1
|
Castro D, Podshivalov A, Ponomareva A, Zhilenkov A. Study of the Reinforcing Effect and Antibacterial Activity of Edible Films Based on a Mixture of Chitosan/Cassava Starch Filled with Bentonite Particles with Intercalated Ginger Essential Oil. Polymers (Basel) 2024; 16:2531. [PMID: 39274163 PMCID: PMC11397879 DOI: 10.3390/polym16172531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
Edible films based on biopolymers are used to protect food from adverse environmental factors. However, their ample use may be hindered by some challenges to their mechanical and antimicrobial properties. Despite this, in most cases, increasing their mechanical properties and antibacterial activity remains a relevant challenge. To solve this problem, a possible option is to fill the biopolymer matrix of films with a functional filler that combines high reinforcing and antibacterial properties. In this work, biocomposite films based on a mixture of chitosan and cassava starch were filled with a hybrid filler in the form of bentonite clay particles loaded with ginger essential oil (GEO) in their structure with varied concentrations. For this purpose, GEO components were intercalated into bentonite clay interlayer space using a mechanical capture approach without using surface-active and toxic agents. The structure and loading efficiency of the essential oil in the obtained hybrid filler were analyzed by lyophilization and laser analysis of dispersions, ATR-FTIR spectroscopy, thermogravimetry, and X-ray diffraction analysis. The filled biocomposite films were analyzed using ATR-FTIR spectroscopy, optical and scanning electron spectroscopy, energy dispersive spectroscopy, mechanical analysis under tension, and the disk diffusion method for antibacterial activity. The results demonstrated that the tensile strength, Young's modulus, elongation at the break, and the antibacterial effect of the films increased by 40%, 19%, 44%, and 23%, respectively, compared to unfilled film when the filler concentration was 0.5-1 wt.%.
Collapse
Affiliation(s)
- David Castro
- Center for Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49, 197101 Saint-Petersburg, Russia
| | - Aleksandr Podshivalov
- Center for Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49, 197101 Saint-Petersburg, Russia
| | - Alina Ponomareva
- Center for Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49, 197101 Saint-Petersburg, Russia
| | - Anton Zhilenkov
- Institute of Robotics and Intelligent Systems, Saint-Petersburg State Marine Technical University, Lotsmanskaya Str., 3, 190121 Saint-Petersburg, Russia
| |
Collapse
|
2
|
Gallo C, Girón-Hernández J, Honey DA, Fox EM, Cassa MA, Tonda-Turo C, Camagnola I, Gentile P. Synergistic nanocoating with layer-by-layer functionalized PCL membranes enhanced by manuka honey and essential oils for advanced wound healing. Sci Rep 2024; 14:20715. [PMID: 39237556 PMCID: PMC11377730 DOI: 10.1038/s41598-024-71466-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
Chronic wounds represent a significant global health concern, statistically impacting 1-2% of the population in developed countries throughout their lifetimes. These wounds cause considerable discomfort for patients and necessitate substantial expenditures of time and resources for treatment. Among the emerging therapeutic approaches, medicated dressings incorporating bioactive molecules, including natural compounds, are particularly promising. Hence, the objective of this study was to develop novel antimicrobial dressings for wound treatment. Specifically, polycaprolactone membranes were manufactured using the electrospinning technique and subsequently coated with natural polyelectrolytes (chitosan as a polycation and a mixture of manuka honey with essential oils nanoemulsions as a polyanion) employing the Layer-by-Layer assembly technique. Physico-chemical and morphological characterization was conducted through QCM-D, FTIR-ATR, XPS, and SEM analyses. The results from SEM and QCM-D demonstrated successful layer deposition and coating formation. Furthermore, FTIR-ATR and XPS analyses distinguished among different coating compositions. The coated membranes were tested in the presence of fibroblast cells, demonstrating biocompatibility and expression of genes coding for VEGF, COL1, and TGF-β1, which are associated with the healing process (assessed through RT-qPCR analysis). Finally, the membranes exhibited excellent antibacterial activity against both Staphylococcus aureus and Pseudomonas aeruginosa, with higher bacterial strain inhibition observed when cinnamon essential oil nanoemulsion was incorporated. Taken together, these results demonstrate the potential application of nanocoated membranes for biomedical applications, such as wound healing.
Collapse
Affiliation(s)
- Camilla Gallo
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Joel Girón-Hernández
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Daisy A Honey
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Edward M Fox
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Maria A Cassa
- Department of Mechanical and Aerospace Engineering, Politecnico Di Torino, 10129, Turin, Italy
- Polito BIOMed Lab, Politecnico Di Torino, 10129, Turin, Italy
| | - Chiara Tonda-Turo
- Department of Mechanical and Aerospace Engineering, Politecnico Di Torino, 10129, Turin, Italy
- Polito BIOMed Lab, Politecnico Di Torino, 10129, Turin, Italy
| | - Irene Camagnola
- Department of Mechanical and Aerospace Engineering, Politecnico Di Torino, 10129, Turin, Italy
- Polito BIOMed Lab, Politecnico Di Torino, 10129, Turin, Italy
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| |
Collapse
|
3
|
Niebles Navas AF, Araujo-Rodríguez DG, Valencia-Llano CH, Insuasty D, Delgado-Ospina J, Navia-Porras DP, Zapata PA, Albis A, Grande-Tovar CD. Lyophilized Polyvinyl Alcohol and Chitosan Scaffolds Pre-Loaded with Silicon Dioxide Nanoparticles for Tissue Regeneration. Molecules 2024; 29:3850. [PMID: 39202929 PMCID: PMC11356782 DOI: 10.3390/molecules29163850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Materials with a soft tissue regenerative capacity can be produced using biopolymer scaffolds and nanomaterials, which allow injured tissue to recover without any side effects or limitations. Four formulations were prepared using polyvinyl alcohol (PVA) and chitosan (CS), with silicon dioxide nanoparticles (NPs-SiO2) incorporated using the freeze-drying method at a temperature of -50 °C. TGA and DSC showed no change in thermal degradation, with glass transition temperatures around 74 °C and 77 °C. The interactions between the hydroxyl groups of PVA and CS remained stable. Scanning electron microscopy (SEM) indicated that the incorporation of NPs-SiO2 complemented the freeze-drying process, enabling the dispersion of the components on the polymeric matrix and obtaining structures with a small pore size (between 30 and 60 μm) and large pores (between 100 and 160 μm). The antimicrobial capacity analysis of Gram-positive and Gram-negative bacteria revealed that the scaffolds inhibited around 99% of K. pneumoniae, E. cloacae, and S. aureus ATCC 55804. The subdermal implantation analysis demonstrated tissue growth and proliferation, with good biocompatibility, promoting the healing process for tissue restoration through the simultaneous degradation and formation of type I collagen fibers. All the results presented expand the boundaries in tissue engineering and regenerative medicine by highlighting the crucial role of nanoparticles in optimizing scaffold properties.
Collapse
Affiliation(s)
- Andrés Felipe Niebles Navas
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Daniela G Araujo-Rodríguez
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Carlos-Humberto Valencia-Llano
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B Número 36-00, Cali 760001, Colombia
| | - Daniel Insuasty
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia
| | - Johannes Delgado-Ospina
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Carrera 122 Número 6-65, Cali 760001, Colombia
| | - Diana Paola Navia-Porras
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Carrera 122 Número 6-65, Cali 760001, Colombia
| | - Paula A Zapata
- Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170020, Chile
| | - Alberto Albis
- Grupo de Investigación en Bioprocesos, Facultad de Ingeniería, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| |
Collapse
|
4
|
El-Sapagh SH, El-Zawawy NA, Elshobary ME, Alquraishi M, Zabed HM, Nouh HS. Harnessing the power of Neobacillus niacini AUMC-B524 for silver oxide nanoparticle synthesis: optimization, characterization, and bioactivity exploration. Microb Cell Fact 2024; 23:220. [PMID: 39107838 PMCID: PMC11304630 DOI: 10.1186/s12934-024-02484-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Biotechnology provides a cost-effective way to produce nanomaterials such as silver oxide nanoparticles (Ag2ONPs), which have emerged as versatile entities with diverse applications. This study investigated the ability of endophytic bacteria to biosynthesize Ag2ONPs. RESULTS A novel endophytic bacterial strain, Neobacillus niacini AUMC-B524, was isolated from Lycium shawii Roem. & Schult leaves and used to synthesize Ag2ONPS extracellularly. Plackett-Burman design and response surface approach was carried out to optimize the biosynthesis of Ag2ONPs (Bio-Ag2ONPs). Comprehensive characterization techniques, including UV-vis spectral analysis, Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction, dynamic light scattering analysis, Raman microscopy, and energy dispersive X-ray analysis, confirmed the precise composition of the Ag2ONPS. Bio-Ag2ONPs were effective against multidrug-resistant wound pathogens, with minimum inhibitory concentrations (1-25 µg mL-1). Notably, Bio-Ag2ONPs demonstrated no cytotoxic effects on human skin fibroblasts (HSF) in vitro, while effectively suppressing the proliferation of human epidermoid skin carcinoma (A-431) cells, inducing apoptosis and modulating the key apoptotic genes including Bcl-2 associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), Caspase-3 (Cas-3), and guardian of the genome (P53). CONCLUSIONS These findings highlight the therapeutic potential of Bio-Ag2ONPs synthesized by endophytic N. niacini AUMC-B524, underscoring their antibacterial efficacy, anticancer activity, and biocompatibility, paving the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Shimaa H El-Sapagh
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Nessma A El-Zawawy
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mostafa E Elshobary
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mohammed Alquraishi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, 11421, Riyadh, Saudi Arabia
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Hoda S Nouh
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
5
|
Ribeiro ARM, Miranda CS, Silva AFG, Mendes FDP, Silva BM, Oliveira BAS, Paiva ED, Gonçalves SP, Pereira-Lima SMMA, Costa SPG, Felgueiras HP. Inhibition of Enzyme and Bacteria Activities in Diabetic Ulcer-like Scenarios via WAAPV-Loaded Electrospun Fibers. Pharmaceutics 2024; 16:911. [PMID: 39065608 PMCID: PMC11280037 DOI: 10.3390/pharmaceutics16070911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
In diabetic ulcers, an increased secretion of human neutrophil elastase (HNE) and bacterial infections play crucial roles in hindering healing. Considering that, the present study proposed the development of multi-action polycaprolactone (PCL)/polyethylene glycol (PEG) electrospun fibers incorporating elastase-targeting peptides, AAPV and WAAPV, via blending. Characterization confirmed WAAPV's efficacy in regulating proteolytic enzymes by inhibiting HNE. The engineered fibers, particularly those containing PEG, exhibited optimal wettability but an accelerated degradation that was mitigated with the peptide's inclusion, thus promoting a sustained peptide release over 24 h. Peptide loading was verified indirectly through thermal stability and hydration capacity studies (hydrophobic bonding between PCL and WAAPV and hydrophilic affinities between PCL/PEG and AAPV) and determined at ≈51.1 µg/cm2 and ≈46.0 µg/cm2 for AAPV and ≈48.5 µg/cm2 and ≈51.3 µg/cm2 for WAAPV, respectively, for PCL and PCL/PEG. Both AAPV and WAAPV effectively inhibited HNE, with PEG potentially enhancing this effect by interacting with the peptides and generating detectable peptide-PEG complexes (≈10% inhibition with PCL + peptide fibers after 6 h of incubation, and ≈20% with PCL/PEG + peptide fibers after 4 h incubation). Peptide-loaded fibers demonstrated antibacterial efficacy against Staphylococcus aureus (up to ≈78% inhibition) and Escherichia coli (up to ≈66% inhibition), with peak effectiveness observed after 4 and 2 h of incubation, respectively. This study provides initial insights into the WAAPV's potential for inhibiting HNE and bacteria activities, showing promise for applications in diabetic ulcer management.
Collapse
Affiliation(s)
- Ana R. M. Ribeiro
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (A.R.M.R.); (C.S.M.); (B.M.S.); (B.A.S.O.); (E.D.P.); (S.P.G.)
| | - Catarina S. Miranda
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (A.R.M.R.); (C.S.M.); (B.M.S.); (B.A.S.O.); (E.D.P.); (S.P.G.)
| | - Ana Francisca G. Silva
- Centre of Chemistry (CQ), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.F.G.S.); (S.M.M.A.P.-L.); (S.P.G.C.)
| | - Filipa D. P. Mendes
- Centre of Chemistry (CQ), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.F.G.S.); (S.M.M.A.P.-L.); (S.P.G.C.)
| | - Beatriz M. Silva
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (A.R.M.R.); (C.S.M.); (B.M.S.); (B.A.S.O.); (E.D.P.); (S.P.G.)
| | - Bruna A. S. Oliveira
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (A.R.M.R.); (C.S.M.); (B.M.S.); (B.A.S.O.); (E.D.P.); (S.P.G.)
| | - Eduardo D. Paiva
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (A.R.M.R.); (C.S.M.); (B.M.S.); (B.A.S.O.); (E.D.P.); (S.P.G.)
| | - Sónia P. Gonçalves
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (A.R.M.R.); (C.S.M.); (B.M.S.); (B.A.S.O.); (E.D.P.); (S.P.G.)
| | - Sílvia M. M. A. Pereira-Lima
- Centre of Chemistry (CQ), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.F.G.S.); (S.M.M.A.P.-L.); (S.P.G.C.)
| | - Susana P. G. Costa
- Centre of Chemistry (CQ), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.F.G.S.); (S.M.M.A.P.-L.); (S.P.G.C.)
| | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (A.R.M.R.); (C.S.M.); (B.M.S.); (B.A.S.O.); (E.D.P.); (S.P.G.)
| |
Collapse
|
6
|
Buriti BMADB, Figueiredo PLB, Passos MF, da Silva JKR. Polymer-Based Wound Dressings Loaded with Essential Oil for the Treatment of Wounds: A Review. Pharmaceuticals (Basel) 2024; 17:897. [PMID: 39065747 PMCID: PMC11279661 DOI: 10.3390/ph17070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Wound healing can result in complex problems, and discovering an effective method to improve the healing process is essential. Polymeric biomaterials have structures similar to those identified in the extracellular matrix of the tissue to be regenerated and also avoid chronic inflammation, and immunological reactions. To obtain smart and effective dressings, bioactive agents, such as essential oils, are also used to promote a wide range of biological properties, which can accelerate the healing process. Therefore, we intend to explore advances in the potential for applying hybrid materials in wound healing. For this, fifty scientific articles dated from 2010 to 2023 were investigated using the Web of Science, Scopus, Science Direct, and PubMed databases. The principles of the healing process, use of polymers, type and properties of essential oils and processing techniques, and characteristics of dressings were identified. Thus, the plants Syzygium romanticum or Eugenia caryophyllata, Origanum vulgare, and Cinnamomum zeylanicum present prospects for application in clinical trials due to their proven effects on wound healing and reducing the incidence of inflammatory cells in the site of injury. The antimicrobial effect of essential oils is mainly due to polyphenols and terpenes such as eugenol, cinnamaldehyde, carvacrol, and thymol.
Collapse
Affiliation(s)
- Bruna Michele A. de B. Buriti
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
| | - Pablo Luis B. Figueiredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
| | - Marcele Fonseca Passos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Joyce Kelly R. da Silva
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
7
|
Felgueiras HP. Special Issue "Antimicrobial Biomaterials: Recent Progress". Int J Mol Sci 2024; 25:7153. [PMID: 39000256 PMCID: PMC11241111 DOI: 10.3390/ijms25137153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Biomaterials have demonstrated their ability to serve as effective drug delivery platforms, enabling targeted and localized administration of therapeutic agents [...].
Collapse
Affiliation(s)
- Helena P Felgueiras
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| |
Collapse
|
8
|
Ahmed BH, Desta MA, Wami AA, Beyene GT, Bedane KG. Sesquiterpene Acids and Lactones from Inula Confertiflora with their Antibacterial Activities. Chem Biodivers 2024; 21:e202400265. [PMID: 38470349 DOI: 10.1002/cbdv.202400265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/13/2024]
Abstract
The phytochemical investigation of the leaves of Inula confertiflora, a medicinal plant endemic to Ethiopia, led to the isolation of 15 terpenoids; 1β-hydroxy-α-costic acid (1), 3α-hydroxycostic acid (2), isotelekin (3), asperilin (4), carabrone (5), carpesioline (6), graveolide (7), inuviscolide (8), 8-epi-inuviscolide (9), 1β,4β-dihydroxy-5α(H)-guaia-10(14),11(13)-dien-8α,12-olide (10), isoinuviscolide (11), 4β,10β-dihydroxy-5α(H)-1,11(13)-guaidien-8α,12-olide (12), 4β,10β-dihydroxy-1β(H)-5α(H)-guai-11(13)-en-8α,12-olide (13), 4β,10α-dihydroxy-1β(H)-5α(H)-guai-11(13)-en-8α,12-olide (14), 4β,10α-dihydroxy-1α(H)-5α(H)-guai-11(13)-en-8α,12-olide (15). Herein, structural elucidation and full NMR data for compound 1 are presented for the first time. The structures were elucidated using NMR, HRESIMS, and by comparison with literature data. The relative configurations were defined by NOESY correlations and single-crystal X-ray crystallography. Herein, crystallography data of 6 and 7 were reported for the first time. The antibacterial efficacy of some of the isolated compounds was evaluated against two commonly dispersed environmental strains of Escherichia coli and Staphylococcus aureus. Compounds 1, 3, 6, 7, and 8 exhibited moderate antibacterial activities against the tested organisms. The chemotaxonomic significance of compounds is discussed.
Collapse
Affiliation(s)
- Bonsa Hussein Ahmed
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box, 1176, Addis Ababa, Ethiopia
| | - Mekonnen Abebayehu Desta
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box, 1176, Addis Ababa, Ethiopia
| | - Ashenafi Alemu Wami
- Armauer Hansen Research Institute (AHRI), ALERT Hospital, Addis Ababa, Ethiopia
| | | | - Kibrom Gebreheiwot Bedane
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box, 1176, Addis Ababa, Ethiopia
| |
Collapse
|
9
|
Amoon H, Moghadam A, Hajkarim MC. Synthesis, characterization, and investigation of antibacterial activity of Novel CMC/CuO NPs/CQDs bionanocomposite coating. Int J Biol Macromol 2024; 268:131922. [PMID: 38688345 DOI: 10.1016/j.ijbiomac.2024.131922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
In recent decades, healthcare-associated infections (HAIs) have become a common problem in healthcare facilities such as hospitals. As a result, researchers are currently developing nanocomposite coatings that are strengthened with antibacterial nanoparticles. In this research, a novel antibacterial bionanocomposite coating based on carboxymethyl cellulose polymer/copper oxide nanoparticles/carbon quantum dots was coated on medical grade 316 stainless steel by sol-gel dip-coating method. The effect of the concentration of nanocomposite components was investigated at four different levels to determine the best ratio with the most antibacterial activity. Structural characteristics of nanocomposite and coating were investigated using different analysis methods. The coating analysis showed that reinforcements are uniformly distributed in the polymer matrix. Antibacterial test of disc diffusion was performed by the Kirby-Bauer method and minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) antibacterial test. The results showed that bionanocomposite was effective in the MIC assays against Staphylococcus aureus and Escherichia coli with MIC values of 25 mg/ml and >50 mg/ml, respectively. The inhibition zones for E. coli and S. aureus were 17 and 32 mm, respectively, at 10 μg/disc of gentamicin. SEM images displayed significant and evident alterations in the structure of bacterial morphology, indicating cellular damage.
Collapse
Affiliation(s)
- Hamidreza Amoon
- Department of Materials Science and Engineering, Razi University, Kermanshah, Iran
| | - Ayoub Moghadam
- Department of Materials Science and Engineering, Razi University, Kermanshah, Iran.
| | - Maryam Chalabi Hajkarim
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
10
|
Suárez-Vega A, Berriozabal G, Perez de Iriarte J, Lorenzo J, Álvarez N, Dominguez-Meister S, Insausti S, Rujas E, Nieva JL, Brizuela M, Braceras I. On the antimicrobial properties and endurance of eugenol and 2-phenylphenol functionalized sol-gel coatings. Heliyon 2024; 10:e29146. [PMID: 38628759 PMCID: PMC11016974 DOI: 10.1016/j.heliyon.2024.e29146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/04/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
Preventing microbiological surface contamination in public spaces is nowadays of high priority. The proliferation of a microbial infection may arise through air, water, or direct contact with infected surfaces. Chemical sanitization is one of the most effective approaches to avoid the proliferation of microorganisms. However, extended contact with chemicals for cleaning purposes such as chlorine, hydrogen peroxide or ethanol may lead to long-term diseases as well as drowsiness or respiratory issues, not to mention environmental issues associated to their use. As a potentially safer alternative, in the present work, the efficacy and endurance of the antimicrobial activity of different sol-gel coatings were studied, where one or two biocides were added to the coating matrix resulting on active groups exposed on the surface. Specifically, the coating formulations were synthesized by the sol-gel method. Using the alkoxide route with acid catalysis a hybrid silica-titania-methacrylate matrix was obtained where aromatic liquid eugenol was added with a double function: as a complexing agent for the chelation of the reaction precursor titanium isopropoxide, and as a biocide. In addition, 2-Phenylphenol, ECHA approved biocide, has also been incorporated to the coating matrix. The antibacterial effect of these coatings was confirmed on Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). Additionally, the coatings were non cyto-toxic and displayed virucidal activity. The coating chemical composition was characterized by 29Si NMR, and ATR-FTIR. Furthermore, the thickness and the mechanical properties were characterized by profilometry and nanoindentation, respectively. Finally, the durability of the coatings was studied with tribology tests. Overall, our data support the efficacy of the tested sol-gel coatings and suggest that added features may be required to improve endurance of the antimicrobial effects on operational conditions.
Collapse
Affiliation(s)
- Ana Suárez-Vega
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, Donostia-San Sebastián, Spain
| | - Gemma Berriozabal
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, Donostia-San Sebastián, Spain
| | - Juan Perez de Iriarte
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, Donostia-San Sebastián, Spain
| | - Jaione Lorenzo
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, Donostia-San Sebastián, Spain
| | - Noelia Álvarez
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, Donostia-San Sebastián, Spain
| | - Santiago Dominguez-Meister
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, Donostia-San Sebastián, Spain
| | - Sara Insausti
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain
| | - Edurne Rujas
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
- Pharmacokinetic, Nanotechnology and Gene Therapy Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Jose L. Nieva
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain
| | - Marta Brizuela
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, Donostia-San Sebastián, Spain
| | - Iñigo Braceras
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, Donostia-San Sebastián, Spain
| |
Collapse
|
11
|
Vila Nova BG, Silva LDS, Andrade MDS, de Santana AVS, da Silva LCT, Sá GC, Zafred IF, Moreira PHDA, Monteiro CA, da Silva LCN, Abreu AG. The essential oil of Melaleuca alternifolia incorporated into hydrogel induces antimicrobial and anti-inflammatory effects on infected wounds by Staphylococcus aureus. Biomed Pharmacother 2024; 173:116389. [PMID: 38461682 DOI: 10.1016/j.biopha.2024.116389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Staphylococcus aureus is one of the most common bacterial isolates found in wounds. Thus, innovative dressings, such as hydrogels, are interesting vehicles for incorporating bioactive compounds like those from Melaleuca alternifolia essential oil (MaEO). In this study, we evaluated the antimicrobial and anti-inflammatory potential of MaEO incorporated into an alginate and chitosan hydrogel for treating wounds infected by S. aureus. The hydrogel incorporated with MaEO 1% (HMa 1%) was homogeneous with a bright pale-yellow color and the characteristic smell of Melaleuca. The incorporation of MaEO 1% does not affect the stability of the hydrogel, which was stable up to 90 days of storage. The Scanning electron microscopy analysis revealed that hydrogels showed irregular surfaces and interconnected porous structures with accumulations of oil crystals distributed throughout the formulation. HMa 1% has a high moisture content (95.1%) and can absorb simulated wound fluid. Regarding the antimicrobial effects, HMa 1% reduced the growth of S. aureus ATCC 6538 in both in vitro conditions and in an ex vivo model of wounds using porcine skin. In addition, the dairy topical treatment of murine skin lesions with HMa 1% induced a significant reduction of the wound area, inflammation score, and bacterial load, as well as tissue re-epithelialization and modulation of inflammatory mediators. Therefore, hydrogel incorporated with MaEO 1% has excellent potential to be used in the pharmacotherapy of infected wounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Cristina Andrade Monteiro
- Laboratory of Research and Study in Microbiology, Federal Institute of Education, Science and Technology of the Maranhão (IFMA), São Luís, MA, Brazil
| | | | - Afonso Gomes Abreu
- Microbial Pathogenicity Laboratory, CEUMA University, São Luís, MA, Brazil.
| |
Collapse
|
12
|
Wells CW. Effects of essential oils on economically important characteristics of ruminant species: A comprehensive review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:1-10. [PMID: 38131027 PMCID: PMC10731003 DOI: 10.1016/j.aninu.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/27/2023] [Accepted: 05/04/2023] [Indexed: 12/23/2023]
Abstract
Essential oils derived from plants can provide biological impacts to livestock species. Scientific studies researching essential oils in livestock have investigated various essential oils for prevention and treatment of microbial infection and parasites as well as to enhance milk production, animal performance and rumen function. Despite the availability of several commercial products containing essential oils to promote animal health and production, the vast amount of essential oils, modes of application, and effective concentrations of the essential oils suggest there are more opportunities for essential oils to be utilized in commercial livestock production and veterinary medicine. The objective of this review is to contribute to the understanding of the value that essential oils can provide to the ruminant diet and to examine the biological impact of various essential oils on economically important production traits of ruminant species.
Collapse
|
13
|
Belyagoubi-Benhammou N, Belyagoubi L, Benmahieddine A, El Zerey-Belaskri A, Di Marco G, D'Agostino A, Canini A, Gismondi A. Nutraceutical Content and Biological Properties of Lipophilic and Hydrophilic Fractions of the Phytocomplex from Pistacia atlantica Desf. Buds, Roots, and Fruits. PLANTS (BASEL, SWITZERLAND) 2024; 13:611. [PMID: 38475458 DOI: 10.3390/plants13050611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
The aim of the present investigation was to obtain 12 aqueous extracts and 1 oil from Pistacia atlantica Desf. subsp. atlantica specimens. The samples differed for processed plant organs (i.e., roots, buds, and fruits), gender and geographical station of the collected trees. Total phenols, flavonoids, and condensed tannins were determined, revealing that bud extracts exhibited the highest phenolic content (386.785 ± 16.227 mg GAE/g DM), followed by fruit and root preparations. Similar results were detected for flavonoids and tannins, whose quantitation ranged from 0.014 ± 0.005 to 74.780 ± 9.724 mg CE/g DM and from 0.037 ± 0.003 to 14.793 ± 0.821 mg CE/g DM, respectively. The biochemical profile of the extracts was further characterized by HPLC-DAD, in terms of specific phenolics. This analysis identified gallic acid as a typical metabolite for ripe fruit, while hydroxytyrosol for female roots and male buds. In parallel, P. atlantica fruit oil was profiled by GC-MS analysis, which detected 37 lipophilic components, including palmitic acid (the major component, ~55%), anacardol, tetradecanol, arachidic acid, squalene, and some terpenes. The samples revealed interesting antioxidant activity, with EC50 values ranging from 0.073 ± 0.001 to 193.594 ± 28.942 mg/mL and from 0.029 ± 0.001 to 103.086 ± 20.540 mg/mL, in that order, for DPPH and reducing power assays. Concerning the total antioxidant capacity, the results ranged from 0.053 ± 0.008 to 51.648 ± 1.659 mg AAE/g DM. Finally, the antimicrobial potential of the plant extracts was estimated against 7 bacterial species and 2 fungal strains, known to be human pathogens, demonstrating a good antibiotic effect for the bud extracts. All these findings strongly suggest that P. atlantica would represent a natural reservoir for novel additives to be used in therapeutic, food, and cosmetic products.
Collapse
Affiliation(s)
- Nabila Belyagoubi-Benhammou
- Natural Products Laboratory, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University Abou-Bekr Belkaïd, Tlemcen 13000, Algeria
| | - Larbi Belyagoubi
- Natural Products Laboratory, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University Abou-Bekr Belkaïd, Tlemcen 13000, Algeria
| | - Assia Benmahieddine
- Natural Products Laboratory, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University Abou-Bekr Belkaïd, Tlemcen 13000, Algeria
| | - Asma El Zerey-Belaskri
- Laboratoire de Biotechnologie des Rizobia et Amélioration des Plantes, Faculté des Sciences de la Nature et de la Vie, Université Oran1 Ahmed Ben Bella, Oran 31000, Algeria
| | - Gabriele Di Marco
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Alessia D'Agostino
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Antonella Canini
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Angelo Gismondi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
14
|
Nguyen QM, Hutchison P, Palombo E, Yu A, Kingshott P. Antibiofilm Activity of Eugenol-Loaded Chitosan Coatings against Common Medical-Device-Contaminating Bacteria. ACS APPLIED BIO MATERIALS 2024; 7:918-935. [PMID: 38275187 DOI: 10.1021/acsabm.3c00949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The formation of pathogenic biofilms on medical devices is a major public health concern accounting for over 65% of healthcare-associated infections and causing high infection morbidity, mortality, and a great burden to patients and the healthcare system due to its resistance to treatment. In this study, we developed a chitosan-based antimicrobial coating with embedded mesoporous silica nanoparticles (MSNs) to load and deliver eugenol, an essential oil component, to inhibit the biofilm formation of common bacteria in medical-device-related infections. The eugenol-loaded MSNs were dispersed in a chitosan solution, which was then cross-linked with glutaraldehyde and drop-casted to obtain coatings. The MSNs and coatings were characterized by dynamic light scattering, Brunauer-Emmett-Teller analysis, attenuated-total-reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, 3D optical profilometry, and scanning electron microscopy. The release behavior of eugenol-loaded MSNs and coatings and the antibiofilm and antimicrobial activity of the coatings against adherent Staphylococcus aureus, methicillin-resistant S. aureus, and Pseudomonas aeruginosa were investigated. Eugenol was released from the MSNs and coatings in aqueous conditions in a controlled manner with an initial low release, followed by a peak release, a decrease, and a plateau. While the chitosan coatings alone or with unloaded MSNs demonstrated limited antimicrobial effects and still supported biofilm formation after 24 h, the coating containing eugenol not only reduced biofilm formation but also killed the majority of the attached bacteria. It also showed biocompatibility in indirect contact with NIH/3T3 fibroblasts and a high percentage of live cells in direct contact. However, further investigations into cell proliferation in direct contact are recommended. The findings indicated that the chitosan-based coating with eugenol-loaded MSNs could be developed into an effective strategy to inhibit biofilm formation on medical devices.
Collapse
Affiliation(s)
- Quang Minh Nguyen
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Peter Hutchison
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Enzo Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Aimin Yu
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- ARC Training Centre in Surface Engineering for Advanced Materials, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
15
|
Li Z, Wu M, Yan H, Meng Z, Gao B, Dong Q. Antibacterial Effect and Possible Mechanism of Sesamol against Foodborne Pathogens. Foods 2024; 13:435. [PMID: 38338570 PMCID: PMC10855640 DOI: 10.3390/foods13030435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Food safety problems caused by foodborne pathogens have become a major public issue, and the search for efficient and safe bacteriostatic agents has gained attention. Sesamol (SE), a phenolic compound abundant in sesame oil, offers numerous health benefits and exhibits certain antibacterial properties. The purpose of this study was to evaluate the antibacterial effect and potential mechanisms of SE against representative foodborne pathogens, including Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Salmonella serovar Enteritidis. The results showed that SE significantly inhibited the growth of the five pathogenic bacteria in sterile saline and pasteurized milk by 2.16-4.16 log10 CFU/g within 48 h. The results of the minimum bactericidal concentration and time-kill assay showed that SE had a greater inhibitory effect on L. monocytogenes compared with other bacteria. Additionally, SE was found to alter the cell membranes' permeability in these bacteria, resulting in the release of intercellular proteins and DNA. A scanning electron microscopy analysis showed that exposure to SE resulted in significant changes in bacterial morphology, producing cell shrinkage and deformation. These findings suggest that SE could inhibit both Gram-negative and Gram-positive bacteria by interfering with the function and morphology of bacterial cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.L.); (M.W.); (H.Y.); (Z.M.); (B.G.)
| |
Collapse
|
16
|
Qader IB, Ganjo AR, Ahmad HO, Qader HA, Hamadameen HA. Antibacterial and Antioxidant Study of New Pharmaceutical Formulation of Didecyldimethylammonium Bromide Via Pharmaceutical Deep Eutectic Solvents (PDESs) Principle. AAPS PharmSciTech 2024; 25:25. [PMID: 38267795 DOI: 10.1208/s12249-024-02739-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
Combination therapies have been studied by many researchers using different techniques and methods to solve some solid drug problems and improve more effective treatments for humans and animals. One of the more significant findings to emerge from this study is that the combination of pharmaceutical agents by using pharmaceutical deep eutectic solvents (PDESs) in order to produce dual action drugs and reduce the drug resistance. The major objective of this study was to investigate the dual functionality of drugs (antioxidant and antibacterial activity) via the principle of PDESs. The produced PDESs were characterized via different techniques, namely differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and UV-Vis spectrophotometry. We herein tested a panel of novel liquid formulations of didecyldimethylammonium bromide (DDMAB) against a selection of pathogenic bacteria, classifying their spectrum of activity against Gram-positive and Gram-negative bacteria. The current study found that the PDESs can be used to produce drugs with dual functionalities. The produced PDES from (ascorbic acid: DDMAB) exhibits stronger antibacterial activity against Gram-positive Staphyloccocus aureus and Staphyloccocus epidermidis than gram negatives. One of the most interesting PDESs studied in this research was that of DDMAB and ascorbic acid. This forms a eutectic which is far from the solid drugs issues and shows dual functionality like antibacterial and antioxidant activity. This study has found that there is a correlation between the molecular docking study and the biological activities of the combined drugs.
Collapse
Affiliation(s)
- Idrees B Qader
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq.
- Department of Pharmacy, College of Medicine, University of Kurdistan-Hawler, Erbil, Kurdistan region, Iraq.
| | - Aryan R Ganjo
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Hiwa O Ahmad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
- Department of Pharmacy, College of Medicine, University of Kurdistan-Hawler, Erbil, Kurdistan region, Iraq
| | - Hemn A Qader
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Hewa A Hamadameen
- Department of Pharmaceutics, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
17
|
Ashraf A, Qadeer S, Ullah S, Asad M, Fatima H, Nasir MF, Shaheen N, Qureshi NA. Characterization and in-vitro plant-based control of hindgut bacteria isolated from Odontotermes obesus Rambur (Termitidae) and Heterotermes indicola Wasmann (Rhinotermitidae). Sci Prog 2024; 107:368504241236026. [PMID: 38490163 PMCID: PMC10943747 DOI: 10.1177/00368504241236026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Termites cause a serious menace to wooden structures all over the world. They rely mostly on entozoic fauna residing in their hindgut for the digestion of cellulosic and hemicellulosic materials. One of the ways to control termites is through their gut symbionts. The present study was designed to characterize the hindgut bacteria isolated from Odontotermes obesus and Heterotermes indicola. Furthermore, the growth inhibitory effect of eight tropical plant extracts was investigated to find out potential control agents for these bacterial isolates. The characterization of bacteria was carried out based on their morphology, Gram staining, biochemical and amplification of 16SrRNA gene. Amplified products were sequenced to confirm their relationship with bacterial isolates from termites of other regions. The growth inhibitory effect of ethanolic leaf extracts of eight plants was evaluated in an invitro agar well diffusion method. Qualitative and quantitative phytochemical analysis of the most effective plant was carried out to learn about bioactive agents. The results confirmed the presence of five bacteria from each termite species. The Bacillus cereus, Escherichia coli, and Lysinibacillus fusiformis were common to both termites whereas Lysinibacillus xylanilyticus and Lysinibacillus macrolides were found in O. obesus only and H. indicola harbor Bacillus subtilis and Shigella sonnei in addition to common three ones. Among the plant extracts of Carica papaya, Eucalyptus camaldulensis, Osmium basilicum, Grevillea robusta, Eucalyptus globulus, Pongamia pinnata, Mentha longifolia, and Melia azedarach, the G. robusta > E. camaldulensis > O. basilicum were found to have growth inhibitory effects with increasing concentrations from 100 to 2000 µg/mL. The biodiversity of the bacterial fauna is important for the biological control of termites. Leaf extracts of these medicinal plants can be used to control termite infestation in an environment-friendly manner to save huge economic loss.
Collapse
Affiliation(s)
- Asma Ashraf
- Department of Zoology, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Saima Qadeer
- Department of Zoology, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Sana Ullah
- Department of Zoology, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Muhammad Asad
- Department of Zoology, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Huma Fatima
- Department of Zoology, Women University Mardan, Mardan, Pakistan
| | - Muhammad Farhan Nasir
- Department of Zoology, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Nargis Shaheen
- Department of Animal Sciences, Faculty of Biological Science, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Naveeda Akhtar Qureshi
- Department of Animal Sciences, Faculty of Biological Science, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| |
Collapse
|
18
|
Bahadır Semerci A, Yıldırım M, Oztay F, Sagıroglu M, Tunç K. Evaluation of Fatty Acid Contents and Biological Activities of Jurinea turcica. Chem Biodivers 2024; 21:e202300084. [PMID: 38010957 DOI: 10.1002/cbdv.202300084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 11/29/2023]
Abstract
The fatty acid profile, antioxidant/antibacterial, and cytotoxic effects of the extracts obtained from Jurinea turcica B.Doğan& A.Duran have been evaluated for the first time in the current study. The fatty acid profile of ethanolic extracts was determined using the Soxhlet extractor by a gas chromatography-mass spectrometer. The antioxidant and antibacterial activities were measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and ferrous reduction tests and the disc diffusion technique. Additionally, the cytotoxicity and wound healing assays were performed on A549 cells. The highest amount of component in the leaf extract was docosanoic acid methyl ester, whereas abundant arachidonic acid methyl ester was mainly found in the flower extract. The IC50 values, the 50 % scavenging value for the DPPH radical, were 179.13 and 124.67 μg/mL for the leaf and flower extracts, respectively. IC50 values (the half-maximal inhibitory concentration) were 10.4 and 24.7 μg/mL for the flower and leaf extracts, respectively. The leaf extract showed more potent antibacterial activity on Enterococcus faecalis (17 mm) and Staphylococcus aureus (16 mm) bacteria than the flower extract. In conclusion, the extracts of J. turcica have anti-cancerogenic and antibacterial effects. Leaf extracts have antibacterial and anti-metastatic effects, while flower extracts show antioxidant, cytotoxic, and apoptotic properties in A549 cells.
Collapse
Affiliation(s)
- Alican Bahadır Semerci
- Sakarya University, Science Faculty, Department of Biology, 54187, Sakarya, Turkey
- Necmettin Erbakan University, Ereğli Vocational School of Health Services, 42310, Konya, Turkey
| | - Merve Yıldırım
- Istanbul University, Science Faculty, Department of Biology, Molecular Biology Division, Vezneciler, 34134, Istanbul, Turkey
| | - Füsun Oztay
- Istanbul University, Science Faculty, Department of Biology, Molecular Biology Division, Vezneciler, 34134, Istanbul, Turkey
| | - Mehmet Sagıroglu
- Sakarya University, Science Faculty, Department of Biology, 54187, Sakarya, Turkey
| | - Kenan Tunç
- Sakarya University, Science Faculty, Department of Biology, 54187, Sakarya, Turkey
| |
Collapse
|
19
|
Chen J, Zhong J, Lei H, Ai Y. Label-free multidimensional bacterial characterization with an ultrawide detectable concentration range by microfluidic impedance cytometry. LAB ON A CHIP 2023; 23:5029-5038. [PMID: 37909182 DOI: 10.1039/d3lc00799e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Rapid and accurate identification of bacteria is of great importance to public health in various fields, including medical diagnostics, food safety, and environmental monitoring. However, most existing bacterial detection methods have very narrow detectable concentration ranges and limited detection information, which easily leads to wrong diagnosis and treatment. This work presents a novel high-throughput microfluidic electrical impedance-based multidimensional single-bacterium profiling system for ultrawide concentration range detection and accurate differentiation of viability and Gram types of bacteria. The electrical impedance-based microfluidic cytometry is capable of multi-frequency impedance quantification, which allows profiling of the bacteria size, concentration, and membrane impedance as an indicator of bacterial viability and Gram properties in a single flow-through interrogation. It has been demonstrated that this novel impedance cytometry has an ultrawide bacterial counting range (102-108 cells per mL), and exhibits a rapid and accurate discrimination of viability and Gram types of bacteria in a label-free manner. Escherichia coli (E. coli) has been used as an analog species for the accuracy assessment of the electrical impedance-based bacterial detection system in an authentic complex beverage matrix within 24 hours. The impedance-based quantifications of viable bacteria are consistent with those obtained by the classical bacterial colony counting method (R2 = 0.996). This work could pave the way for providing a novel microfluidic cytometry system for rapid and multidimensional bacterial detection in diverse areas.
Collapse
Affiliation(s)
- Jiahong Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jianwei Zhong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| |
Collapse
|
20
|
Lan X, Zhong J, Huang R, Liu Y, Ma X, Li X, Zhao D, Qing G, Zhang Y, Liu L, Wang J, Ma X, Luo T, Guo W, Wang Y, Li LL, Su YX, Liang XJ. Conformation Dependent Architectures of Assembled Antimicrobial Peptides with Enhanced Antimicrobial Ability. Adv Healthc Mater 2023; 12:e2301688. [PMID: 37540835 DOI: 10.1002/adhm.202301688] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/19/2023] [Indexed: 08/06/2023]
Abstract
Antimicrobial peptides (AMPs) are a developing class of natural and synthetic oligopeptides with host defense mechanisms against a broad spectrum of microorganisms. With in-depth research on the structural conformations of AMPs, synthesis or modification of peptides has shown great potential in effectively obtaining new therapeutic agents with improved physicochemical and biological properties. Notably, AMPs with self-assembled properties have gradually become a hot research topic for various biomedical applications. Compared to monomeric peptides, these peptides can exist in diverse forms (e.g., nanoparticles, nanorods, and nanofibers) and possess several advantages, such as high stability, good biocompatibility, and potent biological functions, after forming aggregates under specific conditions. In particular, the stability and antibacterial property of these AMPs can be modulated by rationally regulating the peptide sequences to promote self-assembly, leading to the reconstruction of molecular structure and spatial orientation while introducing some peptide fragments into the scaffolds. In this work, four self-assembled AMPs are developed, and the relationship between their chemical structures and antibacterial activity is explored extensively through different experiments. Importantly, the evaluation of antibacterial performance in both in vitro and in vivo studies has provided a general guide for using self-assembled AMPs in subsequent treatments for combating bacterial infections.
Collapse
Affiliation(s)
- Xinmiao Lan
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Science, Capital Medical University, Beijing, 100069, China
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jie Zhong
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, 999077, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Regina Huang
- Discipline of Periodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yuhan Liu
- Department of Stomatology, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Science, Beijing, 100012, China
| | - Xiaowei Ma
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xuan Li
- Discipline of Periodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Dan Zhao
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100069, China
| | - Guangchao Qing
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yuxuan Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinjin Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Luo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Weisheng Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yuji Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Science, Capital Medical University, Beijing, 100069, China
| | - Li-Li Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Xiong Su
- Discipline of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
21
|
Huong LT, The Son N, Sam LN, Minh PN, Luyen ND, Hung NH, Dai DN. Essential oils of the ginger plants Meistera caudata and Conamomum vietnamense: chemical compositions, antimicrobial, and mosquito larvicidal activities. Z NATURFORSCH C 2023; 78:337-344. [PMID: 37167216 DOI: 10.1515/znc-2022-0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
The current study describes the chemical identification, antimicrobial, and mosquito larvicidal activities of essential oils from Meistera caudata and Conamomum vietnamense, growing in Vietnam. Essential oils were extracted from the leaves and rhizomes, and characterized by the GC-FID/MS (gas chromatography-flame ionization detection/mass spectrometry) analysis. Monoterpenes (33.1-89.2 %) were the main chemical class found in these oils. β-Pinene (30.8 %) and α-pinene (23.8 %) were two major compounds in M. caudata leaf oil. C. vietnamense leaf and rhizome essential oils were dominated by 1,8-cineole (47.9-62.0 %) and limonene (10.3-16.2 %). With the same MIC (minimum inhibitory concentration) value of 25 μg/mL, C. vietnamense leaf and rhizome essential oils strongly inhibited the growth of Gram-positive bacteria Staphylococcus aureus ATCC 29213 and Bacillus subtilis ATCC 6501, respectively. For 24 and 48-h treatments, C. vietnamense leaf essential oil strongly controlled the growth of mosquito Aedes aegypti with the respective LC50 values of 7.67 and 6.73 μg/mL, and the respective LC90 values of 13.37 and 10.83 μg/mL. In the same manner, C. vietnamense rhizome essential oil also showed strong mosquito larvicidal activity against Aedes albopictus with the LC50 values of 12.37 and 12.00 μg/mL, and the LC90 values of 20.56 and 18.58 μg/mL, respectively. C. vietnamense essential essential oils containing a high amount of 1,8-cineole are generally better than M. caudata essential essential oils in both two biological assays.
Collapse
Affiliation(s)
- Le Thi Huong
- Faculty of Biology, College of Education, Vinh University, 182 Le Duan, Vinh City, Nghệ An Province 4300, Vietnam
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | - Ly Ngoc Sam
- Institute of Tropical Biology, VAST, 85 Tran Quoc Toan, District 3, Ho Chi Minh City, Vietnam
| | - Phan Nhat Minh
- Natural Product Laboratory, Institute of Chemical Technology, VAST, 01A Thạnh Loc, 29 Thạnh Loc, District 12, Ho Chi Minh City, Vietnam
| | - Nguyen Dinh Luyen
- Institute of Natural Product Chemistry, VAST, 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | - Nguyen Huy Hung
- Department of Pharmacy, Duy Tan University, 03 Quang Trung, Danang, Vietnam
| | - Do Ngoc Dai
- Faculty of Agriculture, Forestry and Fishery, Nghe An University of Economics, 51 Ly Tu Trong, Vinh, Nghean, Vietnam
| |
Collapse
|
22
|
Choeisoongnern T, Chaiyasut C, Sivamaruthi BS, Makhamrueang N, Peerajan S, Sirilun S, Sittiprapaporn P. Bacteriocin-Producing Enterococcus faecium OV3-6 as a Bio-Preservative Agent to Produce Fermented Houttuynia cordata Thunb. Beverages: A Preliminary Study. Foods 2023; 12:3520. [PMID: 37835173 PMCID: PMC10572304 DOI: 10.3390/foods12193520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Microbial contamination affects the quality of the fermented Houttuynia cordata Thunb. (H. cordata) beverage (FHB). The present study aimed to assess the bio-preservative property of Enterococcus faecium OV3-6 (E. faecium OV3-6) during the production of FHB. The antimicrobial activity against Escherichia coli, Salmonella, Bacillus cereus, and Staphylococcus aureus and the survival of E. faecium OV3-6 were studied. Then, FHB fermentation was performed with different preservatives (non-preservative, E. faecium OV3-6, cell-free supernatant of E. faecium OV3-6, and nisin) with and without representative pathogens. The maximum antimicrobial activity against S. aureus and B. cereus was observed after 18 h of cultivation in an MRS medium. E. faecium OV3-6 was used as a starter to produce the FHB, and the strain survived up to 48 h in the fermented beverage. E. faecium OV3-6 and its cell-free supernatant inhibited the growth of E. coli, Salmonella, B. cereus, and S. aureus in the stimulated FHB. The non-preservatives and nisin-containing FHB showed inhibition against Gram-positive pathogens. The FHB treated with E. faecium OV3-6 was rich in lactic acid bacteria, and the product was at an acceptable level of pH (less than 4.3). Certain limitations were identified in the study, such as lack of nutritional, metabolomics analysis, and safety and consumer acceptability of FHB. The results suggested that E. faecium OV3-6 could be used as a bio-preservative to produce fermented plant beverages (FPBs).
Collapse
Affiliation(s)
- Thiwanya Choeisoongnern
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (B.S.S.)
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (B.S.S.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Netnapa Makhamrueang
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Sasithorn Sirilun
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (B.S.S.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phakkharawat Sittiprapaporn
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| |
Collapse
|
23
|
Ferreira T, Vale AC, Pinto AC, Costa RV, Pais V, Sousa D, Gomes F, Pinto G, Dias JG, Moreira IP, Mota C, Bessa J, Antunes JC, Henriques M, Cunha F, Fangueiro R. Comparison of Zinc Oxide Nanoparticle Integration into Non-Woven Fabrics Using Different Functionalisation Methods for Prospective Application as Active Facemasks. Polymers (Basel) 2023; 15:3499. [PMID: 37688127 PMCID: PMC10489795 DOI: 10.3390/polym15173499] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
The development of advanced facemasks stands out as a paramount priority in enhancing healthcare preparedness. In this work, different polypropylene non-woven fabrics (NWF) were characterised regarding their structural, physicochemical and comfort-related properties. The selected NWF for the intermediate layer was functionalised with zinc oxide nanoparticles (ZnO NPs) 0.3 and 1.2wt% using three different methods: electrospinning, dip-pad-dry and exhaustion. After the confirmation of ZnO NP content and distribution within the textile fibres by morphological and chemical analysis, the samples were evaluated regarding their antimicrobial properties. The functionalised fabrics obtained via dip-pad-dry unveiled the most promising data, with 0.017 ± 0.013wt% ZnO NPs being mostly located at the fibre's surface and capable of total eradication of Staphylococcus aureus and Escherichia coli colonies within the tested 24 h (ISO 22196 standard), as well as significantly contributing (**** p < 0.0001) to the growth inhibition of the bacteriophage MS2, a surrogate of the SARS-CoV-2 virus (ISO 18184 standard). A three-layered structure was assembled and thermoformed to obtain facemasks combining the previously chosen NWF, and its resulting antimicrobial capacity, filtration efficiency and breathability (NP EN ISO 149) were assessed. The developed three-layered and multiscaled fibrous structures with antimicrobial capacities hold immense potential as active individual protection facemasks.
Collapse
Affiliation(s)
- Tânia Ferreira
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
| | - Ana Catarina Vale
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
| | - Alexandra C. Pinto
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
- CEB, Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (D.S.); (F.G.); (G.P.); (M.H.)
| | - Rita V. Costa
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
| | - Vânia Pais
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
| | - Diana Sousa
- CEB, Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (D.S.); (F.G.); (G.P.); (M.H.)
| | - Fernanda Gomes
- CEB, Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (D.S.); (F.G.); (G.P.); (M.H.)
- LABBELS, Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
| | - Graça Pinto
- CEB, Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (D.S.); (F.G.); (G.P.); (M.H.)
- LABBELS, Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
| | - José Guilherme Dias
- Poleva—Termoconformados, S.A. Rua da Estrada 1939, 4610-744 Felgueiras, Portugal;
| | - Inês P. Moreira
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
| | - Carlos Mota
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
| | - João Bessa
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
| | - Joana C. Antunes
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
| | - Mariana Henriques
- CEB, Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (D.S.); (F.G.); (G.P.); (M.H.)
- LABBELS, Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
| | - Fernando Cunha
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
| | - Raul Fangueiro
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
| |
Collapse
|
24
|
Luca SV, Skalicka-Woźniak K, Mihai CT, Gradinaru AC, Mandici A, Ciocarlan N, Miron A, Aprotosoaie AC. Chemical Profile and Bioactivity Evaluation of Salvia Species from Eastern Europe. Antioxidants (Basel) 2023; 12:1514. [PMID: 37627509 PMCID: PMC10451821 DOI: 10.3390/antiox12081514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
The Salvia genus comprises about 1000 species endowed with medicinal, aromatic, cosmetic, and ornamental applications. Even though the genus is one of the most-studied taxa of the Lamiaceae family, data on the chemical composition and biological properties of certain locally used Salvia species are still scarce. The present work aimed to evaluate the phytochemical profile and antimicrobial, antioxidant, and cytotoxic potential of ten Salvia species that grow in Eastern Europe (e.g., the Republic of Moldova). LC-HRMS/MS metabolite profiling allowed for the annotation of 15 phenolic and organic acids, 18 flavonoids, 19 diterpenes, 5 sesterpenes, and 2 triterpenes. Multivariate analysis (e.g., principal component analysis, hierarchical cluster analysis) revealed that S. austriaca, S. nutans, and S. officinalis formed individual clusters, whereas the remaining species had a similar composition. S. officinalis showed the highest activity against Staphylococcus aureus and Streptococcus pneumoniae (MIC = 0.625 mg/mL). As evaluated in DPPH, ABTS, and FRAP assays, S. officinalis was one of the most potent radical scavenging and metal-reducing agents (CE50 values of 25.33, 8.13, and 21.01 μg/mL, respectively), followed by S. verticillata, S. sclarea, S. kopetdaghensis, S. aethiopis, and S. tesquicola. Pearson correlation analysis revealed strong correlations with rosmarinic acid, luteolin-O-glucuronide, and hydroxybenzoic acid. When the cytotoxic activity was evaluated in human breast carcinoma MCF-7 and MDA-MB-231 cells, no significant reduction in cell viability was observed over the concentrations ranging from 25 and 100 μg/mL. The results confirm the potential use of understudied Salvia species as promising sources of antioxidant compounds for developing novel pharmaceutical, nutraceutical, or cosmeceutical products.
Collapse
Affiliation(s)
- Simon Vlad Luca
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | | | - Cosmin-Teodor Mihai
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, 700454 Iasi, Romania
| | - Adina Catinca Gradinaru
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Alexandru Mandici
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Nina Ciocarlan
- Botanical Garden, Academy of Sciences of Moldova, 2002 Chisinau, Moldova
| | - Anca Miron
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Ana Clara Aprotosoaie
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
25
|
Priya PS, Kumar RS, Gawwad MRA, Alarjani KM, Elshikhe MS, Namasivayam SKR, Arockiaraj J. Azadiradione (AZD) neem biomass derived limonoid: extraction, characterization, and potential biological activities with special reference to anti-microbial and anti-cancer activities. SOUTH AFRICAN JOURNAL OF BOTANY 2023; 158:405-416. [DOI: 10.1016/j.sajb.2023.05.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
|
26
|
Fernandes M, González-Ballesteros N, da Costa A, Machado R, Gomes AC, Rodríguez-Argüelles MC. Antimicrobial and anti-biofilm activity of silver nanoparticles biosynthesized with Cystoseira algae extracts. J Biol Inorg Chem 2023; 28:439-450. [PMID: 37083842 PMCID: PMC10149473 DOI: 10.1007/s00775-023-01999-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/06/2023] [Indexed: 04/22/2023]
Abstract
Antimicrobial resistance is an ever-growing global concern to public health with no clear or immediate solution. Silver nanoparticles (AgNPs) have long been proposed as efficient agents to fight the growing number of antibiotic-resistant strains. However, the synthesis of these particles is often linked to high costs and the use of toxic, hazardous chemicals, with environmental and health impact. In this study, we successfully produced AgNPs by green synthesis with the aid of the extract of two brown algae-Cystoseira baccata (CB) and Cystoseira tamariscifolia (CT)-and characterized their physico-chemical properties. The NPs produced in both cases (Ag@CB and Ag@CT) present similar sizes, with mean diameters of around 22 nm. The antioxidant activity of the extracts and the NPs was evaluated, with the extracts showing important antioxidant activity. The bacteriostatic and bactericidal properties of both Ag@CB and Ag@CT were tested and compared with gold NPs produced in the same algae extracts as previously reported. AgNPs demonstrated the strongest bacteriostatic and bactericidal properties, at concentrations as low as 2.16 µg/mL against Pseudomonas aeruginosa and Escherichia coli. Finally, the capacity of these samples to prevent the formation of biofilms characteristic of infections with a poorer outcome was assessed, obtaining similar results. This work points towards an alternative for the treatment of bacterial infections, even biofilm-inducing, with the possibility of minimizing the risk of drug resistance, albeit the necessary caution implied using metallic NPs.
Collapse
Affiliation(s)
- Mário Fernandes
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | | | - André da Costa
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Raúl Machado
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Andreia C Gomes
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | | |
Collapse
|
27
|
Bains A, Sridhar K, Kaushik R, Chawla P, Sharma M. Enzyme-assisted polysaccharides extraction from Calocybe indica: Synergistic antibiofilm and oxidative stability of essential oil nanoemulsion. Int J Biol Macromol 2023; 242:124843. [PMID: 37182620 DOI: 10.1016/j.ijbiomac.2023.124843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Recently, mushroom polysaccharides have been explored to attribute to vital biologically important functions, and several extraction techniques can be employed, therefore, polysaccharides were extracted from the edible mushroom Calocybe indica to explore its functionality. Multiple enzymes viz., cellulase, pectinase, and protease (1:1:1) at temperature 47 °C and pH 4.64 with an extraction time of 2 h yielded 7.24 % polysaccharide content. The thermograph curve of polysaccharides showed two-stage decomposition at a different temperature range and decomposition of polysaccharides initiated with an onset temperature of 226.77 °C and a maximum peak at 248.90 °C. Hydrodistillation processed Eucalyptus globulus leaf oil was characterized using the chromatography technique and eucalyptol, p-cymene, Γ-terpinene, 4-epi-cubebol, spathulenol, viridiflorol, and p-mentha-1,5-dien-8-ol was observed as major components. As well, we formulated nanoemulsion using mushroom polysaccharide and eucalyptus leaf oil with 140.8 nm and evaluated synergistic antimicrobial and antibiofilm activity. MIC and MBC values for Pseudomonas aeruginosa, E. coli, and S. typhi were 12.50-3.125 and 6.25-1.56, and for S. aureus were 6.25, 6.25, 3.125, and 3.125, 3.125, 1.56 and for C. albicans the values were 12.50,12.50, 6.250 and 6.25,6.25, and 3.125 μl/mL respectively. The polysaccharides, essential oil, and nanoemulsion showed remarkable antibiofilm activity against S.aureus with inhibition of 57.42 ± 0.19, 59.62 ± 0.15, and 69.34 ± 0.19 %, while E. coli showed the least antibiofilm activity. However, all three tested samples showed significant (p < 0.05) differences against tested pathogenic microorganisms with inhibition of biofilm formation. Therefore, it could be inferred that the synergistic properties of essential oils with mushroom polysaccharides are a promising strategy to enhance antimicrobial efficacy and control foodborne pathogens.
Collapse
Affiliation(s)
- Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Ravinder Kaushik
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India.
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India.
| |
Collapse
|
28
|
Zhao D, Li X, Xu M, Jiao Y, Liu H, Xiao X, Zhao H. Preparations of antibacterial yellow-green-fluorescent carbon dots and carbon dots-lysozyme complex and their applications in bacterial imaging and bacteria/biofilm inhibition/clearance. Int J Biol Macromol 2023; 231:123303. [PMID: 36657551 DOI: 10.1016/j.ijbiomac.2023.123303] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
The preparation of functional long-wavelength-emitting nanomaterials and the researches on their applications in antibacterial and antibiofilm fields have important significance. This paper reports the preparation of yellow-green-fluorescent and high- quantum yield carbon dots (4-ACDs) with 4-aminosalicylic acid and polyethylene imine as raw materials through one-step route, and the impacts of raw material structure and the reaction conditions upon the optical properties of the products have been investigated. 4-ACDs exhibit excellent broad-spectrum antibacterial activity, and their good biocompatibility ensures them as ideal fluorescent nano-probe for cell imaging. However, 4-ACDs could not effectively eliminate the biofilm of Staphylococcus aureus (S. aureus). CDs-LZM complex was prepared through the coupling between 4-ACDs and lysozyme (LZM) and the complex showed strong antibacterial activity against Gram-positive bacteria, particularly with MIC against S. aureus at 5 μg mL-1. Besides, CDs-LZM showed excellent ability against the biofilm of S. aureus. At the concentration of 60 μg mL-1, its inhibition rate against the growth of biofilm was 86 %, and elimination rate against biofilm reached 76 %. CDs-LZM exhibited obvious antibiofilm ability through removing extracellular matrix of biofilm, greatly reducing the thickness of biofilm under confocal microscopy. The application of novel long-wavelength-emitting nanomaterial in eliminating pathogenic bacteria is of great significance.
Collapse
Affiliation(s)
- Dan Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China.
| | - Xiaoyun Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Mengyu Xu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Yan Jiao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Huan Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Xincai Xiao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Haiyan Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| |
Collapse
|
29
|
Synergistic Antimicrobial Activity of Silver Nanoparticles with an Emergent Class of Azoimidazoles. Pharmaceutics 2023; 15:pharmaceutics15030926. [PMID: 36986787 PMCID: PMC10053004 DOI: 10.3390/pharmaceutics15030926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
The combination of two or more agents capable of acting in synergy has been reported as a valuable tool to fight against pathogens. Silver nanoparticles (AgNPs) present a strong antimicrobial action, although their cytotoxicity for healthy cells at active concentrations is a major concern. Azoimidazole moieties exhibit interesting bioactivities, including antimicrobial activity. In this work, a class of recently described azoimidazoles with strong antifungal activity was conjugated with citrate or polyvinylpyrrolidone-stabilized AgNPs. Proton nuclear magnetic resonance was used to confirm the purity of the compounds before further tests and atomic absorption spectroscopy to verify the concentration of silver in the prepared dispersions. Other analytical techniques elucidate the morphology and stability of AgNPs and corresponding conjugates, namely ultraviolet–visible spectrophotometry, scanning transmission electron microscopy and dynamic light scattering analysis. The synergistic antimicrobial activity of the conjugates was assessed through a checkerboard assay against yeasts (Candida albicans and Candida krusei) and bacteria (Staphylococcus aureus and Escherichia coli). The conjugates showed improved antimicrobial activity against all microorganisms, in particular towards bacteria, with concentrations below their individual minimal inhibitory concentration (MIC). Furthermore, some combinations were found to be non-cytotoxic towards human HaCaT cells.
Collapse
|
30
|
Mendoza Villicana A, Gochi Ponce Y, Grande D, José Manuel CB, Zizumbo López A, González Joaquín MC, Chávez Santoscoy RA, Paz González JA, Bogdanchikova N, Pérez González GL, Villarreal-Gómez LJ. Evaluation of strategies to incorporate silver nanoparticles into electrospun microfibers for the preparation of wound dressings and their antimicrobial activity. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2023.2181703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Anayanci Mendoza Villicana
- Centro de Graduados, Tecnológico Nacional de México, Campus Tijuana, Blvd. Alberto Limón Padilla y Av, Baja California, México
| | - Yadira Gochi Ponce
- Centro de Graduados, Tecnológico Nacional de México, Campus Tijuana, Blvd. Alberto Limón Padilla y Av, Baja California, México
| | - Daniel Grande
- Département Chimie Moléculaire et Matériaux Macromoléculaires (C3M), Institut de Chimie et des Matériaux Paris-Est, Paris, France
| | | | - Arturo Zizumbo López
- Centro de Graduados, Tecnológico Nacional de México, Campus Tijuana, Blvd. Alberto Limón Padilla y Av, Baja California, México
| | - Marlon César González Joaquín
- Centro de Graduados, Tecnológico Nacional de México, Campus Tijuana, Blvd. Alberto Limón Padilla y Av, Baja California, México
| | | | - Juan Antonio Paz González
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México
| | - Nina Bogdanchikova
- Centro de Nanociencias y Nanotenología, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, México
| | - Graciela Lizeth Pérez González
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, México
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México
| | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, México
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México
| |
Collapse
|
31
|
Novel graphene quantum dots modified NH2-MIL-125 photocatalytic composites for effective antibacterial property and mechanism insight. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
32
|
Hettiarachchi S, Perera Y, Dunuweera SP, Dunuweera AN, Rajapakse S, Rajapakse RMG. Comparison of Antibacterial Activity of Nanocurcumin with Bulk Curcumin. ACS OMEGA 2022; 7:46494-46500. [PMID: 36570282 PMCID: PMC9773352 DOI: 10.1021/acsomega.2c05293] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/09/2022] [Indexed: 06/01/2023]
Abstract
The development of antibacterial compounds using natural products, particularly nano-sized antibacterial products, has been intensively investigated in recent years. This study was conducted to compare the antibacterial activity of nanocurcumin with bulk curcumin against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria. Curcumin was extracted from turmeric rhizome using the Soxhlet extraction with ethanol. A physicochemical fabrication method was used to synthesize nanocurcumin from extracted curcumin. The particle size of nanocurcumin was 87 ± 8 nm. The 1H NMR spectrum of nanocurcumin show that all the peaks are well separated and can be interpreted to those of curcumin. According to the in vitro antibacterial assay, nanocurcumin shows better antibacterial activity against both Gram-positive and Gram-negative bacteria than bulk curcumin, with increased inhibition zones of 29.91 ± 0.53 mm (S. aureus) and 24.58 ± 1.12 mm (E. coli) when compared to 24.82 ± 0.54 mm (S. aureus) and 19.70 ± 1.18 mm (E. coli) of the latter. Subsequently, antibacterial creams were formulated, and the inhibition zones of nanocurcumin cream were larger than that of curcumin cream for both S. aureus and E. coli, exhibiting its superior antibacterial activity. Different storage periods of up to 1 month did not affect the inhibition zones significantly (p < 0.05), where nanocurcumin cream maintained its better antibacterial quality over bulk curcumin cream. There is no significant cytotoxicity in either of these formulations.
Collapse
Affiliation(s)
| | - Yohanka Perera
- Department
of Molecular Biology and Biotechnology, Faculty of Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | | | - Asiri N. Dunuweera
- Department
of Basic Science, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Sanath Rajapakse
- Department
of Molecular Biology and Biotechnology, Faculty of Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | | |
Collapse
|
33
|
Rogkotis K, Matsia S, Likotrafiti E, Rhoades J, Kountouras D, Katakalos K, Pavlidou E, Ritzoulis C, Salifoglou A. Selective antimicrobial food packaging of composite poly(lactic acid) cobalt-citrate films. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Fernandes MM, Carvalho EO, Correia DM, Esperança JM, Padrão J, Ivanova K, Hoyo J, Tzanov T, Lanceros-Mendez S. Ionic Liquids as Biocompatible Antibacterial Agents: A Case Study on Structure-Related Bioactivity on Escherichia coli. ACS APPLIED BIO MATERIALS 2022; 5:5181-5189. [PMID: 36260814 PMCID: PMC9778738 DOI: 10.1021/acsabm.2c00615] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The potential of ionic liquids (ILs) to be used as antimicrobial agents for biomedical applications has been hindered by the fact that most of them are cytotoxic toward mammalian cells. Understanding the mechanism of bacterial and mammalian cellular damage of ILs is key to their safety design. In this work, we evaluate the antimicrobial activity and mode of action of several ILs with varying anions and cations toward the clinically relevant Gram-negative Escherichia coli. Langmuir monolayer technique was used to evaluate if the IL's mode of action was related to the bacterial cell membrane interaction for an effective E. coli killing. 1-Decyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [DMIM][TFSI] and trihexyltetradecyl phosphonium bis(trifluoromethylsulfonyl) imide [P6,6,6,14][TFSI] were surface-active and induced bacterial cell lysis, through a membrane-disruption phenomenon on bacteria, in a mechanism that was clearly related to the long alkyl chains of the cation. 1-Ethyl-3-methylimidazolium hydrogen sulfate [EMIM][HSO4] was highly antimicrobial toward E. coli and found suitable for biological applications since it was harmless to mammalian cells at most of the tested concentrations. The results suggest that the imidazolium cation of the ILs is mostly responsible not only for their antimicrobial activity but also for their cytotoxicity, and the inclusion of different anions may tailor the ILs' biocompatibility without losing the capacity to kill bacteria, as is the case of [EMIM][HSO4]. Importantly, this IL was found to be highly antimicrobial even when incorporated in a polymeric matrix.
Collapse
Affiliation(s)
| | | | - Daniela M. Correia
- Centre
of Physics, University of Minho, Braga4710-057, Portugal,Centre
of Chemistry, University of Trás-os-Montes
e Alto Douro, 5001-801Vila Real, Portugal,
| | - José M.S.S. Esperança
- LAQV,
REQUIMTE, Departamento de Química, Faculdade de Ciências
e Tecnologia, Universidade Nova de Lisboa, 2829-516Caparica, Portugal
| | - Jorge Padrão
- Centre
for Textile Science and Technology, University
of Minho, Campus de Azurém, Guimarães4800-058, Portugal
| | - Kristina Ivanova
- Grup
de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, 08222Terrassa, Spain
| | - Javier Hoyo
- Grup
de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, 08222Terrassa, Spain
| | - Tzanko Tzanov
- Grup
de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, 08222Terrassa, Spain
| | - Senentxu Lanceros-Mendez
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940Leioa, Spain,Ikerbasque,
Basque Foundation for Science, 48009Bilbao, Spain
| |
Collapse
|
35
|
Bandaru NR, Makam P, Akshinthala P, Katari NK, Banoth V, Kolli B, Gundla R. Molecular Hybrids of Pyazolo[3,4- b]pyridine and Triazole: Design, Synthesis and In Vitro Antibacterial Studies. Molecules 2022; 27:7647. [PMID: 36364469 PMCID: PMC9655101 DOI: 10.3390/molecules27217647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 09/13/2023] Open
Abstract
Antimicrobial resistance is on the rise, and there aren't enough new treatments to combat it. This might send the modern world back to the pre-antibiotic age. The molecular hybrids of pyrazolo[3,4-b]pyridine and triazole have been designed, synthesized, and analyzed for their drug-like molecule nature and in vitro analyses for their inhibition potentials against S. aureus and K. pneumoniae. The compounds 24 and 27 have been identified as the high potential molecules in this series based on in vitro experiments. Compound 24 has zone of inhibition values of 15 ± 0.82 mm and 14 ± 0.7 mm, whilst compound 27 has zone of inhibition values of 18 ± 0.95 mm and 16 ± 0.82 mm against S. aureus and K. pneumoniae, respectively. MIC and MIB values for compounds 24 and 27 against S. aureus and K. pneumoniae are 0.25 and 0.5, respectively.
Collapse
Affiliation(s)
- Narasimha Rao Bandaru
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University Hyderabad, Rudraram 502329, India
| | - Parameshwar Makam
- Department of Chemistry, School of Applied and Life Sciences, Uttaranchal University, Arcadia Grant, Chandanwari, Premnagar, Dehradun 248007, India
| | - Parameswari Akshinthala
- Department of Science and Humanities, MLR Institute of Technology, Dundigal, Medchal, Hyderabad, Rudraram 500043, India
| | - Naresh Kumar Katari
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University Hyderabad, Rudraram 502329, India
| | - Venkanna Banoth
- Department of Biotechnology, University Post Graduate College of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Rudraram 500085, India
| | - Balakrishna Kolli
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University Hyderabad, Rudraram 502329, India
- Department of Chemistry, GITAM School of Science, GITAM Deemed to Be University Visakhapatnam, Visakhapatnam 530045, India
| | - Rambabu Gundla
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University Hyderabad, Rudraram 502329, India
| |
Collapse
|
36
|
Manoharan RK, Raorane CJ, Ishaque F, Ahn YH. Antimicrobial photodynamic inactivation of wastewater microorganisms by halogenated indole derivative capped zinc oxide. ENVIRONMENTAL RESEARCH 2022; 214:113905. [PMID: 35948149 DOI: 10.1016/j.envres.2022.113905] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Novel 5-bromoindole (5B)-capped zinc oxide (ZnO) nanoparticles (5BZN) were synthesized to improve the antibacterial, antibiofilm, and disinfection processes for the control of microorganisms in wastewater treatment. When exposed to 5BZN, the biofilm density and cell attachment were reduced dramatically, as measured by scanning electron microscopy (SEM). The 5BZN were also investigated for photodynamic treatment of multidrug-resistant (MDR) bacteria and toxicity. The combination of 5B and ZnO exhibited strong antibacterial and antibiofilm activities against MDR bacteria even at low doses (20 μg/mL). After 12.5 mW/cm2 blue LED irradiation, the composite 5BZN showed superior photodynamic inactivation of two wastewater MDR, Enterobacter tabaci E2 and Klebsiella quasipneumoniae SC3, with cell densities reduced by 3.9 log CFU/mL and 4.7 log CFU/mL, respectively, after 120 min. The mechanism of bacterial inactivation was studied using a scavenging investigation, and H2O2 was identified mainly as the reactive species for bacterial inactivation. The 5BZN exhibited higher photodynamic inactivation towards the total coliform bacteria in wastewater effluents under a blue LED light intensity of 12.5 mW/cm2 with almost complete inactivation of the coliform bacteria cells within 40 min. Furthermore, when 5BZN (100 mg/L) was added to the reactor, the level of tetracycline antibiotic degradation was increased by 63.6% after 120 min. The toxicity test, animal model nematode studies and seed germination assays, showed that 5BZN is harmless, highlighting its tremendous potential as a self-healing agent in large-scale photodynamic disinfection processes.
Collapse
Affiliation(s)
| | | | - Fahmida Ishaque
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
37
|
Jovanović MS, Krgović N, Živković J, Stević T, Zdunić G, Bigović D, Šavikin K. Ultrasound-Assisted Natural Deep Eutectic Solvents Extraction of Bilberry Anthocyanins: Optimization, Bioactivities, and Storage Stability. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202680. [PMID: 36297704 PMCID: PMC9609731 DOI: 10.3390/plants11202680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 05/14/2023]
Abstract
Bilberry fruits (Vaccinium myrtillus L.) are one of the richest natural sources of anthocyanins and are widely used due to their pharmacological and nutritional properties. To ensure their maximum application potential, it is necessary to overcome the limitations of conventional extraction solvents and techniques. This study aimed to develop a green method for bilberry anthocyanin extraction using natural deep eutectic solvents (NaDES) integrated with ultrasound-assisted extraction (UAE) in order to define extraction conditions that will prevent decomposition of the anthocyanins or the loss of bioactivity. After a screening of ten different NaDES, choline chloride:sorbitol (1:1) was selected as the most effective. Furthermore, the influence analysis and optimization of the NaDES-UAE extraction conditions were carried out employing response surface methodology. The optimal conditions were found to be an extraction time of 37.63 min, a temperature of 48.38 °C, and 34.79% (w/w) water in NaDES. The extraction yields of target compounds under optimized extraction conditions were 0.27 mg/g DW of cyanidin-3-O-glucoside and 2.12 mg CGE/g DW of TAC. The obtained optimized extract showed promising radical scavenging and antimicrobial activity. A stability study with the optimized extract revealed that refrigerated storage at 4 °C in the dark provided the best anthocyanins preservation. Overall, the developed NaDES-UAE method showed promising application potential and can be considered as a high-efficiency green alternative to conventional anthocyanins extraction methods, enabling the preservation of active ingredients and the bioactivity of extracts.
Collapse
Affiliation(s)
- Miloš S. Jovanović
- Department of Pharmacy, Faculty of Medicine, University of Niš, Boulevard Dr. Zorana Đinđića 81, 18000 Niš, Serbia
| | - Nemanja Krgović
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Jelena Živković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-64-867-4921
| | - Tatjana Stević
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Gordana Zdunić
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Dubravka Bigović
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Katarina Šavikin
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| |
Collapse
|
38
|
Samanta S, Banerjee J, Das B, Mandal J, Chatterjee S, Ali KM, Sinha S, Giri B, Ghosh T, Dash SK. Antibacterial potency of cytocompatible chitosan-decorated biogenic silver nanoparticles and molecular insights towards cell-particle interaction. Int J Biol Macromol 2022; 219:919-939. [PMID: 35961557 DOI: 10.1016/j.ijbiomac.2022.08.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/23/2022] [Accepted: 08/07/2022] [Indexed: 02/06/2023]
Abstract
In the study, leaf extract of Carica papaya was utilized for the biogenic fabrication process of chitosan functionalized silver nanoparticles (Ag-Chito NPs). HRTEM analysis revealed that the fabricated Ag-Chito NPs was spherical in shape, with an average particle size of 13.31 (±0.07) nm. FTIR, UV-Vis, DLS, and other characterizations were also performed to analyze the diverse physicochemical properties of the particles. The antibacterial potency of the synthesized Ag-Chito NPs was tested against the two clinically isolated multidrug resistant uropathogenic bacterial strains, i.e. MLD 2 (Escherichia coli) and MLD 4 (Staphylococcus aureus) through MIC, MBC, time and concentration dependent killing kinetic assay, inhibition of biofilm formation assay, fluorescence and SEM imaging. Significantly, Ag-Chito NPs showed the highest sensitivity against the MLD 2 (MIC value of 12.5 μg/mL) strain, as compared to the MLD 4 (MIC value of 15 μg/mL) strain. From the hemolysis assay, it was revealed that Ag-Chito NPs exerted no significant toxicity up to 50 μg/mL against healthy human blood cells. Additionally, in silico analysis of chitosan (functionalized on the surface of AgNPs) and bacterial cell membrane protein also evidently suggested a strong interaction between Ag-Chito NPs and bacterial cells, which might be responsible for bacterial cell death.
Collapse
Affiliation(s)
- Sovan Samanta
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Jhimli Banerjee
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Balaram Das
- Department of Physiology, Belda College, Paschim Medinipur 721424, West Bengal, India
| | - Jayanta Mandal
- Department of Botany, Vivekananda Mahavidyalaya, Haripal, Hooghly 712405, West Bengal, India
| | | | - Kazi Monjur Ali
- Department of Nutrition, M.U.C Women's College, Purba Bardhaman 713104, West Bengal, India
| | - Sangram Sinha
- Department of Botany, Vivekananda Mahavidyalaya, Haripal, Hooghly 712405, West Bengal, India
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Totan Ghosh
- Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, 741249, West Bengal, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India.
| |
Collapse
|
39
|
Wei S, Tian Q, Zhao X, Liu X, Husien HM, Liu M, Bo R, Li J. Tea Tree Oil Nanoemulsion Potentiates Antibiotics against Multidrug-Resistant Escherichia coli. ACS Infect Dis 2022; 8:1618-1626. [PMID: 35854664 DOI: 10.1021/acsinfecdis.2c00223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extensive efforts are underway to overcome the rising prevalence of antibiotic resistance. Combination therapy may be a potential method to treat multidrug-resistant (MDR) bacterial infections. In this study, tea tree essential oil (TTO) nanoemulsion (nanoTTO) was used in combination with antibiotics to kill microbes. Results showed that nanoTTO enhanced the activities of multiple antibiotics against MDR Escherichia coli (E. coli), and its antimicrobial activity was not changed against bacteria that were cultured in the presence of nanoTTO for 30 passages. Further studies to visualize and quantify intracellular antibiotics concentrations identified that nanoTTO increased the drug accumulation in MDR E. coli by disrupting outer and inner membranes and inhibiting the AcrAB-TolC efflux pump involved in membrane permeability. In addition, nanoTTO was effective in enhancing antibiotic efficacy in the Galleria mellonella infection model and mouse peritonitis model, suggesting a potential strategy against MDR bacterial infections.
Collapse
Affiliation(s)
- Simin Wei
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P. R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Qiming Tian
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P. R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Xin Zhao
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P. R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Xiaopan Liu
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P. R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Hosameldeen Mohamed Husien
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P. R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China.,College of Veterinary Medicine, Albutana University, Rufaa 22217, Al Jazirah, Sudan
| | - Mingjiang Liu
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P. R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Ruonan Bo
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P. R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Jingui Li
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P. R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| |
Collapse
|
40
|
Suflet DM, Popescu I, Pelin IM, David G, Serbezeanu D, Rîmbu CM, Daraba OM, Enache AA, Bercea M. Phosphorylated Curdlan Gel/Polyvinyl Alcohol Electrospun Nanofibres Loaded with Clove Oil with Antibacterial Activity. Gels 2022; 8:gels8070439. [PMID: 35877524 PMCID: PMC9319135 DOI: 10.3390/gels8070439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Fibrous membranes based on natural polymers obtained by the electrospinning technique are a great choice for wound dressings. In order to promote an efficient wound repair, and to avoid antibiotics, antibacterial plant extracts can be incorporated. In the present work, the new electrospun nanofibre membranes based on monobasic phosphate curdlan (PCurd) and polyvinyl alcohol (PVA) were obtained for the first time. To establish the adequate mixing ratio for electrospinning, the behaviour of the PCurd and PVA mixture was studied by viscometry and rheology. In order to confer antimicrobial activity with the nanofibre membrane, clove essential oil (CEO) was incorporated into the electrospun solution. Well-defined and drop-free nanofibres with a diameter between 157 nm and 110 nm were obtained. The presence of CEO in the obtained nanofibres was confirmed by ATR–FTIR spectroscopy, by the phenolic and flavonoid contents, and by the antioxidant activity of the membranes. In physiological conditions, CEO was released from the membrane after 24 h. The in vivo antimicrobial tests showed a good inhibitory activity against E. coli and higher activity against S. aureus. Furthermore, the viability cell test showed the lack of cytotoxicity of the nanofibre membrane with and without CEO, confirming its potential use in wound treatment.
Collapse
Affiliation(s)
- Dana M. Suflet
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (I.M.P.); (D.S.); (M.B.)
- Correspondence:
| | - Irina Popescu
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (I.M.P.); (D.S.); (M.B.)
| | - Irina M. Pelin
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (I.M.P.); (D.S.); (M.B.)
| | - Geta David
- Department of Natural and Synthetic Polymers, Gh. Asachi Technical University, Bd. D. Mangeron 73, 700050 Iasi, Romania;
| | - Diana Serbezeanu
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (I.M.P.); (D.S.); (M.B.)
| | - Cristina M. Rîmbu
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, Aleea Mihail Sadoveanu 8, 700489 Iasi, Romania;
| | - Oana M. Daraba
- Faculty of Medical Dentistry, Apollonia University, Pacurari 11, 700511 Iasi, Romania;
| | - Alin A. Enache
- ApelLaser S.A., Str. Vanatorilor 25, Ilfov, 077135 Mogosoaia, Romania;
| | - Maria Bercea
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (I.M.P.); (D.S.); (M.B.)
| |
Collapse
|
41
|
Multifunctional Silver Nanoparticles Based on Chitosan: Antibacterial, Antibiofilm, Antifungal, Antioxidant, and Wound-Healing Activities. J Fungi (Basel) 2022; 8:jof8060612. [PMID: 35736095 PMCID: PMC9225580 DOI: 10.3390/jof8060612] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study is to create chitosan-stabilized silver nanoparticles (Chi/Ag-NPs) and determine whether they were cytotoxic and also to determine their characteristic antibacterial, antibiofilm, and wound healing activities. Recently, the development of an efficient and environmentally friendly method for synthesizing metal nanoparticles based on polysaccharides has attracted a lot of interest in the field of nanotechnology. Colloidal Chi/Ag-NPs are prepared by chemical reduction of silver ions in the presence of Chi, giving Chi/Ag-NPs. Physiochemical properties are determined by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) analyses. TEM pictures indicate that the generated Chi/Ag-NPs are nearly spherical in shape with a thin chitosan covering around the Ag core and had sizes in the range of 9–65 nm. In vitro antibacterial activity was evaluated against Staphylococcus aureus and Pseudomonas aeruginosa by a resazurin-mediated microtiter plate assay. The highest activity was observed with the lowest concentration of Chi/Ag-NPs, which was 12.5 µg/mL for both bacterial strains. Additionally, Chi/Ag-NPs showed promising antifungal features against Candida albicans, Aspergillus fumigatus, Aspergillus terreus, and Aspergillus niger, where inhibition zones were 22, 29, 20, and 17 mm, respectively. Likewise, Chi/Ag-NPs revealed potential antioxidant activity is 92, 90, and 75% at concentrations of 4000, 2000, and 1000 µg/mL, where the IC50 of Chi/Ag-NPs was 261 µg/mL. Wound healing results illustrated that fibroblasts advanced toward the opening to close the scratch wound by roughly 50.5% after a 24-h exposure to Chi/Ag-NPs, greatly accelerating the wound healing process. In conclusion, a nanocomposite based on AgNPs and chitosan was successfully prepared and exhibited antibacterial, antibiofilm, antifungal, antioxidant, and wound healing activities that can be used in the medical field.
Collapse
|
42
|
Teixeira MA, Antunes JC, Seabra CL, Fertuzinhos A, Tohidi SD, Reis S, Amorim MTP, Ferreira DP, Felgueiras HP. Antibacterial and hemostatic capacities of cellulose nanocrystalline-reinforced poly(vinyl alcohol) electrospun mats doped with Tiger 17 and pexiganan peptides for prospective wound healing applications. BIOMATERIALS ADVANCES 2022; 137:212830. [PMID: 35929263 DOI: 10.1016/j.bioadv.2022.212830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Infection is a major issue in chronic wound care. Different dressings have been developed to prevent microbial propagation, but an effective, all-in-one (cytocompatible, antimicrobial and promoter of healing) solution is still to be uncovered. In this research, polyvinyl alcohol (PVA) nanofibrous mats reinforced with cellulose nanocrystal (CNC), at 10 and 20% v/v ratios, were produced by electrospinning, crosslinked with glutaraldehyde vapor and doped with specialized peptides. Crosslinking increased the mats' fiber diameters but maintained their bead-free morphology. Miscibility between polymers was confirmed by Fourier-transform infrared spectroscopy and thermal evaluations. Despite the incorporation of CNC having reduced the mats' mechanical performance, it improved the mats' surface energy and its structural stability over time. Pexiganan with an extra cysteine group was functionalized onto the mats via hydroxyl- polyethylene glycol 2-maleimide, while Tiger 17 was physisorbed to preserve its cyclic conformation. Antimicrobial assessments demonstrated the peptide-doped mat's effectiveness against Staphylococcus aureus and Pseudomonas aeruginosa; pexiganan contributed mostly for such outcome. Tiger 17 showed excellent capacity in accelerating clotting. Cytocompatibility evaluations attested to these mats' safety. C90/10 PVA/CNC mats were deemed the most effective from the tested group and, thus, a potentially effective option for chronic wound treatments.
Collapse
Affiliation(s)
- Marta A Teixeira
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Joana C Antunes
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Catarina L Seabra
- Associate Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Aureliano Fertuzinhos
- Center for MicroElectroMechanics Systems (CMEMS), UMinho, Department of Mechanical Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Shafagh D Tohidi
- Digital Transformation Colab (DTX), Department of Mechanical Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Salette Reis
- Associate Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - M Teresa P Amorim
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Diana P Ferreira
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Helena P Felgueiras
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal.
| |
Collapse
|
43
|
Teixeira MA, Antunes JC, Seabra CL, Tohidi SD, Reis S, Amorim MTP, Felgueiras HP. Tiger 17 and pexiganan as antimicrobial and hemostatic boosters of cellulose acetate-containing poly(vinyl alcohol) electrospun mats for potential wound care purposes. Int J Biol Macromol 2022; 209:1526-1541. [PMID: 35469947 DOI: 10.1016/j.ijbiomac.2022.04.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 12/12/2022]
Abstract
In this research, we propose to engineer a nanostructured mat that can simultaneously kill bacteria and promote an environment conducive to healing for prospective wound care. Polyvinyl alcohol (PVA) and cellulose acetate (CA) were combined at different polymer ratios (100/0, 90/10, 80/20% v/v), electrospun and crosslinked with glutaraldehyde vapor. Crosslinked fibers increased in diameter (from 194 to 278 nm), retaining their uniform structure. Fourier-transform infrared spectroscopy and thermal analyses proved the excellent miscibility between polymers. CA incorporation incremented the fibers swelling capacity and reduced the water vapor and air permeabilities of the mats, preventing the excessive drying of wounds. The antimicrobial peptide cys-pexiganan and the immunoregulatory peptide Tiger 17 were incorporated onto the mats via polyethylene glycol spacer (hydroxyl-PEG2-maleimide) and physisorbed, respectively. Time-kill kinetics evaluations revealed the mats effectiveness against Staphylococcus aureus and Pseudomonas aeruginosa. Tiger 17 played a major role in accelerating clotting of re-calcified plasma. Data reports for the first time the collaborative effect of pexiganan and Tiger 17 against bacterial infections and in boosting hemostasis. Cytocompatibility data verified the peptide-modified mats safety. Croslinked 90/10 PVA/CA mats were deemed the most promising combination due to their moderate hydrophilicity and permeabilities, swelling capacity, and high yields of peptide loading.
Collapse
Affiliation(s)
- Marta A Teixeira
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Joana C Antunes
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Catarina L Seabra
- Associate Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Departament of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Shafagh D Tohidi
- Digital Transformation Colab (DTX), Department of Mechanical Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Salette Reis
- Associate Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Departament of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - M Teresa P Amorim
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Helena P Felgueiras
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal.
| |
Collapse
|
44
|
Recent Trends in Protective Textiles against Biological Threats: A Focus on Biological Warfare Agents. Polymers (Basel) 2022; 14:polym14081599. [PMID: 35458353 PMCID: PMC9026340 DOI: 10.3390/polym14081599] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
Abstract
The rising threats to worldwide security (affecting the military, first responders, and civilians) urge us to develop efficient and versatile technological solutions to protect human beings. Soldiers, medical personnel, firefighters, and law enforcement officers should be adequately protected, so that their exposure to biological warfare agents (BWAs) is minimized, and infectious microorganisms cannot be spread so easily. Current bioprotective military garments include multilayered fabrics integrating activated carbon as a sorptive agent and a separate filtrating layer for passive protection. However, secondary contaminants emerge following their accumulation within the carbon filler. The clothing becomes too heavy and warm to wear, not breathable even, preventing the wearer from working for extended hours. Hence, a strong need exists to select and/or create selectively permeable layered fibrous structures with bioactive agents that offer an efficient filtering capability and biocidal skills, ensuring lightweightness, comfort, and multifunctionality. This review aims to showcase the main possibilities and trends of bioprotective textiles, focusing on metal-organic frameworks (MOFs), inorganic nanoparticles (e.g., ZnO-based), and organic players such as chitosan (CS)-based small-scale particles and plant-derived compounds as bioactive agents. The textile itself should be further evaluated as the foundation for the barrier effect and in terms of comfort. The outputs of a thorough, standardized characterization should dictate the best elements for each approach.
Collapse
|
45
|
Swolana D, Wojtyczka RD. Activity of Silver Nanoparticles against Staphylococcus spp. Int J Mol Sci 2022; 23:ijms23084298. [PMID: 35457115 PMCID: PMC9028791 DOI: 10.3390/ijms23084298] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus epidermidis is a bacterium that is part of the human microbiota. It is most abundant on the skin, in the respiratory system and in the human digestive tract. Also, Staphylococcus aureus contributes to human infections and has a high mortality rate. Both of these bacterial species produce biofilm, a pathogenic factor increasing their resistance to antibiotics. For this reason, we are looking for new substances that can neutralize bacterial cells. One of the best-known substances with such effects are silver nanoparticles. They exhibited antibacterial and antibiofilm formation activity that depended on their size, shape and the concentration used. In this review, we presented the data related to the use of silver nanoparticles in counteracting bacterial growth and biofilm formation published in scientific papers between 2017 and 2021. Based on the review of experimental results, the properties of nanoparticles prompt the expansion of research on their activity.
Collapse
|
46
|
Ribeiro AI, Shvalya V, Cvelbar U, Silva R, Marques-Oliveira R, Remião F, Felgueiras HP, Padrão J, Zille A. Stabilization of Silver Nanoparticles on Polyester Fabric Using Organo-Matrices for Controlled Antimicrobial Performance. Polymers (Basel) 2022; 14:1138. [PMID: 35335469 PMCID: PMC8950105 DOI: 10.3390/polym14061138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial textiles are helpful tools to fight against multidrug-resistant pathogens and nosocomial infections. The deposition of silver nanoparticles (AgNPs) onto textiles has been studied to achieve antimicrobial properties. Yet, due to health and environmental safety concerns associated with such formulations, processing optimizations have been introduced: biocompatible materials, environmentally friendly agents, and delivery platforms that ensure a controlled release. In particular, the functionalization of polyester (PES) fabric with antimicrobial agents is a formulation in high demand in medical textiles. However, the lack of functional groups on PES fabric hinders the development of cost-effective, durable systems that allow a controlled release of antimicrobial agents. In this work, PES fabric was functionalized with AgNPs using one or two biocompatible layers of chitosan or hexamethyldisiloxane (HMDSO). The addition of organo-matrices stabilized the AgNPs onto the fabrics, protected AgNPs from further oxidation, and controlled their release. In addition, the layered samples were efficient against Staphylococcus aureus and Escherichia coli. The sample with two layers of chitosan showed the highest efficacy against S. aureus (log reduction of 2.15 ± 1.08 after 3 h of contact). Against E. coli, the sample with two layers of chitosan showed the best properties. Chitosan allowed to control the antimicrobial activity of AgNPs, avoid the complete loss of AgNPs after washings and act in synergy with AgNPs. After 3 h of incubation, this sample presented a log reduction of 4.81, and 7.27 of log reduction after 5 h of incubation. The antimicrobial results after washing showed a log reduction of 3.47 and 4.88 after 3 h and 5 h of contact, respectively. Furthermore, the sample with a final layer of HMDSO also presented a controlled antimicrobial effect. The antimicrobial effect was slower than the sample with just an initial layer of HMDSO, with a log reduction of 4.40 after 3 h of incubation (instead of 7.22) and 7.27 after 5 h. The biocompatibility of the composites was confirmed through the evaluation of their cytotoxicity towards HaCaT cells (cells viability > 96% in all samples). Therefore, the produced nanocomposites could have interesting applications in medical textiles once they present controlled antimicrobial properties, high biocompatibility and avoid the complete release of AgNPs to the environment.
Collapse
Affiliation(s)
- Ana Isabel Ribeiro
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimaraes, Portugal; (A.I.R.); (H.P.F.); (J.P.)
| | - Vasyl Shvalya
- Department of Gaseous Electronics (F6), Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia; (V.S.); (U.C.)
| | - Uroš Cvelbar
- Department of Gaseous Electronics (F6), Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia; (V.S.); (U.C.)
- Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Renata Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (R.S.); (R.M.-O.); (F.R.)
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
| | - Rita Marques-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (R.S.); (R.M.-O.); (F.R.)
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (R.S.); (R.M.-O.); (F.R.)
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
| | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimaraes, Portugal; (A.I.R.); (H.P.F.); (J.P.)
| | - Jorge Padrão
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimaraes, Portugal; (A.I.R.); (H.P.F.); (J.P.)
| | - Andrea Zille
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimaraes, Portugal; (A.I.R.); (H.P.F.); (J.P.)
| |
Collapse
|
47
|
Yu J, Moon SK, Kim YH, Min J. Isoprene production by Rhodobacter sphaeroides and its antimicrobial activity. Res Microbiol 2022; 173:103938. [DOI: 10.1016/j.resmic.2022.103938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022]
|
48
|
Domingues JM, Teixeira MO, Teixeira MA, Freitas D, da Silva SF, Tohidi SD, Fernandes RDV, Padrão J, Zille A, Silva C, Antunes JC, Felgueiras HP. Inhibition of Escherichia Virus MS2, Surrogate of SARS-CoV-2, via Essential Oils-Loaded Electrospun Fibrous Mats: Increasing the Multifunctionality of Antivirus Protection Masks. Pharmaceutics 2022; 14:303. [PMID: 35214032 PMCID: PMC8875402 DOI: 10.3390/pharmaceutics14020303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
One of the most important measures implemented to reduce SARS-CoV-2 transmission has been the use of face masks. Yet, most mask options available in the market display a passive action against the virus, not actively compromising its viability. Here, we propose to overcome this limitation by incorporating antiviral essential oils (EOs) within polycaprolactone (PCL) electrospun fibrous mats to be used as intermediate layers in individual protection masks. Twenty EOs selected based on their antimicrobial nature were examined for the first time against the Escherichia coli MS2 virus (potential surrogate of SARS-CoV-2). The most effective were the lemongrass (LGO), Niaouli (NO) and eucalyptus (ELO) with a virucidal concentration (VC) of 356.0, 365.2 and 586.0 mg/mL, respectively. PCL was processed via electrospinning, generating uniform, beadless fibrous mats. EOs loading was accomplished via two ways: (1) physisorption on pre-existing mats (PCLaEOs), and (2) EOs blending with the polymer solution prior to fiber electrospinning (PCLbEOs). In both cases, 10% v/v VC was used as loading concentration, so the mats' stickiness and overwhelming smell could be prevented. The EOs presence and release from the mats were confirmed by UV-visible spectroscopy (≈5257-631 µg) and gas chromatography-mass spectrometry evaluations (average of ≈14.3% EOs release over 4 h), respectively. PCLbEOs mats were considered the more mechanically and thermally resilient, with LGO promoting the strongest bonds with PCL (PCLbLGO). On the other hand, PCLaNO and PCLaELO were deemed the least cohesive combinations. Mats modified with the EOs were all identified as superhydrophobic, capable of preventing droplet penetration. Air and water-vapor permeabilities were affected by the mats' porosity (PCL < PCLaEOs < PCLbEOs), exhibiting a similar tendency of increasing with the increase of porosity. Antimicrobial testing revealed the mats' ability to retain the virus (preventing infiltration) and to inhibit its action (log reduction averaging 1). The most effective combination against the MS2 viral particles was the PCLbLGO. These mats' scent was also regarded as the most pleasant during sensory evaluation. Overall, data demonstrated the potential of these EOs-loaded PCL fibrous mats to work as COVID-19 active barriers for individual protection masks.
Collapse
Affiliation(s)
- Joana M. Domingues
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - Marta O. Teixeira
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - Marta A. Teixeira
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - David Freitas
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.F.); (C.S.)
| | - Samira F. da Silva
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - Shafagh D. Tohidi
- Digital Transformation Colab (DTx), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal;
| | - Rui D. V. Fernandes
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - Jorge Padrão
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - Andrea Zille
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - Carla Silva
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.F.); (C.S.)
| | - Joana C. Antunes
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| |
Collapse
|
49
|
El-Desouky N, Shoueir K, El-Mehasseb I, El-Kemary M. Synthesis of silver nanoparticles using bio valorization coffee waste extract: photocatalytic flow-rate performance, antibacterial activity, and electrochemical investigation. BIOMASS CONVERSION AND BIOREFINERY 2022; 13:1-15. [PMID: 35070632 PMCID: PMC8761841 DOI: 10.1007/s13399-021-02256-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/04/2021] [Accepted: 12/18/2021] [Indexed: 05/20/2023]
Abstract
It is well known that biogenic synthesis, as compared to other processes, has proven to be highly effective in the fabrication of silver nanoparticles (AgNPs). Thus, our current study focused on synthesizing AgNPs using coffee waste extract (CWE). CWE contains many compounds identified by HPLC, which reduce, cap, and stabilize AgNPs in its solution. The as-synthesized AgNPs were produced with a monodispersed small size around 20 nm and exhibited in-plane dipole plasmon resonances of hexagonal nanoplates. AgNPs were characterized by both physical and spectroscopic methods, which confirmed their nanoscale dimensions with a hexagonal shape. The as-prepared AgNPs (12 mg) enabled the photodegradation of phenol compounds (20 mL) with a removal efficiency of ~ 94.6% in a short time in the presence of citric acid. Additionally, the second promising application of AgNPs was the tendency to remove the hazard 2,4 dinitroaniline (2,4 DNA) with a percent more than 97% while using only 7 mg of AgNPs. Moreover, the green synthesized AgNPs are superior in inhibiting bacterial growth and killing most infected microbes such as B. subtilis, P. aeruginosa, S. aureus, and E. coli. The electrochemical characteristics of the AgNPs were evaluated using a three-electrode system. The calculated specific capacitance was 280 F g-1 at 0.56 A g-1. Furthermore, after 1000 cycles at 2.2 A g-1, the AgNPs electrode demonstrates an excellent cycling stability behavior with 94.8% capacitance retention. Based on the previous promising results, it can be concluded that CWE is an environmentally benign extract to prepare AgNPs with low cost, saving and easily used for many great domains in photocatalytic, phenol compound removals, and production of functional nanodevices.
Collapse
Affiliation(s)
- Nagwa El-Desouky
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Kamel Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
- CNRS UMR 7515-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
| | | | - Maged El-Kemary
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| |
Collapse
|
50
|
Sy K, Agossa K, Maton M, Chijcheapaza-Flores H, Martel B, Siepmann F, Deveaux E, Blanchemain N, Neut C. How Adding Chlorhexidine or Metallic Nanoparticles Affects the Antimicrobial Performance of Calcium Hydroxide Paste as an Intracanal Medication: An In Vitro Study. Antibiotics (Basel) 2021; 10:antibiotics10111352. [PMID: 34827289 PMCID: PMC8614750 DOI: 10.3390/antibiotics10111352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of our study was to explore the potential value of metallic (Ag, Cu, and Zn) salts, polymer/metallic nanoparticles, and chlorhexidine (CHX) for improving the antimicrobial activity of calcium hydroxide (CH) against E. faecalis and C. albicans, associated with persistent endodontic infections. A first screening was performed by determining minimum inhibitory/bactericidal concentrations (MIC/MBC). Antimicrobial activity of the CH paste mixed with metallic salts, chitosan or cyclodextrin polymer metallic nanoparticles was compared to the antimicrobial activity of CH paste alone and CH + CHX using a time-kill kinetics assay. The effect of the antimicrobials on the rheological and the key mechanical properties were also examined. Copper and zinc were discarded because of their MIC/MBC values and silver because of its kill time curve profile. Except for a slower setting time after 24 h and a higher weight loss after 1 week of incubation, the mechanical behavior of the CH paste was unaffected by the addition of CHX. Polymeric/metallic nanoparticles failed to potentiate the antimicrobial effect of CH. By contrast, CHX increased this effect and thus could help eradicate E. faecalis associated with persistent root canal infections without altering the desired key physical properties of the CH paste.
Collapse
Affiliation(s)
- Kadiatou Sy
- U1008—Controlled Drug Delivery Systems and Biomaterials, Inserm, CHU Lille, University of Lille, 59000 Lille, France; (K.A.); (M.M.); (H.C.-F.); (F.S.); (E.D.); (N.B.)
- Correspondence:
| | - Kevimy Agossa
- U1008—Controlled Drug Delivery Systems and Biomaterials, Inserm, CHU Lille, University of Lille, 59000 Lille, France; (K.A.); (M.M.); (H.C.-F.); (F.S.); (E.D.); (N.B.)
| | - Mickaël Maton
- U1008—Controlled Drug Delivery Systems and Biomaterials, Inserm, CHU Lille, University of Lille, 59000 Lille, France; (K.A.); (M.M.); (H.C.-F.); (F.S.); (E.D.); (N.B.)
| | - Henry Chijcheapaza-Flores
- U1008—Controlled Drug Delivery Systems and Biomaterials, Inserm, CHU Lille, University of Lille, 59000 Lille, France; (K.A.); (M.M.); (H.C.-F.); (F.S.); (E.D.); (N.B.)
| | - Bernard Martel
- UMR 8207, UMET—Unité Matériaux et Transformations, CNRS—Centre National de la Recherche Scientifique, INRA—Institut National de la Recherche Agronomique, ENSCL—Ecole Nationale Supérieure de Chimie de Lille, University of Lille, 59655 Lille, France;
| | - Florence Siepmann
- U1008—Controlled Drug Delivery Systems and Biomaterials, Inserm, CHU Lille, University of Lille, 59000 Lille, France; (K.A.); (M.M.); (H.C.-F.); (F.S.); (E.D.); (N.B.)
| | - Etienne Deveaux
- U1008—Controlled Drug Delivery Systems and Biomaterials, Inserm, CHU Lille, University of Lille, 59000 Lille, France; (K.A.); (M.M.); (H.C.-F.); (F.S.); (E.D.); (N.B.)
| | - Nicolas Blanchemain
- U1008—Controlled Drug Delivery Systems and Biomaterials, Inserm, CHU Lille, University of Lille, 59000 Lille, France; (K.A.); (M.M.); (H.C.-F.); (F.S.); (E.D.); (N.B.)
| | - Christel Neut
- U1286 Infinite—Institute for Translational Research in Inflammation, Inserm, CHU Lille, University of Lille, 59000 Lille, France;
| |
Collapse
|