1
|
Zhao YC, Yan LQ, Xu Y. Recent advances of selenized tubulin inhibitors in cancer therapy. Bioorg Med Chem Lett 2025; 116:130037. [PMID: 39581555 DOI: 10.1016/j.bmcl.2024.130037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Cancer treatment always a huge challenge amidst the resistance and relapse caused by the various treatments. Inhibitors targeting mitosis have been considered as promising therapeutic drugs in clinic, of which tubulins play an important role. Selenium (Se) as an essential microelement in humans and animals, playing a crucial role in the formation of anti-oxidase (glutathione peroxidase) and selenoprotein, also attracted broad attention in cancer therapy. Because the introduction of Se atom could change the length and angle of chemical bond and alter their functional properties, regulating selenized chemotherapeutics has become one of the hot spots. However, little attention has been paid to studying the combination of Se and tubulin inhibitors. Herein, we review the latest research results of selenized tubulin inhibitors in cancer therapy, including its mechanisms, categories and biological activities, providing a theoretical basis for different selenized microtubules inhibitors therapies.
Collapse
Affiliation(s)
- Yong-Chang Zhao
- Department of Pharmacy, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Liang-Qing Yan
- Department of Radiology, The People's Hospital of Yuhuan, Taizhou 317600, China
| | - Yuan Xu
- Department of Pharmacy, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China.
| |
Collapse
|
2
|
Saleh HA, Ragab TIM, Sayed SSM. Influence of Chlorella vulgaris and Pediastrum boryanum extracts carried on nanocellulose on the immune response of Biomphalaria alexandrina snails against Schistosoma mansoni infection. Int J Biol Macromol 2024:138584. [PMID: 39689788 DOI: 10.1016/j.ijbiomac.2024.138584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/20/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
Continuous efforts are made to explore alternative methods for reducing Schistosomiasis. So, this study evaluated the effectiveness of Chlorella vulgaris and Pediastrum boryanum extracts carried on their nanocrystalline cellulose (NCC) as immunostimulants for Biomphalaria alexandrina snails against Schistosoma mansoni infection. The results showed that the lowest cercarial shedding/snail was 340 and 330 with 400 mg/L of C. vulgaris extract and NCC + C. vulgaris extract, respectively. Meanwhile, it was decreased with 200 mg/L of P. boryanum extract and 400 mg/L of NCC + P. boryanum extract, with high survival rates for all treatments. In addition, snails treated with 400 mg/L of C. vulgaris extract and 200 and 400 mg/L of NCC + C. vulgaris extract showed a significant decrease in the contents of hydrogen peroxide (0.639, 0.426, and 0.564 mM/L), respectively, compared to the control group (0.695 mM/L). Furthermore, C. vulgaris extracts induced numerous hemocytes around immature cercariae and sporocysts. P. boryanum extracts showed degenerated sporocysts surrounded by plenty of hemocytes. Nanocellulose carriers improved the delivery of microalgal components within B. alexandrina snails, causing the cercariae to lose their ideal shape. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that C. vulgaris and P. boryanum extracts contained oleic acid, which improved the immunological response of snails, and glutamic acid and flavonoids acted as immune modulators and antioxidants. Ultimately, the toxicity assay indicated that NCC + C. vulgaris extract and NCC + P. boryanum extract were the safest for Artemia salina as a non-target aquatic organism.
Collapse
Affiliation(s)
- Hassnaa A Saleh
- Environmental Research Department, Theodor Bilharz Research Institute, Imbaba, Giza 12411, Egypt
| | - Tamer I M Ragab
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Sara S M Sayed
- Environmental Research Department, Theodor Bilharz Research Institute, Imbaba, Giza 12411, Egypt
| |
Collapse
|
3
|
Chen Y, Zhang S, Gao X, Hao Z, Guo Y, Wang Y, Yuan J. Selenium nanoparticles affect chicken offspring's intestinal health better than other selenium sources. Poult Sci 2024; 103:104367. [PMID: 39413704 PMCID: PMC11530909 DOI: 10.1016/j.psj.2024.104367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024] Open
Abstract
This study aimed to assess the effects of maternal diets containing various selenium (Se) sources on the intestinal mucosal function in the jejunum of chicken offspring. A total of 630, 18-wk-old Hy-Line Grey hens and 70 18-wk-old Hy-Line Grey breeders were randomly allocated into 7 groups, with 5 replicates in each group (18 hens and tow roosters). After 4 wk of Se depletion, the birds were fed either a nonsupplemented basal diet (control) or the same basal diet supplemented with 0.15 mg/kg selenium nanoparticles (Nano-Se), 0.30 mg/kg Nano-Se, 0.30 mg/kg selenocysteine (Sec), 0.30 mg/kg sodium selenite (SS), 0.30 mg/kg selenomethionine (SeMet), or 0.15 mg/kg Nano-Se + 0.15 mg/kg Sec, for 8 wk. Frtilized eggs were collected and incubated during the final week of the experiment. Jejunal tissues from embryonic d 18 and the hatch day were collected for analysis, and the 7-d survival rate of the offspring was recorded. Compared to the control, the maternal diet of 0.30 mg/kg Nano-Se, 0.30 mg/kg Sec, and 0.30 mg/kg SeMet significantly increased the survival of 7-day-old offspring (P < 0.05). The maternal diet supplemented with 0.30 mg/kg Nano-Se significantly increased intestinal villus height and the villus height/crypt depth ratio in chicks at embryonic d 18 and in 1-day-old (P < 0.05). The maternal diet containing 0.30 mg/kg Nano-Se and Sec increased the mRNA expression levels of tight junction proteins in 1-day-old offspring (P < 0.05). Supplemental 0.30 mg/kg Nano-Se significantly increased the mRNA expression levels of marker genes in intestinal enteroendocrine, stem, and Paneth cells (P < 0.05). In 1-day-old chicks, the number of intestinal goblet cells, as well as the mRNA expression levels of intestinal mucin2 (Muc2) and goblet cell differentiation factors (Spdef and C-myc), were the highest in diets supplemented with 0.30 mg/kg Nano-Se. Moreover, the expression levels of intestinal Muc2 and Spdef in chicks at embryonic d 18 was the highest with 0.30 mg/kg Nano-Se supplementation (P < 0.05). Supplementing with 0.30 mg/kg Nano-Se significantly reduced reactive oxygen species levels and decreased the mRNA expression levels of apoptosis-related genes in 1-day-old chicks (P < 0.05). Additionally, 0.30 mg/kg Nano-Se supplementation significantly down-regulated NLRP3 pathway gene expression in 1-day-old chicks (P < 0.05). In conclusion, maternal dietary supplementation with Nano-Se improved jejunal microarchitecture, antioxidant levels, and the expression of tight-junction protein in chicken offspring along with supporting goblet cell development by inhibiting the NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Yanhong Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sasa Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xuyang Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhiqian Hao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yanbin Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- Microbiology and Immunology Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Shirazi Y, Helchi S, Emamshoushtari MM, Niakan S, Sohani E, Pajoum Shariati F. The effect of different light spectra on selenium bioaccumulation by Spirulina platensis cyanobacteria in flat plate photobioreactors. Prep Biochem Biotechnol 2024:1-11. [PMID: 39526646 DOI: 10.1080/10826068.2024.2426744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Selenium (Se) plays a crucial role in human health, influencing conditions such as cancer, diabetes, and neurological disorders. With global population growth and unequal nutrient distribution threatening food security, new approaches are needed to meet the nutritional needs of the world. Se is essential for immune function, metabolism, and antioxidant defense, and in regions suffering from food insecurity and malnutrition, selenium-enriched food could offer an affordable solution. Spirulina platensis, microalgae, can bioaccumulate Se from its environment, enhancing its nutritional value. This study explores how different light spectra (red, white, yellow, and blue LEDs) affect Se bioaccumulation in Spirulina when Na2SeO3 is added to the culture medium in photobioreactors. The results show that red light made the highest Se bioaccumulation (0.118 mg.L-1), followed by white, yellow, and blue light. Se addition also increased cell dry weight by 46%, 33%, 22%, and 60%, respectively, compared to photobioreactors without Se, with biomass productivity highest under red light. Furthermore, Se boosted maximum Chl α concentration, improving photosynthetic efficiency. These findings suggest that optimizing light conditions can significantly enhance the nutritional value of Spirulina, offering a potential solution to global hunger by providing a sustainable, selenium-enriched food source.
Collapse
Affiliation(s)
- Yeganeh Shirazi
- Department of Chemical Engineering, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Salar Helchi
- Department of Chemical Engineering, Islamic Azad University Science and Research Branch, Tehran, Iran
| | | | - Sina Niakan
- Department of Chemical Engineering, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Elnaz Sohani
- Department of Chemical Engineering, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Farshid Pajoum Shariati
- Department of Chemical Engineering, Islamic Azad University Science and Research Branch, Tehran, Iran
| |
Collapse
|
5
|
France Štiglic A, Stajnko A, Sešek Briški A, Snoj Tratnik J, Mazej D, Jerin A, Skitek M, Horvat M, Marc J, Falnoga I. Associations between APOE genotypes, urine 8-isoprostane and blood trace elements in middle-aged mothers (CROME study). ENVIRONMENT INTERNATIONAL 2024; 193:109034. [PMID: 39447471 DOI: 10.1016/j.envint.2024.109034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND There is almost no data on the combined associations between apolipoprotein E gene (APOE) genotypes, trace elements (TEs), and lipid peroxidation in vivo. The aim of our study was to evaluate the association between APOE genotypes and TE levels in blood (B-TEs) and erythrocytes (E-TEs), and 8-isoprostane in urine (U-8-isoprostane) in women with low exposure to potentially toxic TEs and with adequate supply of essential TEs. METHODS B-TEs, E-TEs and U-8-isoprostane were determined in 172 healthy women of childbearing age (30.1-51.4 years) using ICP-MS and ELISA competitive assay, respectively. All women were divided into three APOE genotype groups according to the presence of the ɛ4 allele, ɛ2 allele or ɛ3 homozygotic allele. The associations between B-TEs, E-TE, U-8-isoprostane, and the APOE genotype groups were estimated by multiple variable linear regression models with relevant explanatory variables (e.g., age, BMI, and seafood). RESULTS All TE and U-8-isoprostane levels were inside the reference ranges for the healthy population. In the multiple variable linear regression models, our results showed that urine 8-isoprostane levels increased by up to 43.3% in the APOE4 group compared to the APOE3 group and a negligible negative modifying effect for essential TEs. However, the APOE genotype groups were associated also with some TEs. A clear positive association was found between the APOE2 and APOE4 groups (vs. APOE3) with B-molybdenum. CONCLUSIONS Our study suggests that the APOE4 genotype played an important role in 8-isoprostane variability in a population with an adequate supply of essential and with low exposure to potentially toxic TEs. Adequate copper, zinc and selenium status seemed to be protective against, while the levels of nonessential TEs were probably too low to play a decisive role in 8-isoprostane formation. The observed impact of the APOE2 and APOE4 groups on increased B-molybdenum opens a new research topic.
Collapse
Affiliation(s)
- Alenka France Štiglic
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Anja Stajnko
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Alenka Sešek Briški
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia.
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Aleš Jerin
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Milan Skitek
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Janja Marc
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Ingrid Falnoga
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| |
Collapse
|
6
|
Ren M, Liang S, Lin S, Huang R, Chen Y, Zhang Y, Xu Y. Design, synthesis and biological evaluation of artesunate-Se derivatives as anticancer agents by inducing GPX4-mediated ferroptosis. Bioorg Chem 2024; 152:107733. [PMID: 39180865 DOI: 10.1016/j.bioorg.2024.107733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
A series of organoselenium compounds based on the hybridization of artesunate (ART) scaffolds and Se functionalities (-SeCN and -SeCF3) were synthesized. The redox properties of artesunate-SeCN and artesunate-SeCF3 derivatives were conducted by 2, 2-didiphenyl-1-picrylhydrazyl (DPPH), and the results showed that compounds 2c, 2f and 3e have a good free radical scavenging activity. Their cytotoxicity was evaluated against four types of cancer cell lines, SW480 (human colon adenocarcinoma cells), HCT116 (human colorectal adenocarcinoma cells), HepG2 (human hepatocellular carcinoma cells), MCF-7 (human breast cancer cells). The MTT results showed that compared with ART and 5-FU, compound 2c exhibited potent in vitro antiproliferative activity in SW480, HCT116, and MCF-7 cancer cell lines, and was thus chose for further antitumor mechanism investigation. The antitumor mechanism study revealed that compound 2c induced ferroptosis in HCT116 cells by inhibiting the expression of GPX4 protein, accompanying by the up-regulation of intracellular ROS levels. Mitochondria in HCT116 cells exhibit depolarization of mitochondrial membrane potential (MMP) and ultrastructural changes in morphology, which indicated that 2c resulted in mitochondrial dysfunction and ferroptosis. Moreover, 2c could increase the levels of lipid peroxidation and ferrous ion, which further confirm that compound 2c may exert its antitumor effect through ferroptosis. Overall, these results suggest that the artesunate-Se candidates could provide promising new lead derivatives for further potential anticancer drug development.
Collapse
Affiliation(s)
- Meilin Ren
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Simin Liang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Sitong Lin
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Rizhen Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yanyan Chen
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China.
| | - Ye Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China.
| | - Yanli Xu
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
7
|
Angeli A, Occhini A, Renzi G, Capperucci A, Ferraroni M, Tanini D, Supuran CT. Thia- and Seleno-Michael Reactions for the Synthesis of Carbonic Anhydrases Inhibitors. ChemMedChem 2024; 19:e202400345. [PMID: 39031732 DOI: 10.1002/cmdc.202400345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
Novel chalcogen-containing amides and esters bearing the benzenesulfonamide moiety have been synthesised upon nucleophilic conjugate addition of thiols and selenols to suitable electron-deficient alkenes. The activity of the synthesised compounds as Carbonic Anhydrases inhibitors has been investigated in vitro and the inhibition mechanism has been elucidated by X-rays studies.
Collapse
Affiliation(s)
- Andrea Angeli
- NEUROFARBA Deptartment, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Alessio Occhini
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, I-50019, Florence, Italy
| | - Gioele Renzi
- NEUROFARBA Deptartment, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Antonella Capperucci
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, I-50019, Florence, Italy
| | - Marta Ferraroni
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, I-50019, Florence, Italy
| | - Damiano Tanini
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, I-50019, Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Deptartment, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019, Florence, Italy
| |
Collapse
|
8
|
Waqar MA. A comprehensive review on recent advancements in drug delivery via selenium nanoparticles. J Drug Target 2024:1-14. [PMID: 39392210 DOI: 10.1080/1061186x.2024.2412142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/06/2024] [Indexed: 10/12/2024]
Abstract
Nanotechnology has significantly impacted drug discovery and development over the past three decades, offering novel insights and expanded treatment options. Key to this field is nanoparticles, ranging from 1 to 100 nanometres, with unique properties distinct from larger materials. Selenium nanoparticles (SeNPs) are particularly promising due to their low toxicity and selective cytotoxicity against cancer cells. They have shown efficacy in reducing various cancers types and mitigating conditions like diabetic nephropathy and neurological disorders, such as Alzheimer's disease. This review highlights SeNPs' role in enhancing drug delivery systems, improving the absorption of water-soluble compounds, proteins, peptides, vaccines, and other biological therapies. By modifying nanoparticle surfaces with targeting ligands, drug delivery can achieve precise site-specific delivery, increasing effectiveness. SeNPs can be synthesised through physical, chemical, and biological methods, each offering advantages in stability, size, and application potential. Additionally, SeNPs enhance immune responses and reduce oxidative stress, validating their role in biotherapy and nanomedicine. Their ability to target macrophages and regulate polarisation underscores their potential in antimicrobial therapies. Recent advancements, such as mannosylated SeNPs for targeted delivery, exemplify innovative nanotechnology applications in medicine. Overall, SeNPs represent a promising frontier in nanomedicine, offering new avenues for treating and managing various diseases.
Collapse
Affiliation(s)
- Muhammad Ahsan Waqar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| |
Collapse
|
9
|
Tshoni UA, Mbonane TP, Rathebe PC. The Role of Trace Metals in the Development and Progression of Prostate Cancer. Int J Mol Sci 2024; 25:10725. [PMID: 39409053 PMCID: PMC11476615 DOI: 10.3390/ijms251910725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Over the years, prostate cancer (PCa) research has been of great interest, and trace metals have attracted a lot of attention due to their association with prostate cancer development and progression. PCa has a complex etiology, with genetic, environmental, and lifestyle factors being implicated. Trace metals such as zinc (Zn), mercury (Hg), selenium (Se), lead (Pb), cadmium (Cd), manganese (Mn), arsenic (As), and nickel (Ni) have garnered much attention in recent years, suspected of having direct links to the modulation of cancer risk and progression through their impacts on prostate cancer omics (genomics, epigenetics, proteomics, and transcriptomics). This has led to them being the subject of extensive research in this regard. In this review, we explored the influence of trace metals and offered a comprehensive analysis of the current knowledge on how trace metals affect the biology of prostate cancer at a molecular level by integrating findings from the recent literature to help suggest possible directions for future research.
Collapse
Affiliation(s)
| | | | - Phoka C. Rathebe
- Department of Environmental Health, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 524, Johannesburg 2006, South Africa; (U.A.T.); (T.P.M.)
| |
Collapse
|
10
|
Alarfaj H. Selenium in Surgery. Cureus 2024; 16:e72168. [PMID: 39583421 PMCID: PMC11582387 DOI: 10.7759/cureus.72168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
Selenium, a micronutrient essential for many enzymatic functions, is crucial for maintaining human health. Its presence in the human diet is of paramount importance for metabolism and support of the immune system. Many diseases of surgical importance are related to the level of selenoproteins and their influence on different organs. The aim of this concise narrative review is to highlight the role of selenium as a trace element in various surgical morbidities, a concept that is often neglected or not well perceived by most surgeons.
Collapse
|
11
|
Song Q, Li J, Li T, Li H. Nanomaterials that Aid in the Diagnosis and Treatment of Alzheimer's Disease, Resolving Blood-Brain Barrier Crossing Ability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403473. [PMID: 39101248 PMCID: PMC11481234 DOI: 10.1002/advs.202403473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Indexed: 08/06/2024]
Abstract
As a form of dementia, Alzheimer's disease (AD) suffers from no efficacious cure, yet AD treatment is still imperative, as it ameliorates the symptoms or prevents it from deteriorating or maintains the current status to the longest extent. The human brain is the most sensitive and complex organ in the body, which is protected by the blood-brain barrier (BBB). This yet induces the difficulty in curing AD as the drugs or nanomaterials that are much inhibited from reaching the lesion site. Thus, BBB crossing capability of drug delivery system remains a significant challenge in the development of neurological therapeutics. Fortunately, nano-enabled delivery systems possess promising potential to achieve multifunctional diagnostics/therapeutics against various targets of AD owing to their intriguing advantages of nanocarriers, including easy multifunctionalization on surfaces, high surface-to-volume ratio with large payloads, and potential ability to cross the BBB, making them capable of conquering the limitations of conventional drug candidates. This review, which focuses on the BBB crossing ability of the multifunctional nanomaterials in AD diagnosis and treatment, will provide an insightful vision that is conducive to the development of AD-related nanomaterials.
Collapse
Affiliation(s)
- Qingting Song
- Department of ChemistryThe Chinese University of Hong KongHong KongChina
| | - Junyou Li
- Department of ChemistryThe Chinese University of Hong KongHong KongChina
| | - Ting Li
- Department of ChemistryThe Chinese University of Hong KongHong KongChina
| | - Hung‐Wing Li
- Department of ChemistryThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
12
|
Basaran B, Turk H. The levels, single and multiple health risk assessment of 23 metals in enteral nutrition formulas. Food Chem Toxicol 2024; 192:114914. [PMID: 39127122 DOI: 10.1016/j.fct.2024.114914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Enteral nutrition formulas are products that provide macro and micronutrients to patients who cannot receive their nutrition orally. In this study, the levels of 23 metals known to have potential health risks were determined by inductively coupled plasma mass spectrometry in a total of 28 enteral nutrition formula. Metal exposure was calculated according to three different daily energy intake scenarios (Scenario 1 = 50% oral nutrition + 50% enteral nutrition formula, Scenario 2 = 25% oral nutrition + 75% enteral nutrition formula and Scenario 3 = 100% enteral nutrition formula) and evaluated in terms of non-carcinogenic health risks. The mean levels of Fe, Co, Ni, Cu, Zn, Mo, Se, Li, Be, V, As, Sr, Ag, Cd, Sb, Ba, La, Hg and Pb in the samples analyzed were determined 12,000 ± 3300, 64 ± 1.6, 10 ± 13, 1300 ± 400, 8500 ± 2500, 75 ± 30, 61 ± 21, 0.34 ± 0.36, 0.05 ± 0.08, 7.3 ± 2, 1.6 ± 0.6, 457 ± 166, 0.02 ± 0.1, 0.14 ± 0.12, 0.01 ± 0.1, 74 ± 103, 0.63 ± 0.4, 0.05 ± 0.03 and 0.14 ± 0.7 μg/L. These metals were considered safe in terms of non-carcinogenic health risks when analyzed individually. However, when the target hazard quotient values of all metals were evaluated together, hazard index values were higher than the reference value of 1, for both men and women, indicating potential health risks.
Collapse
Affiliation(s)
- Burhan Basaran
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Recep Tayyip Erdogan University, Rize, 53100, Türkiye.
| | - Hulya Turk
- Department of Biology, Science Faculty, Ataturk University, Erzurum, 25240, Türkiye
| |
Collapse
|
13
|
Yang JC, Liu M, Huang RH, Zhao L, Niu QJ, Xu ZJ, Wei JT, Lei XG, Sun LH. Loss of SELENOW aggravates muscle loss with regulation of protein synthesis and the ubiquitin-proteasome system. SCIENCE ADVANCES 2024; 10:eadj4122. [PMID: 39303039 DOI: 10.1126/sciadv.adj4122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/13/2024] [Indexed: 09/22/2024]
Abstract
Sarcopenia is characterized by accelerated muscle mass and function loss, which burdens and challenges public health worldwide. Several studies indicated that selenium deficiency is associated with sarcopenia; however, the specific mechanism remains unclear. Here, we demonstrated that selenoprotein W (SELENOW) containing selenium in the form of selenocysteine functioned in sarcopenia. SELENOW expression is up-regulated in dexamethasone (DEX)-induced muscle atrophy and age-related sarcopenia mouse models. Knockout (KO) of SELENOW profoundly aggravated the process of muscle mass loss in the two mouse models. Mechanistically, SELENOW KO suppressed the RAC1-mTOR cascade by the interaction between SELENOW and RAC1 and induced the imbalance of protein synthesis and degradation. Consistently, overexpression of SELENOW in vivo and in vitro alleviated the muscle and myotube atrophy induced by DEX. SELENOW played a role in age-related sarcopenia and regulated the genes associated with aging. Together, our study uncovered the function of SELENOW in age-related sarcopenia and provides promising evidence for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Jia-Cheng Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Rong-Hui Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qin-Jian Niu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ze-Jing Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jin-Tao Wei
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
14
|
Darwesh OM, Matter IA, Abdel-Maksoud MA, Al-Qahtani WH, El-Tayeb MA, Kodous AS, Aufy M. Development of nanocomposite-selenium filter for water disinfection and bioremediation of wastewater from Hg and AgNPs. Sci Rep 2024; 14:21443. [PMID: 39271750 PMCID: PMC11399127 DOI: 10.1038/s41598-024-70120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Selenium nanoparticles (SeNPs) are used in several sectors as antitumor, antimicrobial, and environmental adsorbents. Thus, the present research objective was the production of bacterial-SeNPs as an active and environmentally-friendly antibacterial and adsorbent agents and application into novel nanocomposite filter. From a total of 25 samples (soil, wastewater, and water) obtained from different locations in Egypt, 60 selenium-resistant bacterial isolates were obtained (on a mineral salt medium supplemented with selenium ions). After screening (based on the conversion of selenium from ionic form to nanoform), a superior bacterial isolate for SeNPs formation was obtained and molecular identified as Bacillus pumilus isolate OR431753. The high yield of SeNPs was noted after optimization (glucose as carbon source, pH 9 at 30 °C). The produced SeNPs were characterized as approximately 15 nm-diameter spherical nanoparticles, in addition to the presence of organic substances around these particles like polysaccharides and aromatic amines (protein residues). Also, they have antibacterial activity increased after formation of nanocomposite with nano-chitosan (SeNPs/NCh) against several pathogens. The antibacterial activity (expressed as a diameter of the inhibitory zone) averaged between 2.1 and 4.3, 2.7 and 4.8 cm for SeNPs and SeNPs/NCh, respectively compared with 1.1 to 1.8 cm for Amoxicillin. The produced nanoselenium/chitosan was used as a biofilter to remove mercury (Hg) and AgNPs as model chemicals with serious toxicity and potential pollutant for water bodies in many industries. The new SeNPs/NCh biofilter has proven highly effective in individually removing mercury and AgNPs from their synthetic wastewaters, with an efficiency of up to 99%. Moreover, the removal efficiency of AgNPs stabilized at 99% after treating them with the syringe filter-Se nanocomposite for 4 cycles of treatment (5 min each).
Collapse
Affiliation(s)
- Osama M Darwesh
- Agricultural Microbiology Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12622, Egypt.
| | - Ibrahim A Matter
- Agricultural Microbiology Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wahidah H Al-Qahtani
- Department of Food Sciences and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 270677, 11352, Riyadh, Saudi Arabia
| | - Mohamed A El-Tayeb
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad S Kodous
- Department of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, P.O. Box 600036, Chennai, Tamilnadu, India
| | - Mohammed Aufy
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Naziri Z, Rahimlou M, Rezaei M, Tabrizi R, Nasr M, Motazedian M, Kardeh S. High dietary antioxidant intake linked to lower risk of myocardial infarction: a nested case-control study. BMC Cardiovasc Disord 2024; 24:485. [PMID: 39261811 PMCID: PMC11391677 DOI: 10.1186/s12872-024-04158-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND In developing nations, myocardial infarction (MI) remains a significant contributor to deaths from sudden cardiac arrest, with diet playing a key role in its incidence through oxidative stress mechanisms. Although the connection between the Dietary Antioxidant Index (DAI) and cardiovascular diseases has been demonstrated in some studies, the relationship between DAI and MI has not been extensively explored. Therefore, this research aims to investigate this association. METHODS We conducted a nested case-control study involving 156 MI cases and 312 healthy controls, utilizing data from the Fasa Adults Cohort Study (FACS), a population-based study of individuals aged 35-70 residing in Fasa, Iran, with 11,097 participants included at baseline. The DAI was determined by normalizing the intake values of six dietary vitamins and minerals, adjusting by subtracting the global mean, and then dividing by the global standard deviation. MI diagnosis was established by an experienced cardiologist using electronic medical records. Conditional logistic regression was employed to examine the association between DAI and MI. RESULTS There were no significant differences between the case and control groups in terms of age (P = 0.96), gender distribution (P = 0.98), and education level (P = 0.38). In a multiple conditional logistic regression analysis, after adjusting for key variables-including body mass index (BMI), smoking status, education level, and serum levels of triglycerides (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), total cholesterol (TC), fasting blood sugar (FBS), saturated fatty acids (SFA), and polyunsaturated fatty acids (PUFA)-an inverse association was found between DAI and the risk of myocardial infarction (MI) [adjusted Odds Ratio (Adj OR) = 0.88, 95% Confidence Interval (CI): 0.85-0.92; P < 0.001]. CONCLUSIONS This study highlights the crucial role of the DAI in reducing the risk of myocardial infarction. Promoting diets rich in antioxidants presents a straightforward and effective strategy for MI prevention and the promotion of cardiovascular health, underscoring the novelty and significance of this research in dietary approaches to disease prevention.
Collapse
Affiliation(s)
- Zahra Naziri
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- USERN Office, Fasa University of Medical Sciences, Fasa, Iran
| | - Mehran Rahimlou
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehdi Rezaei
- Department of Cardiology, Fars Society of Internal Medicine, Fars-Iranian Heart Association, Shiraz, Iran
| | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
| | | | - Mohammadreza Motazedian
- Clinical Research Development Unit, Valiasr Hospital, Fasa University of Medical Sciences, Fasa, Iran
| | - Sina Kardeh
- Department of Medicine, University of British Columbia, Vancouver, BC, V6T1Z3, Canada
| |
Collapse
|
16
|
Mazaheri-Tehrani S, Abhari AP, Ostadsharif N, Shekarian A, Vali M, Saffari E, Anaraki KT, Haghighatpanah MA, Fakhrolmobasheri M, Kieliszek M. Serum Selenium Levels and Lipid Profile: A Systematic Review and Meta-analysis of Observational Studies. Biol Trace Elem Res 2024:10.1007/s12011-024-04365-4. [PMID: 39256333 DOI: 10.1007/s12011-024-04365-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/01/2024] [Indexed: 09/12/2024]
Abstract
Selenium is a trace element with pivotal roles in metabolic processes. Studies suggested that selenium deficiency could lead to impaired lipid profiles. However, inconsistent results have been reported regarding the association between serum selenium concentrations and lipid profile (triglycerides, LDL, HDL, VLDL, and total cholesterol). Thus, we aimed to review the correlation between them. A systematic literature search was conducted in PubMed, Embase, Web of Science, Scopus, and Google Scholar until 31 December 2023. The relevant correlation coefficients were used as desired effect sizes to assess the correlation between selenium level and lipid profile. Among 8291 records found in the primary search, 47 and 34 articles were included in the systematic review and meta-analysis, respectively. All included studies were observational investigations and had acceptable quality. Our results failed to reach strong evidence supporting the correlation between serum selenium level and lipid profiles, except for HDL, which showed a weak correlation among both adults (r = 0.1 [0.03:0.17]; I2 = 71%) and pediatrics (r = 0.08 [0.03:0.14]; I2 = 38%). Subgroup analyses based on gender did not reveal a significant or strong correlation with selenium levels (except for total cholesterol in males (r = 0.12 [0.01:0.22]; I2 = 52%)). The results did not change after the sensitivity analysis. Although some previous studies have suggested that selenium deficiency could lead to impaired lipid profile, the findings of this study indicate no strong correlation between serum selenium levels and lipid profile.
Collapse
Affiliation(s)
- Sadegh Mazaheri-Tehrani
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
- Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Amir Parsa Abhari
- Heart Failure Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Negar Ostadsharif
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arman Shekarian
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahshad Vali
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elahe Saffari
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kasra Talebi Anaraki
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Ali Haghighatpanah
- Department of Cardiovascular Surgery, Chamran Heart Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Fakhrolmobasheri
- Heart Failure Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland.
| |
Collapse
|
17
|
Elbarky A, Ismail KG, Yousef YF, Elshafiey RMG, Elsharaby RM, El-Kaffas A, Al-Beltagi M. Selenoprotein-p and insulin resistance in children and adolescents with obesity. World J Clin Pediatr 2024; 13:94721. [PMID: 39350909 PMCID: PMC11438929 DOI: 10.5409/wjcp.v13.i3.94721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND Insulin resistance and obesity present significant challenges in pediatric populations. Selenoprotein P1 (SEPP1) serves as a biomarker for assessing selenium levels in the body. While its association with metabolic syndrome is established in adults, its relevance in children remains underexplored. AIM To ascertain SEPP1 blood levels in children and adolescents diagnosed with obesity and to assess its correlation with insulin resistance and adiposity indices. METHODS 170 children participated in this study, including 85 diagnosed with obesity and an equal number of healthy counterparts matched for age and sex. Each participant underwent a comprehensive medical evaluation, encompassing a detailed medical history, clinical examination, and anthropometric measurements like waist circumference and waist-to-height ratio. Furthermore, routine blood tests were conducted, including serum SEPP1, visceral adiposity index (VAI), and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) level. RESULTS Our findings revealed significantly lower serum SEPP1 levels in children with obesity compared to their healthy peers. Moreover, notable negative correlations were observed between serum SEPP1 levels and body mass index, VAI, and HOMA-IR. CONCLUSION The study suggests that SEPP1 could serve as a valuable predictor for insulin resistance among children and adolescents diagnosed with obesity. This highlights the potential utility of SEPP1 in pediatric metabolic health assessment and warrants further investigation.
Collapse
Affiliation(s)
- Amany Elbarky
- Gastroenterology and Clinical Nutrition Unit, Pediatric Department, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
| | - Kholoud Gamal Ismail
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
| | - Yousef Fouad Yousef
- Gastroenterology and Clinical Nutrition Unit, Pediatric Department, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
| | - Rasha Mohamed Gamal Elshafiey
- Gastroenterology and Clinical Nutrition Unit, Pediatric Department, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
| | - Radwa Mahmoud Elsharaby
- Department of Clinical Pathology, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
| | - Asmaa El-Kaffas
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
| | - Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Paediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Manama, Bahrain
| |
Collapse
|
18
|
Abbasi A, Mirekhtiary F, Zakaly HMH. Heavy metal levels of outdoor dust from the Eastern Mediterranean Sea region and assessment of the ecological and health risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56295-56307. [PMID: 39264495 DOI: 10.1007/s11356-024-34794-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
As a result of some chemical element (heavy metals) pollution of dust, environmental pollution of dust has become an increasing concern, necessitating an assessment of risks to both ecology and human health, particularly in urban areas. Most of these pollutants settle on the outdoors and eventually become part of the outdoor dust. These will have negative long-term repercussions on ecosystems and human health. In this research, energy dispersive X-ray fluorescence (EDXRF) spectrometry analytical method was used to assess the pollution characteristics of the eight heavy metals (HMs): Mn, Cu, As, Hg, Ni, Cr, Zn, and Pb in the East Mediterranean Sea area. The concentration of As, Mn, Cr, Cu, Hg, Ni, Pb, and Zn analyzed in outdoor dust samples varied from 0.94 to 19.52 mg kg-1, 190.08 to 1019.7 mg kg-1, 20.46 to 45.9 mg kg-1, 19.5 to 62.56 mg kg-1, 0.01 to 0.93 mg kg-1, 10.48 to 40.64 mg kg-1, 12. 6 to 36.1 mg kg-1, and 48.96 to 112.41mg kg-1, respectively. HMs have been detected in the outdoor dust samples analyzed in the study, and, as a result, mean concentrations followed the order Mn > Zn > Cu > Cr > Ni > Pb > As > Hg, respectively. The ecological risk was observed at various contamination levels, with As and Hg pollution being the most severe. The highest hazard quotient (HQ) for adults and children was determined as a result of As and Cr, respectively. According to the US-EPA health risk threshold, the cancer risk in the study area is negligible.
Collapse
Affiliation(s)
- Akbar Abbasi
- Faculty of Art and Science, University of Kyrenia, via Mersin 10, Kyrenia, TRNC, Turkey.
| | - Fatemeh Mirekhtiary
- Department of Engineering, Near East University, via Mersin 10, Nicosia, TRNC, Turkey
| | - Hesham M H Zakaly
- Physics Department, Faculty of Science, Al-Azhar University Assiut Branch, Asyut, Egypt
- Computer Engineering Department, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Sarıyer, Istanbul, Turkey
- Institute of Physics and Technology, Ural Federal University, Yekaterinburg, 620002, Russia
- Department of Physics and Technical Sciences, Western Caspian University, Baku, Azerbaijan
| |
Collapse
|
19
|
Marhamati S, Younesian O, Mir SM, Hosseinzadeh S, Joshaghani HR, Hesari Z. The effects of high doses of selenium supplementation on mRNA and protein levels of cMLCK levels and total antioxidant capacity in rat heart tissue. Food Chem Toxicol 2024; 191:114886. [PMID: 39059692 DOI: 10.1016/j.fct.2024.114886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND High doses of selenium are associated with heart disease prevalence in high-risk areas. Cardiac myosin light chain kinase (cMLCK) is an essential enzyme for normal function of heart tissue. Therefore, we studied the effect of high doses of selenium on the expression of cMLCK gene and its protein in normal heart tissue in rats. MATERIALS AND METHODS Twenty male rats were randomly divided into four groups: control, Se 0.3mg/kg, Se 1.5mg/kg, and Se 3mg/kg. Sodium-selenite was administered orally into drinking water for 20 weeks. Se levels of heart tissue were measured by atomic absorption. Serum creatine phosphokinase (CPK) and total serum antioxidant capacity were measured. Moreover, the concentration of MLCK protein and the gene expression level of cMLCK in normal heart tissue were analyzed. RESULTS Excess Se in dietary can significantly increase CPK. Se concentration of heart tissue in the Se 3mg/kg group was significantly higher than the control. cMLCK mRNA levels were decreased by 0.3mg/kg and 3mg/kg sodium selenite intake. There was no significant difference between the three groups for total antioxidant capacity and MLCK protein. CONCLUSION High concentrations of selenium can probably effect on normal function of the heart tissue by changing the expression levels of cMLCK.
Collapse
Affiliation(s)
- Shayan Marhamati
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Seyed Mostafa Mir
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sara Hosseinzadeh
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hamid Reza Joshaghani
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Zahra Hesari
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
20
|
Chen Y, Luo C, Li S, Liu X, Guo Y, Li Y, Wang Y, Yuan J. Selenium nanoparticles promotes intestinal development in broilers by inhibiting intestinal inflammation and NLRP3 signaling pathway compared with other selenium sources. Poult Sci 2024; 103:103958. [PMID: 38945002 PMCID: PMC11261441 DOI: 10.1016/j.psj.2024.103958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024] Open
Abstract
This study aimed to investigate how various selenium sources affect the intestinal health of broiler chickens. A total of 384, one-day-old Arbor Acres broilers were weighed and randomly allocated to four treatment groups. The control diet was a basal diet added with: 0.2 mg/kg Sodium Selenite (SS-control), 0.2 mg/kg Selenium nano-particles (Nano-Se), 0.2 mg/kg Selenomethionine (SeMet), and 0.2 mg/kg Selenocysteine (Sec) as the treatments. The results indicated that Nano-Se and SeMet were effective in enhancing the villus height (VH) and the villus height/crypt depth ratio (VH/CD) in the jejunum compared to (SS) (P < 0.05). The inclusion of Nano-Se into the diets increased the mRNA levels of zonula occluden-1 (ZO-1), ZO-2, Occludin, Claudin-1, and Claudin-3 compared to the SS diet (P < 0.05). The SeMet increased the levels of ZO-1 and Claudin-3 compared to the SS (P < 0.05). Moreover, SeMet upregulated the marker genes of intestinal enteroendocrine cells, stem cells, and epithelial cells compared to the SS diet (P < 0.05). However, supplementation of Nano-Se reduced the mRNA levels of interleukin 1β (IL-1β), and IL-8 and the concentration of reactive oxygen species (ROS) in the jejunum compared to the SS (P < 0.05). The Nano-Se and SeMet also increased the protein levels of CAT and SOD compared to the SS and Sec diet (P < 0.05). The number of the goblet cells and Mucin-2 (Muc2) levels were the highest in the Nano-Se group (P < 0.05). The protein expression levels of goblet cell differentiation regulator (v-myc avian myelocytomatosis viral oncogene homolog, c-Myc) were highest in the Nano-Se compared to the SS diet (P < 0.05). The Nano-Se decreased the mRNA and protein levels of NLRP3 signaling pathway-related genes compared to the SS diet (P < 0.05). In conclusion, our study demonstrated that Nano-Se and SeMet are better at improving the intestinal health of 21-day-old broilers. Additionally, Nano-Se demonstrated superior antioxidant and anti-inflammatory effects, promoting the development of intestinal goblet cells by modifying the NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Yanhong Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Caiwei Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shu Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xingbo Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yanbing Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yuxin Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuanzhi Wang
- Microbiology and Immunology Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
21
|
Kostić M, Marjanović J, Divac V. Organoselenium transition metal complexes as promising candidates in medicine area. J Biol Inorg Chem 2024; 29:555-571. [PMID: 39123093 DOI: 10.1007/s00775-024-02072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
The medicinal properties of transition metal complexes are greatly influenced by the nature and physico-chemical features of the ligand present in the complex structure. Due to the unique biological properties of the organoselenium compounds reflected in the variety of pharmacological activities (such as antioxidative, antiviral, antimicrobial and anticancer), the last years have brought increased interest for their use as a ligands compounds in the design and syntheses of range of transition metal-based coordination compounds that have been explored as antitumor and antimicrobial agents. Our aim in this review is to provide the overview of an recent development of the transition metal complexes bearing organoselenium ligands in the structure that could be promising choice for the treatment of various diseases, particularly cancer and infective diseases. For this purpose, the complexes of Co, Ni, Cu, Zn, Ru, Pd, Pt, Au and Sn as the most explored examples will be included and discussed.
Collapse
Affiliation(s)
- Marina Kostić
- Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000, Kragujevac, Serbia.
| | - Jovana Marjanović
- Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Vera Divac
- Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| |
Collapse
|
22
|
Cui L, Zhang M, Zheng F, Yuan C, Wang Z, Qiu S, Meng X, Dong J, Liu K, Guo L, Wang H, Li J. Selenium elicited an enhanced anti-inflammatory effect in primary bovine endometrial stromal cells with high cortisol background. BMC Vet Res 2024; 20:383. [PMID: 39192330 DOI: 10.1186/s12917-024-04240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND An elevated endogenous cortisol level due to the peripartum stress is one of the risk factors of postpartum bovine uterine infections. Selenium is a trace element that elicits anti-inflammation and antioxidation properties. This study aimed to reveal the modulatory effect of selenium on the inflammatory response of primary bovine endometrial stromal cells in the presence of high-level cortisol. The cells were subjected to lipopolysaccharide to establish cellular inflammation. The mRNA expression of toll-like receptor 4 (TLR4), proinflammatory factors, and selenoproteins was measured with qPCR. The activation of NF-κB and MAPK signalling pathways was detected with Western blot and immunofluorescence. RESULTS The pretreatment with sodium selenite (2 and 4 µΜ) resulted in a down-regulation of TLR4 and genes encoding proinflammatory factors, including interleukin (IL)-1β, IL-6, IL-8, tumour necrosis factor α, cyclooxygenase 2, and inducible nitric oxide synthase. Selenium inhibited the activation of NF-κB and the phosphorylation of mitogen-activated protein kinase kinase, extracellular signal-regulated kinase, p38MAPK and c-Jun N-terminal kinase/stress-activated protein kinase. The suppression of those genes and pathways by selenium was more significant in the presence of high cortisol level (30 ng/mL). Meanwhile the gene expression of glutathione peroxidase 1 and 4 was promoted by selenium, and was even higher in the presence of cortisol and selenium. CONCLUSIONS The anti-inflammatory action of selenium is probably mediated through NF-κB and MAPK, and is augmented by cortisol in primary bovine endometrial stromal cells.
Collapse
Affiliation(s)
- Luying Cui
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Min Zhang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Fangling Zheng
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Changning Yuan
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Zhihao Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Shangfei Qiu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Long Guo
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China.
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China.
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China.
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China.
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China.
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China.
| |
Collapse
|
23
|
Xing L, Chen Y, Zheng T. Research progress of nanoparticles in diagnosis and treatment of hepatocellular carcinoma. Open Life Sci 2024; 19:20220932. [PMID: 39220591 PMCID: PMC11365471 DOI: 10.1515/biol-2022-0932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most common malignant liver tumors. Despite progress in anticancer drugs and surgical approaches, early detection of HCC remains challenging, often leading to late-stage diagnosis where rapid disease progression precludes surgical intervention, leaving chemotherapy as the only option. However, the systemic toxicity, low bioavailability, and significant adverse effects of chemotherapy drugs often lead to resistance, rendering treatments ineffective for many patients. This article outlines how nanoparticles, following functional modification, offer high sensitivity, reduced drug toxicity, and extended duration of action, enabling precise targeting of drugs to HCC tissues. Combined with other therapeutic modalities and imaging techniques, this significantly enhances the diagnosis, treatment, and long-term prognosis of HCC. The advent of nanomedicine provides new methodologies and strategies for the precise diagnosis and integrated treatment of HCC.
Collapse
Affiliation(s)
- Lijun Xing
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Hubei University of Medicine, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, P. R. China
| | - Yun Chen
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, P. R. China
| | - Tingting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, P. R. China
| |
Collapse
|
24
|
Lv C, Zeng Q, Qi L, Wang Y, Li J, Sun H, Du L, Hao S, Li G, Feng C, Zhang Y, Wang C, Wang X, Ma R, Wang T, Li Q. Sodium Selenite Induces Autophagy and Apoptosis in Cervical Cancer Cells via Mitochondrial ROS-Activated AMPK/mTOR/FOXO3a Pathway. Antioxidants (Basel) 2024; 13:1004. [PMID: 39199249 PMCID: PMC11352036 DOI: 10.3390/antiox13081004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Selenium (Se) is an essential trace element known for its significant role in maintaining human health and mitigating disease progression. Selenium and its compounds exhibit high selective cytotoxicity against tumor cells. However, their anti-cervical cancer (CC) effects and underlying mechanisms have not been fully explored. This study found that sodium selenite (SS) inhibits the viability of HeLa and SiHa cells in a dose- and time-dependent manner. Intraperitoneal injection of 3 and 6 mg/kg SS for 14 days in female nude mice significantly inhibited the growth of HeLa cell xenografts without evident hepatotoxicity or nephrotoxicity. RNA sequencing results indicated that the AMP-activated protein kinase (AMPK), Forkhead box protein O (FOXO), and apoptosis signaling pathways are key regulatory pathways in SS's anti-CC effects, and SS's inhibition of HeLa cell proliferation may be related to autophagy and ROS-induced apoptosis. Further research has revealed that SS induces cell autophagy and apoptosis through the AMPK/mTOR/FOXO3a pathway, characterized by the upregulation of p-AMPK/AMPK, FOXO3a, LC3-II, cleaved-caspase3, and cleaved-PARP and the downregulation of p-mTOR/mTOR and p62. Additionally, SS impaired mitochondrial function, including decreased mitochondrial membrane potential, mitochondrial Ca2+ overload, and accumulation of mitochondrial reactive oxygen species (mtROS). Pretreatment with Mitoquinone mesylate (Mito Q) and compound C partially reversed SS-induced apoptosis, autophagy, and proliferation inhibition. Pretreatment with 3-methyladenine (3-MA) enhances SS-induced apoptosis and proliferation inhibition in HeLa cells but reverses these effects in SiHa cells. In summary, SS induces apoptosis, autophagy, and proliferation inhibition in HeLa and SiHa cells through the activation of the AMPK/mTOR/FOXO3a signaling pathway via mtROS. Autophagy activation may be a major risk factor for SS-induced apoptosis in SiHa cells but can protect HeLa cells from SS-induced apoptosis. These findings provide new evidence for understanding the molecular mechanisms underlying SS in potential new drug development for CC.
Collapse
Affiliation(s)
- Cunqi Lv
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin 150081, China; (C.L.)
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health, Harbin Medical University, Harbin 150081, China
| | - Qingyu Zeng
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin 150081, China; (C.L.)
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health, Harbin Medical University, Harbin 150081, China
| | - Lei Qi
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin 150081, China; (C.L.)
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health, Harbin Medical University, Harbin 150081, China
- School of Public Health, Qiqihar Medical University, Qiqihar 161003, China
| | - Yuanyuan Wang
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin 150081, China; (C.L.)
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health, Harbin Medical University, Harbin 150081, China
| | - Jiacheng Li
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin 150081, China; (C.L.)
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health, Harbin Medical University, Harbin 150081, China
| | - Huixin Sun
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin 150081, China; (C.L.)
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health, Harbin Medical University, Harbin 150081, China
| | - Linlin Du
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin 150081, China; (C.L.)
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health, Harbin Medical University, Harbin 150081, China
| | - Shuxiu Hao
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin 150081, China; (C.L.)
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health, Harbin Medical University, Harbin 150081, China
| | - Guijin Li
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin 150081, China; (C.L.)
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health, Harbin Medical University, Harbin 150081, China
| | - Chen Feng
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin 150081, China; (C.L.)
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health, Harbin Medical University, Harbin 150081, China
| | - Yu Zhang
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin 150081, China; (C.L.)
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health, Harbin Medical University, Harbin 150081, China
| | - Cheng Wang
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin 150081, China; (C.L.)
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health, Harbin Medical University, Harbin 150081, China
| | - Xinshu Wang
- Department of Clinical Medicine, Queen Mary College, Nanchang University, Nanchang 330000, China
| | - Rong Ma
- Department of Gynecological Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Tong Wang
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin 150081, China; (C.L.)
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health, Harbin Medical University, Harbin 150081, China
| | - Qi Li
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, China
| |
Collapse
|
25
|
Bashar AM, Abdelnour SA, El-Darawany AA, Sheiha AM. Dietary Supplementation of Microalgae and/or Nanominerals Mitigate the Negative Effects of Heat Stress in Growing Rabbits. Biol Trace Elem Res 2024; 202:3639-3652. [PMID: 37964041 PMCID: PMC11534902 DOI: 10.1007/s12011-023-03953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
Heat stress (HS) is one of the most significant environmental factors that result in fluctuations and shrinkage in rabbit growth, health, and overall productivity. This study aims to investigate the effects of dietary mineral nanoparticles (selenium or zinc) and/or Spirulina platensis (SP) independently and in combination on stressed growing rabbits. A total of 180 weaned growing New Zealand White rabbits were included in this study and randomly divided into six dietary treatments. Rabbits received a basal diet (control group; CON group) or fortified with SP (1 g/kg diet), selenium nanoparticles (SeNPs, 50 mg/kg diet), zinc nanoparticles (ZnNPs, 100 mg/kg diet), and a mixture of SP and SeNPs (SPSeNPs) or SP and ZnNPs (SPZnNPs) groups for 8 weeks during summer conditions. The obtained results demonstrated a significant increase in the final body weight and weight gain (p < 0.05). Additionally, the feed conversion ratio was improved during the periods from 6 to 14 weeks in the treated rabbits compared to those in the CON group. Dietary supplements considerably improved (p < 0.05) the blood hematology (WBCs, Hb, RBCs, and Hct) and some carcass traits (liver weights and edible giblets). All dietary supplements significantly decreased serum levels of total glycerides (p < 0.0001), AST (p = 0.0113), ALT (p = 0.0013), creatinine (p = 0.0009), and uric acid (p = 0.0035) compared to the CON group. All treated groups (except ZnNPs) had lower values of total bilirubin and indirect bilirubin in a dose-dependent way when compared to the CON group. The values of IgA, IgG, and superoxide dismutase were significantly improved (p < 0.05) in all treated rabbits compared to the CON group. Compared with the CON group, the levels of T3 (p < 0.05) were significantly increased in all treated growing rabbits (except for the ZnNP group), while the serum cortisol, interferon-gamma (IFN-γ), malondialdehyde, and protein carbonyl were significantly decreased in the treated groups (p < 0.05). Dietary supplements sustained the changes in hepatic, renal, and cardiac impairments induced by HS in growing rabbits. Adding SP (1 g/kg diet) or SeNPs (50 mg/kg diet) in the diet, either individually or in combination, improved growth performance, blood picture, and immunity-antioxidant responses in stressed rabbits. Overall, these feed additives (SP, SeNPs, or their mixture) can be applied as an effective nutritional tool to reduce negative impacts of summer stress conditions, thereby maintaining the health status and improving the heat tolerance in growing rabbits.
Collapse
Affiliation(s)
- Amr M Bashar
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Abdelhalim A El-Darawany
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Asmaa M Sheiha
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
26
|
Pyka P, Garbo S, Fioravanti R, Jacob C, Hittinger M, Handzlik J, Zwergel C, Battistelli C. Selenium-containing compounds: a new hope for innovative treatments in Alzheimer's disease and Parkinson's disease. Drug Discov Today 2024; 29:104062. [PMID: 38871111 DOI: 10.1016/j.drudis.2024.104062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Neurodegenerative diseases are challenging to cure. To date, no cure has been found for Alzheimer's disease or Parkinson's disease, and current treatments are able only to slow the progression of the diseases and manage their symptoms. After an introduction to the complex biology of these diseases, we discuss the beneficial effect of selenium-containing agents, which show neuroprotective effects in vitro or in vivo. Indeed, selenium is an essential trace element that is being incorporated into innovative organoselenium compounds, which can improve outcomes in rodent or even primate models with neurological deficits. Herein, we critically discuss recent findings in the field of selenium-based applications in neurological disorders.
Collapse
Affiliation(s)
- Patryk Pyka
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, 30-688 Krakow, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, św. Łazarza 15, 31-530 Krakow, Poland; Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Sabrina Garbo
- Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
| | - Marius Hittinger
- Pharmbiotec gGmbH, Department of Drug Discovery, Nußkopf 39, 66578 Schiffweiler, Germany
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, 30-688 Krakow, Poland.
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany; Pharmbiotec gGmbH, Department of Drug Discovery, Nußkopf 39, 66578 Schiffweiler, Germany.
| | - Cecilia Battistelli
- Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
27
|
Xu X, Zhang L, He Y, Qi C, Li F. Progress in Research on the Role of the Thioredoxin System in Chemical Nerve Injury. TOXICS 2024; 12:510. [PMID: 39058162 PMCID: PMC11280602 DOI: 10.3390/toxics12070510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
(1) Background: Various factors, such as oxidative stress, mitochondrial dysfunction, tumors, inflammation, trauma, immune disorders, and neuronal toxicity, can cause nerve damage. Chemical nerve injury, which results from exposure to toxic chemicals, has garnered increasing research attention. The thioredoxin (Trx) system, comprising Trx, Trx reductase, nicotinamide adenine dinucleotide phosphate, and Trx-interacting protein (TXNIP; endogenous Trx inhibitor), helps maintain redox homeostasis in the central nervous system. The dysregulation of this system can cause dementia, cognitive impairment, nerve conduction disorders, movement disorders, and other neurological disorders. Thus, maintaining Trx system homeostasis is crucial for preventing or treating nerve damage. (2) Objective: In this review study, we explored factors influencing the homeostasis of the Trx system and the involvement of its homeostatic imbalance in chemical nerve injury. In addition, we investigated the therapeutic potential of the Trx system-targeting active substances against chemical nerve injury. (3) Conclusions: Chemicals such as morphine, metals, and methylglyoxal interfere with the activity of TXNIP, Trx, and Trx reductase, disrupting Trx system homeostasis by affecting the phosphatidylinositol-3-kinase/protein kinase B, extracellular signal-regulated kinase, and apoptotic signaling-regulated kinase 1/p38 mitogen-activated protein kinase pathways, thereby leading to neurological disorders. Active substances such as resveratrol and lysergic acid sulfide mitigate the symptoms of chemical nerve injury by regulating the Ras/Raf1/extracellular signal-regulated kinase pathway and the miR-146a-5p/TXNIP axis. This study may guide the development of Trx-targeting modulators for treating neurological disorders and chemical nerve injuries.
Collapse
Affiliation(s)
- Xinwei Xu
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (X.X.); (L.Z.); (Y.H.)
| | - Lan Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (X.X.); (L.Z.); (Y.H.)
| | - Yuyun He
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (X.X.); (L.Z.); (Y.H.)
| | - Cong Qi
- Department of Pharmacy, Jurong People’s Hospital, Jurong 212400, China;
| | - Fang Li
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (X.X.); (L.Z.); (Y.H.)
| |
Collapse
|
28
|
Mutonhodza B, Manzeke-Kangara MG, Bailey EH, Matsungo TM, Chopera P. Maternal selenium deficiency was positively associated with the risk of selenium deficiency in children aged 6-59 months in rural Zimbabwe. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003376. [PMID: 38990831 PMCID: PMC11239066 DOI: 10.1371/journal.pgph.0003376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/24/2024] [Indexed: 07/13/2024]
Abstract
There is growing evidence showing the existence of selenium (Se) deficiency among women and children in sub-Saharan Africa. Unfortunately, the key drivers of Se deficiency are not clearly understood. This study assessed the determinants of Se deficiency among children aged 6-59 months and Women of Reproductive Age (WRA), in Zimbabwe. This cross-sectional biomarker study was conducted in selected districts in rural Zimbabwe (Murewa, Shamva, and Mutasa). Children aged 6-59 months (n = 683) and WRA (n = 683), were selected using a systematic random sampling approach. Venous blood samples were collected, processed, and stored according to World Health Organization (WHO) guidelines. Plasma selenium concentration was measured using inductively coupled plasma-mass spectrometry (ICP-MS). Anthropometric indices were assessed and classified based on WHO standards. Demographic characteristics were adapted from the Zimbabwe Demographic Health Survey standard questionnaire. Multiple logistic regression analysis showed that children whose mothers were Se deficient were 4 times more likely to be Se deficient compared to those whose mothers were Se adequate (OR = 4.25; 95% CI; 1.55-11.67; p = 0.005). Girl children were 3 times more likely to be Se deficient compared to boys (OR = 2.84; 95% CI; 1.08-7.51; p = 0.035). Women producing maize for consumption were 0.5 times more likely to be Se deficient than non-producers (OR = 0.47; 95% CI; 0.25-0.90; p = 0.022). The risk of Se depletion in children was amplified by maternal deficiency. Therefore, initiation of maternal multiple micronutrient supplementation from preconception through lactation is beneficial to both children and women.
Collapse
Affiliation(s)
- Beaula Mutonhodza
- Department of Nutrition, Dietetics and Food Sciences, University of Zimbabwe, Harare, Zimbabwe
| | | | - Elizabeth H. Bailey
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Tonderayi M. Matsungo
- Department of Nutrition, Dietetics and Food Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Prosper Chopera
- Department of Nutrition, Dietetics and Food Sciences, University of Zimbabwe, Harare, Zimbabwe
| |
Collapse
|
29
|
Mohammed EJ, Abdelaziz AEM, Mekky AE, Mahmoud NN, Sharaf M, Al-Habibi MM, Khairy NM, Al-Askar AA, Youssef FS, Gaber MA, Saied E, AbdElgayed G, Metwally SA, Shoun AA. Biomedical Promise of Aspergillus Flavus-Biosynthesized Selenium Nanoparticles: A Green Synthesis Approach to Antiviral, Anticancer, Anti-Biofilm, and Antibacterial Applications. Pharmaceuticals (Basel) 2024; 17:915. [PMID: 39065765 PMCID: PMC11279975 DOI: 10.3390/ph17070915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
This study utilized Aspergillus flavus to produce selenium nanoparticles (Se-NPs) in an environmentally friendly and ecologically sustainable manner, targeting several medicinal applications. These biosynthesized Se-NPs were meticulously characterized using X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, transmission electron microscope (TEM), and UV-visible spectroscopy (UV), revealing their spherical shape and size ranging between 28 and 78 nm. We conducted further testing of Se-NPs to evaluate their potential for biological applications, including antiviral, anticancer, antibacterial, antioxidant, and antibiofilm activities. The results indicate that biosynthesized Se-NPs could be effective against various pathogens, including Salmonella typhimurium (ATCC 14028), Bacillus pumilus (ATCC 14884), Staphylococcus aureus (ATCC 6538), Clostridium sporogenes (ATCC 19404), Escherichia coli (ATCC 8739), and Bacillus subtilis (ATCC 6633). Additionally, the biosynthesized Se-NPs exhibited anticancer activity against three cell lines: pancreatic carcinoma (PANC1), cervical cancer (Hela), and colorectal adenocarcinoma (Caco-2), with IC50 values of 177, 208, and 216 μg/mL, respectively. The nanoparticles demonstrated antiviral activity against HSV-1 and HAV, achieving inhibition rates of 66.4% and 15.1%, respectively, at the maximum non-toxic concentration, while also displaying antibiofilm and antioxidant properties. In conclusion, the biosynthesized Se-NPs by A. flavus present a promising avenue for various biomedical applications with safe usage.
Collapse
Affiliation(s)
- Eman Jassim Mohammed
- Department of Microbiology, College of Science, Mustansiriyah University, Baghdad 14022, Iraq;
| | - Ahmed E. M. Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Port-Said University, 23 December Street, Port-Said 42522, Egypt;
| | - Alsayed E. Mekky
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (N.N.M.); (M.A.G.); (E.S.)
| | - Nashaat N. Mahmoud
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (N.N.M.); (M.A.G.); (E.S.)
| | - Mohamed Sharaf
- Biochemistry and Molecular Biology Department, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
- Department of Biochemistry, Faculty of Agriculture, AL-Azhar University, Nasr City, Cairo 11651, Egypt
| | - Mahmoud M. Al-Habibi
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11651, Egypt;
| | - Nehal M. Khairy
- Microbiology and Immunology Department, Egypt Drug Authority (EDA), (Formerly NODCAR), Giza 12654, Egypt;
- Microbiology and Immunology Department, Faculty of Pharmacy, Sinai University-East Kantara Branch, Ismailia 41636, Egypt
| | - Abdulaziz A. Al-Askar
- Botany and Microbiology Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Fady Sayed Youssef
- Department of Pharmacology Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Mahmoud Ali Gaber
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (N.N.M.); (M.A.G.); (E.S.)
| | - Ebrahim Saied
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (N.N.M.); (M.A.G.); (E.S.)
| | - Gehad AbdElgayed
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium;
| | - Shimaa A Metwally
- Microbiology and Immunology Department, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo 11651, Egypt;
| | - Aly A. Shoun
- Microbiology and Immunology Department, Faculty of Pharmacy, El Salehey El Gadida University, El Saleheya El Gadida 44813, Egypt;
| |
Collapse
|
30
|
Bizerea-Moga TO, Pitulice L, Bizerea-Spiridon O, Moga TV. Exploring the Link between Oxidative Stress, Selenium Levels, and Obesity in Youth. Int J Mol Sci 2024; 25:7276. [PMID: 39000383 PMCID: PMC11242909 DOI: 10.3390/ijms25137276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Obesity is a worldwide increasing concern. Although in adults this is easily estimated with the body mass index, in children, who are constantly growing and whose bodies are changing, the reference points to assess weight status are age and gender, and need corroboration with complementary data, making their quantification highly difficult. The present review explores the interaction spectrum of oxidative stress, selenium status, and obesity in children and adolescents. Any factor related to oxidative stress that triggers obesity and, conversely, obesity that induces oxidative stress are part of a vicious circle, a complex chain of mechanisms that derive from each other and reinforce each other with serious health consequences. Selenium and its compounds exhibit key antioxidant activity and also have a significant role in the nutritional evaluation of obese children. The balance of selenium intake, retention, and metabolism emerges as a vital aspect of health, reflecting the complex interactions between diet, oxidative stress, and obesity. Understanding whether selenium status is a contributor to or a consequence of obesity could inform nutritional interventions and public health strategies aimed at preventing and managing obesity from an early age.
Collapse
Affiliation(s)
- Teofana Otilia Bizerea-Moga
- Department XI of Pediatrics-1st Pediatric Discipline, Center for Research on Growth and Developmental Disorders in Children, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq No 2, 300041 Timișoara, Romania;
- 1st Pediatric Clinic, ‘Louis Țurcanu’ Children’s Clinical and Emergency Hospital, Iosif Nemoianu 2, 300011 Timișoara, Romania
| | - Laura Pitulice
- Department of Biology-Chemistry, West University of Timişoara, Pestallozi 16, 300115 Timişoara, Romania;
- The Institute for Advanced Environmental Research (ICAM), Popa Şapcă 4C, 300054 Timişoara, Romania
| | - Otilia Bizerea-Spiridon
- Department of Biology-Chemistry, West University of Timişoara, Pestallozi 16, 300115 Timişoara, Romania;
- The Institute for Advanced Environmental Research (ICAM), Popa Şapcă 4C, 300054 Timişoara, Romania
| | - Tudor Voicu Moga
- Department VII of Internal Medicine-Gastroenterology Discipline, Advanced Regional Research Center in Gastroenterology and Hepatology, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq No 2, 300041 Timișoara, Romania;
- Gastroenterology and Hepatology Clinic, ‘Pius Brînzeu’ County Emergency Clinical Hospital, Liviu Rebreanu 156, 300723 Timișoara, Romania
| |
Collapse
|
31
|
Ali W, Chen Y, Gandahi JA, Qazi IH, Sun J, Wang T, Liu Z, Zou H. Cross-Talk Between Selenium Nanoparticles and Cancer Treatment Through Autophagy. Biol Trace Elem Res 2024; 202:2931-2940. [PMID: 37817045 DOI: 10.1007/s12011-023-03886-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023]
Abstract
Autophagy is commonly referred as self-eating and a complex cellular process that is involved in the digestion of protein and damaged organelles through a lysosome-dependent mechanism, and this mechanism is essential for maintaining proper cellular homeostasis. Selenium is a vital trace element that plays essential functions in antioxidant defense, redox state control, and range of particular metabolic processes. Selenium nanoparticles have become known as a promising agent for biomedical use, because of their high bioavailability, low toxicity, and degradability. However, and in recent years, they have attracted the interest of researchers in developing anticancer nano-drugs. Selenium nanoparticles can be used as a potential therapeutic agent or in combination with other agents to act as carriers for the development of new treatments. More intriguingly, selenium nanoparticles have been extensively shown to impact autophagy signaling, allowing selenium nanoparticles to be used as possible cancer treatment agents. This review explored the connections between selenium and autophagy, followed by developments and current advances of selenium nanoparticles for autophagy control in various clinical circumstances. Furthermore, this study examined the functions and possible processes of selenium nanoparticles in autophagy regulation, which may help us understand how selenium nanoparticles regulate autophagy for the potential cancer treatment.
Collapse
Affiliation(s)
- Waseem Ali
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Yan Chen
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Jameel Ahmed Gandahi
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Izhar Hyder Qazi
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China.
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China.
| |
Collapse
|
32
|
Pyrzynska K, Sentkowska A. Selenium Species in Diabetes Mellitus Type 2. Biol Trace Elem Res 2024; 202:2993-3004. [PMID: 37880477 PMCID: PMC11074226 DOI: 10.1007/s12011-023-03900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023]
Abstract
Selenium is an important trace element for humans and animals as it plays a key role in several major metabolic pathways. Several studies were conducted to better understand the role of selenium against diabetes mellitus (DM), particularly type 2 (T2DM), but the obtained conclusions are contradictory. A simple linear relationship does not exist between the risk of T2DM and selenium levels but is best represented in a dose-dependent manner, getting often the U-graph. This relation also depends on selenium chemical forms that are present in a diet or supplements. Both too low and too high selenium intakes could increase the risk of diabetes. Moreover, the baseline status of Se should be taken into consideration to avoid over-supplementation. The focus of this brief overview is to report the recent updates concerning selenium participation in diabetes mellitus.
Collapse
Affiliation(s)
- Krystyna Pyrzynska
- Faculty of Chemistry, University of Warsaw, Pasteur Str. 1, 02-093, Warsaw, Poland.
| | | |
Collapse
|
33
|
Till C, Goodman PJ, Tangen C, Scott Lucia M, Thompson IM. Letter: Survival After Selenium and Vitamin E Supplementation: Long-Term Followup of the Selenium and Vitamin E Cancer Prevention Trial. J Urol 2024; 212:228-229. [PMID: 38657020 PMCID: PMC11218905 DOI: 10.1097/ju.0000000000003937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Affiliation(s)
| | | | | | | | - Ian M Thompson
- University of Texas Health Science Center at San
Antonio
- CHRISTUS Santa Rosa Health System
| |
Collapse
|
34
|
Kieliszek M, Sapazhenkava K. The Promising Role of Selenium and Yeast in the Fight Against Protein Amyloidosis. Biol Trace Elem Res 2024:10.1007/s12011-024-04245-x. [PMID: 38829477 DOI: 10.1007/s12011-024-04245-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
In recent years, increasing attention has been paid to research on diseases related to the deposition of misfolded proteins (amyloids) in various organs. Moreover, modern scientists emphasise the importance of selenium as a bioelement necessary for the proper functioning of living organisms. The inorganic form of selenium-sodium selenite (redox-active)-can prevent the formation of an insoluble polymer in proteins. It is very important to undertake tasks aimed at understanding the mechanisms of action of this element in inhibiting the formation of various types of amyloid. Furthermore, yeast cells play an important role in this matter as a eukaryotic model organism, which is intensively used in molecular research on protein amyloidosis. Due to the lack of appropriate treatment in the general population, the problem of amyloidosis remains unsolved. This extracellular accumulation of amyloid is one of the main factors responsible for the occurrence of Alzheimer's disease. The review presented here contains scientific information discussing a brief description of the possibility of amyloid formation in cells and the use of selenium as a factor preventing the formation of these protein aggregates. Recent studies have shown that the yeast model can be successfully used as a eukaryotic organism in biotechnological research aimed at understanding the essence of the entire amyloidosis process. Understanding the mechanisms that regulate the reaction of yeast to selenium and the phenomenon of amyloidosis is important in the aetiology and pathogenesis of various disease states. Therefore, it is imperative to conduct further research and analysis aimed at explaining and confirming the role of selenium in the processes of protein misfolding disorders. The rest of the article discusses the characteristics of food protein amyloidosis and their use in the food industry. During such tests, their toxicity is checked because not all food proteins can produce amyloid that is toxic to cells. It should also be noted that a moderate diet is beneficial for the corresponding disease relief caused by amyloidosis.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, Warsaw, 02-776, Poland.
| | - Katsiaryna Sapazhenkava
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, Warsaw, 02-776, Poland
| |
Collapse
|
35
|
Leszto K, Biskup L, Korona K, Marcinkowska W, Możdżan M, Węgiel A, Młynarska E, Rysz J, Franczyk B. Selenium as a Modulator of Redox Reactions in the Prevention and Treatment of Cardiovascular Diseases. Antioxidants (Basel) 2024; 13:688. [PMID: 38929127 PMCID: PMC11201165 DOI: 10.3390/antiox13060688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiovascular diseases stand as the predominant global cause of mortality, exerting a profound impact on both life expectancy and its quality. Given their immense public health burden, extensive efforts have been dedicated to comprehending the underlying mechanisms and developing strategies for prevention and treatment. Selenium, a crucial participant in redox reactions, emerges as a notable factor in maintaining myocardial cell homeostasis and influencing the progression of cardiovascular disorders. Some disorders, such as Keshan disease, are directly linked with its environmental deficiency. Nevertheless, the precise extent of its impact on the cardiovascular system remains unclear, marked by contradictory findings in the existing literature. High selenium levels have been associated with an increased risk of developing hypertension, while lower concentrations have been linked to heart failure and atrial fibrillation. Although some trials have shown its potential effectiveness in specific groups of patients, large cohort supplementation attempts have generally yielded unsatisfactory outcomes. Consequently, there persists a significant need for further research aimed at delineating specific patient cohorts and groups of diseases that would benefit from selenium supplementation.
Collapse
Affiliation(s)
- Klaudia Leszto
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Laura Biskup
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Klaudia Korona
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Weronika Marcinkowska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Maria Możdżan
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Andrzej Węgiel
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| |
Collapse
|
36
|
Chen Y, Liu Z, Zeng W, Liu Y, Zhao D, Zhang Y, Jia X. Screening and Identification of Soil Selenium-Enriched Strains and Application in Auricularia auricula. Microorganisms 2024; 12:1136. [PMID: 38930518 PMCID: PMC11205748 DOI: 10.3390/microorganisms12061136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Selenium (Se) is an essential trace element for human physiological metabolism. The application of organic Se as a source to cultivate Se-rich plants for micronutrient supplementation has been receiving increasing attention. In our study, a bacterial strain named H1 was isolated from the soil in Heilongjiang Province, China, and under optimal culture conditions, the unit Se content could reach 3000 μg·g-1 and its 16S ribosomal DNA sequence seemed to be a new molecular record of an Enterobacter species. After the domestication of Se tolerance and Se-rich experiments, H1 can be used as a Se source for cultivation of Se-rich Auricularia auricula. The results showed that soluble protein, soluble sugar, free amino acid and vitamin C contents in Auricularia auricula were notably increased by 28.7%, 21.8%, 32.5% and 39.2% under the treatment of Se concentration of 0.24 mg·kg-1, respectively. These findings enhance our understanding that H1 is more conducive to Se uptake and nutrient accumulation.
Collapse
Affiliation(s)
- Yadong Chen
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (Y.C.); (Z.L.); (W.Z.); (Y.L.); (D.Z.)
| | - Zhenghan Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (Y.C.); (Z.L.); (W.Z.); (Y.L.); (D.Z.)
| | - Weimin Zeng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (Y.C.); (Z.L.); (W.Z.); (Y.L.); (D.Z.)
| | - Yang Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (Y.C.); (Z.L.); (W.Z.); (Y.L.); (D.Z.)
| | - Dandan Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (Y.C.); (Z.L.); (W.Z.); (Y.L.); (D.Z.)
| | - Yanlong Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (Y.C.); (Z.L.); (W.Z.); (Y.L.); (D.Z.)
| | - Xiangqian Jia
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; (Y.C.); (Z.L.); (W.Z.); (Y.L.); (D.Z.)
- Post-Doctoral Scientific Research Workstation of Heilongjiang Boli Economic Development Zone Management Committee, Qitaihe 154500, China
| |
Collapse
|
37
|
Aisyah CR, Mizuno Y, Masuda M, Iwamoto T, Yamasaki K, Uchida M, Kariya F, Higaki S, Konishi S. Association between Sperm Mitochondrial DNA Copy Number and Concentrations of Urinary Cadmium and Selenium. Biol Trace Elem Res 2024; 202:2488-2500. [PMID: 37755586 PMCID: PMC11052814 DOI: 10.1007/s12011-023-03868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023]
Abstract
Elevated sperm mitochondrial DNA copy number (mtDNAcn) is associated with damage to sperm and poorer measures of semen quality. Exposure to cadmium (Cd) can increase oxidative stress and damage sperm mitochondria. The adverse effects of Cd can potentially be reduced by sufficient selenium (Se). The objective of this study was to examine the associations between sperm mtDNAcn and urinary concentrations of Cd and Se, as well as the Cd/Se molar ratio. Participants were recruited from patients who sought infertility treatment at two hospitals in Japan. Urine and semen specimens and self-administered questionnaires were collected on the day of recruitment. Sperm mtDNAcn was measured in extracted sperm DNA by multiplex real-time qPCR. Urinary Cd and Se concentrations were measured using inductively coupled plasma mass spectrometry, and their molar weights were calculated to obtain the Cd/Se molar ratio. Linear regression was used to estimate associations after adjusting for age, body mass index, smoking, drinking, exercise, varicocele, and hospital of recruitment. Sperm mtDNAcn showed statistically insignificant associations with creatinine-adjusted concentrations of urinary Cd (β = 0.13, 95% CI -0.18, 0.44) and Se (β = -0.09, 95% CI -0.54, 0.35), and Cd/Se molar ratio (β = 0.12, 95% CI -0.13, 0.37). The current study found no evidence of an association between mtDNAcn and urinary concentrations of Cd or Se, or the Cd/Se molar ratio.
Collapse
Affiliation(s)
| | - Yuki Mizuno
- Department of Human Ecology, The University of Tokyo, Tokyo, Japan
| | - Momoka Masuda
- Department of Human Ecology, The University of Tokyo, Tokyo, Japan
| | - Teruaki Iwamoto
- International University of Health and Welfare, Otawara, Japan
- Sanno Hospital, Tokyo, Japan
| | | | | | - Fumiko Kariya
- Department of Human Ecology, The University of Tokyo, Tokyo, Japan
| | - Shogo Higaki
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Shoko Konishi
- Department of Human Ecology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
38
|
Kim JA, Lee JK, Lee SY. Serum trace elements during treatment in pancreatic cancer patients and their associations with cancer prognosis. Clin Nutr 2024; 43:1459-1472. [PMID: 38714150 DOI: 10.1016/j.clnu.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/27/2024] [Accepted: 04/09/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND & AIMS In this study, we assessed serum trace element concentrations in patients with pancreatic cancer and compared the results to those of healthy controls and patients with chronic pancreatitis. We evaluated the association between trace element concentrations during cancer treatment and the risk of cancer progression and mortality in pancreatic cancer patients. METHODS A retrospective cohort study was conducted at a tertiary center in Korea. Serum trace element concentrations of cobalt (Co), copper (Cu), selenium (Se), and zinc (Zn) were measured at diagnosis using an inductively coupled plasma-mass spectrometry in 124 patients with pancreatic cancer, 50 patients with chronic pancreatitis, and 120 healthy controls. Trace elements were measured after a median of 282.5 (95% confidence interval [CI], 224.0-326.5) days from treatment initiation to assess changes in trace element concentrations during treatment. RESULTS Serum Co concentrations were significantly higher in patients with chronic pancreatitis and pancreatic cancer compared to healthy controls, while serum Se concentrations were significantly lower. During treatment, serum concentrations of Cu, Se, and Zn significantly decreased in patients with pancreatic cancer. During the follow-up (median 152.5; 95% CI, 142.8-160.0 months), 85.5% of patients experienced progression or relapse, and 84.7% of patients died. Patients with decreased Se and Zn concentrations during treatment had a higher mortality (hazard ratio [HR], 2.10; 95% CI, 1.31-3.38; P = 0.0020 for Se; HR, 1.72; 95% CI, 1.06-2.79; P = 0.0269 for Zn) compared to those with unchanged or increased trace element concentrations during treatment. Patients with a greater reduction in Zn concentrations during treatment had a higher mortality than those with a smaller reduction (HR, 1.59; 95% CI, 1.01-2.52; P = 0.0483). Patients whose Zn status changed from normal to deficient during treatment had an increased mortality (HR, 1.76; 95% CI, 1.16-2.67, P = 0.0084). Patients with multiple (≥2) trace element deficiencies after treatment had poorer outcomes than those with no or single trace element deficiency. CONCLUSIONS This study revealed that decreases in Se and Zn concentrations during cancer treatment were associated with adverse outcomes in terms of cancer progression and mortality in patients with pancreatic cancer. Further prospective investigations are recommended.
Collapse
Affiliation(s)
- Jee Ah Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea; Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, South Korea
| | - Jong Kyun Lee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea.
| | - Soo-Youn Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea.
| |
Collapse
|
39
|
Díaz-Navarrete P, Sáez-Arteaga A, Marileo L, Alors D, Correa-Galeote D, Dantagnan P. Enhancing Selenium Accumulation in Rhodotorula mucilaginosa Strain 6S Using a Proteomic Approach for Aquafeed Development. Biomolecules 2024; 14:629. [PMID: 38927033 PMCID: PMC11201420 DOI: 10.3390/biom14060629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
It is known that selenium (Se) is an essential trace element, important for the growth and other biological functions of fish. One of its most important functions is to contribute to the preservation of certain biological components, such as DNA, proteins, and lipids, providing protection against free radicals resulting from normal metabolism. The objective of this study was to evaluate and optimize selenium accumulation in the native yeast Rhodotorula mucilaginosa 6S. Sodium selenite was evaluated at different concentrations (5-10-15-20-30-40 mg/L). Similarly, the effects of different concentrations of nitrogen sources and pH on cell growth and selenium accumulation in the yeast were analyzed. Subsequently, the best cultivation conditions were scaled up to a 2 L reactor with constant aeration, and the proteome of the yeast cultured with and without sodium selenite was evaluated. The optimal conditions for biomass generation and selenium accumulation were found with ammonium chloride and pH 5.5. Incorporating sodium selenite (30 mg/L) during the exponential phase in the bioreactor after 72 h of cultivation resulted in 10 g/L of biomass, with 0.25 mg total Se/g biomass, composed of 25% proteins, 15% lipids, and 0.850 mg total carotenoids/g biomass. The analysis of the proteomes associated with yeast cultivation with and without selenium revealed a total of 1871 proteins. The results obtained showed that the dynamic changes in the proteome, in response to selenium in the experimental medium, are directly related to catalytic activity and oxidoreductase activity in the yeast. R. mucilaginosa 6S could be an alternative for the generation of selenium-rich biomass with a composition of other nutritional compounds also of interest in aquaculture, such as proteins, lipids, and pigments.
Collapse
Affiliation(s)
- Paola Díaz-Navarrete
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile;
| | - Alberto Sáez-Arteaga
- Centro de Investigación Innovación y Creación (CIIC-UCT), Universidad Católica de Temuco, Temuco 4780000, Chile;
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
| | - Luis Marileo
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Temuco 4780000, Chile;
| | - David Alors
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile;
| | - David Correa-Galeote
- Departamento de Microbiología, Facultad de Farmacia, Universidad de Granada, 18012 Granada, Spain;
| | - Patricio Dantagnan
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile;
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile
| |
Collapse
|
40
|
Liang R, Cheng A, Lu S, Zhang X, Ren M, Lin J, Wu Y, Zhang W, Luan X. Seleno-amino Acid Metabolism Reshapes the Tumor Microenvironment: from Cytotoxicity to Immunotherapy. Int J Biol Sci 2024; 20:2779-2789. [PMID: 38725849 PMCID: PMC11077380 DOI: 10.7150/ijbs.95484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Selenium (Se) is an essential trace element for biological processes. Seleno-amino acids (Se-AAs), known as the organic forms of Se, and their metabolic reprogramming have been increasingly recognized to regulate antioxidant defense, enzyme activity, and tumorigenesis. Therefore, there is emerging interest in exploring the potential application of Se-AAs in antitumor therapy. In addition to playing a vital role in inhibiting tumor growth, accumulating evidence has revealed that Se-AA metabolism could reshape the tumor microenvironment (TME) and enhance immunotherapy responses. This review presents a comprehensive overview of the current progress in multifunctional Se-AAs for antitumor treatment, with a particular emphasis on elucidating the crosstalk between Se-AA metabolism and various cell types in the TME, including tumor cells, T cells, macrophages, and natural killer cells. Furthermore, novel applications integrating Se-AAs are also discussed alongside prospects to provide new insights into this emerging field.
Collapse
Affiliation(s)
- Rui Liang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Aoyu Cheng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shengxin Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaokun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Maomao Ren
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ye Wu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100700, China
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
41
|
Watanabe LM, Pereira VAB, Noronha NY, de Souza Pinhel MA, Wolf LS, de Oliveira CC, Plaça JR, Noma IHY, da Silva Rodrigues G, de Souza VCO, Júnior FB, Nonino CB. The influence of serum selenium in differential epigenetic and transcriptional regulation of CPT1B gene in women with obesity. J Trace Elem Med Biol 2024; 83:127376. [PMID: 38183920 DOI: 10.1016/j.jtemb.2023.127376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
INTRODUCTION The increasing prevalence of obesity has become a major health problem worldwide. The causes of obesity are multifactorial and could be influenced by dietary patterns and genetic factors. Obesity has been associated with a decrease in micronutrient intake and consequently decreased blood concentrations. Selenium is an essential micronutrient for human health, and its metabolism could be affected by obesity, especially severe obesity. This study aimed to identify differential methylation genes associated with serum selenium concentration in women with and without obesity. METHODOLOGY Thirty-four patients were enrolled in the study and divided into two groups: Obese (Ob) n = 20 and Non-Obese (NOb) n = 14, according to the Body Mass Index (BMI). Anthropometry, body composition, serum selenium, selenium intake, and biochemical parameters were evaluated. DNA extraction and bisulfite conversion were performed to hybridize the samples on the 450k Methylation Chip Infinium Beadchip (Illumina). Bioinformatics analysis was performed using the R program and the Champ package. The differentially methylated regions (DMRs) were identified using the Bumphunter method. In addition, logarithmic conversion was performed for the analysis of serum selenium and methylation. RESULTS In the Ob group, the body weight, BMI, fat mass, and free fat mass were higher than in the NOb group, as expected. Interestingly, the serum selenium was lower in the Ob than in the NOb group without differences in selenium intake. One DMR corresponding to the CPT1B gene, involved in lipid oxidation, was related to selenium levels. This region was hypermethylated in the Ob group, indicating that the intersection between selenium deficiency and hypermethylation could influence the expression of the CPT1B gene. The transcriptional analysis confirmed the lower expression of the CPT1B gene in the Ob group. CONCLUSION Studies connecting epigenetics to environmental factors could offer insights into the mechanisms involving the expression of genes related to obesity and its comorbidities. Here we demonstrated that the mineral selenium might play an essential role in lipid oxidation via epigenetic and transcriptional regulation of the CPT1B gene in obesity.
Collapse
Affiliation(s)
- Lígia Moriguchi Watanabe
- Department of Health Sciences, Division of Nutrition and Metabolism, Ribeirão Preto Medical School, University of São Paulo, FMRP/USP, Brazil.
| | - Vanessa Aparecida Batista Pereira
- Department of Health Sciences, Division of Nutrition and Metabolism, Ribeirão Preto Medical School, University of São Paulo, FMRP/USP, Brazil
| | - Natalia Yumi Noronha
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, FMRP/USP, Brazil
| | - Marcela Augusta de Souza Pinhel
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, FMRP/USP, Brazil; Departament of Molecular Biology - São Jose do Rio Preto Medical School, Sao Jose do Rio Preto, São Paulo, Brazil
| | - Leticia Santana Wolf
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, FMRP/USP, Brazil
| | | | - Jessica Rodrigues Plaça
- National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, São Paulo, Brazil
| | - Isabella Harumi Yonehara Noma
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Vanessa Cristina Oliveira de Souza
- Department of Clinical and Toxicological Analyses and Bromatology, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, FCFRP/USP, Brazil
| | - Fernando Barbosa Júnior
- Department of Clinical and Toxicological Analyses and Bromatology, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, FCFRP/USP, Brazil
| | - Carla Barbosa Nonino
- Department of Health Sciences, Division of Nutrition and Metabolism, Ribeirão Preto Medical School, University of São Paulo, FMRP/USP, Brazil; Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, FMRP/USP, Brazil
| |
Collapse
|
42
|
Grman M, Balis P, Berenyiova A, Svajdlenkova H, Tomasova L, Cacanyiova S, Rostakova Z, Waczulikova I, Chovanec M, Domínguez-Álvarez E, Ondrias K, Misak A. Products of Selenite/Thiols Interaction Have Reducing Properties, Cleave Plasmid DNA and Decrease Rat Blood Pressure and Tension of Rat Mesenteric Artery. Biol Trace Elem Res 2024:10.1007/s12011-024-04196-3. [PMID: 38676879 DOI: 10.1007/s12011-024-04196-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
Selenium compounds exert their antioxidant activity mostly when the selenium atom is incorporated into selenoproteins. In our work, we tested the possibility that selenite itself interacts with thiols to form active species that have reducing properties. Therefore, we studied the reduction of 2-(4-carboxyphenyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazol-1-yloxy-3-oxide radical (•cPTIO), damage of plasmid DNA (pDNA), modulation of rat hemodynamic parameters and tension of isolated arteries induced by products of interaction of selenite with thiols. We found that the products of selenite interaction with thiols had significant reducing properties that could be attributed mainly to the selenide and that selenite had catalytic properties in the access of thiols. The potency of thiols to reduce •cPTIO in the interaction with selenite was cysteine > homocysteine > glutathione reduced > N-acetylcysteine. Thiol/selenite products cleaved pDNA, with superoxide dismutase enhancing these effects suggesting a positive involvement of superoxide anion in the process. The observed •cPTIO reduction and pDNA cleavage were significantly lower when selenomethionine was used instead of selenite. The products of glutathione/selenite interaction affected several hemodynamic parameters including rat blood pressure decrease. Notably, the products relaxed isolated mesenteric artery, which may explain the observed decrease in rat blood pressure. In conclusion, we found that the thiol/selenite interaction products exhibited significant reducing properties which can be used in further studies of the treatment of pathological conditions caused by oxidative stress. The results of decreased rat blood pressure and the tension of mesenteric artery may be perspective in studies focused on cardiovascular disease and their prevention.
Collapse
Affiliation(s)
- Marian Grman
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05, Bratislava, Slovak Republic
| | - Peter Balis
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71, Bratislava, Slovak Republic
| | - Andrea Berenyiova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71, Bratislava, Slovak Republic
| | - Helena Svajdlenkova
- Polymer Institute, Slovak Academy of Sciences, Dubravska Cesta 9, 845 41, Bratislava, Slovak Republic
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15, Bratislava, Slovak Republic
| | - Lenka Tomasova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05, Bratislava, Slovak Republic
| | - Sona Cacanyiova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71, Bratislava, Slovak Republic
| | - Zuzana Rostakova
- Institute of Measurement Science, Slovak Academy of Sciences, Dubravska Cesta 9, 841 04, Bratislava, Slovak Republic
| | - Iveta Waczulikova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina F1, 842 48, Bratislava, Slovak Republic
| | - Miroslav Chovanec
- Cancer Research Institute, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05, Bratislava, Slovak Republic
| | | | - Karol Ondrias
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05, Bratislava, Slovak Republic
| | - Anton Misak
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05, Bratislava, Slovak Republic.
| |
Collapse
|
43
|
Chen Q, Hu X, Zhang T, Ruan Q, Wu H. Association between Parkinson disease and selenium levels in the body: A systematic review and meta-analysis. Medicine (Baltimore) 2024; 103:e37919. [PMID: 38669409 PMCID: PMC11049729 DOI: 10.1097/md.0000000000037919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Parkinson disease (PD) is a common neurodegenerative disorder, but its pathogenesis is still not entirely understood. While some trace elements, such as selenium, iron, and copper, are considered pivotal in PD onset due to their role in oxidative stress, the association between selenium concentrations and PD susceptibility remains ambiguous. METHODS A systematic review and meta-analysis was conducted in adherence to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and framed by the Patient, Intervention, Comparison, Outcome paradigm. Data were sourced from 4 prominent electronic databases: PubMed, Embase, Web of Science, and Cochrane Library. Eligible studies must have had a PD case group and a control group, both of which presented data on selenium concentrations. The quality of the studies was assessed using the Newcastle-Ottawa Scale. RESULTS Of 1541 initially identified articles, 12 studies comprising a total of 597 PD cases and 733 controls were selected for the meta-analysis. Pronounced heterogeneity was observed among these studies. When assessing blood selenium levels, no significant difference was found between patients with PD and the controls. However, when examining the cerebrospinal fluid, selenium levels in PD patients were significantly elevated compared to controls (standard mean difference = 1.21, 95% CI 0.04-2.39, P < .05). Subgroup analyses, sensitivity analyses, and evaluation of publication bias were performed to ensure data robustness. CONCLUSIONS Elevated selenium levels in cerebrospinal fluid may be associated with a higher risk of Parkinson. Further prospective research is required to solidify this potential link and to offer avenues for novel therapeutic interventions or preventive measures.
Collapse
Affiliation(s)
- Quanyi Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaofei Hu
- Department of Nuclear Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ting Zhang
- Department of Emergency Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Qianying Ruan
- Department of Blood Transfusion Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hongye Wu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
44
|
Atiga S, Saunders GC, Henderson W. Selenosalicylate; a little-studied heavy-element analogue of the versatile thiosalicylate ligand. RSC Adv 2024; 14:12323-12336. [PMID: 38633482 PMCID: PMC11019910 DOI: 10.1039/d4ra00926f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Selenosalicylic acid (ortho-HSeC6H4CO2H), the heavy element congener of the widely studied thiosalicylic acid, was prepared by reaction of 2-carboxybenzenediazonium chloride (HO2CC6H4N2+Cl-) with Na2Se2, followed by reduction of the resulting diselenide (SeC6H4CO2H)2 with zinc and acetic acid. The coordination chemistry of the selenosalicylate ligand towards a variety of platinum(ii), palladium(ii), nickel(ii), gold(iii), gold(i), rhodium(iii), iridium(iii) and ruthenium(ii) centres was explored. X-ray crystal structure determinations were carried out on the complexes [Pt(SeC6H4CO2)(PPh3)2], [{(p-cym)Ru(SeC6H4CO2)}2] (p-cym = η6-p-cymene, CH3C6H4CH(CH3)2), [{Cp*Rh(SeC6H4CO2)}2] (Cp* = η5-C5Me5) and [Cp*Ir(SeC6H4CO2)(PPh3)], and comparisons are made with corresponding thiosalicylate complexes. The complexes were characterised by NMR spectroscopy as well as ESI mass spectrometry, which indicated a greater propensity for fragmentation including by selenium loss, compared to the thiosalicylate analogues. Hirshfeld surface analysis to visualise and quantify intermolecular interactions revealed the dominance of H⋯H contacts in [{(p-cym)Ru(SeC6H4CO2)}2] and [Cp*Ir(SeC6H4CO2)(PPh3)].
Collapse
Affiliation(s)
- Simeon Atiga
- Chemistry, School of Science, University of Waikato Private Bag 3105 Hamilton 3240 New Zealand
- Department of Chemistry, Faculty of Natural Sciences, Kogi State University PMB 1008, Anyigba Kogi State Nigeria
| | - Graham C Saunders
- Chemistry, School of Science, University of Waikato Private Bag 3105 Hamilton 3240 New Zealand
| | - William Henderson
- Chemistry, School of Science, University of Waikato Private Bag 3105 Hamilton 3240 New Zealand
| |
Collapse
|
45
|
Smorodin E, Chuzmarov V, Veidebaum T. The Potential of Integrative Cancer Treatment Using Melatonin and the Challenge of Heterogeneity in Population-Based Studies: A Case Report of Colon Cancer and a Literature Review. Curr Oncol 2024; 31:1994-2023. [PMID: 38668052 PMCID: PMC11049198 DOI: 10.3390/curroncol31040149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Melatonin is a multifunctional hormone regulator that maintains homeostasis through circadian rhythms, and desynchronization of these rhythms can lead to gastrointestinal disorders and increase the risk of cancer. Preliminary clinical studies have shown that exogenous melatonin alleviates the harmful effects of anticancer therapy and improves quality of life, but the results are still inconclusive due to the heterogeneity of the studies. A personalized approach to testing clinical parameters and response to integrative treatment with nontoxic and bioavailable melatonin in patient-centered N-of-1 studies deserves greater attention. This clinical case of colon cancer analyzes and discusses the tumor pathology, the adverse effects of chemotherapy, and the dynamics of markers of inflammation (NLR, LMR, and PLR ratios), tumors (CEA, CA 19-9, and PSA), and hemostasis (D-dimer and activated partial thromboplastin time). The patient took melatonin during and after chemotherapy, nutrients (zinc, selenium, vitamin D, green tea, and taxifolin), and aspirin after chemotherapy. The patient's PSA levels decreased during CT combined with melatonin (19 mg/day), and melatonin normalized inflammatory markers and alleviated symptoms of polyneuropathy but did not help with thrombocytopenia. The results are analyzed and discussed in the context of the literature on oncostatic and systemic effects, alleviating therapy-mediated adverse effects, association with survival, and N-of-1 studies.
Collapse
Affiliation(s)
- Eugeniy Smorodin
- Department of Chronic Diseases, National Institute for Health Development, Paldiski mnt 80, 10617 Tallinn, Estonia;
| | - Valentin Chuzmarov
- 2nd Surgery Department, General Surgery and Oncology Surgery Centre, North Estonia Medical Centre, J. Sütiste Str. 19, 13419 Tallinn, Estonia
| | - Toomas Veidebaum
- Department of Chronic Diseases, National Institute for Health Development, Paldiski mnt 80, 10617 Tallinn, Estonia;
| |
Collapse
|
46
|
Varvara RA, Vodnar DC. Probiotic-driven advancement: Exploring the intricacies of mineral absorption in the human body. Food Chem X 2024; 21:101067. [PMID: 38187950 PMCID: PMC10767166 DOI: 10.1016/j.fochx.2023.101067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
The interplay between probiotics and mineral absorption is a topic of growing interest due to its great potential for human well-being. Minerals are vital in various physiological processes, and deficiencies can lead to significant health problems. Probiotics, beneficial microorganisms residing in the gut, have recently gained attention for their ability to modulate mineral absorption and mitigate deficiencies. The aim of the present review is to investigate the intricate connection between probiotics and the absorption of key minerals such as calcium, selenium, zinc, magnesium, and potassium. However, variability in probiotic strains, and dosages, alongside the unique composition of individuals in gut microbiota, pose challenges in establishing universal guidelines. An improved understanding of these mechanisms will enable the development of targeted probiotic interventions to optimize mineral absorption and promote human health.
Collapse
Affiliation(s)
- Rodica-Anita Varvara
- Department of Food Science and Technology, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Romania
| | - Dan Cristian Vodnar
- Department of Food Science and Technology, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Romania
| |
Collapse
|
47
|
Chilala P, Skalickova S, Horky P. Selenium Status of Southern Africa. Nutrients 2024; 16:975. [PMID: 38613007 PMCID: PMC11013911 DOI: 10.3390/nu16070975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Selenium is an essential trace element that exists in inorganic forms (selenite and selenates) and organic forms (selenoamino acids, seleno peptides, and selenoproteins). Selenium is known to aid in the function of the immune system for populations where human immunodeficiency virus (HIV) is endemic, as studies suggest that a lack of selenium is associated with a higher risk of mortality among those with HIV. In a recent study conducted in Zambia, adults had a median plasma selenium concentration of 0.27 μmol/L (IQR 0.14-0.43). Concentrations consistent with deficiency (<0.63 μmol/L) were found in 83% of adults. With these results, it can be clearly seen that selenium levels in Southern Africa should be investigated to ensure the good health of both livestock and humans. The recommended selenium dietary requirement of most domesticated livestock is 0.3 mg Se/kg, and in humans above 19 years, anRDA (recommended daily allowance) of 55 mcg Se/per dayisis recommended, but most of the research findings of Southern African countries have recorded low levels. With research findings showing alarming low levels of selenium in soils, humans, and raw feed materials in Southern Africa, further research will be vital in answering questions on how best to improve the selenium status of Southern African soils and plants for livestock and humans to attain sufficient quantities.
Collapse
Affiliation(s)
| | | | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 3, 613 00 Brno, Czech Republic; (P.C.); (S.S.)
| |
Collapse
|
48
|
Sahoo DK, Wong D, Patani A, Paital B, Yadav VK, Patel A, Jergens AE. Exploring the role of antioxidants in sepsis-associated oxidative stress: a comprehensive review. Front Cell Infect Microbiol 2024; 14:1348713. [PMID: 38510969 PMCID: PMC10952105 DOI: 10.3389/fcimb.2024.1348713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024] Open
Abstract
Sepsis is a potentially fatal condition characterized by organ dysfunction caused by an imbalanced immune response to infection. Although an increased inflammatory response significantly contributes to the pathogenesis of sepsis, several molecular mechanisms underlying the progression of sepsis are associated with increased cellular reactive oxygen species (ROS) generation and exhausted antioxidant pathways. This review article provides a comprehensive overview of the involvement of ROS in the pathophysiology of sepsis and the potential application of antioxidants with antimicrobial properties as an adjunct to primary therapies (fluid and antibiotic therapies) against sepsis. This article delves into the advantages and disadvantages associated with the utilization of antioxidants in the therapeutic approach to sepsis, which has been explored in a variety of animal models and clinical trials. While the application of antioxidants has been suggested as a potential therapy to suppress the immune response in cases where an intensified inflammatory reaction occurs, the use of multiple antioxidant agents can be beneficial as they can act additively or synergistically on different pathways, thereby enhancing the antioxidant defense. Furthermore, the utilization of immunoadjuvant therapy, specifically in septic patients displaying immunosuppressive tendencies, represents a promising advancement in sepsis therapy.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - David Wong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Anil Patani
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Gujarat, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Gujarat, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Gujarat, India
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
49
|
Wenting E, Siepel H, Christerus M, Jansen PA. Ionomic Variation Among Tissues in Fallow Deer (Dama dama) by Sex and Age. Biol Trace Elem Res 2024; 202:965-979. [PMID: 37286849 PMCID: PMC10803548 DOI: 10.1007/s12011-023-03724-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
(1) In mammals, the mineral nutrient and trace elemental composition of the body - the ionome - differs among individuals. It has been hypothesized that these differences may be related to age and sex, both for ecotoxic and essential elements. (2) We investigated whether and how intraspecific ionomic variation is related to age and sex in Fallow deer (Dama dama). We tested the predictions that concentrations of ecotoxic elements increase with age, that ionomic variation is lower among young individuals than among older individuals, and that reproductive females (does) have the lowest concentrations of essential elements. (3) Culled animals of different sex and age were obtained from a single protected area. The animals were dissected to collect 13 tissues, and concentrations of 22 different elements were measured in a sample of each tissue. (4) We described substantial ionomic variation between individuals. Some of this variation was related to age and sex, as predicted. Based on the limited existing knowledge on chemical element allocation and metabolism in the body, sex-related differences were more difficult to interpret than age-related differences. Since reference values are absent, we could not judge about the consequences of the elemental values that we found. (5) More extensive ionomic surveys, based on a wide range of elements and tissues, are needed to enlarge the understanding of within-species ionomic variation and potential biological, ecological, and metabolic consequences.
Collapse
Affiliation(s)
- Elke Wenting
- Department of Environmental Sciences, Wageningen University and Research, Box 47, Wageningen, 6700 AA, The Netherlands.
- Radboud Institute for Biological and Environmental Sciences, Department of Animal Ecology and Physiology, Radboud University, Box 9010, Nijmegen, 6500 GL, the Netherlands.
| | - Henk Siepel
- Department of Environmental Sciences, Wageningen University and Research, Box 47, Wageningen, 6700 AA, The Netherlands
- Radboud Institute for Biological and Environmental Sciences, Department of Animal Ecology and Physiology, Radboud University, Box 9010, Nijmegen, 6500 GL, the Netherlands
| | - Melanie Christerus
- Radboud Institute for Biological and Environmental Sciences, Department of Animal Ecology and Physiology, Radboud University, Box 9010, Nijmegen, 6500 GL, the Netherlands
| | - Patrick A Jansen
- Department of Environmental Sciences, Wageningen University and Research, Box 47, Wageningen, 6700 AA, The Netherlands
- Smithsonian Tropical Research Institute, Balboa, Ancon, Panama
| |
Collapse
|
50
|
Andrés CMC, Pérez de la Lastra JM, Juan CA, Plou FJ, Pérez-Lebeña E. Antioxidant Metabolism Pathways in Vitamins, Polyphenols, and Selenium: Parallels and Divergences. Int J Mol Sci 2024; 25:2600. [PMID: 38473850 DOI: 10.3390/ijms25052600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Free radicals (FRs) are unstable molecules that cause reactive stress (RS), an imbalance between reactive oxygen and nitrogen species in the body and its ability to neutralize them. These species are generated by both internal and external factors and can damage cellular lipids, proteins, and DNA. Antioxidants prevent or slow down the oxidation process by interrupting the transfer of electrons between substances and reactive agents. This is particularly important at the cellular level because oxidation reactions lead to the formation of FR and contribute to various diseases. As we age, RS accumulates and leads to organ dysfunction and age-related disorders. Polyphenols; vitamins A, C, and E; and selenoproteins possess antioxidant properties and may have a role in preventing and treating certain human diseases associated with RS. In this review, we explore the current evidence on the potential benefits of dietary supplementation and investigate the intricate connection between SIRT1, a crucial regulator of aging and longevity; the transcription factor NRF2; and polyphenols, vitamins, and selenium. Finally, we discuss the positive effects of antioxidant molecules, such as reducing RS, and their potential in slowing down several diseases.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain
| | | |
Collapse
|