1
|
Kweon HY, Song EJ, Jeong SJ, Lee S, Sonn SK, Seo S, Jin J, Kim S, Kim TK, Moon SH, Kim D, Park YM, Woo HA, Oh GT. Extracellular peroxiredoxin 5 exacerbates atherosclerosis via the TLR4/MyD88 pathway. Atherosclerosis 2025; 400:119052. [PMID: 39549462 DOI: 10.1016/j.atherosclerosis.2024.119052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUNGD AND AIMS Peroxiredoxin 5 (PRDX5), an atypical 2-Cys peroxiredoxin (PRDX), is known to regulate global oxidative stresses and inflammatory responses. Inflammation and oxidative stress are pivotal factors in the development of atherosclerosis, especially in the context of vascular endothelial dysfunction. However, effects of PRDX5 on atherosclerosis remain unclear. This study aimed to elucidate the role of PRDX5 in the pathogenesis of atherosclerosis. METHODS For in vivo analysis, normal chow diet 60-week old Apolipoprotein E knockout (ApoE-/-) and Prdx5-/-; ApoE-/- mice were used for the experiments. For in vitro analysis, human umbilical vein endothelial cells (HUVECs) were stimulated with oxidized LDL (oxLDL; 50 ng/ml) for 24hrs, following serum starvation by incubation with serum-free Endothelial Cell Growth Medium-2 (EGM-2) for 1hr. RESULTS We observed elevated PRDX5 expression under atherosclerotic conditions in both humans and mice. Unexpectedly, Prdx5-/-; ApoE-/- mice exhibited reduced plaque formation, with no discernible difference in aortic hydrogen peroxide (H2O2) levels compared to ApoE-/- mice. Additionally, there was a notable decrease in macrophage accumulation and vascular inflammation in the atherosclerotic aorta of Prdx5-/-; ApoE-/-. In vitro, HUVECs stimulated with oxLDL showed upregulated PRDX5 expression in both lysate and culture medium. Moreover, PRDX5 knockdown in oxLDL-stimulated (oxLDL-siPRDX5) HUVECs significantly reduced the migration and adhesion of human monocytic cells (THP-1) to HUVECs, indicating diminished vascular immune responses. Mechanistically, both in vivo and in vitro, PRDX5 deficiency inhibited the Toll-like receptor 4 (TLR4)/Myeloid differentiation primary response 88 (MyD88) signaling pathway, resulting in reduced nuclear factor kappa B (NF-κB) and P38 phosphorylation. Furthermore, treatment with recombinant PRDX5 (rPRDX5) protein restored TLR4/MyD88 signaling in oxLDL-siPRDX5 HUVECs. CONCLUSIONS These data demonstrate that extracellular PRDX5 contributes to endothelial inflammation, promoting macrophage accumulation in the atherosclerotic aorta through activation of TLR4/MyD88/NF-κB and P38 signaling pathways, thereby exacerbating the progression of atherosclerosis.
Collapse
Affiliation(s)
- Hyae Yon Kweon
- Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Eun Ju Song
- Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Se-Jin Jeong
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, Saint Louis, United States
| | - SoonHo Lee
- Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seong-Keun Sonn
- Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seungwoon Seo
- Imvastech Inc., 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Jing Jin
- Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sinai Kim
- Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Tae Kyeong Kim
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Dr, Farmington, CT 06032, United States
| | - Shin Hye Moon
- Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Doyeon Kim
- Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Young Mi Park
- Department of Molecular Medicine, Ewha Womans University School of Medicine, Seoul, 03760, Republic of Korea
| | - Hyun Ae Woo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea; College of Pharmacy, Graduate School of Applied Science and Technology for Skin Health and Aesthetics, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Goo Taeg Oh
- Heart-Immune-Brain Network Research Center, Department of Life Science and College of Natural Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea; Imvastech Inc., 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| |
Collapse
|
2
|
Park J, Kim S, Jung HY, Bae EH, Shin M, Park JI, Choi SY, Yi SJ, Kim K. Peroxiredoxin 1-Toll-like receptor 4-p65 axis inhibits receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation. iScience 2024; 27:111455. [PMID: 39720522 PMCID: PMC11667055 DOI: 10.1016/j.isci.2024.111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/23/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024] Open
Abstract
Peroxiredoxin 1 (PRDX1), an intracellular antioxidant enzyme, has emerged as a regulator of inflammatory responses via Toll-like receptor 4 (TLR4) signaling. Despite this, the mechanistic details of the PRDX1-TLR4 axis and its impact on osteoclast differentiation remain elusive. Here, we show that PRDX1 suppresses RANKL-induced osteoclast differentiation. Utilizing pharmacological inhibitors, we reveal that PRDX1 inhibits osteoclastogenesis through both TLR4/TRIF and TLR4/MyD88 pathways. Transcriptome analysis revealed PRDX1-mediated alterations in gene expression, particularly upregulating serum amyloid A3 (Saa3) and aconitate decarboxylase 1 (Acod1). Mechanistically, PRDX1-TLR4 signaling activates p65, promoting Saa3 and Acod1 expression while inhibiting Nfatc1, a master regulator of osteoclastogenesis. Remarkably, PRDX1 redirects p65 binding from Nfatc1 to Saa3 and Acod1 promoters, thereby suppressing osteoclast formation. Structural analysis showed that a monomeric PRDX1 mutant with enhanced TLR4 binding exhibited the potent inhibition of osteoclast differentiation. These findings reveal the PRDX1-TLR4 axis's role in inhibiting osteoclastogenesis, offering potential therapeutic insights for bone disorders.
Collapse
Affiliation(s)
- Jisu Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Sanggil Kim
- Department of Lead Optimization, New Drug Development Center, Osong Medical Innovation Foundation (KBio), 123 Osongsaengmyeng-ro, Cheongju, Chungbuk, Republic of Korea
| | - Hye-Yeon Jung
- Korea Basic Science Institute, Gwangju Center at Chonnam National University, Gwangju, Republic of Korea
| | - Eun Hwan Bae
- Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Minhye Shin
- Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Jae-Il Park
- Korea Basic Science Institute, Gwangju Center at Chonnam National University, Gwangju, Republic of Korea
| | - So-Young Choi
- Department of Lead Optimization, New Drug Development Center, Osong Medical Innovation Foundation (KBio), 123 Osongsaengmyeng-ro, Cheongju, Chungbuk, Republic of Korea
| | - Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
3
|
Fopiano KA, Zhazykbayeva S, El-Battrawy I, Buncha V, Pearson WM, Hardell DJ, Lang L, Hamdani N, Bagi Z. PDE9A Inhibition Improves Coronary Microvascular Rarefaction and Left Ventricular Diastolic Dysfunction in the ZSF1 Rat Model of HFpEF. Microcirculation 2024; 31:e12888. [PMID: 39325678 PMCID: PMC11560482 DOI: 10.1111/micc.12888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVE Heart failure with preserved ejection fraction (HFpEF) commonly arises from comorbid diseases, such as hypertension, obesity, and diabetes mellitus. Selective inhibition of phosphodiesterase 9A (PDE9A) has emerged as a potential therapeutic approach for treating cardiometabolic diseases. Coronary microvascular disease (CMD) is one of the key mechanisms contributing to the development of left ventricular (LV) diastolic dysfunction in HFpEF. Our study aimed to investigate the mechanisms by which PDE9A inhibition could ameliorate CMD and improve LV diastolic function in HFpEF. METHODS AND RESULTS The obese diabetic Zucker fatty/spontaneously hypertensive heart failure F1 hybrid (ZSF1) rat model of HFpEF was employed in which it was found that a progressively developing coronary microvascular rarefaction is associated with LV diastolic dysfunction when compared to lean, nondiabetic hypertensive controls. Obese ZSF1 rats had an increased cardiac expression of PDE9A. Treatment of obese ZSF1 rats with the selective PDE9A inhibitor, PF04447943 (3 mg/kg/day, oral gavage for 2 weeks), improved coronary microvascular rarefaction and LV diastolic dysfunction, which was accompanied by reduced levels of oxidative and nitrosative stress markers, hydrogen peroxide, and 3-nitrotyrosine. Liquid chromatography-mass spectrometry (LC-MS) proteomic analysis identified peroxiredoxins (PRDX) as downregulated antioxidants in the heart of obese ZSF1 rats, whereas Western immunoblots showed that the protein level of PRDX5 was significantly increased by the PF04447943 treatment. CONCLUSIONS Thus, in the ZSF1 rat model of human HFpEF, PDE9A inhibition improves coronary vascular rarefaction and LV diastolic dysfunction, demonstrating the usefulness of PDE9A inhibitors in ameliorating CMD and LV diastolic dysfunction through augmenting PRDX-dependent antioxidant mechanisms.
Collapse
Affiliation(s)
- Katie Anne Fopiano
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Saltanat Zhazykbayeva
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44801 Bochum, Germany
| | - Ibrahim El-Battrawy
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44801 Bochum, Germany
| | - Vadym Buncha
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - William M Pearson
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Davis J Hardell
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Liwei Lang
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Nazha Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44801 Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Department of Physiology, Cardiovascular Research Institute Maastricht University Maastricht, Maastricht, the Netherlands
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
4
|
Wang M, Guo X, Liao Z, Sun S, Farag MA, Ren Q, Li P, Li N, Sun J, Liu C. Monitoring the fluctuation of hydrogen peroxide with a near-infrared fluorescent probe for the diagnosis and management of kidney injury. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134949. [PMID: 38901256 DOI: 10.1016/j.jhazmat.2024.134949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/04/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Kidney injury has become an increasing concern for patients because of environmental hazards and physiological factors. However, the early diagnosis of kidney injury remains challenging. Studies have shown that oxidative stress was closely related to the occurrence and development of kidney injury, in which abnormal hydrogen peroxide (H2O2) production was a common characteristic. Consequently, monitoring H2O2 level changes is essential for the diagnosis and management of kidney injury. Herein, based on fluorescence imaging advantages, a near-infrared fluorescent probe DHX-1 was designed to detect H2O2. DHX-1 showed high sensitivity and selectivity toward H2O2, with a fast response time and excellent imaging capacity for H2O2 in living cells and zebrafish. DHX-1 could detect H2O2 in pesticide-induced HK-2 cells, revealing the main cause of kidney injury caused by pesticides. Moreover, we performed fluorescence imaging, which confirmed H2O2 fluctuation in kidney injury caused by uric acid. In addition, DHX-1 achieved rapid screening of active compounds to ameliorate pesticide-induced kidney injury. This study presents a tool and strategy for monitoring H2O2 levels that could be employed for the early diagnosis and effective management of kidney injury.
Collapse
Affiliation(s)
- Muxuan Wang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China; Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Xu Guo
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
| | - Zhixin Liao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Shutao Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| | - Qidong Ren
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
| | - Peihai Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, PR China
| | - Ningyang Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China.
| | - Jinyue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China.
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China.
| |
Collapse
|
5
|
Ježek P, Dlasková A, Engstová H, Špačková J, Tauber J, Průchová P, Kloppel E, Mozheitova O, Jabůrek M. Mitochondrial Physiology of Cellular Redox Regulations. Physiol Res 2024; 73:S217-S242. [PMID: 38647168 PMCID: PMC11412358 DOI: 10.33549/physiolres.935269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Mitochondria (mt) represent the vital hub of the molecular physiology of the cell, being decision-makers in cell life/death and information signaling, including major redox regulations and redox signaling. Now we review recent advances in understanding mitochondrial redox homeostasis, including superoxide sources and H2O2 consumers, i.e., antioxidant mechanisms, as well as exemplar situations of physiological redox signaling, including the intramitochondrial one and mt-to-cytosol redox signals, which may be classified as acute and long-term signals. This review exemplifies the acute redox signals in hypoxic cell adaptation and upon insulin secretion in pancreatic beta-cells. We also show how metabolic changes under these circumstances are linked to mitochondrial cristae narrowing at higher intensity of ATP synthesis. Also, we will discuss major redox buffers, namely the peroxiredoxin system, which may also promote redox signaling. We will point out that pathological thresholds exist, specific for each cell type, above which the superoxide sources exceed regular antioxidant capacity and the concomitant harmful processes of oxidative stress subsequently initiate etiology of numerous diseases. The redox signaling may be impaired when sunk in such excessive pro-oxidative state.
Collapse
Affiliation(s)
- P Ježek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Qausain S, Basheeruddin M. Unraveling the Peroxidase Activity in Peroxiredoxins: A Comprehensive Review of Mechanisms, Functions, and Biological Significance. Cureus 2024; 16:e66117. [PMID: 39229430 PMCID: PMC11370188 DOI: 10.7759/cureus.66117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/04/2024] [Indexed: 09/05/2024] Open
Abstract
Peroxiredoxins (Prxs) are members of the antioxidant enzymes necessary for every living object in the three domains of life and play critical roles in controlling peroxide levels in cells. This comprehensive literature review aims to elucidate the peroxidase activity of Prxs, examining their roles and significance for organisms across various taxa. Ironically, the primary role of the Prxs is the peroxidase activity, which comprises the reduction of hydrogen peroxide and other organic hydroperoxides and decreases the risk of oxidative damage in the cells. The above enzymatic activity occurs through the reversible oxidation-reduction catalyzed by cysteine residues in the active site by forming sulfenic acid and reduction by intracellular reductants. Structurally and functionally, Prxs function as dimers or decamers and show different catalytic patterns according to their subfamilies or cellular compartments. Compared to the mechanisms of the other two subgroups of Prxs, including 2-Cys Prxs and atypical Prxs, the 1-Cys Prxs have monomer-dimer switch folding coupled with catalytic activity. In addition to their peroxidase activity, which is widely known, Prxs are becoming acknowledged to be involved in other signaling processes, including redox signaling and apoptosis. This aversion to oxidative stress and regulation by the cellular redox state places them at the heart of adaptive cellular responses to changes in the environment or manifestations of diseases. In conclusion, based on the data obtained and on furthering the knowledge of Prxs' structure and function, these enzymes may be classified as a diverse yet essential family of proteins that can effectively protect cells from the adverse effects of oxidative stress due to peroxidase activity. This indicates secondary interactions, summarized as peroxide detoxification or regulatory signaling, and identifies their applicability in multiple biological pathways. Such knowledge is valuable for enhancing the general comprehension of essential cellular functions and disclosing further therapeutic approaches to the diseases caused by the increased production of reactive oxygen species.
Collapse
Affiliation(s)
- Sana Qausain
- Biomedical Sciences, Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Mohd Basheeruddin
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
7
|
Wang W, Li S, Zhu Y, Cui X, Sheng Z, Wang H, Cheng Z. Antioxidant and Neuroprotective Effects of Seed Oils from Trichosanthes kirilowii and T. laceribractea in Caenorhabditis elegans: A Comparative Analysis and Mechanism Study. Antioxidants (Basel) 2024; 13:861. [PMID: 39061929 PMCID: PMC11273834 DOI: 10.3390/antiox13070861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Excess reactive oxygen species (ROS) can accelerate amyloid β (Aβ) aggregation and tau protein hyperphosphorylation in neuron cells, which further leads to neurodegenerative diseases such as Alzheimer's disease (AD). Therefore, there is an urgent need to find natural and safe antioxidants for preventing or treating such neurodegenerative diseases. The seeds of Trichosanthes kirilowii Maxim and T. laceribractea Hayata have long been used for medicinal and edible purposes in China. However, the antioxidant and neuroprotective activities and underlying mechanisms of their seed oils still remain unclear. Herein, we examine the antioxidant and neuroprotective effects of seed oils extracted from different germplasms, T. kirilowii (YNHH and SDJN) and T. laceribractea (ZJQT and SXHZ), on ROS levels and neuroprotective activities in C. elegans. The results demonstrated that the seed oils significantly reduced the ROS levels in C. elegans by 17.03-42.74%, with T. kirilowii (YNHH and SDJN) exhibiting significantly stronger ROS scavenging abilities than T. laceribractea (ZJQT and SXHZ). The seed oils from T. kirilowii (YNHH and SDJN) alleviated the production and aggregation of Aβ and the phosphorylation and polymerization of tau, suggesting a potential neuroprotective role. Conversely, seed oils from T. laceribractea (ZJQT and SXHZ) show minimal neuroprotective effects in C. elegans. These differential outcomes might stem from distinct mechanisms underlying antioxidant and neuroprotective effects, with the ctl-2 gene implicated as pivotal in mediating the significant neuroprotective effects of seed oils from T. kirilowii (YNHH and SDJN). Our findings have provided valuable insights into the antioxidant and neuroprotective properties of T. kirilowii seed oils, paving the way for further research aimed at elucidating the underlying mechanisms and exploring their potential therapeutic applications in combating neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhou Cheng
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (W.W.); (S.L.); (Y.Z.); (X.C.); (Z.S.); (H.W.)
| |
Collapse
|
8
|
Anderson CL, Brown KA, North RJ, Walters JK, Kaska ST, Wolff MR, Kamp TJ, Ge Y, Eckhardt LL. Global Proteomic Analysis Reveals Alterations in Differentially Expressed Proteins between Cardiopathic Lamin A/C Mutations. J Proteome Res 2024; 23:1970-1982. [PMID: 38718259 PMCID: PMC11218822 DOI: 10.1021/acs.jproteome.3c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Lamin A/C (LMNA) is an important component of nuclear lamina. Mutations cause arrhythmia, heart failure, and sudden cardiac death. While LMNA-associated cardiomyopathy typically has an aggressive course that responds poorly to conventional heart failure therapies, there is variability in severity and age of penetrance between and even within specific mutations, which is poorly understood at the cellular level. Further, this heterogeneity has not previously been captured to mimic the heterozygous state, nor have the hundreds of clinical LMNA mutations been represented. Herein, we have overexpressed cardiopathic LMNA variants in HEK cells and utilized state-of-the-art quantitative proteomics to compare the global proteomic profiles of (1) aggregating Q353 K alone, (2) Q353 K coexpressed with WT, (3) aggregating N195 K coexpressed with WT, and (4) nonaggregating E317 K coexpressed with WT to help capture some of the heterogeneity between mutations. We analyzed each data set to obtain the differentially expressed proteins (DEPs) and applied gene ontology (GO) and KEGG pathway analyses. We found a range of 162 to 324 DEPs from over 6000 total protein IDs with differences in GO terms, KEGG pathways, and DEPs important in cardiac function, further highlighting the complexity of cardiac laminopathies. Pathways disrupted by LMNA mutations were validated with redox, autophagy, and apoptosis functional assays in both HEK 293 cells and in induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) for LMNA N195 K. These proteomic profiles expand our repertoire for mutation-specific downstream cellular effects that may become useful as druggable targets for personalized medicine approach for cardiac laminopathies.
Collapse
Affiliation(s)
- Corey L. Anderson
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705
| | - Ryan J. North
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Janay K. Walters
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Sara T. Kaska
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Mathew R. Wolff
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Timothy J. Kamp
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705
| | - Lee L. Eckhardt
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
9
|
Buneeva OA, Fedchenko VI, Kaloshina SA, Zavyalova MG, Zgoda VG, Medvedev AE. Proteomic profiling of renal tissue of normo- and hypertensive rats with the renalase peptide RP220 as an affinity ligand. BIOMEDITSINSKAIA KHIMIIA 2024; 70:145-155. [PMID: 38940203 DOI: 10.18097/pbmc20247003145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Renalase (RNLS) is a recently discovered protein that plays an important role in the regulation of blood pressure by acting inside and outside cells. Intracellular RNLS is a FAD-dependent oxidoreductase that oxidizes isomeric forms of β-NAD(P)H. Extracellular renalase lacking its N-terminal peptide and cofactor FAD exerts various protective effects via non-catalytic mechanisms. Certain experimental evidence exists in the literature that the RP220 peptide (a 20-mer peptide corresponding to the amino acid sequence RNLS 220-239) reproduces a number of non-catalytic effects of this protein, acting on receptor proteins of the plasma membrane. The possibility of interaction of this peptide with intracellular proteins has not been studied. Taking into consideration the known role of RNLS as a possible antihypertensive factor, the aim of this study was to perform proteomic profiling of the kidneys of normotensive and hypertensive rats using RP220 as an affinity ligand. Proteomic (semi-quantitative) identification revealed changes in the relative content of about 200 individual proteins in the kidneys of hypertensive rats bound to the affinity sorbent as compared to the kidneys of normotensive animals. Increased binding of SHR renal proteins to RP220 over the normotensive control was found for proteins involved in the development of cardiovascular pathology. Decreased binding of the kidney proteins from hypertensive animals to RP220 was noted for components of the ubiquitin-proteasome system, ribosomes, and cytoskeleton.
Collapse
Affiliation(s)
- O A Buneeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | | | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A E Medvedev
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
10
|
Sun HN, Ma DY, Guo XY, Hao YY, Jin MH, Han YH, Jin X, Kwon T. Peroxiredoxin I and II as novel therapeutic molecular targets in cervical cancer treatment through regulation of endoplasmic reticulum stress induced by bleomycin. Cell Death Discov 2024; 10:267. [PMID: 38821929 PMCID: PMC11143287 DOI: 10.1038/s41420-024-02039-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
Cervical cancer, significantly affecting women worldwide, often involves treatment with bleomycin, an anticancer agent targeting breast, ovarian, and cervical cancers by generating reactive oxygen species (ROS) to induce cancer cell death. The Peroxiredoxin (PRDX) family, particularly PRDX1 and 2, plays a vital role in maintaining cellular balance by scavenging ROS, thus mitigating the damaging effects of bleomycin-induced mitochondrial and cellular oxidative stress. This process reduces endoplasmic reticulum (ER) stress and prevents cell apoptosis. However, reducing PRDX1 and 2 levels reverses their protective effect, increasing apoptosis. This research highlights the importance of PRDX1 and 2 in cervical cancer treatments with bleomycin, showing their potential to enhance treatment efficacy by managing ROS and ER stress and suggesting a therapeutic strategy for improving outcomes in cervical cancer treatment.
Collapse
Affiliation(s)
- Hu-Nan Sun
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China.
| | - Da-Yu Ma
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Xiao-Yu Guo
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Ying-Ying Hao
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Mei-Hua Jin
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Ying-Hao Han
- Stem Cell and Regenerative Biology Laboratory, College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, 163319, China
| | - Xun Jin
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk, 56216, Republic of Korea.
- Department of Applied Biological Engineering, KRIBB School of Biotechnology, Korea National University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
11
|
Doughty A, Keane G, Wadley AJ, Mahoney B, Bueno AA, Coles SJ. Plasma concentrations of thioredoxin, thioredoxin reductase and peroxiredoxin-4 can identify high risk patients and predict outcome in patients with acute coronary syndrome: A clinical observation. Int J Cardiol 2024; 403:131888. [PMID: 38382848 DOI: 10.1016/j.ijcard.2024.131888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/18/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Oxidative stress is a pathological feature of acute coronary syndrome (ACS), a complex disease with varying clinical outcomes. Surrogate biomarkers of oxidative stress including, peroxiredoxin-2 (PRDX2), PRDX4, thioredoxin (TRX) and thioredoxin reductase (TRXR) were measured in ACS patients at presentation and follow-up, to assess their clinical utility in diagnosis and risk stratification. METHODS Plasma from 145 participants (80 ACS and 65 healthy) at diagnosis, 1-3 month (first) and 6-month follow-up (second) was analysed by ELISA. ACS patients were monitored for 12-months. RESULTS ACS patients at diagnosis had significantly higher concentrations of TRX (p < 0.05), TRXR (p < 0.01) and PRDX4 (p < 0.01), compared to healthy donors. This was increase was driven by non-ST elevated myocardial infarction for TRX (p < 0.01) and PRDX4 (p < 0.05). For TRXR, ACS females were significantly higher than males (p < 0.05). TRX was also higher in older females (>55 years) at diagnosis (p < 0.05). At first follow-up, TRX had lowered, whereas PRDX4 remained significantly high (p < 0.05). Stratification of ACS patients according to percutaneous coronary intervention (PCI) revealed that TRXR was significantly higher in patients receiving PCI to the right coronary artery (p < 0.05). Whereas both TRXR (p < 0.01) and PRDX4 (p < 0.01) were significantly higher in patients receiving PCI to the left anterior descending (LAD) artery. ACS patients who had plasma TRX >13.40 ng/ml at second follow-up were at high risk of readmission (p < 0.05), as were patients with TRXR of <1000 pg/ml at diagnosis having PCI to the LAD (p < 0.05). CONCLUSION This study indicates that TRX, TRXR and PRDX4 may have clinical utility for ACS stratification.
Collapse
Affiliation(s)
- Angela Doughty
- Department of Cardiology, Worcester Acute Hospitals NHS Trust, Worcester, WR5 1DD, UK
| | - Gary Keane
- School of Science & the Environment, University of Worcester, WR2 6AJ, UK
| | - Alex J Wadley
- School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, B15 2TT, UK
| | - Berenice Mahoney
- Three Counties Medical School, University of Worcester, WR2 6AJ, UK
| | - Allain A Bueno
- School of Science & the Environment, University of Worcester, WR2 6AJ, UK
| | - Steven J Coles
- School of Science & the Environment, University of Worcester, WR2 6AJ, UK.
| |
Collapse
|
12
|
Bil-Lula I, Kuliczkowski W, Krzywonos-Zawadzka A, Frydrychowski P, Stygar D, Hałucha K, Noszczyk-Nowak A. Mixture of Doxycycline, ML-7 and L-NAME Restores the Pro- and Antioxidant Balance during Myocardial Infarction-In Vivo Pig Model Study. Biomedicines 2024; 12:784. [PMID: 38672140 PMCID: PMC11047935 DOI: 10.3390/biomedicines12040784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The restoration of blood flow to the ischemic myocardium inflicts ischemia/reperfusion (I/R) heart injury (IRI). The main contributors to IRI are increased oxidative stress and subsequent excessive production of ROS, increased expression of NOS and peroxinitate, activation of MMPs, and enhanced posttranslational modifications of contractile proteins, which make them more susceptible to proteolytic degradation. Since the pathophysiology of IRI is a complex issue, and thus, various therapeutic strategies are required to prevent or reduce IRI and microvascular dysfunction, in the current study we proposed an innovative multi-drug therapy using low concentrations of drugs applied intracoronary to reach microvessels in order to stabilize the pro- and antioxidant balance during a MI in an in vivo pig model. The ability of a mixture of doxycycline (1 μM), ML-7 (0.5 μM), and L-NAME (2 μM) to modulate the pro- and antioxidative balance was tested in the left ventricle tissue and blood samples. Data showed that infusion of a MIX reduced the total oxidative status (TOS), oxidative stress index (OSI), and malondialdehyde (MDA). It also increased the total antioxidant capacity, confirming its antioxidative properties. MIX administration also reduced the activity of MMP-2 and MMP-9, and then decreased the release of MLC1 and BNP-26 into plasma. This study demonstrated that intracoronary administration of low concentrations of doxycycline in combination with ML-7 and L-NAME is incredibly efficient in regulating pro- and antioxidant balance during MI.
Collapse
Affiliation(s)
- Iwona Bil-Lula
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Haematology, Wrocław Medical University, 50-556 Wrocław, Poland; (A.K.-Z.); (K.H.)
| | - Wiktor Kuliczkowski
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Anna Krzywonos-Zawadzka
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Haematology, Wrocław Medical University, 50-556 Wrocław, Poland; (A.K.-Z.); (K.H.)
| | - Piotr Frydrychowski
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Grunwaldzki Square 47, 50-366 Wrocław, Poland; (P.F.); (A.N.-N.)
| | - Dominika Stygar
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-808 Zabrze, Poland;
- SLU University Animal Hospital, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Kornela Hałucha
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Haematology, Wrocław Medical University, 50-556 Wrocław, Poland; (A.K.-Z.); (K.H.)
| | - Agnieszka Noszczyk-Nowak
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Grunwaldzki Square 47, 50-366 Wrocław, Poland; (P.F.); (A.N.-N.)
| |
Collapse
|
13
|
Czerwińska K, Januszewska L, Markiewicz-Górka I, Jaremków A, Martynowicz H, Pawlas K, Mazur G, Poręba R, Gać P. Selenoprotein P, peroxiredoxin-5, renalase, and total antioxidant status in patients with suspected obstructive sleep apnea. Sleep Breath 2024; 28:211-219. [PMID: 37495908 PMCID: PMC10954901 DOI: 10.1007/s11325-023-02880-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE The aim of this study was to investigate the relationship between selenoprotein P, peroxiredoxin-5, renalase, total antioxidant status (TAS), mean blood pressure (mBP), and apnea-hypopnea index (AHI). METHODS The study group consisted of 112 patients hospitalized to verify the diagnosis of obstructive sleep apnea (OSA). The inclusion criteria were consent to participate in the study and age ≥ 18 years. Patients with active proliferative disease, severe systemic diseases, or mental diseases were excluded from the study. Each patient underwent full polysomnography and had blood pressure measured. Blood samples were collected and laboratory test was performed. RESULTS Among 112 patients enrolled, there was a statistically significant negative linear correlation between blood pressure values (sBP, dBP, mBP) and selenoprotein P, renalase, and TAS levels. Similarly, there was a negative linear correlation between AHI and selenoprotein P, renalase, and TAS levels, but none between AHI and peroxiredoxin-5. Based on the obtained regression models, higher selenoprotein P, peroxiredoxin-5, and renalase levels were independently associated with higher TAS. Lower mBP values were independently associated with the use of antihypertensive drugs, higher TAS, and younger age. Male gender, higher BMI, and higher mBP were independently associated with higher AHI. CONCLUSIONS Higher concentrations of selenoprotein P, peroxiredoxin-5, and renalase were associated with higher TAS, which confirms their antioxidant properties. There was an indirect connection between tested antioxidants and blood pressure values.
Collapse
Affiliation(s)
- Karolina Czerwińska
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368, Wroclaw, PL, Poland
| | - Lidia Januszewska
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368, Wroclaw, PL, Poland
| | - Iwona Markiewicz-Górka
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368, Wroclaw, PL, Poland
| | - Aleksandra Jaremków
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368, Wroclaw, PL, Poland
| | - Helena Martynowicz
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, PL, Poland
| | - Krystyna Pawlas
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368, Wroclaw, PL, Poland
| | - Grzegorz Mazur
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, PL, Poland
| | - Rafał Poręba
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, PL, Poland
| | - Paweł Gać
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368, Wroclaw, PL, Poland.
| |
Collapse
|
14
|
Wang X, Liang G, Zhou Y, Ni B, Zhou X. Ameliorative effect and mechanism of ursodeoxycholic acid on hydrogen peroxide-induced hepatocyte injury. Sci Rep 2024; 14:4446. [PMID: 38395998 PMCID: PMC10891090 DOI: 10.1038/s41598-024-55043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/20/2024] [Indexed: 02/25/2024] Open
Abstract
To assess the ameliorative effect of ursodeoxycholic acid (UDCA) on hydrogen peroxide (H2O2)-induced hepatocyte injury. In our in vivo experiments, we modelled hyperlipidemia in ApoE-/- mice subjected to a 3-month high-fat diet and found that HE staining of the liver showed severe liver injury and excessive H2O2 was detected in the serum. We modelled oxidative stress injury in L02 cells by H2O2 in vitro and analyzed the levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD) and related genes. UDCA significantly improved the level of oxidative stress in H2O2-injured L02 cells (P < 0.05). In addition, UDCA improved the transcription levels of inflammation and oxidative stress-related genes (P < 0.05), showing anti-inflammatory and anti-oxidative stress effects. UDCA has a protective effect on H2O2-damaged L02 cells, which lays a theoretical foundation for its application development.
Collapse
Affiliation(s)
- Xueqin Wang
- Department of Thyroid Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Center for Endocrine and Thyroid Diseases, Deyang People's Hospital, Deyang, 618000, Sichuan, China
| | - Guangxi Liang
- Center for Endocrine and Thyroid Diseases, Deyang People's Hospital, Deyang, 618000, Sichuan, China
| | - Yang Zhou
- Department of Vascular Surgery, Deyang People's Hospital, Deyang, 618000, Sichuan, China
| | - Banggao Ni
- Center for Endocrine and Thyroid Diseases, Deyang People's Hospital, Deyang, 618000, Sichuan, China
| | - Xiangyu Zhou
- Department of Thyroid Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
15
|
Zeylan M, Senyuz S, Picón-Pagès P, García-Elías A, Tajes M, Muñoz FJ, Oliva B, Garcia-Ojalvo J, Barbu E, Vicente R, Nattel S, Ois A, Puig-Pijoan A, Keskin O, Gursoy A. Shared Proteins and Pathways of Cardiovascular and Cognitive Diseases: Relation to Vascular Cognitive Impairment. J Proteome Res 2024; 23:560-573. [PMID: 38252700 PMCID: PMC10846560 DOI: 10.1021/acs.jproteome.3c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/29/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
One of the primary goals of systems medicine is the detection of putative proteins and pathways involved in disease progression and pathological phenotypes. Vascular cognitive impairment (VCI) is a heterogeneous condition manifesting as cognitive impairment resulting from vascular factors. The precise mechanisms underlying this relationship remain unclear, which poses challenges for experimental research. Here, we applied computational approaches like systems biology to unveil and select relevant proteins and pathways related to VCI by studying the crosstalk between cardiovascular and cognitive diseases. In addition, we specifically included signals related to oxidative stress, a common etiologic factor tightly linked to aging, a major determinant of VCI. Our results show that pathways associated with oxidative stress are quite relevant, as most of the prioritized vascular cognitive genes and proteins were enriched in these pathways. Our analysis provided a short list of proteins that could be contributing to VCI: DOLK, TSC1, ATP1A1, MAPK14, YWHAZ, CREB3, HSPB1, PRDX6, and LMNA. Moreover, our experimental results suggest a high implication of glycative stress, generating oxidative processes and post-translational protein modifications through advanced glycation end-products (AGEs). We propose that these products interact with their specific receptors (RAGE) and Notch signaling to contribute to the etiology of VCI.
Collapse
Affiliation(s)
- Melisa
E. Zeylan
- Computational
Sciences and Engineering, Graduate School of Science and Engineering, Koç University, Istanbul 34450, Türkiye
| | - Simge Senyuz
- Computational
Sciences and Engineering, Graduate School of Science and Engineering, Koç University, Istanbul 34450, Türkiye
| | - Pol Picón-Pagès
- Laboratory
of Molecular Physiology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Anna García-Elías
- Laboratory
of Molecular Physiology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Marta Tajes
- Laboratory
of Molecular Physiology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Francisco J. Muñoz
- Laboratory
of Molecular Physiology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Baldomero Oliva
- Laboratory
of Structural Bioinformatics (GRIB), Department of Medicine and Life
Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Jordi Garcia-Ojalvo
- Laboratory
of Dynamical Systems Biology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Eduard Barbu
- Institute
of Computer Science, University of Tartu, Tartu, 50090, Estonia
| | - Raul Vicente
- Institute
of Computer Science, University of Tartu, Tartu, 50090, Estonia
| | - Stanley Nattel
- Department
of Medicine and Research Center, Montreal Heart Institute and Université
de Montréal; Institute of Pharmacology, West German Heart and
Vascular Center, University Duisburg-Essen,
Germany; IHU LIRYC and Fondation Bordeaux Université, Bordeaux 33000, France
| | - Angel Ois
- Department
of Neurology, Hospital Del Mar. Hospital
Del Mar - Medical Research Institute and Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Albert Puig-Pijoan
- Department
of Neurology, Hospital Del Mar. Hospital
Del Mar - Medical Research Institute and Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Ozlem Keskin
- Department
of Chemical and Biological Engineering, Koç University, Istanbul 34450, Türkiye
| | - Attila Gursoy
- Department
of Computer Engineering, Koç University, Istanbul 34450, Türkiye
| |
Collapse
|
16
|
Balasubramanian P, Vijayarangam V, Deviparasakthi MKG, Palaniyandi T, Ravi M, Natarajan S, Viswanathan S, Baskar G, Wahab MRA, Surendran H. Implications and progression of peroxiredoxin 2 (PRDX2) in various human diseases. Pathol Res Pract 2024; 254:155080. [PMID: 38219498 DOI: 10.1016/j.prp.2023.155080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/16/2024]
Abstract
Peroxiredoxin 2 (PRDX2), a characteristic 2-Cys enzyme is one of the foremost effective scavenger proteins against reactive oxygen species (ROS) and hydrogen peroxide (H2O2) defending cells against oxidative stress. Dysregulation of this antioxidant raises the quantity of ROS and oxidative stress implicated in several diseases. PRDX2 lowers the generation of ROS that takes part in controlling several signalling pathways occurring in neurons, protecting them from stress caused by oxidation and an inflammatory harm. Depending on the aetiological variables, the kind of cancer, and the stage of tumour development, PRDX2 may behave either as an onco-suppressor or a promoter. However, overexpression of PRDX2 may be linked to the development of numerous cancers, including those of the colon, cervix, breast, and prostate. PRDX2 also plays a beneficial effect in inflammatory diseases. PRDX2 being a thiol-specific peroxidase, is known to control proinflammatory reactions. The spilling of PRDX2, on the other hand, accelerates cognitive impairment following a stroke by triggering an inflammatory reflex. PRDX2 expression patterns in vascular cells tend to be crucial to its involvement in cardiovascular diseases. In vascular smooth muscle cells, if the protein tyrosine phosphatase is restricted, PRDX2 could avoid the neointimal thickening which relies on platelet derived growth factor (PDGF), a vital component of vascular remodelling. A proper PRDX2 balance is therefore crucial. The imbalance causes a number of illnesses, including cancers, inflammatory diseases, cardiovascular ailments, and neurological and neurodegenerative problems which are discussed in this review.
Collapse
Affiliation(s)
| | - Varshini Vijayarangam
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | | | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India.
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sudhakar Natarajan
- Department of Tuberculosis, ICMR - National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | | | - Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| |
Collapse
|
17
|
Lei P, Lü J, Yao T, Zhang P, Chai X, Wang Y, Jiang M. Verbascoside exerts an anti-atherosclerotic effect by regulating liver glycerophospholipid metabolism. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
18
|
Yadollah B, Zahra Roudbari AB. Broiler Heart Muscle Monoaminergic Receptors Alteration in Response to Chronic Heat Stress: Based on Transcription Analysis. ARCHIVES OF RAZI INSTITUTE 2023; 78:1594-1602. [PMID: 38590690 PMCID: PMC10998952 DOI: 10.22092/ari.2023.78.5.1594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/08/2023] [Indexed: 04/10/2024]
Abstract
Chronic heat stress affects numerous physiological and behavioral mechanisms. Epigenetic changes following prolonged cyclic heat stress, creating new opportunities for molecular biology research. One of these changes involves monoamines, such as serotonin, epinephrine, norepinephrine, dopamine, and their transmission. Broiler chickens are highly susceptible to heat stress, and their hearts become insufficient during the growth phase, leading to hypertrophy of the left heart. RNA-seq data were obtained from NCBI with accession number SRP082125. The expression level of genes was determined with DESeq2 packages. Gene Ontology qualification, including biological processes, cellular components, and molecular role (MF), was performed from the Gene Ontology Resource. Cyclic heat stress in broilers significantly altered monoamine receptor expression. Twenty-nine genes of the monoamine pathway changed their expression in the left heart. Significant downregulation of expression was statistically associated with the ADRB1, HTR2A, and PNMT genes and upregulation of the MAOA gene (P<0.01). STRING database was used to construct the protein-protein interaction network; based on network analysis, the HTR2C, HTR2A, and HTR5A genes were identified as the major nodal genes in the network followed by MAOA, DRD2, DRD5, HTR1B, DRD1, DRD3, and HTR2B genes occupying the second important place in the network module. In conclusion, heat stress treatment prevented cardiac hypertrophy and altered the expression of monoamine genes. This would imply that monoamine transmission plays an important role in the development of cardiac hypertrophy, and that cyclic-chronic heat treatment modulates the cardiac monoaminergic system. These molecular biomarkers could be useful for screening, diagnosis, and treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Badakhshan Yadollah
- Department of Animal Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran
| | | |
Collapse
|
19
|
Ježek P. Pitfalls of Mitochondrial Redox Signaling Research. Antioxidants (Basel) 2023; 12:1696. [PMID: 37759999 PMCID: PMC10525995 DOI: 10.3390/antiox12091696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Redox signaling from mitochondria (mt) to the cytosol and plasma membrane (PM) has been scarcely reported, such as in the case of hypoxic cell adaptation or (2-oxo-) 2-keto-isocaproate (KIC) β-like-oxidation stimulating insulin secretion in pancreatic β-cells. Mutual redox state influence between mitochondrial major compartments, the matrix and the intracristal space, and the cytosol is therefore derived theoretically in this article to predict possible conditions, when mt-to-cytosol and mt-to-PM signals may occur, as well as conditions in which the cytosolic redox signaling is not overwhelmed by the mitochondrial antioxidant capacity. Possible peroxiredoxin 3 participation in mt-to-cytosol redox signaling is discussed, as well as another specific case, whereby mitochondrial superoxide release is diminished, whereas the matrix MnSOD is activated. As a result, the enhanced conversion to H2O2 allows H2O2 diffusion into the cytosol, where it could be a predominant component of the H2O2 release. In both of these ways, mt-to-cytosol and mt-to-PM signals may be realized. Finally, the use of redox-sensitive probes is discussed, which disturb redox equilibria, and hence add a surplus redox-buffering to the compartment, where they are localized. Specifically, when attempts to quantify net H2O2 fluxes are to be made, this should be taken into account.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| |
Collapse
|
20
|
Czerwińska K, Januszewska L, Markiewicz-Górka I, Jaremków A, Martynowicz H, Pawlas K, Mazur G, Poręba R, Gać P. Selenoprotein P, Peroxiredoxin-5, Renalase and Selected Cardiovascular Consequences Tested in Ambulatory Blood Pressure Monitoring and Echocardiography. Antioxidants (Basel) 2023; 12:1187. [PMID: 37371917 DOI: 10.3390/antiox12061187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to assess the relationship between chosen antioxidants, namely selenoprotein P (SELENOP), peroxiredoxin-5 (Prdx-5), renalase and selected cardiovascular consequences tested in ambulatory blood pressure monitoring (ABPM) and echocardiography (ECHO). In our work, cardiovascular consequences refer to higher mean blood pressure (MBP) and pulse pressure (PP) on ABPM, as well as to left atrial enlargement (LAE), left ventricular hypertrophy (LVH) and lower left ventricular ejection fraction (LVEF%) on ECHO. The study group consisted of 101 consecutive patients admitted to the Department of Internal Medicine, Occupational Diseases and Hypertension to verify the diagnosis of Obstructive Sleep Apnoea (OSA). Each patient underwent full polysomnography, blood tests, ABPM and ECHO. Both selenoprotein-P and renalase levels correlated with different ABPM and ECHO parameters. We found no correlation between the peroxiredoxin-5 level and none of the tested parameters. We point to the possible application of SELENOP plasma-level testing in the initial selection of high cardiovascular-risk patients, especially if access to more advanced examinations is limited. We further suggest SELENOP measurement as a possible indicator of patients at increased left ventricular hypertrophy risk who should be of particular interest and may benefit from ECHO testing.
Collapse
Affiliation(s)
- Karolina Czerwińska
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wroclaw, Poland
| | - Lidia Januszewska
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wroclaw, Poland
| | - Iwona Markiewicz-Górka
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wroclaw, Poland
| | - Aleksandra Jaremków
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wroclaw, Poland
| | - Helena Martynowicz
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, PL 50-556 Wroclaw, Poland
| | - Krystyna Pawlas
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wroclaw, Poland
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, PL 50-556 Wroclaw, Poland
| | - Rafał Poręba
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, PL 50-556 Wroclaw, Poland
| | - Paweł Gać
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wroclaw, Poland
| |
Collapse
|
21
|
Liu Y, Wang P, Hu W, Chen D. New insights into the roles of peroxiredoxins in cancer. Biomed Pharmacother 2023; 164:114896. [PMID: 37210897 DOI: 10.1016/j.biopha.2023.114896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023] Open
Abstract
Oxidative stress is one of the hallmarks of cancer. Tumorigenesis and progression are accompanied by elevated reactive oxygen species (ROS) levels and adaptive elevation of antioxidant expression levels. Peroxiredoxins (PRDXs) are among the most important antioxidants and are widely distributed in a variety of cancers. PRDXs are involved in the regulation of a variety of tumor cell phenotypes, such as invasion, migration, epithelial-mesenchymal transition (EMT) and stemness. PRDXs are also associated with tumor cell resistance to cell death, such as apoptosis and ferroptosis. In addition, PRDXs are involved in the transduction of hypoxic signals in the TME and in the regulation of the function of other cellular components of the TME, such as cancer-associated fibroblasts (CAFs), natural killer (NK) cells and macrophages. This implies that PRDXs are promising targets for cancer treatment. Of course, further studies are needed to realize the clinical application of targeting PRDXs. In this review, we highlight the role of PRDXs in cancer, summarizing the basic features of PRDXs, their association with tumorigenesis, their expression and function in cancer, and their relationship with cancer therapeutic resistance.
Collapse
Affiliation(s)
- Yan Liu
- First Department of Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Pu Wang
- Department of Emergency, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Weina Hu
- Department of General Practice, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| | - Da Chen
- Department of Emergency, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| |
Collapse
|
22
|
Štšepetova J, Rätsep M, Gerulis O, Jõesaar A, Mikelsaar M, Songisepp E. Impact of Lactiplantibacillus plantarum Inducia on metabolic and antioxidative response in cholesterol and BMI variable indices: randomised, double-blind, placebo-controlled trials. Benef Microbes 2023; 14:1-16. [PMID: 36437811 DOI: 10.3920/bm2022.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Probiotics may have potential in reducing cardiovascular disease (CVD) risk in middle-aged persons with borderline metabolic indices. The ability of potential probiotic Lactiplantibacillus plantarum Inducia to reduce CVD risk factors in persons with variable cholesterol and body mass indices (BMI) was assessed. In two parallel-armed double-blind placebo-controlled interventions (n=136) and (n=104), participants daily received either test yoghurt (Inducia) or placebo yoghurt. BMI, blood pressure, plasma glucose, cholesterol, high-sensitivity C-reactive protein (hs-CRP), oxidative stress and immunological markers were measured. Total counts of lactobacilli and L. plantarum Inducia were evaluated using real-time PCR. Significant reduction of total cholesterol, low density lipoprotein cholesterol (LDL-c) and non-high-density cholesterol occurred in both trials. The change in cholesterol (P=0.023) in persons with normal BMI and borderline cholesterol levels after four weeks of yoghurt consumption was detected. A difference was also found between placebo and test yoghurt groups (P=0.042) in LDL-c with normal BMI. Blood glucose reduction (P=0.01) and antioxidative effect was detected in overweight volunteers of the test yoghurt group. The suppression of oxidised LDL was associated with lowered oxidative stress index and total peroxide concentration values and faecal recovery of Inducia. The Inducia strain expresses antioxidative effect on blood lipids and has anti-glycaemic impact that allow to apply it as dietary probiotic supplement for the management of CVD risks in humans.
Collapse
Affiliation(s)
- J Štšepetova
- BioCC OÜ, 1 Kreutzwaldi, 51006 Tartu, Estonia
- Institute of Biomedicine and Translational Medicine, Department of Microbiology, University of Tartu, 19 Ravila, 50411 Tartu, Estonia
| | - M Rätsep
- BioCC OÜ, 1 Kreutzwaldi, 51006 Tartu, Estonia
| | - O Gerulis
- BioCC OÜ, 1 Kreutzwaldi, 51006 Tartu, Estonia
| | - A Jõesaar
- BioCC OÜ, 1 Kreutzwaldi, 51006 Tartu, Estonia
| | - M Mikelsaar
- BioCC OÜ, 1 Kreutzwaldi, 51006 Tartu, Estonia
- Institute of Biomedicine and Translational Medicine, Department of Microbiology, University of Tartu, 19 Ravila, 50411 Tartu, Estonia
| | - E Songisepp
- BioCC OÜ, 1 Kreutzwaldi, 51006 Tartu, Estonia
| |
Collapse
|
23
|
Xu T, Yu X, Zhou S, Wu Y, Deng X, Wu Y, Wang S, Gao X, Nie S, Zhou C, Sun J, Huang Y. DNA methylation and mRNA expression of glutathione S-transferase alpha 4 are associated with intracranial aneurysms in a gender-dependent manner. Front Genet 2023; 13:1079455. [PMID: 36699470 PMCID: PMC9868450 DOI: 10.3389/fgene.2022.1079455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023] Open
Abstract
Objective: We performed a case-control study to investigate the correlation between DNA methylation and mRNA expression of the glutathione S-transferase alpha 4 (GSTA4) gene and the risk of intracranial aneurysm (IA) in the Chinese Han population. Methods: After propensity score matching, 44 pairs of cases and controls were collected in this study. Fasting blood samples were collected for DNA and RNA extraction within 24 h of admission. Nine CpG dinucleotides were selected from the GSTA4 promoter region for DNA methylation pyrosequencing. mRNA expression of GSTA4 was measured by quantitative real-time polymerase chain reaction (RT-qPCR). In vitro cell experiments were conducted to verify the association between 5-aza-2'-deoxycytidine induced DNA hypomethylation and GSTA4 mRNA expression. Results: The mean methylation level of GSTA4 was much lower in IA patients, especially in IA patients, especially in unruptured IA (UIA), than that in controls (IA vs. Control, p < .001; ruptured IA (RIA) vs. Control, p = .005; UIA vs. Control, p < .001). With sex stratification, we further found that the association between GSTA4 methylation and IA risk presented only in women (mean methylation level: IA vs. Control, p < .001; RIA vs. Control, p = .009; UIA vs. Control, p < .001). GSTA4 mRNA expression was significantly higher in the IA group than in the control group (p < .01) and negatively correlated with DNA methylation in all individuals (r = -.746, p < .001). DNA hypomethylation can increase GSTA4 mRNA expression in human primary artery smooth muscle cells. The receiver operating characteristic (ROC) curve showed that GSTA4 mean methylation (AUC = .80, p < .001) was a reliable predictor of women intracranial aneurysm, among which CpG 1 exhibited the best predictive value (AUC = .89, p < .001). In addition, GSTA4 expression levels could also predict the risk of IA in women (AUC = .87, p = .005). Conclusion: Decreased DNA methylation and increased mRNA expression of the GSTA4 gene are associated with the risk of IA in women.
Collapse
Affiliation(s)
- Tianqi Xu
- Department of Neurology, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China.,Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| | - Xi Yu
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Shenjun Zhou
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China.,Department of Neurosurgery, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Yiwen Wu
- Department of Neurosurgery, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Xinpeng Deng
- Department of Neurosurgery, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Yuefei Wu
- Department of Neurology, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Shiyi Wang
- Department of Neurology, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China.,Medical School of Ningbo University, Ningbo, China
| | - Xiang Gao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Sheng Nie
- Department of Neurosurgery, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Chenhui Zhou
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China.,Department of Neurosurgery, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Jie Sun
- Department of Neurosurgery, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Yi Huang
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China.,Department of Neurosurgery, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
24
|
Duncan RS, Keightley A, Lopez AA, Hall CW, Koulen P. Proteome changes in a human retinal pigment epithelial cell line during oxidative stress and following antioxidant treatment. Front Immunol 2023; 14:1138519. [PMID: 37153596 PMCID: PMC10154683 DOI: 10.3389/fimmu.2023.1138519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Age related macular degeneration (AMD) is the most common cause of blindness in the elderly. Oxidative stress contributes to retinal pigment epithelium (RPE) dysfunction and cell death thereby leading to AMD. Using improved RPE cell model systems, such as human telomerase transcriptase-overexpressing (hTERT) RPE cells (hTERT-RPE), pathophysiological changes in RPE during oxidative stress can be better understood. Using this model system, we identified changes in the expression of proteins involved in the cellular antioxidant responses after induction of oxidative stress. Some antioxidants such as vitamin E (tocopherols and tocotrienols) are powerful antioxidants that can reduce oxidative damage in cells. Alpha-tocopherol (α-Toc or αT) and gamma-tocopherol (γ-Toc or γT) are well-studied tocopherols, but signaling mechanisms underlying their respective cytoprotective properties may be distinct. Here, we determined what effect oxidative stress, induced by extracellularly applied tBHP in the presence and absence of αT and/or γT, has on the expression of antioxidant proteins and related signaling networks. Using proteomics approaches, we identified differential protein expression in cellular antioxidant response pathways during oxidative stress and after tocopherol treatment. We identified three groups of proteins based on biochemical function: glutathione metabolism/transfer, peroxidases and redox-sensitive proteins involved in cytoprotective signaling. We found that oxidative stress and tocopherol treatment resulted in unique changes in these three groups of antioxidant proteins indicate that αT and γT independently and by themselves can induce the expression of antioxidant proteins in RPE cells. These results provide novel rationales for potential therapeutic strategies to protect RPE cells from oxidative stress.
Collapse
Affiliation(s)
- R. Scott Duncan
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
| | - Andrew Keightley
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
| | - Adam A. Lopez
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
| | - Conner W. Hall
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
- Department of Biomedical Sciences, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
- *Correspondence: Peter Koulen,
| |
Collapse
|
25
|
Role of Translationally Controlled Tumor Protein (TCTP) in the Development of Hypertension and Related Diseases in Mouse Models. Biomedicines 2022; 10:biomedicines10112722. [DOI: 10.3390/biomedicines10112722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Translationally controlled tumor protein (TCTP) is a multifunctional protein that plays a wide variety of physiological and pathological roles, including as a cytoplasmic repressor of Na,K-ATPase, an enzyme pivotal in maintaining Na+ and K+ ion gradients across the plasma membrane, by binding to and inhibiting Na,K-ATPase. Studies with transgenic mice overexpressing TCTP (TCTP-TG) revealed the pathophysiological significance of TCTP in the development of systemic arterial hypertension. Overexpression of TCTP and inhibition of Na,K-ATPase result in the elevation of cytoplasmic Ca2+ levels, which increases the vascular contractility in the mice, leading to hypertension. Furthermore, studies using an animal model constructed by multiple mating of TCTP-TG with apolipoprotein E knockout mice (ApoE KO) indicated that TCTP-induced hypertension facilitates the severity of atherosclerotic lesions in vivo. This review attempts to discuss the mechanisms underlying TCTP-induced hypertension and related diseases gleaned from studies using genetically altered animal models and the potential of TCTP as a target in the therapy of hypertension-related pathological conditions.
Collapse
|
26
|
Kim S, Lee W, Jo H, Sonn SK, Jeong SJ, Seo S, Suh J, Jin J, Kweon HY, Kim TK, Moon SH, Jeon S, Kim JW, Kim YR, Lee EW, Shin HK, Park SH, Oh GT. The antioxidant enzyme Peroxiredoxin-1 controls stroke-associated microglia against acute ischemic stroke. Redox Biol 2022; 54:102347. [PMID: 35688114 PMCID: PMC9184746 DOI: 10.1016/j.redox.2022.102347] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 01/04/2023] Open
Affiliation(s)
- Sinai Kim
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Wonhyo Lee
- Department of Biological Sciences, Ulsan National Institute of Science & Technology (UNIST), Ulsan, South Korea
| | - Huiju Jo
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seong-Keun Sonn
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Se-Jin Jeong
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Seungwoon Seo
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Joowon Suh
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jing Jin
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hyae Yon Kweon
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Tae Kyeong Kim
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Shin Hye Moon
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sejin Jeon
- Department of Biological Sciences and Biotechnology Major in Bio-Vaccine Engineering Andong National University, Andong, South Korea
| | - Jong Woo Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon, South Korea
| | - Yu Ri Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine 1672, Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon, South Korea
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Sung Ho Park
- Department of Biological Sciences, Ulsan National Institute of Science & Technology (UNIST), Ulsan, South Korea.
| | - Goo Taeg Oh
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
27
|
Pisano C, Benedetto U, Ruvolo G, Balistreri CR. Oxidative Stress in the Pathogenesis of Aorta Diseases as a Source of Potential Biomarkers and Therapeutic Targets, with a Particular Focus on Ascending Aorta Aneurysms. Antioxidants (Basel) 2022; 11:antiox11020182. [PMID: 35204065 PMCID: PMC8868543 DOI: 10.3390/antiox11020182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 12/14/2022] Open
Abstract
Aorta diseases, such as ascending aorta aneurysm (AsAA), are complex pathologies, currently defined as inflammatory diseases with a strong genetic susceptibility. They are difficult to manage, being insidious and silent pathologies whose diagnosis is based only on imaging data. No diagnostic and prognostic biomarkers or markers of outcome have been known until now. Thus, their identification is imperative. Certainly, a deep understanding of the mechanisms and pathways involved in their pathogenesis might help in such research. Recently, the key role of oxidative stress (OS) on the pathophysiology of aorta disease has emerged. Here, we describe and discuss these aspects by revealing some OS pathways as potential biomarkers, their underlying limitations, and potential solutions and approaches, as well as some potential treatments.
Collapse
Affiliation(s)
- Calogera Pisano
- Department of Cardiac Surgery, Tor Vergata University Hospital, 00133 Rome, Italy; (C.P.); (G.R.)
| | - Umberto Benedetto
- Bristol Heart Institute, University of Bristol, Bristol BS2 8HW, UK;
| | - Giovanni Ruvolo
- Department of Cardiac Surgery, Tor Vergata University Hospital, 00133 Rome, Italy; (C.P.); (G.R.)
| | - Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy
- Correspondence:
| |
Collapse
|
28
|
Deng X, Wu Y, Xu H, Yan J, Liu H, Zhang B. Recent research progress in galactose-based fluorescent probes for detection of biomarkers of liver diseases. Chem Commun (Camb) 2022; 58:12518-12527. [DOI: 10.1039/d2cc04180d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This highlight illustrates the challenges and latest progress in galactose-based fluorescent probes for early diagnosis of liver diseases.
Collapse
Affiliation(s)
- Xiaojing Deng
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Yingxu Wu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 16044, China
| | - Jiawei Yan
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Huanying Liu
- School of Mechanical and Power Engineering, Dalian Ocean University, Dalian 116023, China
| | - Boyu Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
29
|
Tretter V, Hochreiter B, Zach ML, Krenn K, Klein KU. Understanding Cellular Redox Homeostasis: A Challenge for Precision Medicine. Int J Mol Sci 2021; 23:ijms23010106. [PMID: 35008532 PMCID: PMC8745322 DOI: 10.3390/ijms23010106] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Living organisms use a large repertoire of anabolic and catabolic reactions to maintain their physiological body functions, many of which include oxidation and reduction of substrates. The scientific field of redox biology tries to understand how redox homeostasis is regulated and maintained and which mechanisms are derailed in diverse pathological developments of diseases, where oxidative or reductive stress is an issue. The term “oxidative stress” is defined as an imbalance between the generation of oxidants and the local antioxidative defense. Key mediators of oxidative stress are reactive species derived from oxygen, nitrogen, and sulfur that are signal factors at physiological concentrations but can damage cellular macromolecules when they accumulate. However, therapeutical targeting of oxidative stress in disease has proven more difficult than previously expected. Major reasons for this are the very delicate cellular redox systems that differ in the subcellular compartments with regard to their concentrations and depending on the physiological or pathological status of cells and organelles (i.e., circadian rhythm, cell cycle, metabolic need, disease stadium). As reactive species are used as signaling molecules, non-targeted broad-spectrum antioxidants in many cases will fail their therapeutic aim. Precision medicine is called to remedy the situation.
Collapse
|
30
|
Sharapov MG, Gudkov SV, Lankin VZ, Novoselov VI. Role of Glutathione Peroxidases and Peroxiredoxins in Free Radical-Induced Pathologies. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1418-1433. [PMID: 34906041 DOI: 10.1134/s0006297921110067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review, we discuss the pathogenesis of some socially significant diseases associated with the development of oxidative stress, such as atherosclerosis, diabetes, and radiation sickness, as well as the possibilities of the therapeutic application of low-molecular-weight natural and synthetic antioxidants for the correction of free radical-induced pathologies. The main focus of this review is the role of two phylogenetically close families of hydroperoxide-reducing antioxidant enzymes peroxiredoxins and glutathione peroxidases - in counteracting oxidative stress. We also present examples of the application of exogenous recombinant antioxidant enzymes as therapeutic agents in the treatment of pathologies associated with free-radical processes and discuss the prospects of the therapeutic use of exogenous antioxidant enzymes, as well as the ways to improve their therapeutic properties.
Collapse
Affiliation(s)
- Mars G Sharapov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Sergey V Gudkov
- Prokhorov Institute of General Physics, Russian Academy of Sciences, Moscow, 119991, Russia.,Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, 603022, Russia.,All-Russian Research Institute of Phytopathology, Bolshiye Vyazemy, 143050, Russia
| | - Vadim Z Lankin
- National Medical Research Center of Cardiology, Ministry of Health of Russia, Moscow, 121552, Russia
| | - Vladimir I Novoselov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|