, Campus de Caparica, Nova University Lisbon, 2829-516 Caparica, Portugal;
| | | |
Collapse
|
30
|
Ding Z, Song Q, Wang G, Zhong Z, Zhong G, Li H, Chen Y, Zhou X, Liu L, Yang S. Synthesis of organic-inorganic hybrid nanocomposites modified by catalase-like catalytic sites for the controlling of kiwifruit bacterial canker. RSC Adv 2024; 14:17571-17582. [PMID: 38828279 PMCID: PMC11140456 DOI: 10.1039/d4ra02006e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024] Open
Abstract
Kiwifruit bacterial canker, caused by Pseudomonas syringae pv. Actinidiae (Psa), is one of the most important diseases in kiwifruit, creating huge economic losses to kiwifruit-growing countries around the world. Metal-based nanomaterials offer a promising alternative strategy to combat plant diseases induced by bacterial infection. However, it is still challenging to design highly active nanomaterials for controlling kiwifruit bacterial canker. Here, a novel multifunctional nanocomposite (ZnO@PDA-Mn) is designed that integrates the antibacterial activity of zinc oxide nanoparticles (ZnO NPs) with the plant reactive oxygen species scavenging ability of catalase (CAT) enzyme-like active sites through introducing manganese modified polydopamine (PDA) coating. The results reveal that ZnO@PDA-Mn nanocomposites can efficiently catalyze the conversion of H2O2 to O2 and H2O to achieve excellent CAT-like activity. In vitro experiments demonstrate that ZnO@PDA-Mn nanocomposites maintain the antibacterial activity of ZnO NPs and induce significant damage to bacterial cell membranes. Importantly, ZnO@PDA-Mn nanocomposites display outstanding curative and protective efficiencies of 47.7% and 53.8% at a dose of 200 μg mL-1 against Psa in vivo, which are superior to those of zinc thiozole (20.6% and 8.8%) and ZnO (38.7% and 33.8%). The nanocomposites offer improved in vivo control efficacy through direct bactericidal effects and decreasing oxidative damage in plants induced by bacterial infection. Our research underscores the potential of nanocomposites containing CAT-like active sites in plant protection, offering a promising strategy for sustainable disease management in agriculture.
Collapse
Affiliation(s)
- Zhenghao Ding
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Qingqing Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Guangdi Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Zhuojun Zhong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Guoyong Zhong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Yuexin Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Liwei Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Song Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| |
Collapse
|
31
|
Qin H, Teng Y, Dai R, Wang A, Liu J. Glycan-based scaffolds and nanoparticles as drug delivery system in cancer therapy. Front Immunol 2024; 15:1395187. [PMID: 38799466 PMCID: PMC11116596 DOI: 10.3389/fimmu.2024.1395187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Glycan-based scaffolds are unique in their high specificity, versatility, low immunogenicity, and ability to mimic natural carbohydrates, making them attractive candidates for use in cancer treatment. These scaffolds are made up of glycans, which are biopolymers with well biocompatibility in the human body that can be used for drug delivery. The versatility of glycan-based scaffolds allows for the modulation of drug activity and targeted delivery to specific cells or tissues, which increases the potency of drugs and reduces side effects. Despite their promise, there are still technical challenges in the design and production of glycan-based scaffolds, as well as limitations in their therapeutic efficacy and specificity.
Collapse
Affiliation(s)
- Henan Qin
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yibin Teng
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Rui Dai
- Department of Pharmacy, Peking Union Medical University Hospital, Beijing, China
| | - Aman Wang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
32
|
Sandhu ZA, Raza MA, Alqurashi A, Sajid S, Ashraf S, Imtiaz K, Aman F, Alessa AH, Shamsi MB, Latif M. Advances in the Optimization of Fe Nanoparticles: Unlocking Antifungal Properties for Biomedical Applications. Pharmaceutics 2024; 16:645. [PMID: 38794307 PMCID: PMC11124843 DOI: 10.3390/pharmaceutics16050645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, nanotechnology has achieved a remarkable status in shaping the future of biological applications, especially in combating fungal diseases. Owing to excellence in nanotechnology, iron nanoparticles (Fe NPs) have gained enormous attention in recent years. In this review, we have provided a comprehensive overview of Fe NPs covering key synthesis approaches and underlying working principles, the factors that influence their properties, essential characterization techniques, and the optimization of their antifungal potential. In addition, the diverse kinds of Fe NP delivery platforms that command highly effective release, with fewer toxic effects on patients, are of great significance in the medical field. The issues of biocompatibility, toxicity profiles, and applications of optimized Fe NPs in the field of biomedicine have also been described because these are the most significant factors determining their inclusion in clinical use. Besides this, the difficulties and regulations that exist in the transition from laboratory to experimental clinical studies (toxicity, specific standards, and safety concerns) of Fe NPs-based antifungal agents have been also summarized.
Collapse
Affiliation(s)
- Zeshan Ali Sandhu
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Muhammad Asam Raza
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Abdulmajeed Alqurashi
- Department of Biology, College of Science, Taibah University, Madinah 42353, Saudi Arabia;
| | - Samavia Sajid
- Department of Chemistry, Faculty of Science, University of Engineering and Technology, Lahore 54890, Pakistan;
| | - Sufyan Ashraf
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Kainat Imtiaz
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Farhana Aman
- Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha 40100, Pakistan;
| | - Abdulrahman H. Alessa
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Monis Bilal Shamsi
- Centre for Genetics and Inherited Diseases (CGID), Taibah University, Madinah 42353, Saudi Arabia;
- Department Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia
| | - Muhammad Latif
- Centre for Genetics and Inherited Diseases (CGID), Taibah University, Madinah 42353, Saudi Arabia;
- Department Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia
| |
Collapse
|
33
|
Barrera G, Allia P, Tiberto P. Magnetic nanoparticles in square-wave fields for breakthrough performance in hyperthermia and magnetic particle imaging. Sci Rep 2024; 14:10704. [PMID: 38730042 PMCID: PMC11636937 DOI: 10.1038/s41598-024-61580-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/07/2024] [Indexed: 05/12/2024] Open
Abstract
Driving immobilized, single-domain magnetic nanoparticles at high frequency by square wave fields instead of sinusoidal waveforms leads to qualitative and quantitative improvements in their performance both as point-like heat sources for magnetic hyperthermia and as sensing elements in frequency-resolved techniques such as magnetic particle imaging and magnetic particle spectroscopy. The time evolution and the frequency spectrum of the cyclic magnetization of magnetite nanoparticles with random easy axes are obtained by means of a rate-equation method able to describe time-dependent effects for the particle sizes and frequencies of interest in most applications to biomedicine. In the presence of a high-frequency square-wave field, the rate equations are shown to admit an analytical solution and the periodic magnetization can be therefore described with accuracy, allowing one to single out effects which take place on different timescales. Magnetic hysteresis effects arising from the specific features of the square-wave driving field results in a breakthrough improvement of both the magnetic power released as heat to an environment in magnetic hyperthermia treatments and the magnitude of the third harmonic of the frequency spectrum of the magnetization, which plays a central role in magnetic particle imaging.
Collapse
Affiliation(s)
- Gabriele Barrera
- INRiM, Advanced Materials Metrology and Life Sciences, Turin, Italy.
| | - Paolo Allia
- INRiM, Advanced Materials Metrology and Life Sciences, Turin, Italy
| | - Paola Tiberto
- INRiM, Advanced Materials Metrology and Life Sciences, Turin, Italy
| |
Collapse
|
34
|
Bică G, Rogoveanu OC, Gherghina FL, Pisoschi CG, Buteică SA, Biță CE, Paliu IA, Mîndrilă I. The Histological and Biochemical Assessment of Monoiodoacetate-Induced Knee Osteoarthritis in a Rat Model Treated with Salicylic Acid-Iron Oxide Nanoparticles. BIOLOGY 2024; 13:331. [PMID: 38785813 PMCID: PMC11117951 DOI: 10.3390/biology13050331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Iron oxide nanoparticles (IONPs) represent an important advance in the field of medicine with application in both diagnostic and drug delivery domains, offering a therapeutic approach that effectively overcomes physical and biological barriers. The current study aimed to assess whether oral administration of salicylic acid-functionalized iron oxide nanoparticles (SaIONPs) may exhibit beneficial effects in alleviating histological lesions in a murine monoiodoacetate (MIA) induced knee osteoarthritis model. In order to conduct our study, 15 Wistar male rats were randomly distributed into 3 work groups: Sham (S), MIA, and NP. At the end of the experiments, all animals were sacrificed for blood, knee, and liver sampling. Our results have shown that SaIONPs reached the targeted sites and also had a chondroprotective effect represented by less severe histological lesions regarding cellularity, altered structure morphology, and proteoglycan depletion across different layers of the knee joint cartilage tissue. Moreover, SaIONPs induced a decrease in malondialdehyde (MDA) and circulating Tumor Necrosis Factor-α (TNF-α) levels. The findings of this study suggest the therapeutic potential of SaIONPs knee osteoarthritis treatment; further studies are needed to establish a correlation between the administrated dose of SaIONPs and the improvement of the morphological and biochemical parameters.
Collapse
Affiliation(s)
- George Bică
- Department of Physical Medicine and Rehabilitation, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania; (G.B.); (O.-C.R.); (F.-L.G.)
| | - Otilia-Constantina Rogoveanu
- Department of Physical Medicine and Rehabilitation, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania; (G.B.); (O.-C.R.); (F.-L.G.)
| | - Florin-Liviu Gherghina
- Department of Physical Medicine and Rehabilitation, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania; (G.B.); (O.-C.R.); (F.-L.G.)
| | - Cătălina-Gabriela Pisoschi
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania;
| | - Sandra-Alice Buteică
- Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania
| | - Cristina-Elena Biță
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania;
| | - Iulia-Alexandra Paliu
- Department of Pharmacology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania;
| | - Ion Mîndrilă
- Department of Anatomy, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania;
| |
Collapse
|
35
|
Ghaznavi H, Afzalipour R, Khoei S, Sargazi S, Shirvalilou S, Sheervalilou R. New insights into targeted therapy of glioblastoma using smart nanoparticles. Cancer Cell Int 2024; 24:160. [PMID: 38715021 PMCID: PMC11077767 DOI: 10.1186/s12935-024-03331-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
In recent times, the intersection of nanotechnology and biomedical research has given rise to nanobiomedicine, a captivating realm that holds immense promise for revolutionizing diagnostic and therapeutic approaches in the field of cancer. This innovative fusion of biology, medicine, and nanotechnology aims to create diagnostic and therapeutic agents with enhanced safety and efficacy, particularly in the realm of theranostics for various malignancies. Diverse inorganic, organic, and hybrid organic-inorganic nanoparticles, each possessing unique properties, have been introduced into this domain. This review seeks to highlight the latest strides in targeted glioblastoma therapy by focusing on the application of inorganic smart nanoparticles. Beyond exploring the general role of nanotechnology in medical applications, this review delves into groundbreaking strategies for glioblastoma treatment, showcasing the potential of smart nanoparticles through in vitro studies, in vivo investigations, and ongoing clinical trials.
Collapse
Affiliation(s)
- Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Reza Afzalipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
- Department of Radiology, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Samideh Khoei
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sakine Shirvalilou
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
36
|
Jadhav V, Roy A, Kaur K, Roy A, Sharma K, Verma R, Rustagi S, Malik S. Current advancements in functional nanomaterials for drug delivery systems. NANO-STRUCTURES & NANO-OBJECTS 2024; 38:101177. [DOI: 10.1016/j.nanoso.2024.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
|
37
|
Kumar P, Thakur N, Kumar K, Kumar S, Dutt A, Thakur VK, Gutiérrez-Rodelo C, Thakur P, Navarrete A, Thakur N. Catalyzing innovation: Exploring iron oxide nanoparticles - Origins, advancements, and future application horizons. Coord Chem Rev 2024; 507:215750. [DOI: 10.1016/j.ccr.2024.215750] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
38
|
Thirumurugan S, Ramanathan S, Muthiah KS, Lin YC, Hsiao M, Dhawan U, Wang AN, Liu WC, Liu X, Liao MY, Chung RJ. Inorganic nanoparticles for photothermal treatment of cancer. J Mater Chem B 2024; 12:3569-3593. [PMID: 38494982 DOI: 10.1039/d3tb02797j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In recent years, inorganic nanoparticles (NPs) have attracted increasing attention as potential theranostic agents in the field of oncology. Photothermal therapy (PTT) is a minimally invasive technique that uses nanoparticles to produce heat from light to kill cancer cells. PTT requires two essential elements: a photothermal agent (PTA) and near-infrared (NIR) radiation. The role of PTAs is to absorb NIR, which subsequently triggers hyperthermia within cancer cells. By raising the temperature in the tumor microenvironment (TME), PTT causes damage to the cancer cells. Nanoparticles (NPs) are instrumental in PTT given that they facilitate the passive and active targeting of the PTA to the TME, making them crucial for the effectiveness of the treatment. In addition, specific targeting can be achieved through their enhanced permeation and retention effect. Thus, owing to their significant advantages, such as altering the morphology and surface characteristics of nanocarriers comprised of PTA, NPs have been exploited to facilitate tumor regression significantly. This review highlights the properties of PTAs, the mechanism of PTT, and the results obtained from the improved curative efficacy of PTT by utilizing NPs platforms.
Collapse
Affiliation(s)
- Senthilkumar Thirumurugan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd, Taipei 10608, Taiwan.
| | - Susaritha Ramanathan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd, Taipei 10608, Taiwan.
| | - Kayalvizhi Samuvel Muthiah
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd, Taipei 10608, Taiwan.
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd, Taipei 10608, Taiwan.
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Udesh Dhawan
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G116EW, UK
| | - An-Ni Wang
- Scrona AG, Grubenstrasse 9, 8045 Zürich, Switzerland
| | - Wai-Ching Liu
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, New Territories, Hong Kong 999077, China
| | - Xinke Liu
- College of Materials Science and Engineering, Chinese Engineering and Research Institute of Microelectronics, Shenzhen University, Shenzhen 518060, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Mei-Yi Liao
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd, Taipei 10608, Taiwan.
- High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 106, Taiwan
| |
Collapse
|
39
|
Wu X, Choe H, Strayer J, Gómez-Pastora J, Zborowski M, Wyslouzil B, Chalmers J. Numerical modeling and in situ small angle X-ray scattering characterization of ultra-small SPION magnetophoresis in a high field and gradient separator. NANOSCALE 2024; 16:7041-7057. [PMID: 38444246 PMCID: PMC10993306 DOI: 10.1039/d3nr05589b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024]
Abstract
Magnetic nanoparticles (MNPs) have recently gained significant attention in various fields, including chemical and biomedical applications, due to their exceptional properties. However, separating MNPs from solution via magnetophoresis is challenging when MNPs are smaller than 50 nm as Brownian forces become on the order of the magnetic forces. In this study, we successfully separated small MNPs (5-30 nm) by utilizing high magnetic fields and gradients generated by economical permanent magnets. In situ small angle X-ray scattering (SAXS) was used to investigate the time-dependent concentration changes in the ferrofluid, and the results validated that only the 30 nm particles experienced particle aggregation or agglomeration, indicating that dipole-dipole interactions did not play a discernable role in the separation process for particles smaller than ∼15 nm. However, numerical simulations have provided further validation that in the absence of particle-particle interactions, even MNPs with diameters less than 15 nm exhibited magnetophoresis that effectively counteracted the effects of Brownian motion.
Collapse
Affiliation(s)
- Xian Wu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA.
| | - Hyeon Choe
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA.
| | - Jacob Strayer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA.
| | - Jenifer Gómez-Pastora
- Department of Chemical Engineering, Texas Tech University, 2500 Broadway Lubbock, Texas 79409, USA
| | - Maciej Zborowski
- Department of Biomedical Engineering, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Barbara Wyslouzil
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA.
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Jeffrey Chalmers
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
40
|
Hussan, Nisa S, Bano SA, Zia M. Chemically synthesized ciprofloxacin-PEG-FeO nanotherapeutic exhibits strong antibacterial and controlled cytotoxic effects. Nanomedicine (Lond) 2024; 19:875-893. [PMID: 38530883 DOI: 10.2217/nnm-2023-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
Aim: To develop a biocompatible conjugated ciprofloxacin-PEG-FeO nanodelivery system with increased efficacy of available therapeutics in a controlled manner. Materials & methods: FeO nanoparticles were synthesized by chemical and biological methods and modified as ciprofloxacin-PEG-FeO nanoformulations. After initial antibacterial and cytotoxicity studies, the effective and biocompatible nanoformulations was further fabricated as nanotherapeutics for in vivo studies in mouse models. Results: Chemically synthesized ciprofloxacin-PEG-FeO nanoformulations demonstrated boosted antibacterial activity against clinically isolated bacterial strains. Nanoformulations were also found to be compatible with baby hamster kidney 21 cells and red blood cells. In in vivo studies, nanotherapeutic showed wound-healing effects with eradication of Staphylococcus aureus infection. Conclusion: The investigations indicate that the developed nanotherapeutic can eradicate localized infections and enhance wound healing with controlled cytotoxicity.
Collapse
Affiliation(s)
- Hussan
- Department of Microbiology, University of Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Sobia Nisa
- Department of Microbiology, University of Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Syeda Asma Bano
- Department of Microbiology, University of Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid e Azam University Islamabad, Islamabad, 15320, Pakistan
| |
Collapse
|
41
|
Hu Y, Yang R, Liu S, Song Z, Wang H. The Emerging Roles of Nanocarrier Drug Delivery System in Treatment of Intervertebral Disc Degeneration-Current Knowledge, Hot Spots, Challenges and Future Perspectives. Drug Des Devel Ther 2024; 18:1007-1022. [PMID: 38567254 PMCID: PMC10986407 DOI: 10.2147/dddt.s448807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Low back pain (LBP) is a common condition that has substantial consequences on individuals and society, both socially and economically. The primary contributor to LBP is often identified as intervertebral disc degeneration (IVDD), which worsens and leads to significant spinal problems. The conventional treatment approach for IVDD involves physiotherapy, drug therapy for pain management, and, in severe cases, surgery. However, none of these treatments address the underlying cause of the condition, meaning that they cannot fundamentally reverse IVDD or restore the mechanical function of the spine. Nanotechnology and regenerative medicine have made significant advancements in the field of healthcare, particularly in the area of nanodrug delivery systems (NDDSs). These approaches have demonstrated significant potential in enhancing the efficacy of IVDD treatments by providing benefits such as high biocompatibility, biodegradability, precise drug delivery to targeted areas, prolonged drug release, and improved therapeutic results. The advancements in different NDDSs designed for delivering various genes, cells, proteins and therapeutic drugs have opened up new opportunities for effectively addressing IVDD. This comprehensive review provides a consolidated overview of the recent advancements in the use of NDDSs for the treatment of IVDD. It emphasizes the potential of these systems in overcoming the challenges associated with this condition. Meanwhile, the insights and ideas presented in this review aim to contribute to the advancement of precise IVDD treatment using NDDSs.
Collapse
Affiliation(s)
- Yunxiang Hu
- Department of Orthopedics, Central Hospital of Dalian University of Technology, Dalian City, Liaoning Province, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian City, Liaoning Province, People’s Republic of China
| | - Rui Yang
- Department of Orthopedics, Central Hospital of Dalian University of Technology, Dalian City, Liaoning Province, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian City, Liaoning Province, People’s Republic of China
| | - Sanmao Liu
- Department of Orthopedics, Central Hospital of Dalian University of Technology, Dalian City, Liaoning Province, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian City, Liaoning Province, People’s Republic of China
| | - Zefeng Song
- School of Graduates, Dalian University of Technology, Dalian City, Liaoning Province, People’s Republic of China
| | - Hong Wang
- Department of Orthopedics, Central Hospital of Dalian University of Technology, Dalian City, Liaoning Province, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian City, Liaoning Province, People’s Republic of China
| |
Collapse
|
42
|
Rezazadeh N, Alizadeh E, Soltani S, Davaran S, Esfandiari N. Synthesis and characterization of a magnetic bacterial cellulose-chitosan nanocomposite and evaluation of its applicability for osteogenesis. BIOIMPACTS : BI 2024; 14:30159. [PMID: 39493895 PMCID: PMC11530965 DOI: 10.34172/bi.2024.30159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 11/05/2024]
Abstract
Introduction Natural biopolymers are used for various purposes in healthcare, such as tissue engineering, drug delivery, and wound healing. Bacterial cellulose and chitosan were preferred in this study due to their non-cytotoxic, biodegradable, biocompatible, and non-inflammatory properties. The study reports the development of a magnetic bacterial cellulose-chitosan (BC-CS-Fe3O4) nanocomposite that can be used as a biocompatible scaffold for tissue engineering. Iron oxide nanoparticles were included in the composite to provide superparamagnetic properties that are useful in a variety of applications, including osteogenic differentiation, magnetic imaging, drug delivery, and thermal induction for cancer treatment. Methods The magnetic nanocomposite was prepared by immersing Fe3O4 in a mixture of bacterial cellulose-chitosan scaffold and then freeze-drying it. The resulting nanocomposite was characterized using FE-SEM and FTIR techniques. The swelling ratio and mechanical strength of the scaffolds were evaluated experimentally. The biodegradability of the scaffolds was assessed using PBS for 8 weeks at 37°C. The cytotoxicity and osteogenic differentiation of the nanocomposite were studied using human adipose-derived mesenchymal stem cells (ADSCs) and alizarin red staining. One-way ANOVA with Tukey's multiple comparisons test was used for statistical analysis. Results The FTIR spectra demonstrated the formation of bonds between functional groups of nanoparticles. FE-SEM images showed the integrity of the fibrillar network. The magnetic nanocomposite has the highest swelling ratio (2445% ± 23.34) and tensile strength (5.08 MPa). After 8 weeks, the biodegradation ratios of BC, BC-CS, and BC-CS-Fe3O4 scaffolds were 0.75% ± 0.35, 2.5% ± 0.1, and 9.5% ± 0.7, respectively. Magnetic nanocomposites have low toxicity (P < 0.0001) and higher osteogenic potential compared to other scaffolds. Conclusion Based on its high tensile strength, low water absorption, suitable degradability, low cytotoxicity, and high ability to induce an increase in calcium deposits by stem cells, the magnetic BC-CS-Fe3O4 nanocomposite scaffold can be a suitable candidate as a biomaterial for osteogenic differentiation.
Collapse
Affiliation(s)
- Nahid Rezazadeh
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somaieh Soltani
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Neda Esfandiari
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
43
|
Zeng B, Li Y, Xia J, Xiao Y, Khan N, Jiang B, Liang Y, Duan L. Micro Trojan horses: Engineering extracellular vesicles crossing biological barriers for drug delivery. Bioeng Transl Med 2024; 9:e10623. [PMID: 38435823 PMCID: PMC10905561 DOI: 10.1002/btm2.10623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/05/2023] [Accepted: 11/09/2023] [Indexed: 03/05/2024] Open
Abstract
The biological barriers of the body, such as the blood-brain, placental, intestinal, skin, and air-blood, protect against invading viruses and bacteria while providing necessary physical support. However, these barriers also hinder the delivery of drugs to target tissues, reducing their therapeutic efficacy. Extracellular vesicles (EVs), nanostructures with a diameter ranging from 30 nm to 10 μm secreted by cells, offer a potential solution to this challenge. These natural vesicles can effectively pass through various biological barriers, facilitating intercellular communication. As a result, artificially engineered EVs that mimic or are superior to the natural ones have emerged as a promising drug delivery vehicle, capable of delivering drugs to almost any body part to treat various diseases. This review first provides an overview of the formation and cross-species uptake of natural EVs from different organisms, including animals, plants, and bacteria. Later, it explores the current clinical applications, perspectives, and challenges associated with using engineered EVs as a drug delivery platform. Finally, it aims to inspire further research to help bioengineered EVs effectively cross biological barriers to treat diseases.
Collapse
Affiliation(s)
- Bin Zeng
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Ying Li
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Jiang Xia
- Department of ChemistryThe Chinese University of Hong Kong, ShatinHong Kong SARChina
| | - Yin Xiao
- School of Medicine and Dentistry & Menzies Health Institute Queensland, SouthportGold CoastQueenslandAustralia
| | - Nawaz Khan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Bin Jiang
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- R&D Division, Eureka Biotech Inc, PhiladelphiaPennsylvaniaUSA
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning HospitalShenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare and Shenzhen Institute of Mental HealthShenzhenGuangdongChina
| | - Li Duan
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| |
Collapse
|
44
|
Akbari M, Rezayan AH, Rastegar H, Alebouyeh M, Yahyaei M. Design and synthesis of vancomycin-functionalized ZnFe 2 O 4 nanoparticles as an effective antibacterial agent against methicillin-resistant Staphylococcus aureus. Drug Dev Res 2024; 85:e22148. [PMID: 38349268 DOI: 10.1002/ddr.22148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/30/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024]
Abstract
The emergence of antibiotic-resistant bacterial infections is a principal threat to global health. Functionalization of nanomaterial with antibiotics is known as a useful method for increasing the effectiveness of existing antibiotics. In this study, vancomycin-functionalized ZnFe2 O4 nanocomposite (ZnFe2 O4 @Cell@APTES@Van) was synthesized, and its functional groups and particle size were characterized using Fourier-transform infrared spectroscopy, thermogravimetric analysis, dynamic light scattering, scanning electron microscope, and transmission electron microscopy. The antibacteria activity of the synthesized nanocomposite was evaluated using minimum inhibitory concentration and minimum bactericidal concentration against Escherichia coli, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus (MRSA). Cytotoxicity assay was done by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide method. Characterization analyses of synthesized nanocomposite confirmed the binding of vancomysin on the surface of ZnFe2 O4 @Cell@APTES. Nanocomposite exhibited an aggregated semi-spherical structure with hydrodynamic radii of ∼382 nm. In vitro antibacterial activity test showed that vancomycin and vancomycin functionalized ZnFe2 O4 have no antibacterial effect against E. coli. S. aureus was sensitive to vancomycin and ZnFe2 O4 @Cell@APTES@Van NPs and ZnFe2 O4 NPs did not improve vancomycin antibacterial activity against these bacteria. MRSA is resistant to vancomycin while ZnFe2 O4 @Cell@APTES@Van NPs was efficient in inhibiting MRSA growth. In summary, this study showed that attachment of vancomycin to ZnFe2 O4 NPs was increased its antibacterial activity against MRSA.
Collapse
Affiliation(s)
- Minoo Akbari
- Department of Nanobiotechnology and Biomimetics, Faculty of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Ali Hossein Rezayan
- Department of Nanobiotechnology and Biomimetics, Faculty of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Mahmoud Alebouyeh
- Cosmetic Products Research Center, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Mohammad Yahyaei
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| |
Collapse
|
45
|
Mu Q, Deng H, An X, Liu G, Liu C. Designing nanodiscs as versatile platforms for on-demand therapy. NANOSCALE 2024; 16:2220-2234. [PMID: 38192208 DOI: 10.1039/d3nr05457h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Nowadays, there has been an increasing utilization of nanomedicines for disease treatment. Nanodiscs (NDs) have emerged as a novel platform technology that garners significant attention in biomedical research and drug discovery. NDs are nanoscale phospholipid bilayer discs capable of incorporating membrane proteins and lipids within a native-like environment. They are assembled using amphiphilic biomacromolecular materials, such as apolipoprotein A1 or membrane scaffold proteins (MSPs), peptides, and styrene-maleic acid polymers (SMAs). NDs possess well-defined sizes and shapes, offering a stable, homogeneous, and biologically relevant environment for studying membrane proteins and lipids. Their unique properties have made them highly desirable for diverse applications, including cancer immunotherapy, vaccine development, antibacterial and antiviral therapy, and treating Alzheimer's disease (AD) and diabetes-related conditions. This review discusses the classifications, advantages, and applications of NDs in disease therapy.
Collapse
Affiliation(s)
- Qianwen Mu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Haolan Deng
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaoyu An
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chao Liu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| |
Collapse
|
46
|
Dhayalan M, Wang W, Riyaz SUM, Dinesh RA, Shanmugam J, Irudayaraj SS, Stalin A, Giri J, Mallik S, Hu R. Advances in functional lipid nanoparticles: from drug delivery platforms to clinical applications. 3 Biotech 2024; 14:57. [PMID: 38298556 PMCID: PMC10825110 DOI: 10.1007/s13205-023-03901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024] Open
Abstract
Since Doxil's first clinical approval in 1995, lipid nanoparticles have garnered great interest and shown exceptional therapeutic efficacy. It is clear from the licensure of two RNA treatments and the mRNA-COVID-19 vaccination that lipid nanoparticles have immense potential for delivering nucleic acids. The review begins with a list of lipid nanoparticle types, such as liposomes and solid lipid nanoparticles. Then it moves on to the earliest lipid nanoparticle forms, outlining how lipid is used in a variety of industries and how it is used as a versatile nanocarrier platform. Lipid nanoparticles must then be functionally modified. Various approaches have been proposed for the synthesis of lipid nanoparticles, such as High-Pressure Homogenization (HPH), microemulsion methods, solvent-based emulsification techniques, solvent injection, phase reversal, and membrane contractors. High-pressure homogenization is the most commonly used method. All of the methods listed above follow four basic steps, as depicted in the flowchart below. Out of these four steps, the process of dispersing lipids in an aqueous medium to produce liposomes is the most unpredictable step. A short outline of the characterization of lipid nanoparticles follows discussions of applications for the trapping and transporting of various small molecules. It highlights the use of rapamycin-coated lipid nanoparticles in glioblastoma and how lipid nanoparticles function as a conjugator in the delivery of anticancer-targeting nucleic acids. High biocompatibility, ease of production, scalability, non-toxicity, and tailored distribution are just a meager of the enticing allowances of using lipid nanoparticles as drug delivery vehicles. Due to the present constraints in drug delivery, more research is required to utterly realize the potential of lipid nanoparticles for possible clinical and therapeutic purposes.
Collapse
Affiliation(s)
- Manikandan Dhayalan
- Department of Prosthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (Saveetha University), Chennai, Tamil Nadu 600 077 India
- College of Public Health Sciences (CPHS), Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok 10330 Thailand
| | - Wei Wang
- Beidahuang Industry Group General Hospital, Harbin, 150001 China
| | - S. U. Mohammed Riyaz
- Department of Prosthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (Saveetha University), Chennai, Tamil Nadu 600 077 India
- PG & Research Department of Biotechnology, Islamiah College (Autonomous), Vaniyambadi, Tamil Nadu 635752 India
| | - Rakshi Anuja Dinesh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072 Australia
| | - Jayashree Shanmugam
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu India
| | | | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Jayant Giri
- Department of Mechanical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, India
| | - Saurav Mallik
- Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA USA
| | - Ruifeng Hu
- Department of Neurology, Harvard Medical School, Boston, MA USA
| |
Collapse
|
47
|
Menichetti A, Mordini D, Montalti M. Polydopamine Nanosystems in Drug Delivery: Effect of Size, Morphology, and Surface Charge. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:303. [PMID: 38334574 PMCID: PMC10856634 DOI: 10.3390/nano14030303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Recently, drug delivery strategies based on nanomaterials have attracted a lot of interest in different kinds of therapies because of their superior properties. Polydopamine (PDA), one of the most interesting materials in nanomedicine because of its versatility and biocompatibility, has been widely investigated in the drug delivery field. It can be easily functionalized to favor processes like cellular uptake and blood circulation, and it can also induce drug release through two kinds of stimuli: NIR light irradiation and pH. In this review, we describe PDA nanomaterials' performance on drug delivery, based on their size, morphology, and surface charge. Indeed, these characteristics strongly influence the main mechanisms involved in a drug delivery system: blood circulation, cellular uptake, drug loading, and drug release. The understanding of the connections between PDA nanosystems' properties and these phenomena is pivotal to obtain a controlled design of new nanocarriers based on the specific drug delivery applications.
Collapse
Affiliation(s)
| | | | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.)
| |
Collapse
|
48
|
Li F, Wang Y, Chen D, Du Y. Nanoparticle-Based Immunotherapy for Reversing T-Cell Exhaustion. Int J Mol Sci 2024; 25:1396. [PMID: 38338674 PMCID: PMC10855737 DOI: 10.3390/ijms25031396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
T-cell exhaustion refers to a state of T-cell dysfunction commonly observed in chronic infections and cancer. Immune checkpoint molecules blockading using PD-1 and TIM-3 antibodies have shown promising results in reversing exhaustion, but this approach has several limitations. The treatment of T-cell exhaustion is still facing great challenges, making it imperative to explore new therapeutic strategies. With the development of nanotechnology, nanoparticles have successfully been applied as drug carriers and delivery systems in the treatment of cancer and infectious diseases. Furthermore, nanoparticle-based immunotherapy has emerged as a crucial approach to reverse exhaustion. Here, we have compiled the latest advances in T-cell exhaustion, with a particular focus on the characteristics of exhaustion that can be targeted. Additionally, the emerging nanoparticle-based delivery systems were also reviewed. Moreover, we have discussed, in detail, nanoparticle-based immunotherapies that aim to reverse exhaustion, including targeting immune checkpoint blockades, remodeling the tumor microenvironment, and targeting the metabolism of exhausted T cells, etc. These data could aid in comprehending the immunopathogenesis of exhaustion and accomplishing the objective of preventing and treating chronic diseases or cancer.
Collapse
Affiliation(s)
- Fei Li
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Yahong Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (Y.W.); (D.C.)
| | - Dandan Chen
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (Y.W.); (D.C.)
| | - Yunjie Du
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China;
| |
Collapse
|
49
|
Jiao L, Sun Z, Sun Z, Liu J, Deng G, Wang X. Nanotechnology-based non-viral vectors for gene delivery in cardiovascular diseases. Front Bioeng Biotechnol 2024; 12:1349077. [PMID: 38303912 PMCID: PMC10830866 DOI: 10.3389/fbioe.2024.1349077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Gene therapy is a technique that rectifies defective or abnormal genes by introducing exogenous genes into target cells to cure the disease. Although gene therapy has gained some accomplishment for the diagnosis and therapy of inherited or acquired cardiovascular diseases, how to efficiently and specifically deliver targeted genes to the lesion sites without being cleared by the blood system remains challenging. Based on nanotechnology development, the non-viral vectors provide a promising strategy for overcoming the difficulties in gene therapy. At present, according to the physicochemical properties, nanotechnology-based non-viral vectors include polymers, liposomes, lipid nanoparticles, and inorganic nanoparticles. Non-viral vectors have an advantage in safety, efficiency, and easy production, possessing potential clinical application value when compared with viral vectors. Therefore, we summarized recent research progress of gene therapy for cardiovascular diseases based on commonly used non-viral vectors, hopefully providing guidance and orientation for future relevant research.
Collapse
Affiliation(s)
- Liping Jiao
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhuokai Sun
- Queen Mary School, Nanchang University, Nanchang, China
| | - Zhihong Sun
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jie Liu
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Guanjun Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Xiaozhong Wang
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
- School of Public Health, Nanchang University, Nanchang, China
| |
Collapse
|
50
|
Tasnim NT, Ferdous N, Rumon MMH, Shakil MS. The Promise of Metal-Doped Iron Oxide Nanoparticles as Antimicrobial Agent. ACS OMEGA 2024; 9:16-32. [PMID: 38222657 PMCID: PMC10785672 DOI: 10.1021/acsomega.3c06323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
Antibiotic resistance (AMR) is one of the pressing global public health concerns and projections indicate a potential 10 million fatalities by the year 2050. The decreasing effectiveness of commercially available antibiotics due to the drug resistance phenomenon has spurred research efforts to develop potent and safe antimicrobial agents. Iron oxide nanoparticles (IONPs), especially when doped with metals, have emerged as a promising avenue for combating microbial infections. Like IONPs, the antimicrobial activities of doped-IONPs are also linked to their surface charge, size, and shape. Doping metals on nanoparticles can alter the size and magnetic properties by reducing the energy band gap and combining electronic charges with spins. Furthermore, smaller metal-doped nanoparticles tend to exhibit enhanced antimicrobial activity due to their higher surface-to-volume ratio, facilitating greater interaction with bacterial cells. Moreover, metal doping can also lead to increased charge density in magnetic nanoparticles and thereby elevate reactive oxygen species (ROS) generation. These ROS play a vital role to disrupt bacterial cell membrane, proteins, or nucleic acids. In this review, we compared the antimicrobial activities of different doped-IONPs, elucidated their mechanism(s), and put forth opinions for improved biocompatibility.
Collapse
Affiliation(s)
- Nazifa Tabassum Tasnim
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Nushrat Ferdous
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Mahamudul Hasan Rumon
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Salman Shakil
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| |
Collapse
|