1
|
Eroglu A, Wang G, Crook N, Bohn T. Carotenoids. Adv Nutr 2024; 15:100304. [PMID: 39299471 PMCID: PMC11490753 DOI: 10.1016/j.advnut.2024.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Affiliation(s)
- Abdulkerim Eroglu
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States; Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, United States.
| | - Genan Wang
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, United States
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, United States
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Thomas Edison, Strassen, Luxembourg.
| |
Collapse
|
2
|
Feng L, Jia X, Yin L. Role of pectin in the delivery of β-carotene embedded in interpenetrating emulsion-filled gels made with soy protein isolate. Food Chem 2024; 446:138797. [PMID: 38442678 DOI: 10.1016/j.foodchem.2024.138797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024]
Abstract
This study investigated the effects of different matrices on gel properties, lipid digestibility, β-carotene bioaccessibility, released free amino acids and gel network degradation. Microstructure studies have proven that sugar beet pectin/soy protein isolate-based emulsion-filled gel (SBP/SPI-E) with interpenetrating networks was formed. SBP/SPI-E exhibited higher hardness (2.67 N, p < 0.05) and released lesser free amino acids (269.48-μmol/g SPI) than soy protein isolate-based emulsion-filled gel (SPI-E) in simulated intestinal fluid (SIF); however, both had similar free amino acids contents in simulated colonic fluid. SBP has the potential to delay gel network degradation in SIF, as evidenced by the sugar stain strips of SDS-PAGE and microstructure observation. Furthermore, SBP/SPI-E and SPI-E exhibited similar β-carotene bioaccessibility in SIF, suggesting that SBP from composite gel could not affect the aforementioned bioaccessibility. The study provides useful information for the design of functional gels in the application of fat-soluble nutrient delivery.
Collapse
Affiliation(s)
- Liping Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xin Jia
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Lijun Yin
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Bohn T, Balbuena E, Ulus H, Iddir M, Wang G, Crook N, Eroglu A. Carotenoids in Health as Studied by Omics-Related Endpoints. Adv Nutr 2023; 14:1538-1578. [PMID: 37678712 PMCID: PMC10721521 DOI: 10.1016/j.advnut.2023.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023] Open
Abstract
Carotenoids have been associated with risk reduction for several chronic diseases, including the association of their dietary intake/circulating levels with reduced incidence of obesity, type 2 diabetes, certain types of cancer, and even lower total mortality. In addition to some carotenoids constituting vitamin A precursors, they are implicated in potential antioxidant effects and pathways related to inflammation and oxidative stress, including transcription factors such as nuclear factor κB and nuclear factor erythroid 2-related factor 2. Carotenoids and metabolites may also interact with nuclear receptors, mainly retinoic acid receptor/retinoid X receptor and peroxisome proliferator-activated receptors, which play a role in the immune system and cellular differentiation. Therefore, a large number of downstream targets are likely influenced by carotenoids, including but not limited to genes and proteins implicated in oxidative stress and inflammation, antioxidation, and cellular differentiation processes. Furthermore, recent studies also propose an association between carotenoid intake and gut microbiota. While all these endpoints could be individually assessed, a more complete/integrative way to determine a multitude of health-related aspects of carotenoids includes (multi)omics-related techniques, especially transcriptomics, proteomics, lipidomics, and metabolomics, as well as metagenomics, measured in a variety of biospecimens including plasma, urine, stool, white blood cells, or other tissue cellular extracts. In this review, we highlight the use of omics technologies to assess health-related effects of carotenoids in mammalian organisms and models.
Collapse
Affiliation(s)
- Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg.
| | - Emilio Balbuena
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States; Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, United States
| | - Hande Ulus
- Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, United States
| | - Mohammed Iddir
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Genan Wang
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, United States
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, United States
| | - Abdulkerim Eroglu
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States; Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, United States.
| |
Collapse
|
4
|
Agarry IE, Ding D, Li Y, Jin Z, Deng H, Hu J, Cai T, Kan J, Chen K. In vitro bioaccessibility evaluation of chlorophyll pigments in single and binary carriers. Food Chem 2023; 415:135757. [PMID: 36854242 DOI: 10.1016/j.foodchem.2023.135757] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/04/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023]
Abstract
Chlorophyll was extracted and microencapsulated using different carrier agents. Subsequently, in vitro digestion was performed, and the bioaccessibility of chlorophyll in the different encapsulation systems was carried out. The zeta potential, particle size, and PDI were significantly modified after the micellarization of digested microcapsules. I-W-Chl presented with the highest total chlorophyll recovery and micellarization rate of 54% and 43%, respectively. In the aqueous micellar fraction, the different encapsulation systems had total chlorophylls, pheophytins, and pheophorbides ranging from 13 to 49%, 42 - 77%, and 3 - 22% respectively. The bioaccessibility of total chlorophyll pigment ranging from 7% to 20% is given in the following order: I-W-Chl > WPI-Chl > Z-Chl > Ca-Chl > SCChlV > SCChlC. The result established in this study shows that the carrier agent type could inhibit or mediate the bioaccessibility of chlorophyll with the potential to be an efficient delivery system for health promoting compounds.
Collapse
Affiliation(s)
- Israel Emiezi Agarry
- College of Food Science, Southwest University, 2. Tiansheng Road, Beibei, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; China-Hungary Cooperative Centre for Food Science, Chongqing 400715, PR China
| | - Desheng Ding
- College of Food Science, Southwest University, 2. Tiansheng Road, Beibei, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Yunchang Li
- College of Food Science, Southwest University, 2. Tiansheng Road, Beibei, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Zihan Jin
- College of Food Science, Southwest University, 2. Tiansheng Road, Beibei, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Huiling Deng
- Chongqing Chongke Inspection & Testing Co., Ltd, Building B, No. 2, Yangliu Road, 14 North New Area, Chongqing 401121, PR China
| | - Jiang Hu
- Chongqing Chongke Inspection & Testing Co., Ltd, Building B, No. 2, Yangliu Road, 14 North New Area, Chongqing 401121, PR China
| | - Tian Cai
- School of Chemistry and Chemical Engineering, Southwest University, 2. Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, 2. Tiansheng Road, Beibei, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; China-Hungary Cooperative Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China.
| | - Kewei Chen
- College of Food Science, Southwest University, 2. Tiansheng Road, Beibei, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; China-Hungary Cooperative Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China.
| |
Collapse
|
5
|
Eroglu A, Al'Abri IS, Kopec RE, Crook N, Bohn T. Carotenoids and Their Health Benefits as Derived via Their Interactions with Gut Microbiota. Adv Nutr 2023; 14:238-255. [PMID: 36775788 DOI: 10.1016/j.advnut.2022.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022] Open
Abstract
Carotenoids have been related to a number of health benefits. Their dietary intake and circulating levels have been associated with a reduced incidence of obesity, diabetes, certain types of cancer, and even lower total mortality. Their potential interaction with the gut microbiota (GM) has been generally overlooked but may be of relevance, as carotenoids largely bypass absorption in the small intestine and are passed on to the colon, where they appear to be in part degraded into unknown metabolites. These may include apo-carotenoids that may have biological effects because of higher aqueous solubility and higher electrophilicity that could better target transcription factors, i.e., NF-κB, PPARγ, and RAR/RXRs. If absorbed in the colon, they could have both local and systemic effects. Certain microbes that may be supplemented were also reported to produce carotenoids in the colon. Although some bactericidal aspects of carotenoids have been shown in vitro, a few studies have also demonstrated a prebiotic-like effect, resulting in bacterial shifts with health-associated properties. Also, stimulation of IgA could play a role in this respect. Carotenoids may further contribute to mucosal and gut barrier health, such as stabilizing tight junctions. This review highlights potential gut-related health-beneficial effects of carotenoids and emphasizes the current research gaps regarding carotenoid-GM interactions.
Collapse
Affiliation(s)
- Abdulkerim Eroglu
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA; Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, USA.
| | - Ibrahim S Al'Abri
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, USA
| | - Rachel E Kopec
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH, USA; Foods for Health Discovery Theme, The Ohio State University, Columbus, OH, USA
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, USA
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, rue 1 A-B, Thomas Edison, L-1445 Strassen, Luxembourg.
| |
Collapse
|
6
|
Zumaraga MP, Borel P, Bott R, Nowicki M, Lairon D, Desmarchelier C. The Interindividual Variability of Phytofluene Bioavailability is Associated with a Combination of Single Nucleotide Polymorphisms. Mol Nutr Food Res 2023; 67:e2200580. [PMID: 36349532 PMCID: PMC10078114 DOI: 10.1002/mnfr.202200580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
SCOPE Phytofluene is a colorless carotenoid with potential health benefits that displays a higher bioavailability compared to carotenoids such as lutein, β-carotene or lycopene. Several studies suggest its bioavailability displays an elevated interindividual variability. The aim of this work is to investigate whether a combination of SNPs is associated with this variability. METHODS AND RESULTS Thirty-seven healthy adult males consume a test meal that provides phytofluene from a tomato puree. Phytofluene concentrations are measured at fast and in chylomicrons at regular time intervals after meal intake. Identification of the combination of SNPs that best explained the interindividual variability of the phytofluene response is assessed by partial least squares regression. There is a large interindividual variability in the phytofluene response, with CV = 88%. Phytofluene bioavailability is positively correlated with fasting plasma phytofluene concentration (r = 0.57; p = 2 × 10-4 ). A robust partial least squares regression model comprising 14 SNPs near or within 11 genes (ABCA1-rs2487059, rs2515629, and rs4149316, APOC1-rs445925, CD36-rs3211881, ELOVL5-rs6941533, FABP1-rs10185660, FADS3-rs1000778, ISX-rs130461, and rs17748559, LIPC-rs17240713, LPL-rs7005359, LYPLAL1-rs1351472, SETD7-rs11936429) explains 51% (adjusted R2 ) of the interindividual variability in phytofluene bioavailability. CONCLUSIONS This study reports a combination of SNPs that is associated with a significant part of the interindividual variability of phytofluene bioavailability in a healthy male adult population.
Collapse
Affiliation(s)
- Mark Pretzel Zumaraga
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France.,Department of Science and Technology, Food and Nutrition Research Institute, Bicutan, Taguig City, NCR 1631, Philippines
| | - Patrick Borel
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France
| | - Romain Bott
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France
| | - Marion Nowicki
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France
| | - Denis Lairon
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France
| | - Charles Desmarchelier
- C2VN, Aix Marseille Univ, INRAE, INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille, 13005, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
7
|
Molteni C, La Motta C, Valoppi F. Improving the Bioaccessibility and Bioavailability of Carotenoids by Means of Nanostructured Delivery Systems: A Comprehensive Review. Antioxidants (Basel) 2022; 11:antiox11101931. [PMID: 36290651 PMCID: PMC9598319 DOI: 10.3390/antiox11101931] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
Carotenoids are bioactive compounds provided by the diet playing a key role in maintaining human health. Therefore, they should be ingested daily in an adequate amount. However, even a varied and well-balanced diet does not guarantee an adequate intake, as both the bioaccessibility and bioavailability of the compounds significantly affect their absorption. This review summarizes the main results achieved in improving the bioaccessibility and bioavailability of carotenoids by means of nanostructured delivery systems, discussing in detail the available lipid-based and biopolymeric nanocarriers at present, with a focus on their formulation and functional efficiency. Although the toxicity profile of these innovative delivery systems is not fully understood, especially for long-term intake, these systems are an effective and valuable approach to increase the availability of compounds of nutritional interest.
Collapse
Affiliation(s)
- Camilla Molteni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-2219593
| | - Fabio Valoppi
- Department of Food and Nutrition, University of Helsinki, PL 66, Agnes Sjöbergin katu 2, 00014 Helsinki, Finland
- Faculty of Agriculture and Forestry, Helsinki Institute of Sustainability Science, University of Helsinki, 00014 Helsinki, Finland
- Department of Physics, University of Helsinki, PL 64, Gustaf Hällströmin katu 2, 00014 Helsinki, Finland
| |
Collapse
|
8
|
Grace MH, Hoskin RT, Hayes M, Iorizzo M, Kay C, Ferruzzi MG, Lila MA. Spray-dried and freeze-dried protein-spinach particles; effect of drying technique and protein type on the bioaccessibility of carotenoids, chlorophylls, and phenolics. Food Chem 2022; 388:133017. [PMID: 35468465 DOI: 10.1016/j.foodchem.2022.133017] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/04/2022] [Accepted: 04/18/2022] [Indexed: 01/12/2023]
Abstract
The effects of protein carrier and drying technique on the concentration and bioaccessibility of lipophilic compounds (lutein, β-carotene, chlorophylls a and b) and hydrophilic flavonoids in freeze-dried (FD) or spray-dried (SD) spinach juice and protein-spinach particles were investigated. Carotenoid and chlorophyll contents were highest in FD spinach juice without protein (147 and 1355 mg/100 g, respectively). For both SD and FD protein-spinach particles, SPI best protected carotenoids and chlorophylls (123 and 1160 mg/g, respectively), although the bioaccessibility of lipophilic compounds in WPI particles was higher than SPI particles (p < 0.05). For flavonoids, the drying technique was more important than the type of carrier, since FD particles had higher total flavonoids than SD. However, SD particles had higher bioaccessibility for most flavonoids (40-90 %) compared to FD (<20 %). The drying method and protein carrier can be designed to produce protein-spinach ingredients with desired concentration of compounds and bioaccessibility.
Collapse
Affiliation(s)
- Mary H Grace
- Food Bioprocessing & Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Roberta T Hoskin
- Food Bioprocessing & Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Micaela Hayes
- Food Bioprocessing & Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Massimo Iorizzo
- Horticulture Science Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Colin Kay
- Food Bioprocessing & Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Mario G Ferruzzi
- Food Bioprocessing & Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Mary Ann Lila
- Food Bioprocessing & Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA.
| |
Collapse
|
9
|
Iddir M, Vahid F, Merten D, Larondelle Y, Bohn T. Influence of Proteins on the Absorption of Lipophilic Vitamins, Carotenoids and Curcumin - A Review. Mol Nutr Food Res 2022; 66:e2200076. [PMID: 35506751 DOI: 10.1002/mnfr.202200076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/26/2022] [Indexed: 12/13/2022]
Abstract
While proteins have been widely used to encapsulate, protect, and regulate the release of bioactive food compounds, little is known about the influence of co-consumed proteins on the absorption of lipophilic constituents following digestion, such as vitamins (A, D, E, K), carotenoids, and curcumin. Their bioavailability is often low and very variable, depending on the food matrix and host factors. Some proteins can act as emulsifiers during digestion. Their liberated peptides have amphiphilic properties that can facilitate the absorption of microconstituents, by improving their transition from lipid droplets into mixed micelles. Contrarily, the less well digested proteins could negatively impinge on enzymatic accessibility to the lipid droplets, slowing down their processing into mixed micelles and entrapping apolar food compounds. Interactions with mixed micelles and proteins are also plausible, as shown earlier for drugs. This review focuses on the ability of proteins to act as effective emulsifiers of lipophilic vitamins, carotenoids, and curcumin during digestion. The functional properties of proteins, their chemical interactions with enzymes and food constituents during gastro-intestinal digestion, potentials and limitations for their use as emulsifiers are emphasized and data from human, animal, and in vitro trials are summarized.
Collapse
Affiliation(s)
- Mohammed Iddir
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg.,Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Farhad Vahid
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg
| | - Diane Merten
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg
| |
Collapse
|