1
|
Mohana P, Singh A, Rashid F, Singh S, Kaur K, Rana R, Bedi PMS, Bedi N, Kaur R, Arora S. Inhibition of Virulence Associated Traits by β-Sitosterol Isolated from Hibiscus rosa-sinensis Flowers Against Candida albicans: Mechanistic Insight and Molecular Docking Studies. J Microbiol 2024; 62:1165-1175. [PMID: 39503955 DOI: 10.1007/s12275-024-00174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 12/18/2024]
Abstract
The emerging drug resistance and lack of safer and more potent antifungal agents make Candida infections another hot topic in the healthcare system. At the same time, the potential of plant products in developing novel antifungal drugs is also in the limelight. Considering these facts, we have investigated the different extracts of the flowers of Hibiscus rosa-sinensis of the Malvaceae family for their antifungal efficacy against five different pathogenic Candida strains. Among the various extracts, the chloroform extract showed the maximum zone of inhibition (26.6 ± 0.5 mm) against the Candida albicans strain. Furthermore, the chloroform fraction was isolated, and a sterol compound was identified as β-sitosterol. Mechanistic studies were conducted to understand the mechanism of action, and the results showed that β-sitosterol has significant antifungal activity and is capable of interrupting biofilm formation and acts by inhibiting ergosterol biosynthesis in Candida albicans cells. Microscopic and molecular docking studies confirmed these findings. Overall, the study validates the antifungal efficacy of Candida albicans due to the presence of β-sitosterol which can act as an effective constituent for antifungal drug development individually or in combination.
Collapse
Affiliation(s)
- Pallvi Mohana
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Farhana Rashid
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Sharabjit Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Rupali Rana
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | | | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Rajinder Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| |
Collapse
|
2
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
3
|
Hon KLE, Chan VPY, Leung AKC, Leung KKY, Hui WF. Invasive fungal infections in critically ill children: epidemiology, risk factors and antifungal drugs. Drugs Context 2024; 13:2023-9-2. [PMID: 38915918 PMCID: PMC11195526 DOI: 10.7573/dic.2023-9-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/20/2024] [Indexed: 06/26/2024] Open
Abstract
Background Invasive fungal infections (IFIs) are important infectious complications amongst critically ill children. The most common fungal infections are due to Candida species. Aspergillus, Zygomycetes and Fusarium are also emerging because of the empirical use of antifungal drugs. This updated review discusses the epidemiology of IFIs as well as antifungal drugs, dosing and potential adverse effects in critically ill children. Methods A PubMed search was conducted with Clinical Queries using the key terms "antifungal", "children", "critical care" AND "paediatric intensive care unit" OR "PICU". The search strategy included clinical trials, randomized controlled trials, meta-analyses, observational studies and reviews and was limited to the English literature in paediatrics. Results Candida and Aspergillus spp. are the most prevalent fungi in paediatric IFIs, causing invasive candidiasis infections (ICIs) and invasive aspergillosis infections (IAIs), respectively. These IFIs are associated with high morbidity, mortality and healthcare costs. Candida albicans is the principal Candida spp. associated with paediatric ICIs. The risks and epidemiology for IFIs vary if considering previously healthy children treated in the paediatric intensive care unit or children with leukaemia, malignancy or a severe haematological disease. The mortality rate for IAIs in children is 2.5-3.5-fold higher than for ICIs. Four major classes of antifungals for critically ill children are azoles, polyenes, antifungal antimetabolites and echinocandins. Conclusions Antifungal agents are highly efficacious. For successful treatment outcomes, it is crucial to determine the optimal dosage, monitor pharmacokinetics parameters and adverse effects, and individualized therapeutic monitoring. Despite potent antifungal medications, ICIs and IAIs continue to be serious infections with high mortality rates. Pre-emptive therapy has been used for IAIs. Most guidelines recommend voriconazole as initial therapy of invasive aspergillosis in most patients, with consideration of combination therapy with voriconazole plus an echinocandin in selected patients with severe disease. The challenge is to identify critically ill patients at high risks of ICIs for targeted prophylaxis. Intravenous/per os fluconazole is first-line pre-emptive treatment for Candida spp. whereas intravenous micafungin or intravenous liposomal amphotericin B is alternative pre-emptive treatment.This article is part of the Challenges and strategies in the management of invasive fungal infections Special Issue: https://www.drugsincontext.com/special_issues/challenges-and-strategies-in-the-management-of-invasive-fungal-infections.
Collapse
Affiliation(s)
- Kam Lun Ellis Hon
- Department of Paediatrics and Adolescent Medicine,
Hong Kong Children’s Hospital,
Hong Kong,
China
- Department of Paediatrics, CUHKMC, The Chinese University of
Hong Kong,
Hong Kong,
China
| | - Vivian PY Chan
- Department of Pharmacy,
Hong Kong Children’s Hospital,
Hong Kong,
China
| | - Alexander KC Leung
- Department of Pediatrics, The University of Calgary, and The Alberta Children’s Hospital, Calgary, Alberta,
Canada
| | - Karen Ka Yan Leung
- Department of Paediatrics and Adolescent Medicine,
Hong Kong Children’s Hospital,
Hong Kong,
China
| | - Wun Fung Hui
- Department of Paediatrics and Adolescent Medicine,
Hong Kong Children’s Hospital,
Hong Kong,
China
| |
Collapse
|
4
|
Dladla M, Gyzenhout M, Marias G, Ghosh S. Azole resistance in Aspergillus fumigatus- comprehensive review. Arch Microbiol 2024; 206:305. [PMID: 38878211 DOI: 10.1007/s00203-024-04026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
Aspergillus fumigatus is a ubiquitous filamentous fungus commonly found in the environment. It is also an opportunistic human pathogen known to cause a range of respiratory infections, such as invasive aspergillosis, particularly in immunocompromised individuals. Azole antifungal agents are widely used for the treatment and prophylaxis of Aspergillus infections due to their efficacy and tolerability. However, the emergence of azole resistance in A. fumigatus has become a major concern in recent years due to their association with increased treatment failures and mortality rates. The development of azole resistance in A. fumigatus can occur through both acquired and intrinsic mechanisms. Acquired resistance typically arises from mutations in the target enzyme, lanosterol 14-α-demethylase (Cyp51A), reduces the affinity of azole antifungal agents for the enzyme, rendering them less effective, while intrinsic resistance refers to a natural resistance of certain A. fumigatus isolates to azole antifungals due to inherent genetic characteristics. The current review aims to provide a comprehensive overview of azole antifungal resistance in A. fumigatus, discusses underlying resistance mechanisms, including alterations in the target enzyme, Cyp51A, and the involvement of efflux pumps in drug efflux. Impact of azole fungicide uses in the environment and the spread of resistant strains is also explored.
Collapse
Affiliation(s)
- Mthokozisi Dladla
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Marieka Gyzenhout
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Gert Marias
- Department of Plant Sciences, Division of Plant Pathology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Birkat Al Mawz, Oman.
| |
Collapse
|
5
|
Sharma G, Sharma R. Novel spiro[indoline-3,2'thiazolo[5,4-e]pyrimido[1,2-a] pyrimidine] derivatives as possible anti-dermatophytic and anti-candidiasis agent. BIOMEDITSINSKAIA KHIMIIA 2024; 70:180-186. [PMID: 38940208 DOI: 10.18097/pbmc20247003180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
A novel series of 5'-benzylidene-3'-phenylspiro[indoline-3,2'-thiazolidine]-2,4'(1H)-diones 6a-d and spiro[indoline-3,2'-thiazolo[5,4-e]pyrimido[1,2-a]pyrimidin]-2(1H)-one 9a-d derivatives have been synthesized. All the newly synthesized compounds were evaluated for antifungal and anti-candidiasis activity by using Disc Diffusion and Modified Microdilution methods. The antimicrobial experiments have shown that the synthesized compounds demonstrated broad-spectrum antifungal activity in vitro. Among them, compounds 9a-9d had stronger antifungal activity against Trichophyton rubrum, Trichophyton mentagrophytes, and Candida albicans; compounds 6a-d also showed significant antifungal activity against selected fungal strains as compared to ketoconazole, the reference antifungal drug. The evaluation of antifungal activity against drug-resistant fungal variants showed that the designed compounds had significant antifungal activity against the tested variants. The combination of compounds (6a-d) and (9a-d) exhibited that the synthesized compounds had synergistic effects or additive effects. These results demonstrated that the synthesized compounds were putative chitin synthase inhibitors exhibiting broad spectrum antifungal activities. The present results indicate that novel spiro pyrimidine derivatives can be used as an active pharmaceutical ingredient for novel drug candidate for treatment of dermatophytosis and other fungal agents.
Collapse
Affiliation(s)
- G Sharma
- Department of Chemistry, MPS International, Jaipur, India
| | - R Sharma
- Department of Microbiology, Mahatma Gandhi University of Medical Science and Technology
| |
Collapse
|
6
|
Owens SL, Ahmed SR, Lang Harman RM, Stewart LE, Mori S. Natural Products That Contain Higher Homologated Amino Acids. Chembiochem 2024; 25:e202300822. [PMID: 38487927 PMCID: PMC11386549 DOI: 10.1002/cbic.202300822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/13/2024] [Indexed: 04/11/2024]
Abstract
This review focuses on discussing natural products (NPs) that contain higher homologated amino acids (homoAAs) in the structure as well as the proposed and characterized biosynthesis of these non-proteinogenic amino acids. Homologation of amino acids includes the insertion of a methylene group into its side chain. It is not a very common modification found in NP biosynthesis as approximately 450 homoAA-containing NPs have been isolated from four bacterial phyla (Cyanobacteria, Actinomycetota, Myxococcota, and Pseudomonadota), two fungal phyla (Ascomycota and Basidiomycota), and one animal phylum (Porifera), except for a few examples. Amino acids that are found to be homologated and incorporated in the NP structures include the following ten amino acids: alanine, arginine, cysteine, isoleucine, glutamic acid, leucine, phenylalanine, proline, serine, and tyrosine, where isoleucine, leucine, phenylalanine, and tyrosine share the comparable enzymatic pathway. Other amino acids have their individual homologation pathway (arginine, proline, and glutamic acid for bacteria), likely utilize the primary metabolic pathway (alanine and glutamic acid for fungi), or have not been reported (cysteine and serine). Despite its possible high potential in the drug discovery field, the biosynthesis of homologated amino acids has a large room to explore for future combinatorial biosynthesis and metabolic engineering purpose.
Collapse
Affiliation(s)
- Skyler L Owens
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Shopno R Ahmed
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Rebecca M Lang Harman
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Laura E Stewart
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Shogo Mori
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| |
Collapse
|
7
|
Geremia N, Giovagnorio F, Colpani A, De Vito A, Caruana G, Meloni MC, Madeddu G, Panese S, Parisi SG. What do We Know about Cryptic Aspergillosis? Microorganisms 2024; 12:886. [PMID: 38792716 PMCID: PMC11124275 DOI: 10.3390/microorganisms12050886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Cryptic Aspergillus species are increasingly recognized as pathogens involved in human disease. They are ubiquitarian fungi with high tenacity in their environment and can express various resistance mechanisms, often due to exposure to antifungal agents employed in agriculture and farming. The identification of such species is increasing thanks to molecular techniques, and a better description of this type of pathogen is granted. Nevertheless, the number of species and their importance in the clinical setting still need to be well studied. Furthermore, their cross-sectional involvement in animal disease, plants, and human activities requires a multidisciplinary approach involving experts from various fields. This comprehensive review aims to provide a sharp vision of the cryptic Aspergillus species, from the importance of correct identification to the better management of the infections caused by these pathogens. The review also accentuates the importance of the One Health approach for this kind of microorganism, given the interconnection between environmental exposure and aspergillosis, embracing transversely the multidisciplinary process for managing the cryptic Aspergillus species. The paper advocates the need for improving knowledge in this little-known species, given the burden of economic and health implications related to the diffusion of these bugs.
Collapse
Affiliation(s)
- Nicholas Geremia
- Unit of Infectious Diseases, Department of Clinical Medicine, Ospedale Dell’Angelo, 30174 Venice, Italy;
- Unit of Infectious Diseases, Department of Clinical Medicine, Ospedale Civile “S.S. Giovanni e Paolo”, 30122 Venice, Italy
| | - Federico Giovagnorio
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (F.G.); (S.G.P.)
| | - Agnese Colpani
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (A.D.V.); (M.C.M.); (G.M.)
| | - Andrea De Vito
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (A.D.V.); (M.C.M.); (G.M.)
- Biomedical Science Department, School in Biomedical Science, University of Sassari, 07100 Sassari, Italy
| | - Giorgia Caruana
- Department of Laboratory Medicine and Pathology, Institute of microbiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland;
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Maria Chiara Meloni
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (A.D.V.); (M.C.M.); (G.M.)
| | - Giordano Madeddu
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (A.D.V.); (M.C.M.); (G.M.)
| | - Sandro Panese
- Unit of Infectious Diseases, Department of Clinical Medicine, Ospedale Dell’Angelo, 30174 Venice, Italy;
- Unit of Infectious Diseases, Department of Clinical Medicine, Ospedale Civile “S.S. Giovanni e Paolo”, 30122 Venice, Italy
| | | |
Collapse
|
8
|
Zheng L, Xu Y, Wang C, Yang F, Dong Y, Guo L. Susceptibility to caspofungin is regulated by temperature and is dependent on calcineurin in Candida albicans. Microbiol Spectr 2023; 11:e0179023. [PMID: 37966204 PMCID: PMC10715083 DOI: 10.1128/spectrum.01790-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE Echinocandins are the newest antifungal drugs and are first-line treatment option for life-threatening systemic infections. Due to lack of consensus regarding what temperature should be used when evaluating susceptibility of yeasts to echinocandins, typically either 30°C, 35°C, or 37°C is used. However, the impact of temperature on antifungal efficacy of echinocandins is unexplored. In the current study, we demonstrated that Candida albicans laboratory strain SC5314 was more susceptible to caspofungin at 37°C than at 30°C. We also found that calcineurin was required for temperature-modulated caspofungin susceptibility. Surprisingly, the altered caspofungin susceptibility was not due to differential expression of some canonical genes such as FKS, CHS, or CHT genes. The molecular mechanism of temperature-modulated caspofungin susceptibility is undetermined and deserves further investigations.
Collapse
Affiliation(s)
- Lijun Zheng
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Xu
- Department of Pharmacy, The 960 Hospital of PLA, Jinan, China
| | - Chen Wang
- Department of Pharmacy, The 960 Hospital of PLA, Jinan, China
| | - Feng Yang
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yubo Dong
- Department of Pharmacy, The 960 Hospital of PLA, Jinan, China
| | - Liangsheng Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Efremenko E, Aslanli A, Stepanov N, Senko O, Maslova O. Various Biomimetics, Including Peptides as Antifungals. Biomimetics (Basel) 2023; 8:513. [PMID: 37999154 PMCID: PMC10669293 DOI: 10.3390/biomimetics8070513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Biomimetics, which are similar to natural compounds that play an important role in the metabolism, manifestation of functional activity and reproduction of various fungi, have a pronounced attraction in the current search for new effective antifungals. Actual trends in the development of this area of research indicate that unnatural amino acids can be used as such biomimetics, including those containing halogen atoms; compounds similar to nitrogenous bases embedded in the nucleic acids synthesized by fungi; peptides imitating fungal analogs; molecules similar to natural substrates of numerous fungal enzymes and quorum-sensing signaling molecules of fungi and yeast, etc. Most parts of this review are devoted to the analysis of semi-synthetic and synthetic antifungal peptides and their targets of action. This review is aimed at combining and systematizing the current scientific information accumulating in this area of research, developing various antifungals with an assessment of the effectiveness of the created biomimetics and the possibility of combining them with other antimicrobial substances to reduce cell resistance and improve antifungal effects.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
| | | | | | | | | |
Collapse
|
10
|
Flanagan S, Walker H, Ong V, Sandison T. Absence of Clinically Meaningful Drug-Drug Interactions with Rezafungin: Outcome of Investigations. Microbiol Spectr 2023; 11:e0133923. [PMID: 37154682 PMCID: PMC10269561 DOI: 10.1128/spectrum.01339-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Rezafungin is a novel once-weekly echinocandin for intravenous injection currently in development for the treatment of Candida infections and the prevention of Candida, Aspergillus, and Pneumocystis infections in allogeneic blood and marrow transplant recipients. While in vitro data indicated that rezafungin exposure was unlikely to be affected by commonly prescribed medicines, interactions resulting in the altered systemic exposure of some drugs coadministered with rezafungin could not be excluded. Two phase 1 open label crossover studies, conducted in healthy subjects, examined drug interactions between rezafungin and multiple drug probe cytochrome P450 (CYP) substrates and/or transporter proteins, immunosuppressants, and cancer therapies. Statistical analysis compared the outcomes for drugs coadministered with rezafungin to those for the drugs administered alone. The geometric mean ratio was reported, and a default 90% confidence interval (CI) no-effect equivalence range of 80 to 125% was used for the maximal plasma concentration (Cmax), the area under the curve from time zero to the final sampling time point (AUC0-t), and the AUC from time zero to infinity (AUC0-∞). Most probes and concomitant drugs were within the equivalence range. For tacrolimus, ibrutinib, mycophenolic acid, and venetoclax, the AUC or Cmax was reduced (10 to 19%), with lower bounds of the 90% CI values falling outside the no-effect range. The rosuvastatin AUC and Cmax and the repaglinide AUC0-∞ were increased (12 to 16%), with the 90% CI being marginally above the upper bound. Overall, the in vitro and in vivo data demonstrated a low drug interaction potential with rezafungin via CYP substrate/transporter pathways and commonly prescribed comedications, suggesting that coadministration was unlikely to result in clinically significant effects. Treatment-emergent adverse events were typically mild, and rezafungin was generally well tolerated. IMPORTANCE Antifungal agents used to treat life-threatening infections are often associated with severe drug-drug interactions (DDIs) that may limit their usefulness. Rezafungin, a newly approved once-weekly echinocandin, has been shown to be free of DDIs based on extensive nonclinical and clinical testing described in this study.
Collapse
Affiliation(s)
| | | | - Voon Ong
- Cidara Therapeutics, Inc., San Diego, California, USA
| | | |
Collapse
|
11
|
Chettri D, Verma AK. Biological significance of carbohydrate active enzymes and searching their inhibitors for therapeutic applications. Carbohydr Res 2023; 529:108853. [PMID: 37235954 DOI: 10.1016/j.carres.2023.108853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Glycans are the most abundant and diverse group of biomolecules with a crucial role in all the biological processes. Their structural and functional diversity is not genetically encoded, but depends on Carbohydrate Active Enzymes (CAZymes) which carry out all catalytic activities in terms of synthesis, modification, and degradation. CAZymes comprise large families of enzymes with specific functions and are widely used for various commercial applications ranging from biofuel production to textile and food industries with impact on biorefineries. To understand the structure and functional mechanism of these CAZymes for their modification for industrial use, together with knowledge of therapeutic aspects of their dysfunction associated with various diseases, CAZyme inhibitors can be used as a valuable tool. In search for new inhibitors, the screening of various secondary metabolites using high-throughput techniques and rational design techniques have been explored. The inhibitors can thus help tune CAZymes and are emerging as a potential research interest.
Collapse
Affiliation(s)
- Dixita Chettri
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Anil Kumar Verma
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India.
| |
Collapse
|
12
|
Sharifi M, Badiee P, Abastabar M, Morovati H, Haghani I, Noorbakhsh M, Mohammadi R. A 3-year study of Candida infections among patients with malignancy: etiologic agents and antifungal susceptibility profile. Front Cell Infect Microbiol 2023; 13:1152552. [PMID: 37249981 PMCID: PMC10213519 DOI: 10.3389/fcimb.2023.1152552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Objective Opportunistic fungal infections by Candida species arise among cancer patients due to the weakened immune system following extensive chemotherapy. Prophylaxis with antifungal agents have developed the resistance of Candida spp. to antifungals. Accurate identification of yeasts and susceptibility patterns are main concerns that can directly effect on the treatment of patients. Methods Over a period of three years, 325 cancer patients suspected to Candida infections were included in the current investigation. The clinical isolates were molecularly identified by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). All strains, were examined for in vitro susceptibility to the amphotericin B, itraconazole, fluconazole, and anidulafungin according to the CLSI M27 document. Results Seventy-four cancer patients had Candida infections (22.7%). Candida albicans was the most common species (83.8%). Antifungal susceptibility results indicated that 100% of the Candida isolates were sensitive to amphotericin B; however, 17.6%, 9.4%, and 5.4% of clinical isolates were resistant to anidulafungin, fluconazole, and itraconazole, respectively. Conclusion The findings of the present work shows a warning increase in resistance to echinocandins. Since all fluconazole resistance isolates were obtained from candidemia, we recommend amphotericin B as the first line therapy for this potentially fatal infection.
Collapse
Affiliation(s)
- Mahdieh Sharifi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parisa Badiee
- Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Abastabar
- Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Morovati
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Haghani
- Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahta Noorbakhsh
- Department of Infectious Diseases, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Mohammadi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Kim JH, Suh JW, Kim MJ. Evaluation of Fluconazole versus Echinocandins for Treatment of Candidemia Caused by Susceptible Common Candida Species: A Propensity Score Matching Analysis. J Fungi (Basel) 2023; 9:jof9050539. [PMID: 37233250 DOI: 10.3390/jof9050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
This study aimed to evaluate the effectiveness of fluconazole and echinocandins in the treatment of candidemia caused by both fluconazole- and echinocandin-susceptible common Candida species. A retrospective study which enrolled adult candidemia patients ≥19 years diagnosed at a tertiary care hospital in the Republic of Korea from 2013 to 2018 was conducted. Common Candida species were defined as C. albicans, C. tropicalis, and C. parapsilosis. Cases of candidemia were excluded based on the following exclusion criteria: (1) candidemia showed resistance to either fluconazole or echinocandins, or (2) candidemia was caused by other Candida species than common Candida species. In order to compare the mortality rates between patients who receive fluconazole or echinocandins, the propensity scores on variables of baseline characteristics using the multivariate logistic regression analysis were employed to balance the antifungal treatment groups, and a Kaplan-Meier survival analysis was performed. Fluconazole and echinocandins were used in 40 patients and in 87 patients, respectively. The propensity score matching included 40 patients in each treatment group. After matching, the rates of 60-day mortality after candidemia were 30% in the fluconazole group and 42.5% in the echinocandins group, and a Kaplan-Meier survival analysis showed no significant difference between antifungal treatment groups, p = 0.187. A multivariable analysis demonstrated that septic shock was significantly associated with the 60-day mortality, whereas fluconazole antifungal treatment was not associated with an excess 60-day mortality. In conclusion, our study results suggest that fluconazole use in the treatment of candidemia caused by susceptible common Candida species may be not associated with increased 60-day mortality compared to echinocandins.
Collapse
Affiliation(s)
- Jong Hun Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jin Woong Suh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Min Ja Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
14
|
Pérez-González N, Espinoza LC, Rincón M, Sosa L, Mallandrich M, Suñer-Carbó J, Bozal-de Febrer N, Calpena AC, Clares-Naveros B. Gel Formulations with an Echinocandin for Cutaneous Candidiasis: The Influence of Azone and Transcutol on Biopharmaceutical Features. Gels 2023; 9:gels9040308. [PMID: 37102920 PMCID: PMC10138157 DOI: 10.3390/gels9040308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/28/2023] Open
Abstract
Caspofungin is a drug that is used for fungal infections that are difficult to treat, including invasive aspergillosis and candidemia, as well as other forms of invasive candidiasis. The aim of this study was to incorporate Azone in a caspofungin gel (CPF-AZ-gel) and compare it with a promoter-free caspofungin gel (CPF-gel). An in vitro release study using a polytetrafluoroethylene membrane and ex vivo permeation into human skin was adopted. The tolerability properties were confirmed by histological analysis, and an evaluation of the biomechanical properties of the skin was undertaken. Antimicrobial efficacy was determined against Candida albicans, Candida glabrata, Candida parapsilosis, and Candida tropicalis. CPF-AZ-gel and CPF-gel, which had a homogeneous appearance, pseudoplastic behavior, and high spreadability, were obtained. The biopharmaceutical studies confirmed that caspofungin was released following a one-phase exponential association model and the CPF-AZ gel showed a higher release. The CPF-AZ gel showed higher retention of caspofungin in the skin while limiting the diffusion of the drug to the receptor fluid. Both formulations were well-tolerated in the histological sections, as well as after their topical application in the skin. These formulations inhibited the growth of C. glabrata, C. parapsilosis, and C. tropicalis, while C. albicans showed resistance. In summary, dermal treatment with caspofungin could be used as a promising therapy for cutaneous candidiasis in patients that are refractory or intolerant to conventional antifungal agents.
Collapse
Affiliation(s)
- Noelia Pérez-González
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | | | - María Rincón
- Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona (UB), C. Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Lilian Sosa
- Pharmaceutical Technology Research Group, Faculty of Chemical Sciences and Pharmacy, National Autonomous University of Honduras (UNAH), Tegucigalpa 11101, Honduras
| | - Mireia Mallandrich
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Departament de Farmàcia, Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Joaquim Suñer-Carbó
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Departament de Farmàcia, Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Nuria Bozal-de Febrer
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Ana Cristina Calpena
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Departament de Farmàcia, Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Beatriz Clares-Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
| |
Collapse
|
15
|
Lower Concentrations of Amphotericin B Combined with Ent-Hardwickiic Acid Are Effective against Candida Strains. Antibiotics (Basel) 2023; 12:antibiotics12030509. [PMID: 36978378 PMCID: PMC10044661 DOI: 10.3390/antibiotics12030509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Life-threatening Candida infections have increased with the COVID-19 pandemic, and the already limited arsenal of antifungal drugs has become even more restricted due to its side effects associated with complications after SARS-CoV-2 infection. Drug combination strategies have the potential to reduce the risk of side effects without loss of therapeutic efficacy. The aim of this study was to evaluate the combination of ent-hardwickiic acid with low concentrations of amphotericin B against Candida strains. The minimum inhibitory concentration (MIC) values were determined for amphotericin B and ent-hardwickiic acid as isolated compounds and for 77 combinations of amphotericin B and ent-hardwickiic acid concentrations that were assessed by using the checkerboard microdilution method. Time–kill assays were performed in order to assess the fungistatic or fungicidal nature of the different combinations. The strategy of combining both compounds markedly reduced the MIC values from 16 µg/mL to 1 µg/mL of amphotericin B and from 12.5 µg/mL to 6.25 µg/mL of ent-hardwickiic acid, from isolated to combined, against C. albicans resistant to azoles. The combination of 1 µg/mL of amphotericin B with 6.25 µg/mL of ent-hardwickiic acid killed all the cells of the same strain within four hours of incubation.
Collapse
|
16
|
Meena DS, Kumar D, Bohra GK. Combination therapy in Mucormycosis: Current evidence from the world literature, a mini review. J Mycol Med 2023; 33:101332. [PMID: 36270213 PMCID: PMC9472709 DOI: 10.1016/j.mycmed.2022.101332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/02/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022]
Abstract
The emergence of Mucorales infections is an urgent global public health threat rapidly disseminating during the current COVID-19 pandemic. Invasive mucormycosis carries significant morbidity and mortality; this is further compounded by the lack of newer effective antifungals on the horizon. Liposomal Amphotericin (L-AMB) is currently considered the cornerstone of antifungals therapy against mucormycosis; However, two decades later (since the introduction of L-AMB), the outcome remains dismal. Furthermore, adverse events related to therapeutic doses of L-AMB are also a hindrance. There is an imperative need for an alternative therapeutic approach to reduce the high mortality. One such approach is to combine the amphotericin with other agents (e.g., caspofungin, posaconazole, isavuconazole, and iron chelators) that can work synergistically or help in reducing the therapeutic doses of L-AMB. This review aims to highlight the various treatment approaches by gathering the clinical evidence from the literature and considering all potential pharmacological combinations that can provide the direction for future studies.
Collapse
Affiliation(s)
- Durga Shankar Meena
- Division of Infectious Diseases, Department of Internal Medicine, All India Institute of Medical Sciences, Jodhpur, India.
| | - Deepak Kumar
- Division of Infectious Diseases, Department of Internal Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Gopal Krishana Bohra
- Division of Infectious Diseases, Department of Internal Medicine, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
17
|
Yune PS, Coe J, Rao M, Lin MY. Candida auris in skilled nursing facilities. Ther Adv Infect Dis 2023; 10:20499361231189958. [PMID: 37529375 PMCID: PMC10387771 DOI: 10.1177/20499361231189958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/08/2023] [Indexed: 08/03/2023] Open
Abstract
Candida auris is a fungal organism resistant to several classes of antifungals. Since its identification in 2009, it has gained worldwide attention in healthcare for its virulence and resistance to commonly used antifungal therapeutics. Although its origin and mechanisms of transmission are not fully elucidated, it is widely recognized as a high priority healthcare-associated pathogen. Infection control efforts in skilled nursing facilities have been very challenging due to the tendency of C. auris to persist in the environment and colonize residents. In this narrative review, we discuss the epidemiology and infection prevention of C. auris in skilled nursing facilities. We also identify challenges in the diagnosis and management of both symptomatic infections and asymptomatic colonization.
Collapse
Affiliation(s)
- Philip S. Yune
- Division of Infectious Disease, Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
- Division of Infectious Diseases, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jared Coe
- Division of Infectious Diseases, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Michael Y. Lin
- Division of Infectious Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
18
|
Preparation and Evaluation of Modified Chitosan Nanoparticles Using Anionic Sodium Alginate Polymer for Treatment of Ocular Disease. Pharmaceutics 2022; 14:pharmaceutics14122802. [PMID: 36559295 PMCID: PMC9786214 DOI: 10.3390/pharmaceutics14122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Mucoadhesive nanoparticles offer prolonged drug residence time at the corneal epithelium by adhering to the mucous layer of the eye. Here, in this research investigation, voriconazole-loaded chitosan mucoadhesive nanoparticles (VCZ-MA-NPs) were modified to mucous-penetrating nanoparticles (VCZ-MP-NPs) by coating them with anionic polymer sodium alginate. The ionic gelation method was utilized to prepare mucoadhesive chitosan nanoparticles, which were further coated with sodium alginate to obtain the surface properties essential for mucous penetration. The developed VCZ-MA-NPs and VCZ-MP-NPs were evaluated extensively for physicochemical delineation, as well as in vitro and ex vivo studies. The particle size, polydispersity index, and ζ potential of the VCZ-MA-NPs were discovered to be 116 ± 2 nm, 0.23 ± 0.004, and +16.3 ± 0.9 mV, while the equivalent values for VCZ-MP-NPs were 185 ± 1 nm, 0.20 ± 0.01, and -24 ± 0.9 mV, respectively. The entrapment efficiency and drug loading were obtained as 88.06%±1.29% and 7.27% ± 0.95% for VCZ-MA-NPs and 91.31% ± 1.05% and 10.38% ± 0.87% for VCZ-MP-NPs, respectively. The formulations were found to be stable under different conditions (4 °C, 25 °C, and 40 °C). Chitosan nanoparticles and modified nanoparticles showed a spherical and smooth morphology under electron microscopic imaging. An excised caprine cornea was used for the ex vivo permeation study, exhibiting 58.98% ± 0.54% and 70.02% ± 0.61% drug permeation for VCZ-MA-NPs and VCZ-MP-NPs, respectively. The findings revealed that the mucous-penetrating nanoparticles could effectively pass through the corneal epithelium, thus overcoming the mucous barrier and fungal layer of the eye, which highlights their potential in the treatment of fungal keratitis.
Collapse
|
19
|
Singh A, Kaur K, Kaur H, Mohana P, Arora S, Bedi N, Chadha R, Bedi PMS. Design, synthesis and biological evaluation of isatin-benzotriazole hybrids as new class of anti-Candida agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
TNP Analogues Inhibit the Virulence Promoting IP3-4 Kinase Arg1 in the Fungal Pathogen Cryptococcus neoformans. Biomolecules 2022; 12:biom12101526. [PMID: 36291735 PMCID: PMC9599641 DOI: 10.3390/biom12101526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
New antifungals with unique modes of action are urgently needed to treat the increasing global burden of invasive fungal infections. The fungal inositol polyphosphate kinase (IPK) pathway, comprised of IPKs that convert IP3 to IP8, provides a promising new target due to its impact on multiple, critical cellular functions and, unlike in mammalian cells, its lack of redundancy. Nearly all IPKs in the fungal pathway are essential for virulence, with IP3-4 kinase (IP3-4K) the most critical. The dibenzylaminopurine compound, N2-(m-trifluorobenzylamino)-N6-(p-nitrobenzylamino)purine (TNP), is a commercially available inhibitor of mammalian IPKs. The ability of TNP to be adapted as an inhibitor of fungal IP3-4K has not been investigated. We purified IP3-4K from the human pathogens, Cryptococcus neoformans and Candida albicans, and optimised enzyme and surface plasmon resonance (SPR) assays to determine the half inhibitory concentration (IC50) and binding affinity (KD), respectively, of TNP and 38 analogues. A novel chemical route was developed to efficiently prepare TNP analogues. TNP and its analogues demonstrated inhibition of recombinant IP3-4K from C. neoformans (CnArg1) at low µM IC50s, but not IP3-4K from C. albicans (CaIpk2) and many analogues exhibited selectivity for CnArg1 over the human equivalent, HsIPMK. Our results provide a foundation for improving potency and selectivity of the TNP series for fungal IP3-4K.
Collapse
|
21
|
Rossato L, Simionatto S, Serafini MR, Alves IA. New Technologies to Diagnose and Treat a Multidrug-Resistant Candida auris: A Patent Review. Mycopathologia 2022; 187:535-546. [PMID: 36194378 PMCID: PMC9529600 DOI: 10.1007/s11046-022-00669-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022]
Abstract
Candida auris is responsible for hospital outbreaks worldwide. Some C. auris isolates may show concomitant resistance to azoles, echinocandins, and polyenes, thereby possibly leaving clinicians with few therapeutic options. In addition, this multi-drug-resistant yeast is difficult to identify with conventional methods and has the ability to persist on environmental surfaces causing hospital-acquired infections. The development of new treatment options and tools for identification is critical to control, prevent, and establish an early diagnosis of this emerging pathogen. The aim of this study was to perform a critical patent review to explore and identify the latest advances in therapeutic strategies as well as diagnostic methods for C. auris. A total of 19 patents were identified for a preliminary assessment from the Espacenet database. Three patents were excluded as they were out of focus for this review according to their abstract and/or description. The final selection covered 16 patents, which were surveyed by country, year and classified as treatment or diagnostic methods for C. auris. As noted in the patent reading, in recent years, the interest of academic, government and industry sectors have shown an increasing tendency focused on research and development of new therapeutic molecules and diagnostic methods to combat this emerging pathogen.
Collapse
Affiliation(s)
- Luana Rossato
- Universidade Federal da Grande Dourados-UFGD, Dourados, Mato Grosso do Sul, Brazil.
| | - Simone Simionatto
- Universidade Federal da Grande Dourados-UFGD, Dourados, Mato Grosso do Sul, Brazil
| | - Mairim Russo Serafini
- Departamento de Farmácia, Universidade Federal do Sergipe, São Cristóvão, Sergipe, Brazil
| | - Izabel Almeida Alves
- Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade do Estado da Bahia, Salvador, BA, Brazil.,Faculdade de Farmácia, Universidade Federal de Bahia, Salvador, BA, Brazil
| |
Collapse
|
22
|
Ishii H, Sato T, Ishibashi M, Yokoyama H, Saito T, Tasaki T, Yano S. A case of immune complex type hemolytic anemia by initial micafungin administration. Int J Infect Dis 2022; 122:755-757. [PMID: 35840096 DOI: 10.1016/j.ijid.2022.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
We report the first case of immune complex type hemolytic anemia by initial micafungin administration that was given as prophylaxis to a 42-year-old Japanese man receiving chemotherapy for primary amyloidosis. The few cases found in the literature were associated with secondary administration to cause immune hemolysis attacks. Despite its rarity, the present case calls for increased awareness of micafungin-induced hemolytic anemia upon initial administration.
Collapse
Affiliation(s)
- Hiroto Ishii
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine.
| | - Tomohiko Sato
- Division of Transfusion Medicine and Cell Therapy, The Jikei University Hospital, Tokyo, Japan
| | - Miyuki Ishibashi
- Division of Transfusion Medicine and Cell Therapy, The Jikei University Hospital, Tokyo, Japan
| | - Hiroki Yokoyama
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine
| | - Takeshi Saito
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine
| | - Tetsunori Tasaki
- Division of Transfusion Medicine and Cell Therapy, The Jikei University Hospital, Tokyo, Japan
| | - Shingo Yano
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine
| |
Collapse
|
23
|
Barantsevich N, Barantsevich E. Diagnosis and Treatment of Invasive Candidiasis. Antibiotics (Basel) 2022; 11:antibiotics11060718. [PMID: 35740125 PMCID: PMC9219674 DOI: 10.3390/antibiotics11060718] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023] Open
Abstract
Candida species, belonging to commensal microbial communities in humans, cause opportunistic infections in individuals with impaired immunity. Pathogens encountered in more than 90% cases of invasive candidiasis include C. albicans, C. glabrata, C. krusei, C. tropicalis, and C. parapsilosis. The most frequently diagnosed invasive infection is candidemia. About 50% of candidemia cases result in deep-seated infection due to hematogenous spread. The sensitivity of blood cultures in autopsy-proven invasive candidiasis ranges from 21% to 71%. Non-cultural methods (beta-D-glucan, T2Candida assays), especially beta-D-glucan in combination with procalcitonin, appear promising in the exclusion of invasive candidiasis with high sensitivity (98%) and negative predictive value (95%). There is currently a clear deficiency in approved sensitive and precise diagnostic techniques. Omics technologies seem promising, though require further development and study. Therapeutic options for invasive candidiasis are generally limited to four classes of systemic antifungals (polyenes, antimetabolite 5-fluorocytosine, azoles, echinocandins) with the two latter being highly effective and well-tolerated and hence the most widely used. Principles and methods of treatment are discussed in this review. The emergence of pan-drug-resistant C. auris strains indicates an insufficient choice of available medications. Further surveillance, alongside the development of diagnostic and therapeutic methods, is essential.
Collapse
|
24
|
Gu K, Ruff D, Key C, Thompson M, Jiang S, Sandison T, Flanagan S. A Phase 1 Randomized, Double-Blind, Single Subcutaneous Dose Escalation Study to Determine the Safety, Tolerability, and Pharmacokinetics of Rezafungin in Healthy Adult Subjects. Clin Transl Sci 2022; 15:1592-1598. [PMID: 35439347 PMCID: PMC9283735 DOI: 10.1111/cts.13286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/18/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
Rezafungin is a novel echinocandin being developed for the treatment and prevention of invasive fungal infections. The objectives of this randomized, double‐blind study in healthy adults were to determine the safety, tolerability, and pharmacokinetics of rezafungin after subcutaneous (s.c.) administration. The study design consisted of six sequential cohorts of eight subjects, except for the first cohort with four subjects. The subjects were randomized in a 3:1 ratio of rezafungin to placebo and were to receive a single dose of 1, 10, 30, 60, 100, or 200 mg. The most common adverse events (AEs) were increased alanine aminotransferase and sinus bradycardia (unsolicited) and erythema at the injection site (solicited). Unsolicited AEs were generally mild to moderate and not rezafungin‐related. Although the study was terminated after the 10 mg dose cohort due to concerns of potential increased severity of injection site reactions, no predetermined dose escalation halting criteria were met. Following the 10 mg single s.c. dose of rezafungin (n = 6), the geometric mean (GM) maximum concentration (Cmax) was 105.0 ng/ml and the median time to Cmax was 144 h. The GM area under the concentration‐time curve was 32,770 ng*h/ml. The median estimated terminal half‐life was 193 h. The GM apparent oral clearance was 0.255 L/h and the GM apparent volume of distribution was 68.5 L. This study demonstrates that a single s.c. dose of rezafungin in healthy adult subjects: (1) did not result in serious AEs, death, or withdrawal from the study due to an AE; and (2) produced a pharmacokinetic profile with long exposure period postadministration. In an effort to reduce the occurrence of injection site reactions, a re‐evaluation of the rezafungin s.c. formulation could be considered in the future.
Collapse
Affiliation(s)
- Kenan Gu
- National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Dennis Ruff
- ICON Early Phase Services Clinical Research Unit, San Antonio, TX
| | - Cassandra Key
- ICON Early Phase Services Clinical Research Unit, San Antonio, TX
| | | | | | | | | |
Collapse
|
25
|
Ghosh S, Nag M, Lahiri D, Sarkar T, Pati S, Joshi S, Ray RR. New holistic approach for the management of biofilm‐associated infections by myco‐metabolites. J Basic Microbiol 2022; 62:1291-1306. [PMID: 35373364 DOI: 10.1002/jobm.202200047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Accepted: 03/05/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Sreejita Ghosh
- Department of Biotechnology Maulana Abul Kalam Azad University of Technology Haringhata West Bengal India
| | - Moupriya Nag
- Department of Biotechnology University of Engineering & Management Kolkata West Bengal India
| | - Dibyajit Lahiri
- Department of Biotechnology University of Engineering & Management Kolkata West Bengal India
| | - Tanmay Sarkar
- Department of Food Processing Technology Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal Malda India
| | - Siddhartha Pati
- Skills innovation & Academic network (SIAN) Institute‐ABC Balasore Odisha India
- NatNov Bioscience Private Limited Balasore Odisha India
| | - Sanket Joshi
- Oil & Gas Research Center, Central Analytical and Applied Research Unit Sultan Qaboos University Maskat Oman
| | - Rina R. Ray
- Department of Biotechnology Maulana Abul Kalam Azad University of Technology Haringhata West Bengal India
| |
Collapse
|
26
|
Wu H, Du C, Xu Y, Liu L, Zhou X, Ji Q. Design, synthesis, and biological evaluation of novel spiro[pyrrolidine-2,3′-quinolin]-2′-one derivatives as potential chitin synthase inhibitors and antifungal agents. Eur J Med Chem 2022; 233:114208. [DOI: 10.1016/j.ejmech.2022.114208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/26/2022]
|
27
|
Szymański M, Chmielewska S, Czyżewska U, Malinowska M, Tylicki A. Echinocandins - structure, mechanism of action and use in antifungal therapy. J Enzyme Inhib Med Chem 2022; 37:876-894. [PMID: 35296203 PMCID: PMC8933026 DOI: 10.1080/14756366.2022.2050224] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
With increasing number of immunocompromised patients as well as drug resistance in fungi, the risk of fatal fungal infections in humans increases as well. The action of echinocandins is based on the inhibition of β-(1,3)-d-glucan synthesis that builds the fungal cell wall. Caspofungin, micafungin, anidulafungin and rezafungin are semi-synthetic cyclic lipopeptides. Their specific chemical structure possess a potential to obtain novel derivatives with better pharmacological properties resulting in more effective treatment, especially in infections caused by Candida and Aspergillus species. In this review we summarise information about echinocandins with closer look on their chemical structure, mechanism of action, drug resistance and usage in clinical practice. We also introduce actual trends in modification of this antifungals as well as new methods of their administration, and additional use in viral and bacterial infections.
Collapse
Affiliation(s)
- Mateusz Szymański
- Department of Microbiology and Biotechnology, Laboratory of Cytobiochemistry, University of Bialystok, Bialystok, Poland
| | - Sandra Chmielewska
- Doctoral School of Exact and Natural Sciences, University of Bialystok, Bialystok, Poland
| | - Urszula Czyżewska
- Department of Microbiology and Biotechnology, Laboratory of Cytobiochemistry, University of Bialystok, Bialystok, Poland
| | - Marta Malinowska
- Department of Organic Chemistry, Laboratory of Natural Product Chemistry, University of Bialystok, Bialystok, Poland
| | - Adam Tylicki
- Department of Microbiology and Biotechnology, Laboratory of Cytobiochemistry, University of Bialystok, Bialystok, Poland
| |
Collapse
|
28
|
Özok H, Allahverdiyeva S, Yardım Y, Şentürk Z. First report for the electrooxidation of antifungal anidulafungin: Application to its voltammetric determination in parenteral lyophilized formulation using a boron‐doped diamond electrode in the presence of anionic surfactant. ELECTROANAL 2022. [DOI: 10.1002/elan.202100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Zühre Şentürk
- Yüzüncü Yıl University Faculty of Science&Letters TURKEY
| |
Collapse
|
29
|
da Silva Dantas A, Nogueira F, Lee KK, Walker LA, Edmondson M, Brand AC, Lenardon MD, Gow NAR. Crosstalk between the calcineurin and cell wall integrity pathways prevents chitin overexpression in Candida albicans. J Cell Sci 2021; 134:jcs258889. [PMID: 34792152 PMCID: PMC8729787 DOI: 10.1242/jcs.258889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/09/2021] [Indexed: 10/26/2022] Open
Abstract
Echinocandins such as caspofungin are frontline antifungal drugs that compromise β-1,3 glucan synthesis in the cell wall. Recent reports have shown that fungal cells can resist killing by caspofungin by upregulation of chitin synthesis, thereby sustaining cell wall integrity (CWI). When echinocandins are removed, the chitin content of cells quickly returns to basal levels, suggesting that there is a fitness cost associated with having elevated levels of chitin in the cell wall. We show here that simultaneous activation of the calcineurin and CWI pathways generates a subpopulation of Candida albicans yeast cells that have supra-normal chitin levels interspersed throughout the inner and outer cell wall, and that these cells are non-viable, perhaps due to loss of wall elasticity required for cell expansion and growth. Mutations in the Ca2+-calcineurin pathway prevented the formation of these non-viable supra-high chitin cells by negatively regulating chitin synthesis driven by the CWI pathway. The Ca2+-calcineurin pathway may therefore act as an attenuator that prevents the overproduction of chitin by coordinating both chitin upregulation and negative regulation of the CWI signaling pathway. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Alessandra da Silva Dantas
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter EX4 4QD, UK
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Filomena Nogueira
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Children's Cancer Research Institute, Labdia and Max F. Perutz Laboratories, Vienna 1090, Austria
| | - Keunsook K. Lee
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
- NGeneBio Company, 288 Digital-ro, Guro-gu, Seoul 08390, South Korea
| | - Louise A. Walker
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Matt Edmondson
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter EX4 4QD, UK
| | - Alexandra C. Brand
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter EX4 4QD, UK
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Megan D. Lenardon
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Neil A. R. Gow
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter EX4 4QD, UK
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
30
|
Szarvas J, Rebelo AR, Bortolaia V, Leekitcharoenphon P, Schrøder Hansen D, Nielsen HL, Nørskov-Lauritsen N, Kemp M, Røder BL, Frimodt-Møller N, Søndergaard TS, Coia JE, Østergaard C, Westh H, Aarestrup FM. Danish Whole-Genome-Sequenced Candida albicans and Candida glabrata Samples Fit into Globally Prevalent Clades. J Fungi (Basel) 2021; 7:jof7110962. [PMID: 34829249 PMCID: PMC8622182 DOI: 10.3390/jof7110962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Candida albicans and Candida glabrata are opportunistic fungal pathogens with increasing incidence worldwide and higher-than-expected prevalence in Denmark. We whole-genome sequenced yeast isolates collected from Danish Clinical Microbiology Laboratories to obtain an overview of the Candida population in the country. The majority of the 30 C. albicans isolates were found to belong to three globally prevalent clades, and, with one exception, the remaining isolates were also predicted to cluster with samples from other geographical locations. Similarly, most of the eight C. glabrata isolates were predicted to be prevalent subtypes. Antifungal susceptibility testing proved all C. albicans isolates to be susceptible to both azoles and echinocandins. Two C. glabrata isolates presented azole-resistant phenotypes, yet all were susceptible to echinocandins. There is no indication of causality between population structure and resistance phenotypes for either species.
Collapse
Affiliation(s)
- Judit Szarvas
- Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.R.R.); (V.B.); (P.L.); (F.M.A.)
- Correspondence:
| | - Ana Rita Rebelo
- Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.R.R.); (V.B.); (P.L.); (F.M.A.)
| | - Valeria Bortolaia
- Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.R.R.); (V.B.); (P.L.); (F.M.A.)
| | - Pimlapas Leekitcharoenphon
- Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.R.R.); (V.B.); (P.L.); (F.M.A.)
| | | | - Hans Linde Nielsen
- Department of Clinical Microbiology, Aalborg University Hospital, 9100 Aalborg, Denmark;
| | | | - Michael Kemp
- Department of Clinical Microbiology, Odense University Hospital, 5000 Odense, Denmark;
| | - Bent Løwe Røder
- Department of Clinical Microbiology, Slagelse Hospital, 4200 Slagelse, Denmark;
| | | | | | - John Eugenio Coia
- Department of Clinical Microbiology, Sydvestjysk Hospital, 6700 Esbjerg, Denmark;
| | - Claus Østergaard
- Department of Clinical Microbiology, Vejle Hospital, 7100 Vejle, Denmark;
| | - Henrik Westh
- Department of Clinical Microbiology, Hvidovre Hospital, 2650 Hvidovre, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Frank Møller Aarestrup
- Division for Global Surveillance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (A.R.R.); (V.B.); (P.L.); (F.M.A.)
| |
Collapse
|
31
|
Almeida-Paes R, de Andrade IB, Ramos MLM, Rodrigues MVDA, do Nascimento VA, Bernardes-Engemann AR, Frases S. Medicines for Malaria Venture COVID Box: a source for repurposing drugs with antifungal activity against human pathogenic fungi. Mem Inst Oswaldo Cruz 2021; 116:e210207. [PMID: 34755820 PMCID: PMC8577065 DOI: 10.1590/0074-02760210207] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Treatment of mycoses is often ineffective, usually prolonged, and has some side effects. These facts highlight the importance of discovering new molecules to treat fungal infections. OBJECTIVES To search the Medicines for Malaria Venture COVID Box for drugs with antifungal activity. METHODS Fourteen human pathogenic fungi were tested against the 160 drugs of this collection at 1.0 µM concentration. We evaluated the ability of the drugs to impair fungal growth, their fungicidal nature, and morphological changes caused to cells. FINDINGS Thirty-four molecules (21.25%) presented antifungal activity. Seven are antifungal drugs and one is the agricultural fungicide cycloheximide. The other drugs with antifungal activity included antibiotics (n = 3), antimalarials (n = 4), antivirals (n = 2), antiparasitcs (n = 3), antitumor agents (n = 5), nervous system agents (n = 3), immunosuppressants (n = 3), antivomiting (n = 1), antiasthmatic (n = 1), and a genetic disorder agent (n = 1). Several of these drugs inhibited Histoplasma capsulatum and Paracoccidioides brasiliensis growth (15 and 20, respectively), while Fusarium solani was not affected by the drugs tested. Most drugs were fungistatic, but niclosamide presented fungicidal activity against the three dimorphic fungi tested. Cyclosporine affected morphology of Cryptococcus neoformans. MAIN CONCLUSIONS These drugs represent new alternatives to the development of more accessible and effective therapies to treat human fungal infections.
Collapse
Affiliation(s)
- Rodrigo Almeida-Paes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Micologia, Rio de Janeiro, RJ, Brasil
| | - Iara Bastos de Andrade
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biofísica de Fungos, Rio de Janeiro, RJ, Brasil
| | - Mariana Lucy Mesquita Ramos
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biofísica de Fungos, Rio de Janeiro, RJ, Brasil
| | - Marcus Vinícius de Araújo Rodrigues
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biofísica de Fungos, Rio de Janeiro, RJ, Brasil
| | - Vinícius Alves do Nascimento
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biofísica de Fungos, Rio de Janeiro, RJ, Brasil
| | - Andréa Reis Bernardes-Engemann
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Micologia, Rio de Janeiro, RJ, Brasil
| | - Susana Frases
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Biofísica de Fungos, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
32
|
dos Santos CI, Campos CDL, Nunes-Neto WR, do Carmo MS, Nogueira FAB, Ferreira RM, Costa EPS, Gonzaga LF, Araújo JMM, Monteiro JM, Monteiro CRAV, Platner FS, Figueiredo IFS, Holanda RA, Monteiro SG, Fernandes ES, Monteiro AS, Monteiro-Neto V. Genomic Analysis of Limosilactobacillus fermentum ATCC 23271, a Potential Probiotic Strain with Anti- Candida Activity. J Fungi (Basel) 2021; 7:794. [PMID: 34682216 PMCID: PMC8537286 DOI: 10.3390/jof7100794] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 01/20/2023] Open
Abstract
Limosilactobacillus fermentum (ATCC 23271) was originally isolated from the human intestine and has displayed antimicrobial activity, primarily against Candida species. Complete genome sequencing and comparative analyses were performed to elucidate the genetic basis underlying its probiotic potential. The ATCC 23271 genome was found to contain 2,193,335 bp, with 2123 protein-coding sequences. Phylogenetic analysis revealed that the ATCC 23271 strain shares 941 gene clusters with six other probiotic strains of L. fermentum. Putative genes known to confer probiotic properties have been identified in the genome, including genes related to adhesion, tolerance to acidic pH and bile salts, tolerance to oxidative stress, and metabolism and transport of sugars and other compounds. A search for bacteriocin genes revealed a sequence 48% similar to that of enterolysin A, a protein from Enterococcus faecalis. However, in vitro assays confirmed that the strain has inhibitory activity on the growth of Candida species and also interferes with their adhesion to HeLa cells. In silico analyses demonstrated a high probability of the protein with antimicrobial activity. Our data reveal the genome features of L. fermentum ATCC 23271, which may provide insight into its future use given the functional benefits, especially against Candida infections.
Collapse
Affiliation(s)
- Camilla I. dos Santos
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, São Luís 65055-310, MA, Brazil; (C.I.d.S.); (W.R.N.-N.); (E.P.S.C.)
| | - Carmem D. L. Campos
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (C.D.L.C.); (R.M.F.); (L.F.G.); (J.M.M.A.); (J.M.M.); (R.A.H.); (A.S.M.)
| | - Wallace R. Nunes-Neto
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, São Luís 65055-310, MA, Brazil; (C.I.d.S.); (W.R.N.-N.); (E.P.S.C.)
| | - Monique S. do Carmo
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil; (M.S.d.C.); (F.A.B.N.); (C.R.A.V.M.); (S.G.M.)
| | - Flávio A. B. Nogueira
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil; (M.S.d.C.); (F.A.B.N.); (C.R.A.V.M.); (S.G.M.)
| | - Rômulo M. Ferreira
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (C.D.L.C.); (R.M.F.); (L.F.G.); (J.M.M.A.); (J.M.M.); (R.A.H.); (A.S.M.)
| | - Ennio P. S. Costa
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, São Luís 65055-310, MA, Brazil; (C.I.d.S.); (W.R.N.-N.); (E.P.S.C.)
| | - Laoane F. Gonzaga
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (C.D.L.C.); (R.M.F.); (L.F.G.); (J.M.M.A.); (J.M.M.); (R.A.H.); (A.S.M.)
| | - Jéssica M. M. Araújo
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (C.D.L.C.); (R.M.F.); (L.F.G.); (J.M.M.A.); (J.M.M.); (R.A.H.); (A.S.M.)
| | - Joveliane M. Monteiro
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (C.D.L.C.); (R.M.F.); (L.F.G.); (J.M.M.A.); (J.M.M.); (R.A.H.); (A.S.M.)
| | - Cinara Regina A. V. Monteiro
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil; (M.S.d.C.); (F.A.B.N.); (C.R.A.V.M.); (S.G.M.)
| | - Fernanda S. Platner
- Faculdades Pequeno Príncipe, FPP, Curitiba 80230-020, PR, Brazil; (F.S.P.); (I.F.S.F.); (E.S.F.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, IPPPP, Curitiba 80250-060, PR, Brazil
| | - Isabella F. S. Figueiredo
- Faculdades Pequeno Príncipe, FPP, Curitiba 80230-020, PR, Brazil; (F.S.P.); (I.F.S.F.); (E.S.F.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, IPPPP, Curitiba 80250-060, PR, Brazil
| | - Rodrigo A. Holanda
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (C.D.L.C.); (R.M.F.); (L.F.G.); (J.M.M.A.); (J.M.M.); (R.A.H.); (A.S.M.)
| | - Silvio G. Monteiro
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil; (M.S.d.C.); (F.A.B.N.); (C.R.A.V.M.); (S.G.M.)
| | - Elizabeth S. Fernandes
- Faculdades Pequeno Príncipe, FPP, Curitiba 80230-020, PR, Brazil; (F.S.P.); (I.F.S.F.); (E.S.F.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, IPPPP, Curitiba 80250-060, PR, Brazil
| | - Andrea S. Monteiro
- Laboratório de Microbiologia Aplicada, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (C.D.L.C.); (R.M.F.); (L.F.G.); (J.M.M.A.); (J.M.M.); (R.A.H.); (A.S.M.)
| | - Valério Monteiro-Neto
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, São Luís 65055-310, MA, Brazil; (C.I.d.S.); (W.R.N.-N.); (E.P.S.C.)
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil; (M.S.d.C.); (F.A.B.N.); (C.R.A.V.M.); (S.G.M.)
| |
Collapse
|
33
|
Jain N, Jansone I, Obidenova T, Sīmanis R, Meisters J, Straupmane D, Reinis A. Epidemiological Characterization of Clinical Fungal Isolates from Pauls Stradinš Clinical University Hospital, Latvia: A 4-Year Surveillance Report. Life (Basel) 2021; 11:1002. [PMID: 34685374 PMCID: PMC8537438 DOI: 10.3390/life11101002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Nosocomial fungal infections are an emerging global public health threat that requires urgent attention and proper management. With the limited availability of treatment options, it has become necessary to understand the emerging epidemiological trends, mechanisms, and risk factors. However, very limited surveillance reports are available in the Latvian and broader European context. We therefore conducted a retrospective analysis of laboratory data (2017-2020) from Pauls Stradinš Clinical University Hospital (PSCUH), Riga, Latvia, which is one of the largest public multispecialty hospitals in Latvia. A total of 2278 fungal isolates were analyzed during the study period, with Candida spp. comprising 95% of the isolates, followed by Aspergillus spp. and Geotrichum spp. Amongst the Candida spp., C. albicans and C. glabrata made up about 75% of the isolates. The Department of Lung Diseases and Thoracic Surgery had the highest caseload followed by Intensive Care Department. Majority of the fungal isolates were collected from the bronchoalveolar lavage (37%), followed by urine (19%) and sputum (18%) samples. A total of 34 cases of candidemia were noted during the study period with C. albicans being the most common candidemia pathogen. Proper surveillance of emerging epidemiological trends serve as the most reliable and powerful cornerstone towards tackling this emerging threat.
Collapse
Affiliation(s)
- Nityanand Jain
- Department of Biology and Microbiology, Faculty of Medicine, Riga Stradiņš University, Dzirciema Street 16, LV-1007 Riga, Latvia;
| | - Inese Jansone
- Joint Laboratory, Pauls Stradiņš Clinical University Hospital, LV-1002 Riga, Latvia; (I.J.); (T.O.); (J.M.); (D.S.)
| | - Tatjana Obidenova
- Joint Laboratory, Pauls Stradiņš Clinical University Hospital, LV-1002 Riga, Latvia; (I.J.); (T.O.); (J.M.); (D.S.)
| | - Raimonds Sīmanis
- Department of Infectology, Faculty of Medicine, Riga Stradiņš University, Dzirciema Street 16, LV-1007 Riga, Latvia;
| | - Jānis Meisters
- Joint Laboratory, Pauls Stradiņš Clinical University Hospital, LV-1002 Riga, Latvia; (I.J.); (T.O.); (J.M.); (D.S.)
| | - Dagnija Straupmane
- Joint Laboratory, Pauls Stradiņš Clinical University Hospital, LV-1002 Riga, Latvia; (I.J.); (T.O.); (J.M.); (D.S.)
| | - Aigars Reinis
- Department of Biology and Microbiology, Faculty of Medicine, Riga Stradiņš University, Dzirciema Street 16, LV-1007 Riga, Latvia;
- Joint Laboratory, Pauls Stradiņš Clinical University Hospital, LV-1002 Riga, Latvia; (I.J.); (T.O.); (J.M.); (D.S.)
| |
Collapse
|
34
|
Echeverria-Esnal D, Martín-Ontiyuelo C, Navarrete-Rouco ME, Barcelo-Vidal J, Conde-Estévez D, Carballo N, De-Antonio Cuscó M, Ferrández O, Horcajada JP, Grau S. Pharmacological management of antifungal agents in pulmonary aspergillosis: an updated review. Expert Rev Anti Infect Ther 2021; 20:179-197. [PMID: 34328373 DOI: 10.1080/14787210.2021.1962292] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Aspergillus may cause different types of lung infections: invasive, chronic pulmonary or allergic bronchopulmonary aspergillosis. Pharmacological management with antifungals poses as a challenge. Patients diagnosed with pulmonary aspergillosis are complex, as well as the problems associated with antifungal agents. AREAS COVERED This article reviews the pharmacology of antifungal agents in development and currently used to treat pulmonary aspergillosis, including the mechanisms of action, pharmacokinetics, pharmacodynamics, dosing, therapeutic drug monitoring and safety. Recommendations to manage situations that arise in daily clinical practice are provided. A literature search of PubMed was conducted on November 15th, 2020 and updated on March 30th, 2021. EXPERT OPINION Recent and relevant developments in the treatment of pulmonary aspergillosis have taken place. Novel antifungals with new mechanisms of action that extend antifungal spectrum and improve pharmacokinetic-related aspects, drug-drug interactions and safety are under current study. For those antifungals already marketed, new data related to pharmacokinetics, pharmacodynamics, dose adjustments in special situations, therapeutic drug monitoring and safety are available. To maximize efficacy and reduce the risk of associated toxicities, it is essential to choose the most appropriate antifungal; optimize its dose, interval, route of administration and length of treatment; and prevent side effects.
Collapse
Affiliation(s)
- Daniel Echeverria-Esnal
- Pharmacy Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain.,Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital Del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | | | | | | | - David Conde-Estévez
- Pharmacy Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain.,Department Of Pharmacology, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Nuria Carballo
- Pharmacy Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain
| | | | - Olivia Ferrández
- Pharmacy Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain
| | - Juan Pablo Horcajada
- Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital Del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Department Of Pharmacology, Universitat Autònoma De Barcelona, Barcelona, Spain.,Infectious Diseases Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain
| | - Santiago Grau
- Pharmacy Department, Hospital Del Mar, Parc De Salut Mar, Barcelona, Spain.,Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital Del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Department Of Pharmacology, Universitat Autònoma De Barcelona, Barcelona, Spain
| |
Collapse
|
35
|
Sartain E, Schoeppler K, Crowther B, Smith JB, Abidi MZ, Grazia TJ, Steele M, Gleason T, Porter K, Gray A. Perioperative anidulafungin combined with triazole prophylaxis for the prevention of early invasive candidiasis in lung transplant recipients. Transpl Infect Dis 2021; 23:e13692. [PMID: 34270137 DOI: 10.1111/tid.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/18/2021] [Accepted: 07/05/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Invasive candidiasis (IC) is a substantial cause of morbidity and mortality among lung transplant recipients (LTRs). Postoperative factors include prolonged hospital stay, central lines, delayed chest closure, and dehiscence increase IC risk. Correspondingly, current guidelines propose targeted IC coverage early posttransplant with fluconazole or an echinocandin. METHODS This retrospective analysis was performed on LTRs from January 2016 to January 2020 and evaluated effectiveness of a recent protocol utilizing perioperative anidulafungin for early IC prevention in addition to long-term triazole antifungal prophylaxis. Prior to this protocol, patients were primarily established on itraconazole prophylaxis alone. The primary endpoint was proven or probable IC within 90 days after transplant. Multivariable logistic regression modeling was used to assess risk factors for invasive fungal infection (IFI). RESULTS Among 144 LTRs, there was a numerically lower incidence of IC in the protocol group, although not statistically significant (6% vs. 13%, p = 0.16). Incidence of proven or probable IFI was 7.5% in the protocol cohort and 19.5% in the pre-protocol cohort (p = 0.038). In multivariable analysis, when controlling for lung allocation score (OR 1.04, 95% CI 1.01-1.08), donor perioperative culture with fungal growth (OR 2.92, 95% CI 1.02-8.92), and dehiscence (OR 3.54, 95% CI 1.14-10.85), protocol cohort was not significantly associated with IFI (OR 0.41, 95% CI 0.12-1.23). CONCLUSIONS To our knowledge, this is the first study investigating combination triazole/echinocandin use in the early post-lung transplant period. These findings demonstrate that in-hospital anidulafungin offers unclear benefit for early IC prevention when used in combination with triazole prophylaxis.
Collapse
Affiliation(s)
- Emily Sartain
- Department of Pharmacy, University of Colorado Hospital, Aurora, Colorado, USA
| | - Kelly Schoeppler
- Department of Pharmacy, University of Colorado Hospital, Aurora, Colorado, USA
| | - Barrett Crowther
- Department of Pharmacy, University of Colorado Hospital, Aurora, Colorado, USA
| | - Joshua B Smith
- Division of Pulmonary Sciences and Critical Care, Department of Medicine, University of Colorado, Denver, Colorado, USA
| | - Maheen Z Abidi
- Division of Infectious Disease, Department of Medicine, University of Colorado, Denver, Colorado, USA
| | - Todd J Grazia
- Division of Pulmonary Diseases, Section of Advanced Lung Disease and Lung Transplantation, Baylor University Medical Center, Dallas, Texas, USA
| | - Mark Steele
- Division of Pulmonary Sciences and Critical Care, Department of Medicine, University of Colorado, Denver, Colorado, USA
| | - Terri Gleason
- Transplant Center, University of Colorado Hospital, Aurora, Colorado, USA
| | - Krista Porter
- Transplant Center, University of Colorado Hospital, Aurora, Colorado, USA
| | - Alice Gray
- Division of Pulmonary Sciences and Critical Care, Department of Medicine, University of Colorado, Denver, Colorado, USA
| |
Collapse
|
36
|
Vergoten G, Bailly C. In silico analysis of echinocandins binding to the main proteases of coronaviruses PEDV (3CL pro) and SARS-CoV-2 (M pro). In Silico Pharmacol 2021; 9:41. [PMID: 34230874 PMCID: PMC8248761 DOI: 10.1007/s40203-021-00101-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/25/2021] [Indexed: 01/26/2023] Open
Abstract
The porcine epidemic diarrhea virus (PEDV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are two highly pathogenic viruses causing tremendous damages to the swine and human populations, respectively. Vaccines are available to prevent contamination and to limit dissemination of these two coronaviruses, but efficient and widely affordable treatments are needed. Recently, four natural products targeting the 3C-like protease (3CLpro) of PEDV and inhibiting replication of the virus in vitro have been identified: tomatidine, epigallocatechin-3-gallate, buddlejasaponin IVb and pneumocandin B0. We have evaluated the interaction of these compounds with 3CLpro of PEDV and with the structurally similar main protease (Mpro) of SARS-CoV-2. The molecular docking analysis indicated that the echinocandin-type lipopeptide pneumocandin B0 can generate much more stable complexes with both proteases compared to tomatidine. The empirical energy of interaction (ΔE) calculated with pneumocandin B0 bound to Mpro is extremely high, comparable to that measured with known antiviral drugs. Pneumocandin B0 and its analogue capsofungin appeared a little less adapted to interact with 3CLpro compared to Mpro. In contrast, the antifungal drug micafungin bearing an unfused tricyclic side chain, emerges as a better ligand of 3CLpro of PEDV compared to Mpro of SARS-CoV-2, based on our calculations. Collectively, the analysis underlines the benefit of echinocandin-type antifungal drugs as potential inhibitors of PEDV and SARS-CoV-2 main proteases. These clinically important antifungal natural products deserve further studies as antiviral agents.
Collapse
Affiliation(s)
- Gérard Vergoten
- Faculté de Pharmacie, Inserm, INFINITE-U1286, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), University of Lille, 3 rue du Professeur Laguesse, BP-83, 59006 Lille, France
| | | |
Collapse
|
37
|
Behrens-Baumann WJ. New Antimycotics in the Pipeline - For Ophthalmology Too? Klin Monbl Augenheilkd 2021; 238:1108-1112. [PMID: 34198353 DOI: 10.1055/a-1478-4248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Seven new antimycotics are presented that are at different points of development or approval. These substances are mainly first-in-class drugs. They are primarily developed for systemic administration. However, with the support of a pharmacist, the intravenous formulation may be used as eyedrops. In this short review, the activities of the substances against various fungal infections are described. After unsuccessful conventional therapy of fungal eye infections, one of these new substances might be suitable to cure the mycosis.
Collapse
|
38
|
Kaur N, Bains A, Kaushik R, Dhull SB, Melinda F, Chawla P. A Review on Antifungal Efficiency of Plant Extracts Entrenched Polysaccharide-Based Nanohydrogels. Nutrients 2021; 13:2055. [PMID: 34203999 PMCID: PMC8232670 DOI: 10.3390/nu13062055] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023] Open
Abstract
Human skin acts as a physical barrier; however, sometimes the skin gets infected by fungi, which becomes more severe if the infection occurs on the third layer of the skin. Azole derivative-based antifungal creams, liquids, or sprays are available to treat fungal infections; however, these formulations show various side effects on the application site. Over the past few years, herbal extracts and various essential oils have shown effective antifungal activity. Additionally, autoxidation and epimerization are significant problems with the direct use of herbal extracts. Hence, to overcome these obstacles, polysaccharide-based nanohydrogels embedded with natural plant extracts and oils have become the primary choice of pharmaceutical scientists. These gels protect plant-based bioactive compounds and are effective delivery agents because they release multiple bioactive compounds in the targeted area. Nanohydrogels can be applied to infected areas, and due to their contagious nature and penetration power, they get directly absorbed through the skin, quickly reaching the skin's third layer and effectively reducing the fungal infection. In this review, we explain various skin fungal infections, possible treatments, and the effective utilization of plant extract and oil-embedded polysaccharide-based nanohydrogels.
Collapse
Affiliation(s)
- Navkiranjeet Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Aarti Bains
- Department of Biotechnology, Chandigarh Group of Colleges Landran, Mohali 140307, Punjab, India;
| | - Ravinder Kaushik
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, Uttrakhand, India;
| | - Sanju B. Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India;
| | - Fogarasi Melinda
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăstur 3–5, 400372 Cluj-Napoca, Romania
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India;
| |
Collapse
|
39
|
Maksimov AY, Balandina SY, Topanov PA, Mashevskaya IV, Chaudhary S. Organic Antifungal Drugs and Targets of Their Action. Curr Top Med Chem 2021; 21:705-736. [PMID: 33423647 DOI: 10.2174/1568026621666210108122622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022]
Abstract
In recent decades, there has been a significant increase in the number of fungal diseases. This is due to a wide spectrum of action, immunosuppressants and other group drugs. In terms of frequency, rapid spread and globality, fungal infections are approaching acute respiratory infections. Antimycotics are medicinal substances endorsed with fungicidal or fungistatic properties. For the treatment of fungal diseases, several groups of compounds are used that differ in their origin (natural or synthetic), molecular targets and mechanism of action, antifungal effect (fungicidal or fungistatic), indications for use (local or systemic infections), and methods of administration (parenteral, oral, outdoor). Several efforts have been made by various medicinal chemists around the world for the development of antifungal drugs with high efficacy with the least toxicity and maximum selectivity in the area of antifungal chemotherapy. The pharmacokinetic properties of the new antimycotics are also important: the ability to penetrate biological barriers, be absorbed and distributed in tissues and organs, get accumulated in tissues affected by micromycetes, undergo drug metabolism in the intestinal microflora and human organs, and in the kinetics of excretion from the body. There are several ways to search for new effective antimycotics: - Obtaining new derivatives of the already used classes of antimycotics with improved activity properties. - Screening of new chemical classes of synthetic antimycotic compounds. - Screening of natural compounds. - Identification of new unique molecular targets in the fungal cell. - Development of new compositions and dosage forms with effective delivery vehicles. The methods of informatics, bioinformatics, genomics and proteomics were extensively investigated for the development of new antimycotics. These techniques were employed in finding and identification of new molecular proteins in a fungal cell; in the determination of the selectivity of drugprotein interactions, evaluation of drug-drug interactions and synergism of drugs; determination of the structure-activity relationship (SAR) studies; determination of the molecular design of the most active, selective and safer drugs for the humans, animals and plants. In medical applications, the methods of information analysis and pharmacogenomics allow taking into account the individual phenotype of the patient, the level of expression of the targets of antifungal drugs when choosing antifungal agents and their dosage. This review article incorporates some of the most significant studies covering the basic structures and approaches for the synthesis of antifungal drugs and the directions for their further development.
Collapse
Affiliation(s)
- Alexander Yu Maksimov
- Department of Pharmacy and Pharmacology, Faculty of Chemistry, Perm State University, Perm 614990, Russian Federation
| | - Svetlana Yu Balandina
- Department of Pharmacy and Pharmacology, Faculty of Chemistry, Perm State University, Perm 614990, Russian Federation
| | - Pavel A Topanov
- Department of Pharmacy and Pharmacology, Faculty of Chemistry, Perm State University, Perm 614990, Russian Federation
| | - Irina V Mashevskaya
- Department of Pharmacy and Pharmacology, Faculty of Chemistry, Perm State University, Perm 614990, Russian Federation
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry (OMC lab), Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jawaharlal Nehru Marg, Jaipur 302017, India
| |
Collapse
|
40
|
Mroczyńska M, Brillowska-Dąbrowska A. Virulence of Clinical Candida Isolates. Pathogens 2021; 10:pathogens10040466. [PMID: 33921490 PMCID: PMC8070227 DOI: 10.3390/pathogens10040466] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
The factors enabling Candida spp. infections are secretion of hydrolytic enzymes, adherence to surfaces, biofilm formation or morphological transition, and fitness attributes. The aim of this study was to investigate the correlation between known extracellular virulence factors and survival of Galleria mellonella larvae infected with clinical Candida. The 25 isolates were tested and the activity of proteinases among 24/24, phospholipases among 7/22, esterases among 14/23, hemolysins among 18/24, and biofilm formation ability among 18/25 isolates was confirmed. Pathogenicity investigation using G. mellonella larvae as host model demonstrated that C. albicans isolates and C. glabrata isolate were the most virulent and C. krusei isolates were avirulent. C. parapsilosis virulence was identified as varied, C. inconspicua were moderately virulent, and one C. palmioleophila isolate was of low virulence and the remaining isolates of this species were moderately virulent. According to our study, virulence of Candida isolates is related to the expression of proteases, hemolysins, and esterases.
Collapse
|
41
|
Kakarala KK, Jamil K. Identification of novel allosteric binding sites and multi-targeted allosteric inhibitors of receptor and non-receptor tyrosine kinases using a computational approach. J Biomol Struct Dyn 2021; 40:6889-6909. [PMID: 33682622 DOI: 10.1080/07391102.2021.1891140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
EGFR1, VEGFR2, Bcr-Abl and Src kinases are key drug targets in non-small cell lung cancer (NSCLC), bladder cancer, pancreatic cancer, CML, ALL, colorectal cancer, etc. The available drugs targeting these kinases have limited therapeutic efficacy due to novel mutations resulting in drug resistance and toxicity, as they target ATP binding site. Allosteric drugs have shown promising results in overcoming drug resistance, but the discovery of allosteric drugs is challenging. The allosteric binding pockets are difficult to predict, as they are generally associated with high energy conformations and regulate protein function in yet unknown mechanisms. In addition, the discovery of drugs using conventional methods takes long time and goes through several challenges, putting the lives of many cancer patients at risk. Therefore, the aim of the present work was to apply the most successful, drug repurposing approach in combination with computational methods to identify kinase inhibitors targeting novel allosteric sites on protein structure and assess their potential multi-kinase binding affinity. Multiple crystal structures belonging to EGFR1, VEGFR2, Bcr-Abl and Src tyrosine kinases were selected, including mutated, inhibitor bound and allosteric conformations to identify potential leads, close to physiological conditions. Interestingly the potential inhibitors identified were peptides. The drugs identified in this study could be used in therapy as a single multi-kinase inhibitor or in a combination of single kinase inhibitors after experimental validation. In addition, we have also identified new hot spots that are likely to be druggable allosteric sites for drug discovery of kinase-specific drugs in the future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Kaiser Jamil
- Bhagwan Mahavir Medical Research Center, Hyderabad, Telangana, India
| |
Collapse
|
42
|
Echinocandins: structural diversity, biosynthesis, and development of antimycotics. Appl Microbiol Biotechnol 2020; 105:55-66. [PMID: 33270153 PMCID: PMC7778625 DOI: 10.1007/s00253-020-11022-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 02/04/2023]
Abstract
Abstract Echinocandins are a clinically important class of non-ribosomal antifungal lipopeptides produced by filamentous fungi. Due to their complex structure, which is characterized by numerous hydroxylated non-proteinogenic amino acids, echinocandin antifungal agents are manufactured semisynthetically. The development of optimized echinocandin structures is therefore closely connected to their biosynthesis. Enormous efforts in industrial research and development including fermentation, classical mutagenesis, isotope labeling, and chemical synthesis eventually led to the development of the active ingredients caspofungin, micafungin, and anidulafungin, which are now used as first-line treatments against invasive mycosis. In the last years, echinocandin biosynthetic gene clusters have been identified, which allowed for the elucidation but also engineering of echinocandin biosynthesis on the molecular level. After a short description of the history of echinocandin research, this review provides an overview of the current knowledge of echinocandin biosynthesis with a special focus of the diverse structural elements, their biosynthetic background, and structure−activity relationships. Key points • Complex and highly oxidized lipopeptides produced by fungi. • Crucial in the design of drugs: side chain, solubility, and hydrolytic stability. • Genetic methods for engineering biosynthesis have recently become available. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-020-11022-y.
Collapse
|
43
|
Echinocandins as Biotechnological Tools for Treating Candida auris Infections. J Fungi (Basel) 2020; 6:jof6030185. [PMID: 32971857 PMCID: PMC7558506 DOI: 10.3390/jof6030185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 12/30/2022] Open
Abstract
Candida auris has been reported in the past few years as an invasive fungal pathogen of high interest. Its recent emergence in healthcare-associated infections triggered the efforts of researchers worldwide, seeking additional alternatives to the use of traditional antifungals such as azoles. Lipopeptides, specially the echinocandins, have been reported as an effective approach to control pathogenic fungi. However, despite its efficiency against C. auris, some isolates presented echinocandin resistance. Thus, therapies focused on echinocandins’ synergism with other antifungal drugs were widely explored, representing a novel possibility for the treatment of C. auris infections.
Collapse
|
44
|
Antimicrobial and Antifungal Activity of Rare Substituted 1,2,3-Thiaselenazoles and Corresponding Matched Pair 1,2,3-Dithiazoles. Antibiotics (Basel) 2020; 9:antibiotics9070369. [PMID: 32630252 PMCID: PMC7400446 DOI: 10.3390/antibiotics9070369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022] Open
Abstract
We report our investigations into the underlying differences between 1,2,3-dithiazole and their ultra-rare counterpart, 1,2,3-thiaselenazole. This rare 1,2,3-thiaselenazole chemotype was afforded by sulfur extrusion and selenium insertion into the preconstructed 1,2,3-dithiazoles. We built a library of matched paired compounds to compare and contrast the two ring systems. This led to the development of both narrow and broad-spectrum antimicrobial compounds with sub-micro molar potency, limited to no toxicity and a further understanding of the transition state electronics through molecular simulations. We also identified the potent 4,5,6-trichlorocyclopenta[d][1,2,3]thiaselenazole 11a, for use against Candida albicans, Cryptococcus neoformans var. grubii, Staphylococcus aureus and Acinetobacter baumannii, all of which have limited clinical treatment options. The 1,2,3-thiaselenazole represents a new class of potential compounds for the treatment of a host of multi-resistant hospital derived infections.
Collapse
|