1
|
Upadhyay A, Jaiswal N, Kumar A. Biofilm battle: New transformative tactics to tackle the bacterial biofilm infections. Microb Pathog 2025; 199:107277. [PMID: 39756524 DOI: 10.1016/j.micpath.2025.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/28/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Bacterial biofilm infections are the root cause of persistent infections and the prevalence of resistance to specific or multiple antibiotics. Biofilms have unique features that provide a protective environment for bacteria under various stress conditions and contribute significantly to the pathogenesis of chronic infections. They cover bacterial cells with a self-produced extracellular polymeric matrix, effectively hiding the bacterial cells and their targets. Conventional therapies cannot effectively treat and control bacterial biofilm infections. Therefore, advanced therapeutic means like microneedles, targeted tissue therapy, phage therapy, nanodrug therapy, combination drug therapy, microbial therapy, and immune cell hijacking therapy are needed to tackle the complex issue. These advanced therapies have shown promising results not only in bacterial biofilm infections but also in diseases such as cancer and genetic disorders. Due to their unique features and mechanisms, they significantly contribute to preventing bacterial infections by disrupting biofilm. This article aims to serve as a comprehensive overview of the ongoing battle against biofilms with transformative therapies. This article compiles advancements in new therapies that have demonstrated effective roles in the disruption of bacterial biofilms. We also discuss the current developments and Food and Drug Administration-approved status of these therapies. Additionally, this article summarizes the limitations and future steps needed for these therapies in the field of bacterial biofilm prevention. Thus, these therapies represent the future of preventing bacterial biofilm infections and could be also effective in the reversal of resistance.
Collapse
Affiliation(s)
- Aditya Upadhyay
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, (CG), India
| | - Neha Jaiswal
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, (CG), India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, (CG), India.
| |
Collapse
|
2
|
Lu X, Zhang J, Zuo W, Cheng B, Dong R, Wang W, Lu L. A dissolving microneedle patch loaded with plumbagin/hydroxypropyl-β-cyclodextrin inclusion complex for infected wound healing. Colloids Surf B Biointerfaces 2025; 246:114377. [PMID: 39577147 DOI: 10.1016/j.colsurfb.2024.114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/29/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024]
Abstract
Treating infected wounds is facing a serious challenge due to the rapid spread of antibiotic resistance worldwide. In the search for novel antimicrobial drugs, natural products often serve as a crucial resource. Plumbagin (PLB) is the most important natural active ingredient in the root of Plumbago zeylanica L. known for its excellent antibacterial ability. However, the application of PLB is limited because of its poor water solubility, instability, and tendency to sublimate. In this study, we propose a solution by designing a hyaluronic acid (HA)/polyvinylpyrrolidone (PVP) dissolving microneedle patch loaded with PLB/hydroxypropyl-β-cyclodextrin (HP-β-CD) inclusion complex. PLB was encapsulated into the cavity of HP-β-CD to improve its solubility and stability using the neutralization agitation method. The formation of the inclusion complex significantly increased the water solubility of PLB to 1350 ± 6.8 μg/mL, which is 17 times higher than its original value of 79.3 ± 1.7 μg/mL. The encapsulation efficiency was found to be 94.82 ± 3.34 %. In vitro drug release studies, PLB microneedles loaded with PLB/HP-β-CD inclusion complex rapidly released into PBS within 15 min. Furthermore, the PLB microneedles exhibited strong antibacterial activity against Staphylococcus aureus (S. aureus) both in vivo and in vitro. They also remarkably accelerated the healing of infected wounds in mice by enhancing collagen deposition and re-epithelialization, reducing inflammation, and stimulating angiogenesis. Overall, this multifunctional microneedle patch shows promising potential for clinical applications in the healing of infected wounds.
Collapse
Affiliation(s)
- Xuemei Lu
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Wanyu Zuo
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Bingyu Cheng
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Ruyin Dong
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Weiyu Wang
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Luyang Lu
- College of Pharmacy, Southwest Minzu University, Chengdu, China.
| |
Collapse
|
3
|
Cai D, Liu T, Weng W, Zhu X. Research Progress on Extracellular Matrix-Based Composite Materials in Antibacterial Field. Biomater Res 2025; 29:0128. [PMID: 39822928 PMCID: PMC11735711 DOI: 10.34133/bmr.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/07/2024] [Accepted: 12/14/2024] [Indexed: 01/19/2025] Open
Abstract
Due to their exceptional cell compatibility, biodegradability, and capacity to trigger tissue regeneration, extracellular matrix (ECM) materials have drawn considerable attention in tissue healing and regenerative medicine. Interestingly, these materials undergo continuous degradation and release antimicrobial peptides (AMPs) while simultaneously promoting tissue regeneration, thereby exerting a potent antibacterial effect. On this basis, a variety of basic properties of ECM materials, such as porous adsorption, hydrophilic adsorption, group crosslinking, and electrostatic crosslinking, can be used to facilitate the integration of ECM materials and antibacterial agents through physical and chemical approaches in order to enhance the antibacterial efficacy. This article reviews the recent advancements in the study of ECM antibacterial materials, including the antibacterial function and antibacterial mechanism of free-standing ECM materials and ECM-based composite materials. In addition, the urgent challenges and future research prospects of ECM materials in the anti-infection industry are discussed.
Collapse
Affiliation(s)
- Dan Cai
- Department of Orthopedics, The First People’s Hospital of Huzhou,
First Affiliated Hospital of Huzhou University, Zhejiang 313000, China
| | - Tuoqin Liu
- Intensive Care Unit, People’s Hospital of Wuxing District, Wuxing District Maternal and Child Health Hospital, Huzhou, Zhejiang 313000, China
| | - Wei Weng
- Department of Orthopedics, The First People’s Hospital of Huzhou,
First Affiliated Hospital of Huzhou University, Zhejiang 313000, China
| | - Xinhong Zhu
- Department of Orthopedics, The First People’s Hospital of Huzhou,
First Affiliated Hospital of Huzhou University, Zhejiang 313000, China
| |
Collapse
|
4
|
Koh N, Kim DK. Synergistic antibacterial effect of 405 nm blue light-emitting diodes (LEDs) and gelatin film for inactivation of Escherichia coli O157:H7 and Salmonella Typhimurium on stainless steel and fresh fruit peel. Int J Food Microbiol 2025; 427:110961. [PMID: 39532024 DOI: 10.1016/j.ijfoodmicro.2024.110961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/09/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
A combined antibacterial effect of 405 nm blue LEDs (BL) and gelatin film (G) was investigated on stainless steel (SUS) and fresh fruit peel for the inactivation of Escherichia coli O157:H7 and Salmonella Typhimurium. On the SUS, the sum of the individual treatments of G for 20 min and BL at 20 J/cm2 was <1 log reduction (log CFU/cm2). In comparison, combination treatment of G and BL (G + BL) at 20 J/cm2 exhibited 2.37 and 3.09 log reduction on E. coli O157:H7 and S. Typhimurium. The G + BL treatment only increased a propidium iodide (PI) uptake, indicating that cell membrane damage occurred. In the G + BL treatment, reactive oxygen species (ROS) scavenging assay confirmed that ROS involved in the bactericidal mechanism. On orange peel, the G + BL treatment at 40 J/cm2 resulted in a 3.05 and 3.17 log reduction on E. coli O157:H7 and S. Typhimurium. In contrast, the individual treatment of G for 40 min led to reductions of 0.63 log CFU/cm2 for E. coli O157:H7 and 0.50 log CFU/cm2 for S. Typhimurium, while the BL treatment at 40 J/cm2 achieved reductions of 0.78 and 0.69 log CFU/cm2, respectively. A synergistic bactericidal effect was similarly observed in the combined treatment groups for both apple and grapefruit peels. In a color and texture analysis, G did not affect hardness, toughness, and visual color of fruit.
Collapse
Affiliation(s)
- Naeun Koh
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| | - Do-Kyun Kim
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Ghosh S, Basu S, Anbarasu A, Ramaiah S. A Comprehensive Review of Antimicrobial Agents Against Clinically Important Bacterial Pathogens: Prospects for Phytochemicals. Phytother Res 2025; 39:138-161. [PMID: 39496516 DOI: 10.1002/ptr.8365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 11/06/2024]
Abstract
Antimicrobial resistance (AMR) hinders the effective treatment of a range of bacterial infections, posing a serious threat to public health globally, as it challenges the currently available antimicrobial drugs. Among the various modes of antimicrobial action, antimicrobial agents that act on membranes have the most promising efficacy. However, there are no consolidated reports on the shortcomings of these drugs, existing challenges, or the potential applications of phytochemicals that act on membranes. Therefore, in this review, we have addressed the challenges and focused on various phytochemicals as antimicrobial agents acting on the membranes of clinically important bacterial pathogens. Antibacterial phytochemicals comprise diverse group of agents found in a wide range of plants. These compounds have been found to disrupt cell membranes, inhibit enzymes, interfere with protein synthesis, generate reactive oxygen species, modulate quorum sensing, and inhibit bacterial adhesion, making them promising candidates for the development of novel antibacterial therapies. Recently, polyphenolic compounds have been reported to have proven efficacy against nosocomial multidrug-resistant pathogens. However, more high-quality studies, improved standards, and the adoption of rules and regulations are required to firmly confirm the clinical efficacy of phytochemicals derived from plants. Identifying potential challenges, thrust areas of research, and considering viable approaches is essential for the successful clinical translation of these compounds.
Collapse
Affiliation(s)
- Soumyadip Ghosh
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Bio Sciences, SBST, VIT, Vellore, India
| | - Soumya Basu
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biotechnology, National Institute of Science and Technology (NIST), Berhampur, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Biotechnology, SBST, VIT, Vellore, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Bio Sciences, SBST, VIT, Vellore, India
| |
Collapse
|
6
|
Sadeghi-Avalshahr A, Nazarnezhad S, Hassanzadeh H, Kazemi Noughabi M, Namaei-Ghasemnia N, Jalali M. Synergistic effects of incorporated additives in multifunctional dressings for chronic wound healing: An updated comprehensive review. Wound Repair Regen 2025; 33:e13238. [PMID: 39682073 DOI: 10.1111/wrr.13238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024]
Abstract
Detailed reviewing of the complicated process of wound healing reveals that it resembles an orchestrated symphony via a precise and calculated collaboration of relevant cells at the wound site. The domino-like function of various cytokines, chemokines, growth factors and small biological molecules such as antibacterial peptides all come together to successfully execute the wound healing process. Therefore, it appears that the use of a wound dressing containing only a single additive with specific properties and capabilities may not be particularly effective in treating the complex conditions that are usual in the environment of chronic wounds. The use of multifunctional dressings incorporating various additives has shown promising results in enhancing wound healing processes. This comprehensive review article explores the synergistic effects of integrated additives in such dressings, aiming to provide an updated understanding of their combined therapeutic potential. By analysing recent advancements and research findings, this review sheds light on the intricate interactions between different additives, their mechanisms of action and their cumulative impact on wound healing outcomes. Moreover, the review discusses the importance of utilising combined therapies in wound care and highlights the potential future directions and implications for research and clinical practice in the field of wound healing management.
Collapse
Affiliation(s)
- Alireza Sadeghi-Avalshahr
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Materials Research, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Halimeh Hassanzadeh
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Mahboubeh Kazemi Noughabi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Negar Namaei-Ghasemnia
- Department of Materials Research, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Mehdi Jalali
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Li S, Li R, Jiang J, Liu L, Ma X, Wang T, Zhao L, Li W, Niu D. Curcumin protects porcine granulosa cells and mouse ovary against reproductive toxicity of aflatoxin B1 via PI3K/AKT signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125210. [PMID: 39477004 DOI: 10.1016/j.envpol.2024.125210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/16/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Aflatoxin B1 (AFB1) is a widespread food contaminant with toxic effects on female reproductive system. This concerns the human public health and the development of the livestock industry. Effective and feasible measures against reproductive toxicity of AFB1 are also unknown. Curcumin has been shown to improve animal production performance and alleviate toxicity of AFB1 in other tissues. The study aimed to reveal the potential mechanism of curcumin in alleviating AFB1 exposure-triggered reproductive toxicity in porcine. Porcine GCs and matured oocytes in vitro and mouse ovary in vivo were cultured as model and then exposed to AFB1 and curcumin. The transcriptomics for porcine GCs was performed. The apoptosis, cell cycle, ROS content and mitochondrial membrane potential level analysis were determined using probe staining and flow cytometry. QRT-PCR and western blotting were analyzed for the genes expression. Oocytes maturation and parthenogenetic activation were performed to evaluate the quality of oocytes. The data showed that AFB1 exposure significantly inhibited porcine GCs viability and exhibited concentration-dependent relationship from 1 to 16 μM. Curcumin supplementation efficiently reversed the inhibition of cell viability. Further analysis indicated that curcumin application alleviated AFB1-exposed porcine GCs and mouse ovary mitochondria dysfunction, oxidative stress, cell cycle arrest, and apoptosis. We found that PI3K/Akt signaling pathway plays a vital role in AFB1-induced porcine GCs toxicity through bioinformatic analysis. The data not only confirmed the correlation of PI3K/Akt signaling pathway and oxidative stress, cell cycle arrest and apoptosis, but also consistent with the results that curcumin supplementation could markedly activate the PI3K/Akt signal inhibited by AFB1. Moreover, curcumin reversed AFB1-impaired cumulus-oocyte complex expansion, oocytes maturation rate, blastocyst rate and formation. Our study demonstrated that curcumin supplementation can protect porcine GCs and mouse ovary from toxicity of AFB1 by targeting the PI3K/AKT signaling pathway and provides a viable treatment approach for AFB1-induced female reproductive toxicity.
Collapse
Affiliation(s)
- Sihong Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Jindkcom Animal Healthy Business Co., Ltd, JinHua, Zhejiang, 321016, China; College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Rui Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, 311300, China
| | - Jun Jiang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, 311300, China
| | - Lu Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiang Ma
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, 311300, China
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China
| | - Lili Zhao
- Zhejiang Jindkcom Animal Healthy Business Co., Ltd, JinHua, Zhejiang, 321016, China.
| | - Weifen Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Dong Niu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
8
|
Alam MS, Anwar MJ, Maity MK, Azam F, Jaremko M, Emwas AH. The Dynamic Role of Curcumin in Mitigating Human Illnesses: Recent Advances in Therapeutic Applications. Pharmaceuticals (Basel) 2024; 17:1674. [PMID: 39770516 PMCID: PMC11679877 DOI: 10.3390/ph17121674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Herbal medicine, particularly in developing regions, remains highly popular due to its cost-effectiveness, accessibility, and minimal risk of adverse effects. Curcuma longa L., commonly known as turmeric, exemplifies such herbal remedies with its extensive history of culinary and medicinal applications across Asia for thousands of years. Traditionally utilized as a dye, flavoring, and in cultural rituals, turmeric has also been employed to treat a spectrum of medical conditions, including inflammatory, bacterial, and fungal infections, jaundice, tumors, and ulcers. Building on this longstanding use, contemporary biochemical and clinical research has identified curcumin-the primary active compound in turmeric-as possessing significant therapeutic potential. This review hypothesizes that curcumin's antioxidant properties are pivotal in preventing and treating chronic inflammatory diseases, which are often precursors to more severe conditions, such as cancer, and neurological disorders, like Parkinson's and Alzheimer's disease. Additionally, while curcumin demonstrates a favorable safety profile, its anticoagulant effects warrant cautious application. This article synthesizes recent studies to elucidate the molecular mechanisms underlying curcumin's actions and evaluates its therapeutic efficacy in various human illnesses, including cancer, inflammatory bowel disease, osteoarthritis, atherosclerosis, peptic ulcers, COVID-19, psoriasis, vitiligo, and depression. By integrating diverse research findings, this review aims to provide a comprehensive perspective on curcumin's role in modern medicine and its potential as a multifaceted therapeutic agent.
Collapse
Affiliation(s)
- Md Shamshir Alam
- Department of Pharmacy Practice, College of Pharmacy, National University of Science and Technology, P.O. Box 620, Bosher, Muscat 130, Oman
| | - Md Jamir Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Manish Kumar Maity
- Department of Pharmacy Practice, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Faizul Azam
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
9
|
Olszewska MA, Draszanowska A, Zimińska A, Starowicz M. Improvement of Selected Quality and Safety Traits in Turmeric-Enriched Kale Pesto Using Blue Light and Sous-Vide. Molecules 2024; 29:5831. [PMID: 39769920 PMCID: PMC11728637 DOI: 10.3390/molecules29245831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/23/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
The potential of blue light (BL) and sous-vide (S-V) as a novel approach for food preservation was investigated via measurements of the total phenolic content (TPC), antioxidative activity, color, and their antibacterial effect on Listeria monocytogenes in two versions of laboratory-prepared kale pesto, with and without the addition of turmeric. The TPC ranged from 85 to 208 mg/100 g GAE d.m. and 57 to 171 mg/100 g GAE d.m., respectively. In both versions, the highest TPC was in the blue light-sous-vide samples, while the lowest was after the sous-vide, with a loss of polyphenols of almost 40% during storage when turmeric was absent. Antioxidative capabilities of the pesto were initially estimated at 54.07 and 7.46 µmol TE/g d.m., respectively, indicating significant bioactivity enhancement by turmeric. In turmeric-enriched pesto, sous-vide decreased the antioxidative activity levels by 12% in fresh pesto and by 45% during storage. Meanwhile, blue light compensated for the losses caused by the sous-vide treatment. Although the hue angle (h°) of sous-vide pesto was lower than that of blue light pesto in most samples, sequential BL and S-V ultimately yielded the lowest h°. The sequential BL and S-V treatment resulted in a 1.7 log reduction in the L. monocytogenes population, whereas adding turmeric increased the treatment efficacy by another 2.0 logs. Thus, as a source of photosensitizing molecules, turmeric was highly antibacterial after photothermal activation with blue light and sous-vide. This study suggests that blue light could be an effective (pre)treatment used on pesto sauces to preserve bioactivity and to improve safety when enriched with a natural additive like turmeric.
Collapse
Affiliation(s)
- Magdalena A. Olszewska
- Department of Food Microbiology, Meat Technology and Chemistry, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Anna Draszanowska
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-718 Olsztyn, Poland
| | - Aleksandra Zimińska
- Department of Food Microbiology, Meat Technology and Chemistry, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Małgorzata Starowicz
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Juliana Tuwima 10, 10-748 Olsztyn, Poland;
| |
Collapse
|
10
|
Gowda BJ, Ahmed MG, Thakur RRS, Donnelly RF, Vora LK. Microneedles as an Emerging Platform for Transdermal Delivery of Phytochemicals. Mol Pharm 2024; 21:6007-6033. [PMID: 39470172 PMCID: PMC11615954 DOI: 10.1021/acs.molpharmaceut.4c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Phytochemicals, which are predominantly found in plants, hold substantial medicinal value. Despite their potential, challenges such as poor oral bioavailability and instability in the gastrointestinal tract have limited their therapeutic use. Traditional intra/transdermal drug delivery systems offer some advantages over oral administration but still suffer from issues such as limited penetration depth, slow drug release rates, and inconsistent drug absorption. In contrast, microneedles (MNs) represent a significant advancement in intra/transdermal drug delivery by providing precise control over phytochemical delivery and enhanced penetration capabilities. By circumventing skin barriers, MNs directly access dermal layers rich in blood vessels and lymphatics, thus facilitating efficient phytochemical delivery. This review extensively discusses the obstacles of traditional oral delivery and the benefits of intra/transdermal delivery routes with a particular focus on the transformative potential of MNs for phytochemical delivery. This review explores the complexities of delivering phytochemicals through intra/transdermal routes, the development and types of MNs as innovative delivery tools, and the optimal design and properties of MNs for effective phytochemical delivery. Additionally, this review examines the versatile applications of MN-mediated phytochemical delivery, including its role in administering phytophotosensitizers for photodynamic therapy, and concludes with insights into relevant patents and future perspectives.
Collapse
Affiliation(s)
- B.H. Jaswanth Gowda
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
- Department
of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Mohammed Gulzar Ahmed
- Department
of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Raghu Raj Singh Thakur
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
| | - Ryan F. Donnelly
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
| | - Lalitkumar K. Vora
- School
of Pharmacy, Queen’s University Belfast,
Medical Biology Centre, Belfast BT9 7BL, United
Kingdom
| |
Collapse
|
11
|
Dahiya A, Chaudhari VS, Bose S. Bone Healing via Carvacrol and Curcumin Nanoparticle on 3D Printed Scaffolds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405642. [PMID: 39463050 PMCID: PMC11636189 DOI: 10.1002/smll.202405642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/22/2024] [Indexed: 10/29/2024]
Abstract
Carvacrol is a potent antimicrobial and anti-inflammatory agent, while curcumin possesses antioxidant, anti-inflammatory, and anticancer properties. These phytochemicals have poor solubility, bioavailability, and stability in their free form. Nanoencapsulation can reduce these limitations with enhanced translational capability. Integrating nanocarriers with 3D-printed calcium phosphate (CaP) scaffolds presents a novel strategy for bone regeneration. Carvacrol and curcumin-loaded nanoparticles (CC-NP) synthesized with melt emulsification produced negatively charged, monodispersed particles with a hydrodynamic diameter of ≈127 nm. Their release from the scaffold shows a biphasic release under physiological and acidic conditions. At pH 5.0, the CC-NP exhibits a 53% release of curcumin and nearly 100% release of carvacrol, compared to 19% and 36% from their respective drug solutions. At pH 7.4, ≈40% of curcumin and 76% of carvacrol releases, highlighting their pH-sensitive release mechanism. In vitro studies demonstrate a 1.4-fold increase in osteoblast cell viability with CC-NP treatment. CC-NP exhibit cytotoxic effects against osteosarcoma cells, reducing cell viability by ≈2.9-fold. The antibacterial efficacy of CC-NP evaluated against Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) exhibiting 98% antibacterial efficacy. This approach enhances therapeutic outcomes and minimizes the potential side effects associated with conventional treatments, paving the way for innovative applications in regenerative medicine.
Collapse
Affiliation(s)
- Aditi Dahiya
- W. M. Keck Biomedical Materials Research LaboratorySchool of Mechanical and Materials EngineeringWashington State UniversityPullmanWashington99164USA
- Department of ChemistryWashington State UniversityPullmanWashington99164USA
| | - Vishal Sharad Chaudhari
- W. M. Keck Biomedical Materials Research LaboratorySchool of Mechanical and Materials EngineeringWashington State UniversityPullmanWashington99164USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research LaboratorySchool of Mechanical and Materials EngineeringWashington State UniversityPullmanWashington99164USA
- Department of ChemistryWashington State UniversityPullmanWashington99164USA
| |
Collapse
|
12
|
Xu Z, Zhu W, Xu D, Amevor FK, Wu Y, Ma D, Cao X, Wei S, Shu G, Zhao X. Supplementation of curcumin promotes the intestinal structure, immune barrier function and cecal microbiota composition of laying hens in early laying period. Poult Sci 2024; 103:104355. [PMID: 39423789 PMCID: PMC11532481 DOI: 10.1016/j.psj.2024.104355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/21/2024] Open
Abstract
The prelaying period is critical for laying hens, marked by significant physiological changes such as increased egg production, hormone secretion, and higher nutritional demands. These changes stress the intestine, which is vital for nutrient digestion, absorption, immune defense, and maintaining antioxidant and microbial balance. During this period, maintaining the intestinal health is essential for efficient nutrient absorption. Curcumin, a plant-derived extract, offers antioxidant, anti-inflammatory, antimicrobial, and immunomodulatory benefits, that can improve gut function. This study evaluated the effects of curcumin on the intestinal structure, immune barrier function, and cecal microbiota composition in laying hens during their early laying period. A total of 180 Snowy White chickens (154 days old) were divided into 5 experimental groups, receiving curcumin at 0 mg/kg, 100 mg/kg, 200 mg/kg, 300 mg/kg, and 400 mg/kg for 12 wk. The results showed that curcumin significantly improved the intestinal morphology (P < 0.05), increased mRNA expression of digestive enzymes (such as MGAM, SI, and ANPEP), and enhanced the digestive and absorptive functions. Further, curcumin improved the levels of antioxidant parameters (such as CAT, GSH-PX, T-AOC, and T-SOD) in the ileum, jejunum, and duodenum, and increased the expression of immunoglobulins (IgA, IgM, IgG) in the intestinal segments and serum (P < 0.05). Curcumin also improved the intestinal immune barrier function by increasing ZO-1 and Occludin expression. Furthermore, it altered the gut microbiota composition by increasing the relative abundance of beneficial bacterial phyla such as Bacteroidetes, Actinobacteria, Proteobacteria, and Fusobacteria (P < 0.05). At the genus level, curcumin supplementation enhanced the beneficial genera like Phocaeicola, Alistipes, Prevotella, Barnesiella, and Bifidobacterium (P < 0.05), thereby promoting the gut health and microbial diversity. In conclusion, curcumin supplementation during the early laying period of hens offers significant benefits by improving the intestinal health, immune function, and gut microbiota composition. Hence, curcumin serves as a promising dietary additive to support nutrient absorption and immune defense in laying hens during the early laying period of hens.
Collapse
Affiliation(s)
- Zhengyu Xu
- Department of Animal Science and Technology, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Department of Animal Science and Technology, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wei Zhu
- Department of Animal Science and Technology, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Department of Animal Science and Technology, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Dan Xu
- Department of Animal Science and Technology, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Department of Animal Science and Technology, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Felix Kwame Amevor
- Department of Animal Science and Technology, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Department of Animal Science and Technology, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Youhao Wu
- Department of Animal Science and Technology, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Department of Animal Science and Technology, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Dongji Ma
- Department of Animal Science and Technology, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xueqing Cao
- Department of Animal Science and Technology, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Department of Animal Science and Technology, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shuo Wei
- Department of Animal Science and Technology, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Department of Animal Science and Technology, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaoling Zhao
- Department of Animal Science and Technology, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Department of Animal Science and Technology, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
13
|
Do KL, Ahsan T, Wahab A, Tayyab M, Yin X, Pan N, Huang T, Mushtaq A, Su M. Bioactive Silk Revolution: Harnessing Curcuminoid Dye and Chitosan for Superior Antimicrobial Defence and UV Shielding. Pharmaceutics 2024; 16:1510. [PMID: 39771490 PMCID: PMC11728638 DOI: 10.3390/pharmaceutics16121510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES The use of natural colourants is gaining attention due to their biocompatibility and functional benefits. This study introduces a different approach using turmeric (Curcuma longa L.) dye extract combined with chitosan to significantly enhance the antibacterial and UV-shielding properties of silk. METHODS The turmeric dye's chemical composition was analyzed using liquid chromatography mass spectrometry (LC-MS), UV-visible spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). The dyed silk's colourfastness was tested through rubbing, washing, and light exposure. RESULTS The chitosan-mordanted silk showed strong antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), as well as antifungal activity against Aspergillus niger (A. niger). It also demonstrated a high ultraviolet protection factor (UPF). For comparison, alum-mordant was used, and chitosan proved more effective. Beyond its use as a dye, turmeric is renowned for its medicinal properties. Its antioxidant, anticancer, and anti-inflammatory properties have been extensively researched, which are primarily linked to its curcuminoid compounds. Turmeric is used in traditional medication to treat digestive issues, arthritis, and skin diseases. CONCLUSIONS This work underscores the innovative use of plant-based dye extracts and natural mordants like chitosan as a sustainable alternative to conventional metallic mordants, paving the way for the evolution of bioactive silk with improved functional properties.
Collapse
Affiliation(s)
- Khai Ly Do
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Shengzhou Innovation Research Institute, Zhejiang Sci-Tech University, Shaoxing 312451, China
| | - Taswar Ahsan
- Institute of Plant Protection, Liaoning Academy of Agriculture Sciences, Shenyang 110161, China
| | - Abdul Wahab
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Muhammad Tayyab
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xinqi Yin
- College of Textile Science and Engineering (International Silk Institute), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Nengjie Pan
- College of Textile Science and Engineering (International Silk Institute), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tao Huang
- College of Textile Science and Engineering (International Silk Institute), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Asim Mushtaq
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Miao Su
- Shengzhou Innovation Research Institute, Zhejiang Sci-Tech University, Shaoxing 312451, China
- College of Textile Science and Engineering (International Silk Institute), Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
14
|
Wang Y, Duan H, Zhang Z, Chen L, Li J. Research Progress on the Application of Natural Medicines in Biomaterial Coatings. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5607. [PMID: 39597430 PMCID: PMC11595593 DOI: 10.3390/ma17225607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
With the continuous progress of biomedical technology, biomaterial coatings play an important role in improving the performance of medical devices and promoting tissue repair and regeneration. The application of natural medicine to biological materials has become a hot topic due to its diverse biological activity, low toxicity, and wide range of sources. This article introduces the definition and classification of natural medicines, lists some common natural medicines, such as curcumin, allicin, chitosan, tea polyphenols, etc., and lists some biological activities of some common natural medicines, such as antibacterial, antioxidant, antitumor, and other properties. According to the different characteristics of natural medicines, physical adsorption, chemical grafting, layer-by-layer self-assembly, sol-gel and other methods are combined with biomaterials, which can be used for orthopedic implants, cardiovascular and cerebrovascular stents, wound dressings, drug delivery systems, etc., to exert their biological activity. For example, improving antibacterial properties, promoting tissue regeneration, and improving biocompatibility promote the development of medical health. Although the development of biomaterials has been greatly expanded, it still faces some major challenges, such as whether the combination between the coating and the substrate is firm, whether the drug load is released sustainably, whether the dynamic balance will be disrupted, and so on; a series of problems affects the application of natural drugs in biomaterial coatings. In view of these problems, this paper summarizes some suggestions by evaluating the literature, such as optimizing the binding method and release system; carrying out more clinical application research; carrying out multidisciplinary cooperation; broadening the application of natural medicine in biomaterial coatings; and developing safer, more effective and multi-functional natural medicine coatings through continuous research and innovation, so as to contribute to the development of the biomedical field.
Collapse
Affiliation(s)
| | | | | | - Lan Chen
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (H.D.); (Z.Z.)
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (H.D.); (Z.Z.)
| |
Collapse
|
15
|
Shakori Poshteh S, Alipour S, Varamini P. Harnessing curcumin and nanotechnology for enhanced treatment of breast cancer bone metastasis. DISCOVER NANO 2024; 19:177. [PMID: 39527354 PMCID: PMC11554965 DOI: 10.1186/s11671-024-04126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Breast cancer (BC) bone metastasis poses a significant clinical challenge due to its impact on patient prognosis and quality of life. Curcumin (CUR), a natural polyphenol compound found in turmeric, has shown potential in cancer therapy due to its anti-inflammatory, antioxidant, and anticancer properties. However, its metabolic instability and hydrophobicity have hindered its clinical applications, leading to a short plasma half-life, poor absorption, and low bioavailability. To enhance the drug-like properties of CUR, nanotechnology-based delivery strategies have been employed, utilizing polymeric, lipidic, and inorganic nanoparticles (NPs). These approaches have effectively overcome CUR's inherent limitations by enhancing its stability and cellular bioavailability both in vitro and in vivo. Moreover, targeting molecules with high selectivity towards bone metastasized breast cancer cells can be used for site specific delivery of curcumin. Alendronate (ALN), a bone-seeking bisphosphonate, is one such moiety with high selectivity towards bone and thus can be effectively used for targeted delivery of curcumin loaded nanocarriers. This review will detail the process of bone metastasis in BC, elucidate the mechanism of action of CUR, and assess the efficacy of nanotechnology-based strategies for CUR delivery. Specifically, it will focus on how these strategies enhance CUR's stability and improve targeted delivery approaches in the treatment of BC bone metastasis.
Collapse
Affiliation(s)
- Shiva Shakori Poshteh
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Shohreh Alipour
- Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Drug and Food Control, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Pegah Varamini
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
16
|
Latipudin D, Tumilaar SG, Ramdani Y, Dudi D, Kurnia D. Potential Piperolactam A Isolated From Piper betle as Natural Inhibitors of Brucella Species Aminoacyl-tRNA Synthetase for Livestock Infections: In Silico Approach. Vet Med Sci 2024; 10:e70042. [PMID: 39315732 PMCID: PMC11420939 DOI: 10.1002/vms3.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/12/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
Brucellosis is an important global zoonosis caused by the bacterium Brucella sp. Brucellosis causes abortions, reproductive failure and reduced milk production, resulting in significant economic losses. Brucella species are reported to be resistant to antibiotics, which makes treatment difficult. The urgency of discovering new drug candidates to combat Brucella's infection necessitates the exploration of novel alternative agents with unique protein targets. Aminoacyl-tRNA synthetases (aaRSs), which have fundamental functions in translation, inhibit this process, stop protein synthesis and ultimately inhibit bacterial growth. The purpose of this study was to isolate piperolactam A compounds from the methanol extract of Piper betle leaves that have potential as antibacterials to inhibit the growth of Brucella sp. causing brucellosis in livestock and to analyse the mechanism of inhibitory activity of piperolactam A compounds against the aaRS enzyme through a molecular docking approach in silico. Piperolactam A was isolated from P. betle by column chromatography and characterized by UV, IR, 1D and 2D NMRs and MS, then tested for their inhibition mechanism against the enzymes threonyl-tRNA synthetase, leucyl-tRNA synthetase (LeuRS) and methionyl-tRNA synthetase in silico. The result in silico test is that piperolactam A has the potential to inhibit LeuRS enzyme with the greater binding affinity.
Collapse
Affiliation(s)
- Diding Latipudin
- Department of Animal Nutrition, Faculty of Animal Husbandry, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Sefren Geiner Tumilaar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Yoga Ramdani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Dudi Dudi
- Department of Animal Nutrition, Faculty of Animal Husbandry, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| |
Collapse
|
17
|
Mittraparp-Arthorn P, Ungphaiboon S, Takahashi Yupanqui C, Suwannasin S, Wijukkul C, Tanmanee N, Srichana T. The potential of turmeric extract-loaded chitosan microparticles for the treatment of gastrointestinal disorders. J Microencapsul 2024; 41:547-563. [PMID: 39140474 DOI: 10.1080/02652048.2024.2390958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
AIM To develop turmeric extract-loaded chitosan microparticles for treating gastrointestinal disorders. METHODS The microparticles were prepared using a spray-drying process, optimised the characteristics by biomarker loading, and encapsulation efficiency, and assessed for bioactivities related to gastrointestinal diseases. RESULTS The optimised microparticles were spherical, with a mean diameter of 2.11 ± 0.34 µm, a SPAN of 4.46 ± 0.68, a zeta potential of +37.6 ± 0.2 mV, loading of 15.7% w/w curcuminoids, 5.4% w/w ar-turmerone, and encapsulation efficiency of 63.26 ± 1.62% w/w curcuminoids and 43.75 ± 1.33% w/w ar-turmerone. Encapsulation of turmeric extract improved release at 6 h by 20 times and mucoadhesion by 3.6 times. The microparticles exhibited high acid-neutralising capacity (1.64 ± 0.34 mEq/g) and inhibited nitric oxide production about twice as effectively as the turmeric extract, while maintaining antioxidant and antibacterial activities. CONCLUSION Encapsulation of turmeric extract in chitosan microparticles effectively enhanced therapeutic potential for gastrointestinal disorders.
Collapse
Affiliation(s)
| | - Suwipa Ungphaiboon
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Chutha Takahashi Yupanqui
- Center of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Sirikan Suwannasin
- Division of Biological Sciences, Faculty of Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Chutikan Wijukkul
- Division of Biological Sciences, Faculty of Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Niwan Tanmanee
- Pharmaceutical Laboratory Service Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
18
|
Veselá K, Kejík Z, Abramenko N, Kaplánek R, Jakubek M, Petrlova J. Investigating antibacterial and anti-inflammatory properties of synthetic curcuminoids. Front Med (Lausanne) 2024; 11:1478122. [PMID: 39534226 PMCID: PMC11554473 DOI: 10.3389/fmed.2024.1478122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
The concept of intratumoral microbiota is gaining attention in current research. Tumor-associated microbiota can activate oncogenic signaling pathways such as NF-κB, thereby promoting tumor development and progression. Numerous studies have demonstrated that curcumin and its analogs possess strong antitumor effects by targeting the NF-κB signaling pathway, along with potent antibacterial properties. In this study, we tested the antibacterial activity of two curcuminoids, Py-cPen and V-cPen, against the Gram-negative bacterial strains Pseudomonas aeruginosa and Escherichia coli and the Gram-positive bacterial strain Streptococcus aureus using in vitro assays and fluorescent microscopy. We observed that both Py-cPen and V-cPen reduced NF-κB activation upon lipopolysacharide (LPS) challenge in cell assays. In addition, our findings indicate that Py-cPen and V-cPen interact with LPS, as demonstrated by transmission electron microscopy and confirmed using in silico analyses, thereby modulating LPS activity. Overall, our data indicate that Py-cPen and V-cPen exhibit strong antibacterial and antiinflammatory properties, suggesting their potential as candidates for new multitarget therapeutic strategies.
Collapse
Affiliation(s)
- Kateřina Veselá
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Zdeněk Kejík
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Nikita Abramenko
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Vestec, Czechia
| | - Robert Kaplánek
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Vestec, Czechia
| | - Milan Jakubek
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Jitka Petrlova
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
| |
Collapse
|
19
|
Mayo B, Penroz S, Torres K, Simón L. Curcumin Administration Routes in Breast Cancer Treatment. Int J Mol Sci 2024; 25:11492. [PMID: 39519045 PMCID: PMC11546575 DOI: 10.3390/ijms252111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Breast cancer is a public health concern worldwide, characterized by increasing incidence and mortality rates, requiring novel and effective therapeutic strategies. Curcumin is a bioactive compound extracted from turmeric with several pharmacological activities. Curcumin is a multifaceted anticancer agent through mechanisms including the modulation of signaling pathways, inhibition of cell proliferation, induction of apoptosis, and production of reactive oxygen species. However, the poor water solubility and bioavailability of curcumin create important barriers in its clinical application. This review elaborates on the therapeutic potential of curcumin in breast cancer treatment, focusing on the efficacy of different administration routes and synergistic effects with other therapeutic agents. The intravenous administration of curcumin-loaded nanoparticles significantly improves bioavailability and therapeutic outcomes compared to oral routes. Innovative formulations, such as nano-emulsifying drug delivery systems, have shown promise in enhancing oral bioavailability. While intravenous delivery ensures higher bioavailability and direct action on tumor cells, it is more invasive and expensive than oral administration. Advancing research on curcumin in breast cancer treatment is essential for improving therapeutic outcomes and enhancing the quality of life of patients.
Collapse
Affiliation(s)
| | | | - Keila Torres
- Nutrition and Dietetic School, Universidad Finis Terrae, Santiago 7501014, Chile; (B.M.); (S.P.)
| | - Layla Simón
- Nutrition and Dietetic School, Universidad Finis Terrae, Santiago 7501014, Chile; (B.M.); (S.P.)
| |
Collapse
|
20
|
Karyasa IW, Kusumawati ED, Agustarini R, Andadari L, Sari H. Organic-Inorganic Hybridization of Silkworm Cocoon Filaments Using Nano Pastes of Silica-Phosphate-M (M = Cu, Fe, or Al). NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1697. [PMID: 39513777 PMCID: PMC11547458 DOI: 10.3390/nano14211697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024]
Abstract
Inorganic-organic hybrid biomaterials have recently attracted much attention because of their widespread use. Silkworm cocoon filaments resulting from sericulture as prospective nanobiomaterials need to be improved, and their properties need to be used for broader purposes. This study was aimed at investigating methods for siliconization of silkworm cocoon filaments and characterizing their cocoon filament properties in terms of their yarn quality, natural dyeing, and antibacterial properties. Three methods of hybridization processes were used in this experiment, namely, in situ natural dyeing of silk yarns while silk filaments were spined, feed engineering through spraying the mulberry leaves with natural dyes and silica-phosphate-M (M = Cu, Fe, or Al) nano pastes, and a combination of both methods. The resulting cocoon filaments were characterized by their siliconization of filament fibers by using FTIR, XRD, and SEM-EDS methods. The yarn tensile strength, color quality, color fastness properties affected by the siliconization of silk filament fibers, and antibacterial properties were also investigated. Results showed that the combination method produced better siliconization of silk fibers, and, consequently, the better siliconization of silk fibers produced better natural dyeing as well as antibacterial properties of their resulting silk yarns.
Collapse
Affiliation(s)
- I Wayan Karyasa
- Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Pendidikan Ganesha, Buleleng 81116, Bali, Indonesia
| | - Enike Dwi Kusumawati
- Faculty of Animal Husbandry, Universitas PGRI Kanjuruhan Malang, Malang 65148, Jawa Timur, Indonesia;
| | - Retno Agustarini
- Center for Applied Zoology, Badan Riset dan Inovasi Nasional, Jakarta 10340, Jakarta Pusat, Indonesia; (R.A.); (L.A.); (H.S.)
| | - Lincah Andadari
- Center for Applied Zoology, Badan Riset dan Inovasi Nasional, Jakarta 10340, Jakarta Pusat, Indonesia; (R.A.); (L.A.); (H.S.)
| | - Herman Sari
- Center for Applied Zoology, Badan Riset dan Inovasi Nasional, Jakarta 10340, Jakarta Pusat, Indonesia; (R.A.); (L.A.); (H.S.)
| |
Collapse
|
21
|
Quesada-Vázquez S, Codina Moreno R, Della Badia A, Castro O, Riahi I. Promising Phytogenic Feed Additives Used as Anti-Mycotoxin Solutions in Animal Nutrition. Toxins (Basel) 2024; 16:434. [PMID: 39453210 PMCID: PMC11511298 DOI: 10.3390/toxins16100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Mycotoxins are a major threat to animal and human health, as well as to the global feed supply chain. Among them, aflatoxins, fumonisins, zearalenone, T-2 toxins, deoxynivalenol, and Alternaria toxins are the most common mycotoxins found in animal feed, with genotoxic, cytotoxic, carcinogenic, and mutagenic effects that concern the animal industry. The chronic negative effects of mycotoxins on animal health and production and the negative economic impact on the livestock industry make it crucial to develop and implement solutions to mitigate mycotoxins. In this review, we summarize the current knowledge of the mycotoxicosis effect in livestock animals as a result of their contaminated diet. In addition, we discuss the potential of five promising phytogenics (curcumin, silymarin, grape pomace, olive pomace, and orange peel extracts) with demonstrated positive effects on animal performance and health, to present them as potential anti-mycotoxin solutions. We describe the composition and the main promising characteristics of these bioactive compounds that can exert beneficial effects on animal health and performance, and how these phytogenic feed additives can help to alleviate mycotoxins' deleterious effects.
Collapse
Affiliation(s)
| | | | | | | | - Insaf Riahi
- Bionte Nutrition, 43204 Reus, Spain; (S.Q.-V.); (R.C.M.); (A.D.B.)
| |
Collapse
|
22
|
Pourmozaffar S, Reverter M, Jahromi ST, Harikrishnan R, Pazir MK, Barzkar N, Mozanzadeh MT, Sarvi B, Abolfathi M, Adeshina I, Behzadi S, Raji A. An Overview of the Biological Functions and Mechanisms of Action of Medicinal Plants and Seaweeds in the Shrimp Culture. J Anim Physiol Anim Nutr (Berl) 2024. [PMID: 39385627 DOI: 10.1111/jpn.14049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 10/12/2024]
Abstract
Diseases are major constraints to developing large-scale aquaculture practices in many countries. For decades, synthetic chemotherapeutic agents have been widely applied both as prophylactics and therapeutics to inhibit and control aquatic disease outbreaks. However, their use has become more restricted due to the negative impacts they have on the environment, the host and humans, as well as their limitations in preventing the emergence of antimicrobial-resistant bacteria. Therefore, there is a growing interest in the use of medicinal plants and seaweeds as potential alternatives to antibiotics and other synthetic chemotherapeutics. Medicinal plants and seaweeds can enhance the immune systems of animals, thereby providing protection against numerous diseases while minimizing the adverse effects associated with synthetic chemotherapeutics. Furthermore, the advantages of medicinal plants and seaweeds, such as their effectiveness, easy availability and ability to be applied on a large scale, make them appealing for use in the aquaculture industry. The main goal of this study was to review the existing knowledge of the effects of medicinal plants and seaweeds, as well as their extracts, on shrimp growth, immune response and disease resistance against bacterial and viral agents. Moreover, this paper discusses the application of seaweeds in shrimp culture. We also conducted a literature review to identify gaps in the research and provide recommendations for further advancement in this field of study. Further studies should focus on evaluating other physiological aspects, such as feed and mineral utilization, enzyme activities and histological examination.
Collapse
Affiliation(s)
- Sajjad Pourmozaffar
- Persian Gulf Mollusks Research Station, Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar-e-Lengeh, Iran
| | - Miriam Reverter
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Plymouth, UK
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Iran
| | - Ramasamy Harikrishnan
- Department of Aquatic Biomedical Sciences, Marine Applied Microbes and Aquatic Organism Disease Control Lab, School of Marine Biomedical Sciences, College of Ocean Sciences and Marine and Environmental Research Institute, Jeju National University, Jeju, South Korea
| | - Mohammad Khalil Pazir
- Iranian Shrimp Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education & Extension Organization (AREEO), Bushehr, Iran
| | - Noora Barzkar
- Higher Institution Centre of Excellence, Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Mansour Torfi Mozanzadeh
- South Iran Aquaculture Research Centre, Iranian Fisheries Science Institute (IFSRI), Agricultural Research Education and Extension organization (AREEO), Ahwaz, Iran
| | - Behzad Sarvi
- Persian Gulf Mollusks Research Station, Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar-e-Lengeh, Iran
| | - Marzieh Abolfathi
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar-Abbas, Iran
| | - Ibrahim Adeshina
- Department of Aquaculture and Fisheries, University of Ilorin, Ilorin, Nigeria
| | - Siamak Behzadi
- Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Iran
| | | |
Collapse
|
23
|
Salazar-Sesatty HA, Montoya-Hinojosa EI, Villarreal-Salazar V, Alvizo-Baez CA, Camacho-Ortiz A, Terrazas-Armendariz LD, Luna-Cruz IE, Alcocer-González JM, Villarreal-Treviño L, Flores-Treviño S. Biofilm Eradication and Inhibition of Methicillin-Resistant Staphylococcus Clinical Isolates by Curcumin-Chitosan Magnetic Nanoparticles. Jpn J Infect Dis 2024; 77:260-268. [PMID: 38825455 DOI: 10.7883/yoken.jjid.2024.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Biofilm-producing methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative staphylococci (MR-CoNS) pose clinical challenges in treating healthcare-associated infections. As alternative antimicrobial options are needed, in this study, we aimed to determine the effect of curcumin-chitosan magnetic nanoparticles (Cur-Chi-MNP) on the biofilms of staphylococcal clinical isolates. MRSA and CoNS clinical isolates were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Antimicrobial susceptibility testing was performed using the broth microdilutions. Nanoparticles were synthesized by the co-precipitation of magnetic nanoparticles (MNP) and encapsulated by the ionotropic gelation of curcumin (Cur) and chitosan (Chi). Biofilm inhibition and eradication by nanoparticles, with and without the addition of oxacillin (OXA), were assessed in Staphylococcus strains. Cur-Chi-MNP showed antimicrobial activity against planktonic cells of MRSA and MR-CoNS strains and inhibited MRSA biofilm. The addition of OXA to Cur-Chi-MNP increased the biofilm inhibition and eradication activity against all staphylococcal strains (P = 0.0007), and higher biofilm activity was observed in the early biofilm stages. Cur-Chi-MNP showed antimicrobial and biofilm inhibitory activities against S. aureus. Addition of OXA increased biofilm inhibition and eradication activity against all staphylococcal strains. A combination treatment of Cur-Chi-MNP and OXA could potentially be used to treat staphylococcal biofilm-associated infections in the early stages before the establishment of biofilm bacterial cells.
Collapse
Affiliation(s)
| | | | | | | | - Adrián Camacho-Ortiz
- Department of Infectious Diseases, University Hospital Dr. José Eleuterio González and School of Medicine, Autonomous University of Nuevo Leon, Mexico
| | | | | | | | - Licet Villarreal-Treviño
- Departament of Microbiology, School of Biological Sciences, Autonomous University of Nuevo Leon, Mexico
| | - Samantha Flores-Treviño
- Department of Infectious Diseases, University Hospital Dr. José Eleuterio González and School of Medicine, Autonomous University of Nuevo Leon, Mexico
| |
Collapse
|
24
|
Liu Y, Yin R, Tian Y, Xu S, Meng X. Curcumin nanopreparations: recent advance in preparation and application. Biomed Mater 2024; 19:052009. [PMID: 39189065 DOI: 10.1088/1748-605x/ad6dc7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Curcumin is a natural polyphenolic compound extracted from turmeric with antibacterial, antioxidant, antitumor, preventive and therapeutic neurological disorders and a variety of bioactivities, which is widely used in the field of food and medicine. However, the drawbacks of curcumin such as poor aqueous solubility and stability have limited the practical application of curcumin. To overcome these defects and enhance its functional properties, various nanoscale systems (liposomes, polymer nanoparticles, protein nanoparticles, solid lipid nanoparticles, metal nanoparticles, etc) have been extensively employed for curcumin encapsulation and delivery. Despite the rapid development of curcumin nanoformulations, there is a lack of comprehensive reviews on their preparation and properties. This review provides an overview of the construction of curcumin nano-delivery systems, mechanisms of action, nanocarrier preparation methods and the applications of curcumin nanocarriers in the food and pharmaceutical fields to provide a theoretical basis and technological support for the efficient bio-utilization, product development and early clinical application of curcumin.
Collapse
Affiliation(s)
- Yan Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| | - Rui Yin
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| | - Yuan Tian
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| | - Shujun Xu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| | - Xin Meng
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| |
Collapse
|
25
|
Wu XX, Law SK, Ma H, Jiang Z, Li YF, Au DCT, Wong CK, Luo DX. Bio-active metabolites from Chinese Medicinal Herbs for treatment of skin diseases. Nat Prod Res 2024:1-23. [PMID: 39155491 DOI: 10.1080/14786419.2024.2391070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Skin diseases have become serious issues to human health and affect one-third of the world's population according to the World Health Organisation (WHO). These consist of internal (endogenous) and external (exogenous) factors referring to genetics, hormones, and the body's immune system, as well as environmental situations, UV radiation, or environmental pollution respectively. Generally, Western Medicines (WMs) are usually treated with topical creams or strong medications for skin diseases that help superficially, and often do not treat the root cause. The relief may be instant and strong, sometimes these medicines have adverse reactions that are too strong to be able and sustained over a long period, especially steroid drug type. Chinese Medicinal Herbs (CMHs) are natural resources and relatively mild in the treatment of both manifestation and the root cause of disease. Nowadays, CMHs are attractive to many scientists, especially in studying their formulations for the treatment of skin diseases. METHODS The methodology of this review was searched in nine electronic databases including WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI), without regard to language constraints. All eligible studies are analysed and summarised. RESULTS Based on the literature findings, some extracts or active metabolites divided from CMHs, including Curcumin, Resveratrol, Liquorice, Dandelions, Cortex Moutan, and Calendula officinalis L., are effective for the treatment and prevention of skin diseases because of a wide range of pharmacological activities, e.g. anti-bacterial, anti-microbial, anti-virus, and anti-inflammation to enhance the body's immune system. It is also responsible for skin whitening to prevent pigmentation and premature ageing through several mechanisms, such as regulation or inhibition of nuclear factor kappa B (IκB/NF-κB) signalling pathways. CONCLUSION This is possible to develop CMHs, such as Curcumin, Resveratrol, Liquorice, Dandelions, Cortex Moutan and Calendula officinalis L. The ratio of multiple CMH formulations and safety assessments on human skin diseases required studying to achieve better pharmacological activities. Nano formulations are the future investigation for CMHs to combat skin diseases.
Collapse
Affiliation(s)
- Xiao Xiao Wu
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Siu Kan Law
- Department of Food and Health Sciences, The Technological and Higher Education Institute of Hong Kong, New Territories, Hong Kong, China
| | - Hui Ma
- Institute of Chinese Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Zhou Jiang
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Yi Fan Li
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Dawn Ching Tung Au
- Department of Food and Health Sciences, The Technological and Higher Education Institute of Hong Kong, New Territories, Hong Kong, China
| | - Chun Kwok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Di Xian Luo
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
- Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
26
|
Han J, Meng Q, Liu T, Lv M, Su W, Liu B, Wu J. Immunomodulatory Antibacterial Hydrogel for Wound Infection Management. Int J Nanomedicine 2024; 19:8159-8174. [PMID: 39139505 PMCID: PMC11321346 DOI: 10.2147/ijn.s472107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Background Wound healing has always been a focal point in clinical work. Bacterial infections and immune microenvironment disorders can both hinder normal wound healing. Current wound dressings only serve a covering function. Developing wound dressings with antibacterial and immunomodulatory functions is crucial for aiding wound healing. To address this issue, we have developed a hydrogel with antibacterial and immunomodulatory functions for managing infected wounds. Methods The present study describes a photo-crosslinked antibacterial hydrogel composed of curcumin, silver nanoparticles-loaded reduced graphene oxide, and silk fibroin methacryloyl for the treatment of infected wounds. The study assessed its antibacterial properties and its capacity to induce macrophage M2 polarization through in vitro and in vivo experiments. Results The hydrogel demonstrates robust antibacterial properties and enhances macrophage M2 polarization in both in vitro and in vivo settings. Moreover, it accelerates the healing of infected wounds in vivo by stimulating collagen deposition and angiogenesis. Conclusion Overall, this hydrogel shows great potential in managing wound infections.
Collapse
Affiliation(s)
- Jing Han
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, People’s Republic of China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, People’s Republic of China
| | - Qingxun Meng
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, People’s Republic of China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, People’s Republic of China
| | - Taicheng Liu
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, People’s Republic of China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, People’s Republic of China
| | - Mengru Lv
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, People’s Republic of China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, People’s Republic of China
| | - Wenxuan Su
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, People’s Republic of China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, People’s Republic of China
| | - Beibei Liu
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, People’s Republic of China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, People’s Republic of China
| | - Jiannan Wu
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, People’s Republic of China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, People’s Republic of China
| |
Collapse
|
27
|
Crispini A, Aiello I, Godbert N, La Deda M, di Maio G, Tagarelli A, Elliani R, De Rose R, Scarpelli F. Hybrid Ethylcellulose Polymeric Films: Ag(I)-Based Components and Curcumin as Reinforcing Ingredients for Enhanced Food Packaging Properties. Chemistry 2024; 30:e202400452. [PMID: 38837264 DOI: 10.1002/chem.202400452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Bio-active ethylcellulose (EC) polymeric films have been obtained by incorporating curcumin (curc) and Ag(I)-based compounds, known for their antioxidant and antimicrobial activity, respectively, within the polymeric matrix. The recently reported Ag(I) coordination polymer, in both its structural forms (α-[(bpy)Ag(OTf)]∞ and β-{[(bpy)Ag][OTf]}∞), and the [(bpy)Ag(OTf)]∞-curc polymeric co-crystal (bpy=2,2'-bipyridine; OTf=trifluoromethanesulfonate) have been selected as Ag(I) species. The hybrid composite films have been prepared through the simple solvent casting method and characterized through Powder X-Ray Diffraction (PXRD), Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscope (SEM), UV-vis spectroscopy. The deep investigation of the film samples highlighted the non-inert behaviour of EC towards these specific active ingredients. Antimicrobial tests showed that EC films embedding the Ag(I)-based compounds present good antimicrobial performance, in particular against Staphylococcus aureus, used as a model of Gram-positive bacteria. In addition, Silver migration tests, performed on the Ag(I)-incorporating EC films, evidenced low values of silver release particularly in the case of the EC films incorporating [(bpy)Ag(OTf)]∞-curc.
Collapse
Affiliation(s)
- Alessandra Crispini
- MAT-InLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - Iolinda Aiello
- MAT-InLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
- LPM-Laboratorio Preparazione Materiali, Star-Lab, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
- CNR NANOTEC-Istituto di Nanotecnologia UOS Cosenza, 87036, Arcavacata di Rende, CS, Italy
| | - Nicolas Godbert
- MAT-InLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
- LPM-Laboratorio Preparazione Materiali, Star-Lab, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - Massimo La Deda
- MAT-InLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
- CNR NANOTEC-Istituto di Nanotecnologia UOS Cosenza, 87036, Arcavacata di Rende, CS, Italy
| | - Giuseppe di Maio
- MAT-InLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - Antonio Tagarelli
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - Rosangela Elliani
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - Renata De Rose
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - Francesca Scarpelli
- MAT-InLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
| |
Collapse
|
28
|
Mali SN, Pandey A. Development of curcumin integrated smart pH indicator, antibacterial, and antioxidant waste derived Artocarpus lakoocha starch-based packaging film. Int J Biol Macromol 2024; 275:133827. [PMID: 39084983 DOI: 10.1016/j.ijbiomac.2024.133827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/23/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
Monitoring of food freshness is considered one of the crucial challenges for both customers/consumers and the food industries. In this study, we developed a curcumin-based starch film (F1) for pH-sensitive intelligent food packaging application. The starch was obtained from waste seeds of Artocarpus lakoocha (NS-MJF). The native starch underwent various physical and chemical modifications to yield modified starches (S1 [Autoclave heat treated], S2 [osmotic-pressure treated], S3 [citric acid treated]). The native starch was then used further for the formation of curcumin (2.5 % w/w)-based film (F1). We had analyzed these starches for solubility, colour analysis, biodegradability, oil absorption capacity, and moisture content, etc. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed favourable microstructures. The addition of curcumin to the starch enhanced the contact angle and elongation at the break of the resulting films. Antioxidant and antimicrobial assays, along with real-time freshness monitoring of chicken fillets, were also conducted. Thus, our findings may contribute to the optimization of pH-responsive biopolymer-based films for intelligent poultry packaging, promising advancements in food preservation and safety.
Collapse
Affiliation(s)
- Suraj N Mali
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Jharkhand 835215, India; School of Pharmacy, D.Y. Patil University (Deemed to be University), Sector 7, Nerul, Navi Mumbai 400706, India.
| | - Anima Pandey
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Jharkhand 835215, India
| |
Collapse
|
29
|
Joshi P, Soares JM, Martins GM, Zucolotto Cocca LH, De Boni L, de Oliveira KT, Bagnato VS, Blanco KC. Enhancing the efficacy of antimicrobial photodynamic therapy through curcumin modifications. Photochem Photobiol 2024. [PMID: 39049138 DOI: 10.1111/php.14000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/04/2024] [Accepted: 06/30/2024] [Indexed: 07/27/2024]
Abstract
Curcumin serves as a photosensitizer (PS) in the context of microbial inactivation when subjected to light exposure, to produce reactive oxygen species, which exhibit efficacy in eradicating microorganisms. This remarkable property underscores the growing potential of antimicrobial photodynamic therapy (aPDT) in the ongoing fight against bacterial infections. Considering this, we investigate the efficacy of various in vitro curcumin formulations within a PDT protocol designed to target Staphylococcus aureus. Specifically, we conduct a comparative analysis involving synthetic curcumin (Cur-Syn) and curcumin derivatives modified with chlorine (Cl), selenium (Se), and iodine (I) (Cur-Cl, Cur-Se, Cur-I). To assess the impact of aPDT, we subject S. aureus to incubation with curcumin, followed by irradiation at 450 nm with energy doses of 3.75, 7.5, and 15 J/cm2. Our investigation encompasses an evaluation of PS uptake and photobleaching across the various curcumin variants. Notably, all three modifications (Cur-Cl, Cur-Se, Cur-I) induce a significant reduction in bacterial viability, approximately achieving a 3-log reduction. Interestingly, the uptake kinetics of Cur-Syn and Cur-Se exhibit similarities, reaching saturation after 20 min. Our findings suggest that modifications to curcumin have a discernible impact on the photodynamic properties of the PS molecule.
Collapse
Affiliation(s)
- Priyanka Joshi
- PPGBiotec, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Jennifer M Soares
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Guilherme M Martins
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Leandro H Zucolotto Cocca
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
- Grupo de Fotônica, Institute of Physics, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Leonardo De Boni
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Kleber T de Oliveira
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Vanderlei S Bagnato
- PPGBiotec, Federal University of São Carlos, São Carlos, São Paulo, Brazil
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
- Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Kate C Blanco
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| |
Collapse
|
30
|
Chu Z, Wang H, Dong B. Research on Food Preservation Based on Antibacterial Technology: Progress and Future Prospects. Molecules 2024; 29:3318. [PMID: 39064897 PMCID: PMC11279653 DOI: 10.3390/molecules29143318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The nutrients present in food are not only prone to a series of physicochemical reactions but also provide conditions for the growth and reproduction of foodborne microorganisms. In recent years, many innovative methods from different fields have been introduced into food preservation, which extends the shelf life while maximizing the preservation of the original ingredients and properties of food. In this field, there is a lack of a systematic summary of new technologies emerging. In view of this, we overview the innovative methods applied to the field of food preservation in recent 3 years, focusing on a variety of technological approaches such as antimicrobial photodynamic therapy based on nanotechnology, electromagnetic radiation sterilization based on radiation technology, and antimicrobial peptides based on biomolecules. We also discuss the preservation mechanism and the application of the different methods to specific categories of products. We evaluated their advantages and limitations in the food industry, describing their development prospects. In addition, as microorganisms are the main causes of food spoilage, our review also has reference significance for clinical antibacterial treatment.
Collapse
Affiliation(s)
- Zejing Chu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China;
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China;
| | - Biao Dong
- College of Electronic Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
31
|
Staroń A, Chwastowski J, Kijania-Kontak M, Wiśniewski M, Staroń P. Bio-enriched composite materials derived from waste cooking oil for selective reduction of odour intensity. Sci Rep 2024; 14:16311. [PMID: 39009707 PMCID: PMC11251015 DOI: 10.1038/s41598-024-67302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024] Open
Abstract
Currently, pathogenic microorganisms are becoming more active in public utility areas like parking lots and waste shelters due to the accumulation of organic waste. This uncontrolled waste leads to decay, altering its composition and presenting a microbiological risk to public health. Additionally, it emits unpleasant odors containing chemicals that irritate the mucous membranes, causing discomfort in the nose, throat, and eyes by stimulating the trigeminal nerve. These odors can have various negative effects on both quality of life and public health. The study investigated the physicochemical properties of oil composites enriched with natural additives and determined their effectiveness in reducing the intensity of nuisance odours. The research showed over 82% reduction in decaying meat odour and almost 65% reduction in ammonia odour. A higher impact of the given composites on reducing the odour from decaying meat than from ammonia was observed. This may be due to the biocidal properties of the additives used (turmeric, thymol, salicylic acid, hops and curly sorrel) and the higher intensity of ammonia odor compared to meat-derived odour. Despite the non-porous nature of the solids tested (with similar specific surface areas ranging from 0.66 to 0.88 m2/g), they were capable of sorbing NH3.
Collapse
Affiliation(s)
- Anita Staroń
- Department of Engineering and Chemical Technology, Cracow University of Technology, 24 Warszawska St., 31-155, Cracow, Poland.
| | - Jarosław Chwastowski
- Department of Engineering and Chemical Technology, Cracow University of Technology, 24 Warszawska St., 31-155, Cracow, Poland
| | - Magda Kijania-Kontak
- Department of Civil Engineering, Cracow University of Technology, 24 Warszawska St., 31-155, Cracow, Poland
| | - Marek Wiśniewski
- Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina St., 87-100, Toruń, Poland
| | - Paweł Staroń
- Department of Engineering and Chemical Technology, Cracow University of Technology, 24 Warszawska St., 31-155, Cracow, Poland
| |
Collapse
|
32
|
Sanmugam A, Sellappan LK, Sridharan A, Manoharan S, Sairam AB, Almansour AI, Veerasundaram S, Kim HS, Vikraman D. Chitosan-Integrated Curcumin-Graphene Oxide/Copper Oxide Hybrid Nanocomposites for Antibacterial and Cytotoxicity Applications. Antibiotics (Basel) 2024; 13:620. [PMID: 39061302 PMCID: PMC11273410 DOI: 10.3390/antibiotics13070620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
This study deals with the facile synthesis of a single-pot chemical technique for chitosan-curcumin (CUR)-based hybrid nanocomposites with nanostructured graphene oxide (GO) and copper oxide (CuO) as the antibacterial and cytotoxic drugs. The physicochemical properties of synthesized hybrid nanocomposites such as CS-GO, CS-CuO, CS-CUR-GO, and CS-CUR-GO/CuO were confirmed with various advanced tools. Moreover, the in vitro drug release profile of the CS-CUR-GO/CuO nanocomposite exhibited sustained and controlled release during different time intervals. Also, the antibacterial activity of the CS-CUR-GO/CuO hybrid nanocomposite presented the maximum bactericidal effect against Staphylococcus aureus and Escherichia coli pathogens. The hybrid nanocomposites revealed improved cytotoxicity behaviour against cultured mouse fibroblast cells (L929) via cell adhesion, DNA damage, and proliferation. Thus, the chitosan-based hybrid nanocomposites offer rich surface area, biocompatibility, high oxidative stress, and bacterial cell disruption functionalities as a potential candidate for antibacterial and cytotoxicity applications.
Collapse
Affiliation(s)
- Anandhavelu Sanmugam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Sriperumbudur 602117, India; (A.S.); (A.B.S.)
| | - Logesh Kumar Sellappan
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India;
| | | | - Swathy Manoharan
- Department of Biomedical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, India;
| | - Ananda Babu Sairam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Sriperumbudur 602117, India; (A.S.); (A.B.S.)
| | - Abdulrahman I. Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Subha Veerasundaram
- Department of Chemistry, R.M.D. Engineering College, Tiruvallur 601206, India;
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea;
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea;
| |
Collapse
|
33
|
Jiao L, Li Y, Hu J, Zhao S, Zhang X, Benjakul S, Zhang B. Curcumin-loaded food-grade nano-silica hybrid material exhibiting improved photodynamic effect and its application for the preservation of small yellow croaker (Larimichthys polyactis). Food Res Int 2024; 188:114492. [PMID: 38823875 DOI: 10.1016/j.foodres.2024.114492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Two types of curcumin-loaded food-grade nano-silica (F-SiO2) hybrid materials were successfully synthesized using the rotary evaporation method (F-SiO2@Cur) and the adsorption method (Cur@F-SiO2). The microstructure and spectral analyses confirmed that the curcumin in F-SiO2@Cur was loaded within the nanopores in a non-aggregate form rather than being adsorbed onto the surface (Cur@F-SiO2). Additionally, F-SiO2@Cur exhibited remarkable water solubility (1510 ± 50.33 µg/mL) and photostability (a photodegradation ratio of only 59.22 %). Importantly, F-SiO2@Cur obtained a higher capacity for the generation of singlet oxygen (1O2) compared to control groups. Consequently, F-SiO2@Cur-mediated photodynamic inactivation (PDI) group attained the highest score in sensory evaluation and the best color protection effect in PDI experiment of small yellow croaker (Larimichthys polyactis) at 4 °C. Moreover, F-SiO2@Cur could effectively controlled total volatile basic nitrogen (TVB-N) content, pH, and total viable count (TVC), thereby prolonging the shelf life. Therefore, F-SiO2@Cur-mediated PDI is an effective fresh-keeping technology for aquatic products.
Collapse
Affiliation(s)
- Long Jiao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yuwei Li
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jiajie Hu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shuyi Zhao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Pisa Marine Graduate School, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiaoye Zhang
- School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Pisa Marine Graduate School, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
34
|
Soleimani F, Pellerin C, Omidfar K, Bagheri R. Engineered Robust Hydrophobic/Hydrophilic Nanofibrous Scaffolds with Drug-Eluting, Antioxidant, and Antimicrobial Capacity. ACS APPLIED BIO MATERIALS 2024; 7:3687-3700. [PMID: 38776103 DOI: 10.1021/acsabm.4c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Multifunctional nanofibrous architectures have attracted extensive attention for biomedical applications due to their adjustable and versatile properties. Electrospun fabrics stand out as key building blocks for these structures, yet improving their mechanobiological and physicochemical performance is a challenge. Here, we introduce biodegradable engineered hydrophobic/hydrophilic scaffolds consisting of electrospun polylactide nanofibers coated with drug-eluting synthetic (poly(vinyl alcohol)) and natural (starch) polymers. The microstructure of these composite scaffolds was tailored for an increased hydrophilicity, optimized permeability, water retention capacity of up to 5.1 g/g, and enhanced mechanical properties under both dry and wet conditions. Regarding the latter, normalized tensile strengths of up to 32.4 MPa were achieved thanks to the improved fiber interactions and fiber-coating stress transfer. Curcumin was employed as a model drug, and its sustained release in a pure aqueous medium was investigated for 35 days. An in-depth study of the release kinetics revealed the outstanding water solubility and bioavailability of curcumin, owing to its complexation with the hydrophilic polymers and further delineated the role of the hydrophobic nanofibrous network in regulating its release rate. The modified curcumin endowed the composites with antioxidant activities up to 5.7 times higher than that of free curcumin as well as promising anti-inflammatory and bacteriostatic activities. The cytocompatibility and cell proliferation capability on human dermal fibroblasts also evidenced the safe use of the constructs. Finally, the fabrics present pH-responsive color-changing behavior easily distinguishable within the pH range of 5-9. Thus, these designs offer a facile and cost-effective roadmap for the fabrication of smart multifunctional biomaterials, especially for chronic wound healing.
Collapse
Affiliation(s)
- Foad Soleimani
- Polymeric Materials Research Group (PMRG), Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran 14588, Iran
| | - Christian Pellerin
- Département de chimie, Institut Courtois, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran 14117, Iran
| | - Reza Bagheri
- Polymeric Materials Research Group (PMRG), Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran 14588, Iran
| |
Collapse
|
35
|
Astaneh ME, Noori F, Fereydouni N. Curcumin-loaded scaffolds in bone regeneration. Heliyon 2024; 10:e32566. [PMID: 38961905 PMCID: PMC11219509 DOI: 10.1016/j.heliyon.2024.e32566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
In recent years, there has been a notable surge in the development of engineered bone scaffolds intended for the repair of bone defects. While autografts and allografts have traditionally served as the primary methods in bone tissue engineering, their inherent limitations have spurred the exploration of novel avenues in biomedical implant development. The emergence of bone scaffolds not only facilitates bone reconstruction but also offers a platform for the targeted delivery of therapeutic agents. There exists a pervasive interest in leveraging various drugs, proteins, growth factors, and biomolecules with osteogenic properties to augment bone formation, as the enduring side effects associated with current clinical modalities necessitate the pursuit of safer alternatives. Curcumin, the principal bioactive compound found in turmeric, has demonstrated notable efficacy in regulating the proliferation and differentiation of bone cells while promoting bone formation. Nevertheless, its utility is hindered by restricted water solubility and poor bioavailability. Strategies aimed at enhancing the solubility, stability, and bioavailability of curcumin, including formulation techniques such as liposomes and nanoparticles or its complexation with metals, have been explored. This investigation is dedicated to exploring the impact of curcumin on the proliferation, differentiation, and migration of osteocytes, osteoblasts, and osteoclasts.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Fariba Noori
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
36
|
Belcher S, Flores-Iga G, Natarajan P, Crummett G, Talavera-Caro A, Gracia-Rodriguez C, Lopez-Ortiz C, Das A, Adjeroh DA, Nimmakayala P, Balagurusamy N, Reddy UK. Dietary Curcumin Intake and Its Effects on the Transcriptome and Metabolome of Drosophila melanogaster. Int J Mol Sci 2024; 25:6559. [PMID: 38928266 PMCID: PMC11203963 DOI: 10.3390/ijms25126559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Curcumin, a polyphenol derived from Curcuma longa, used as a dietary spice, has garnered attention for its therapeutic potential, including antioxidant, anti-inflammatory, and antimicrobial properties. Despite its known benefits, the precise mechanisms underlying curcumin's effects on consumers remain unclear. To address this gap, we employed the genetic model Drosophila melanogaster and leveraged two omics tools-transcriptomics and metabolomics. Our investigation revealed alterations in 1043 genes and 73 metabolites upon supplementing curcumin into the diet. Notably, we observed genetic modulation in pathways related to antioxidants, carbohydrates, and lipids, as well as genes associated with gustatory perception and reproductive processes. Metabolites implicated in carbohydrate metabolism, amino acid biosynthesis, and biomarkers linked to the prevention of neurodegenerative diseases such as schizophrenia, Alzheimer's, and aging were also identified. The study highlighted a strong correlation between the curcumin diet, antioxidant mechanisms, and amino acid metabolism. Conversely, a lower correlation was observed between carbohydrate metabolism and cholesterol biosynthesis. This research highlights the impact of curcumin on the diet, influencing perception, fertility, and molecular wellness. Furthermore, it directs future studies toward a more focused exploration of the specific effects of curcumin consumption.
Collapse
Affiliation(s)
- Samantha Belcher
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Gerardo Flores-Iga
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Garrett Crummett
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Alicia Talavera-Caro
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Celeste Gracia-Rodriguez
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, Mexico
| | - Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Amartya Das
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Donald A. Adjeroh
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA;
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, Mexico
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (S.B.); (G.F.-I.); (P.N.); (G.C.); (A.T.-C.); (C.G.-R.); (C.L.-O.); (A.D.); (P.N.)
| |
Collapse
|
37
|
Khan ZA, Wani MY, Ahmad A, Basha MT, Aly NA, Yakout AA. Multifunctional chitosan-cross linked- curcumin-tannic acid biocomposites disrupt quorum sensing and biofilm formation in pathogenic bacteria. Int J Biol Macromol 2024; 271:132719. [PMID: 38821810 DOI: 10.1016/j.ijbiomac.2024.132719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Natural products have a long history of success in treating bacterial infections, making them a promising source for novel antibacterial medications. Curcumin, an essential component of turmeric, has shown potential in treating bacterial infections and in this study, we covalently immobilized curcumin (Cur) onto chitosan (CS) using glutaraldehyde and tannic acid (TA), resulting in the fabrication of novel biocomposites with varying CS/Cur/TA ratios. Comprehensive characterization of these ternary biocomposites was conducted using FTIR, SEM, XPS, and XRD to assess their morphology, functional groups, and chemical structures. The inhibitory efficacy of these novel biocomposites (n = 4) against the growth and viability of Pseudomonas aeruginosa (ATCC27853) and Chromobacterium violaceum (ATCC12472) was evaluated and the most promising composite (C3) was investigated for its impact on quorum sensing (QS) and biofilm formation in these bacteria. Remarkably, this biocomposite significantly disrupted QS circuits and effectively curtailed biofilm formation in the tested pathogens without inducing appreciable toxicity. These findings underscore its potential for future in vivo studies, positioning it as a promising candidate for the development of biofilm disrupting antibacterial agents.
Collapse
Affiliation(s)
- Ziya Ahmad Khan
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia.
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia.
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Maram T Basha
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia
| | - Nada A Aly
- Department of Pharmacy Technology, Faculty of Technological Health Sciences, Borg El Arab Technological University, Egypt; Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Amr A Yakout
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia; Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
38
|
Wu H, Liu Z, Zhang Y, Gao B, Li Y, He X, Sun J, Choe U, Chen P, Blaustein RA, Yu L. Chemical Composition of Turmeric ( Curcuma longa L.) Ethanol Extract and Its Antimicrobial Activities and Free Radical Scavenging Capacities. Foods 2024; 13:1550. [PMID: 38790848 PMCID: PMC11121704 DOI: 10.3390/foods13101550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Turmeric (Curcuma longa L.) is a perennial tuberous plant from the genus Curcuma (Zingiberaceae) and has been widely used in foods for thousands of years. The present study examined the ethanol extract of turmeric for its chemical composition, antimicrobial activity, and free radical scavenging properties. UHPLC-MS/MS analysis tentatively identified eight compounds in the turmeric extract. Potential antimicrobial effects of 0.1, 1.0, and 10 mg turmeric equivalents (TE)/mL were evaluated in vitro against a variety of Gram-negative bacteria (i.e., Escherichia coli, Klebsiella pneumoniae, and Pseudomonas sp.) and Gram-positive bacteria (i.e., Enterococcus faecalis, Listeria innocua, and Staphylococcus aureus). Concentrations of 0.1 and 1.0 mg TE/mL inhibited the growth of S. aureus and significantly suppressed that of Pseudomonas sp., E. faecalis, and L. innocua. The growth of all strains, including E. coli, was inhibited by 10 mg TE/mL. Moreover, free radical scavenging capacities were determined using HO●, ABTS●+, and DPPH● (HOSC, ABTS, and RDSC, respectively) radicals. The turmeric ethanol extract had a TPC value of 27.12 mg GAE/g, together with HOSC, RDSC, and ABTS values of 1524.59, 56.38, and 1.70 μmol TE/g, respectively. Our results suggest that turmeric extract has potential applications for use in functional foods to reduce microbial burdens and oxidative stress-related health problems.
Collapse
Affiliation(s)
- Huan Wu
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA; (Z.L.); (Y.L.); (U.C.); (R.A.B.); (L.Y.)
| | - Zhihao Liu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA; (Z.L.); (Y.L.); (U.C.); (R.A.B.); (L.Y.)
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (J.S.); (P.C.)
| | - Yaqiong Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (B.G.)
| | - Boyan Gao
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (B.G.)
| | - Yanfang Li
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA; (Z.L.); (Y.L.); (U.C.); (R.A.B.); (L.Y.)
| | - Xiaohua He
- Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA;
| | - Jianghao Sun
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (J.S.); (P.C.)
| | - Uyory Choe
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA; (Z.L.); (Y.L.); (U.C.); (R.A.B.); (L.Y.)
| | - Pei Chen
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (J.S.); (P.C.)
| | - Ryan A. Blaustein
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA; (Z.L.); (Y.L.); (U.C.); (R.A.B.); (L.Y.)
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA; (Z.L.); (Y.L.); (U.C.); (R.A.B.); (L.Y.)
| |
Collapse
|
39
|
Qu L, Li X, Zhou J, Peng X, Zhou P, Zheng H, Jiang Z, Xie Q. A novel acid-responsive polymer coating with antibacterial and antifouling properties for the prevention of biofilm-associated infections. Colloids Surf B Biointerfaces 2024; 239:113939. [PMID: 38744077 DOI: 10.1016/j.colsurfb.2024.113939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Chronic infections caused by the pathogenic biofilms on implantable medical devices pose an increasing challenge. To combat long-term biofilm-associated infections, we developed a novel dual-functional polymer coating with antibacterial and antifouling properties. The coating consists of N-vinylpyrrolidone (NVP) and 3-(acrylamido)phenylboronic acid (APBA) copolymer brushes, which bind to curcumin (Cur) as antibacterial molecules through acid-responsive boronate ester bonds. In this surface design, the hydrophilic poly (N-vinylpyrrolidone) (PVP) component improved antifouling performance and effectively prevented bacterial adhesion and aggregation during the initial phases. The poly (3-(acrylamido) phenylboronic acid) (PAPBA, abbreviated PB) component provided binding sites for Cur by forming acid-responsive boronate ester bonds. When fewer bacteria overcame the anti-adhesion barrier and colonized, the surface responded to the decreased microenvironmental pH by breaking the boronate ester bonds and releasing curcumin. This responsive mechanism enabled Cur to interfere with biofilm formation and provide a multilayer anti-biofilm protection system. The coating showed excellent antibacterial properties against Escherichia coli and Staphylococcus aureus, preventing biofilm formation for up to 7 days. The coating also inhibited protein adsorption and platelet adhesion significantly. This coating also exhibited high biocompatibility with animal erythrocytes and pre-osteoblasts. This research offers a promising approach for developing novel smart anti-biofilm coating materials.
Collapse
Affiliation(s)
- Limin Qu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science and Technology, Changsha 410004, China
| | - Xiangzhou Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science and Technology, Changsha 410004, China.
| | - Jun Zhou
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science and Technology, Changsha 410004, China
| | - Xuyi Peng
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science and Technology, Changsha 410004, China
| | - Peng Zhou
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science and Technology, Changsha 410004, China
| | - Hanxiao Zheng
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Zhi Jiang
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs, Hunan Prima Drug Research Center Co., Ltd., Changsha 410329, China
| | - Qiuen Xie
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China.
| |
Collapse
|
40
|
Novakoski PV, de Vitt MG, Molosse VL, Xavier ACH, Wagner R, Klein B, Milarch CF, Leonardi LE, Kozloski GV, Vedovatto M, da Silva AS. The addition of curcumin to the diet of post-weaning dairy calves: effects on ruminal fermentation, immunological, and oxidative responses. Trop Anim Health Prod 2024; 56:142. [PMID: 38662082 DOI: 10.1007/s11250-024-03993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Incorporating Curcumin into animal diets holds significant promise for enhancing both animal health and productivity, with demonstrated positive impacts on antioxidant activity, anti-microbial responses. Therefore, this study aimed to determine whether adding Curcumin to the diet of dairy calves would influence ruminal fermentation, hematologic, immunological, oxidative, and metabolism variables. Fourteen Jersey calves were divided into a control group (GCON) and a treatment group (GTRA). The animals in the GTRA received a diet containing 65.1 mg/kg of dry matter (DM) Curcumin (74% purity) for an experimental period of 90 days. Blood samples were collected on days 0, 15, 45, and 90. Serum levels of total protein and globulins were higher in the GTRA group (P < 0.05) than the GCON group. In the GTRA group, there was a reduction in pro-inflammatory cytokines (IL-1ß and IL-6) (P < 0.05) and an increase in IL-10 (which acts on anti-inflammatory responses) (P < 0.05) when compared to the GCON. There was a significantly higher (P < 0.05) concentration of immunoglobulin A (IgA) in the serum of the GTRA than the GCON. A Treatment × Day interaction was observed for haptoglobin levels, which were higher on day 90 in animals that consumed Curcumin than the GCON (P < 0.05). The catalase and superoxide dismutase activities were significantly higher (P < 0.05) in GTRA, reducing lipid peroxidation when compared to the GCONT. Hematologic variables did not differ significantly between groups. Among the metabolic variables, only urea was higher in the GTRA group when compared to the GCON. Body weight and feed efficiency did not differ between groups (meaning the percentage of apparent digestibility of dry matter, crude protein, and acid detergent fiber (ADF) and neutral detergent fiber (NDF). There was a tendency (P = 0.09) for treatment effect and a treatment x day interaction (P = 0.05) for levels of short-chain fatty acids in rumen fluid, being lower in animals that consumed curcumin. There was a treatment vs. day interaction (P < 0.05) for the concentration of acetate in the rumen fluid (i.e., on day 45, had a reduction in acetate; on day 90, values were higher in the GTRA group when compared to the GCON). We conclude that there was no evidence in the results from this preliminary trial that Curcumin in the diet of dairy calves interfered with feed digestibility. Curcumin may have potential antioxidant, anti-inflammatory, and immune effects that may be desirable for the production system of dairy calves.
Collapse
Affiliation(s)
- Pablo Vinicius Novakoski
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó - SC, Brazil
| | - Maksuel Gatto de Vitt
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó - SC, Brazil
| | - Vitor Luiz Molosse
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó - SC, Brazil
| | | | - Roger Wagner
- Department of Food Science, Universidade Federal de Santa Maria (UFSM), Santa Maria , Brazil
| | - Bruna Klein
- Department of Animal Science, UDESC, R. Beloni Trombeta Zanin, 680E - Santo Ant?nio, Chapecó - SC, 89815-630, Brazil
| | | | | | | | - Marcelo Vedovatto
- Dean Lee Research and Extension Center, Louisiana State University, Alexandria, LA, 71302, USA
| | - Aleksandro S da Silva
- Department of Animal Science, UDESC, R. Beloni Trombeta Zanin, 680E - Santo Ant?nio, Chapecó - SC, 89815-630, Brazil.
| |
Collapse
|
41
|
Srivastava A, Verma N, Kumar V, Apoorva P, Agarwal V. Biofilm inhibition/eradication: exploring strategies and confronting challenges in combatting biofilm. Arch Microbiol 2024; 206:212. [PMID: 38616221 DOI: 10.1007/s00203-024-03938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024]
Abstract
Biofilms are complex communities of microorganisms enclosed in a self-produced extracellular matrix, posing a significant threat to different sectors, including healthcare and industry. This review provides an overview of the challenges faced due to biofilm formation and different novel strategies that can combat biofilm formation. Bacteria inside the biofilm exhibit increased resistance against different antimicrobial agents, including conventional antibiotics, which can lead to severe problems in livestock and animals, including humans. In addition, biofilm formation also imposes heavy economic pressure on industries. Hence it becomes necessary to explore newer alternatives to eradicate biofilms effectively without applying selection pressure on the bacteria. Excessive usage of antibiotics may also lead to an increase in the number of resistant strains as bacteria employ an advanced antimicrobial resistance mechanism. This review provides insight into multifaceted technologies like quorum sensing inhibition, enzymes, antimicrobial peptides, bacteriophage, phytocompounds, and nanotechnology to neutralize biofilms without developing antimicrobial resistance (AMR). Furthermore, it will pave the way for developing newer therapeutic agents to deal with biofilms more efficiently.
Collapse
Affiliation(s)
- Anmol Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Nidhi Verma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Vivek Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Pragati Apoorva
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Vishnu Agarwal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India.
| |
Collapse
|
42
|
Medaglia S, Otri I, Bernardos A, Marcos MD, Aznar E, Sancenón F, Martínez-Máñez R. Synergistic antimicrobial photodynamic therapy using gated mesoporous silica nanoparticles containing curcumin and polymyxin B. Int J Pharm 2024; 654:123947. [PMID: 38408553 DOI: 10.1016/j.ijpharm.2024.123947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Photodynamic Therapy is a therapy based on combining a non-toxic compound, known as photosensitizer (PS), and irradiation with light of the appropriate wavelength to excite the PS molecule. The photon absorption by the PS leads to reactive oxygen species generation and a subsequent oxidative burst that causes cell damage and death. In this work, we report an antimicrobial nanodevice that uses the activity of curcumin (Cur) as a PS for antimicrobial Photodynamic Therapy (aPDT), based on mesoporous silica nanoparticles in which the action of the classical antibiotic PMB is synergistically combined with the aPDT properties of curcumin to combat bacteria. The synergistic effect of the designed gated device in combination with irradiation with blue LED light (470 nm) is evaluated against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus epidermidis. The results show that the nanodevice exhibits a noteworthy antibacterial activity against these microorganisms, a much more significant effect than free Cur and PMB at equivalent concentrations. Thus, 0.1 µg/mL of MSNs-Cur-PMB eliminates a bacterial concentration of about 105 CFU/mL of E. coli, while 1 µg/mL of MSNs-Cur-PMB is required for P. aeruginosa and S. epidermidis. In addition, antibiofilm activity against the selected bacteria was also tested. We found that 0.1 mg/mL of MSNs-Cur-PMB inhibited 99 % biofilm formation for E. coli, and 1 mg/mL of MSNs-Cur-PMB achieved 90 % and 100 % inhibition of biofilm formation for S. epidermidis and P. aeruginosa, respectively.
Collapse
Affiliation(s)
- Serena Medaglia
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ismael Otri
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Andrea Bernardos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Química, Universidad Politécnica de Valencia, Cami de Vera s/n, 46022 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - María Dolores Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Química, Universidad Politécnica de Valencia, Cami de Vera s/n, 46022 Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Av Fernando Abril Martorell 106, 46026 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Química, Universidad Politécnica de Valencia, Cami de Vera s/n, 46022 Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Av Fernando Abril Martorell 106, 46026 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Química, Universidad Politécnica de Valencia, Cami de Vera s/n, 46022 Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Av Fernando Abril Martorell 106, 46026 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Química, Universidad Politécnica de Valencia, Cami de Vera s/n, 46022 Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Av Fernando Abril Martorell 106, 46026 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
43
|
Ji J, Ma Z, Wang Y. Advancing Gastrointestinal Health: Curcumin's Efficacy and Nanopreparations. Molecules 2024; 29:1659. [PMID: 38611938 PMCID: PMC11013328 DOI: 10.3390/molecules29071659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Curcumin (CCM) is a polyphenol compound extracted from the turmeric rhizome. It has various biological activities, including antibacterial, anti-inflammatory, anti-cancer, and antioxidant. Due to its diverse activities, it is often used by researchers to study the therapeutic effects on various diseases. However, its poor solubility leads to poor bioavailability, and it is necessary to increase the water solubility with the help of carriers to improve the therapeutic effect. Gastrointestinal disease is a major global health problem that continues to affect human health. In this review, we have summarized the possible mechanism and therapeutic effect of CCM in various gastrointestinal diseases, and the improvement in the curative effect of CCM with nanopreparation. Finally, we concluded that there have been many clinical trials of CCM in combination with other drugs for the treatment of gastrointestinal disease, but so far, few have used CCM nanomaterials for treatment. Although in vitro and preclinical experiments have shown that nanopreparations can improve the efficacy of CCM, there are still insufficient studies on the safety of carriers.
Collapse
Affiliation(s)
- Jialin Ji
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China;
| | - Zhaojie Ma
- School of Humanities and Medicine, Shandong Second Medical University, Weifang 261053, China;
| | - Yingshuai Wang
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China
| |
Collapse
|
44
|
Gulel GT, Kanat S, Kucukgoz E. Antibacterial effect of curcumin on Salmonella Typhimurium: In vitro and food model studies. VET MED-CZECH 2024; 69:115-122. [PMID: 38751988 PMCID: PMC11093645 DOI: 10.17221/114/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/26/2024] [Indexed: 05/18/2024] Open
Abstract
Salmonellosis is a major foodborne disease transmitted from contaminated poultry products worldwide. Although a wide variety of chemical agents are used in the prevention of foodborne Salmonella spp. infections, consumers prefer natural additives, that do not harm human health and do not impair the characteristics of food. Curcumin is a yellow-coloured, hydrophobic polyphenol obtained from the rhizome of the Curcuma longa L. plant known as turmeric. The purpose of this study was to evaluate curcumin's antibacterial activity against S. Typhimurium in chicken meat and in vitro. In the first step, chicken samples were experimentally contaminated with S. Typhimurium at a level of 2.8 × 10-7 CFU/ml. Then, they were kept in a 1, 2, and 3% curcumin solution for 15 minutes. At the end of the treatment, chicken samples were stored at +4 °C. The number of S. Typhimurium in chicken samples was determined according to EN ISO 6579-1. In the result of the study, the number of S. Typhimurium decreased by 2.37, 2.71, and 2.84 log levels at the end of the 6th day as a result of the 1, 2 and 3% curcumin treatment, respectively. The MIC value of curcumin was determined to be 362 μg/ml for S. Typhimurium.
Collapse
Affiliation(s)
- Goknur Terzi Gulel
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkiye
| | - Sibel Kanat
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkiye
| | - Esra Kucukgoz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkiye
| |
Collapse
|
45
|
Maheshwari R, Ghode P, Sharma M. Lab on chip based self-adjustable liposomes for rapid wound healing: An in depth in vitro, in vivo and higher dose toxicity investigation. BIOMATERIALS ADVANCES 2024; 158:213777. [PMID: 38266334 DOI: 10.1016/j.bioadv.2024.213777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Thanks to microfluidic technology, different nano-delivery systems are becoming clinically viable. Using a novel and rapid microfluidic hydrodynamic focusing (MHF) method (lipids on chip) we developed self-adaptable liposomes (SLs) containing cefpodoxime proxetil (CP) for the treatment of skin infections caused by Staphylococcus aureus. SLs were optimized using different flow rate ratios in the MHF method and the final formulation CPT3 was found to be the best in terms of particle size (68.27 ± 01.15 nm), % entrapment efficiency (% EE: 82 ± 1.5), polydispersity (PDI: 0.2 ± 0.012), and degree of deformability (DOD: 4.7 ± 0.18 nm). Rats (Sprague Dawley) treated with a self-adaptable CPT3 liposomal formulation recuperate skin injury, exhibited reduced bacterial counts (<106 CFU/mL) in the wounded region, and completely restored (100 %) on day 21. Rat survival, in vivo dermal pharmacokinetics and ex vivo-in vivo relationship were also investigated. Rats treated with an even 10-fold higher dose (100 mg/kg/day) of CP using an equivalent CPT3 formulation did not show any symptoms of toxicity as revealed by hematological, biochemical, and internal organ assessment observations. Finally, the developed CPT3 formulation with special interest in patients with high-risk skin injuries not only delivered CP in a controlled manner but was also clinically effective and safe as it did not produce any serious adverse events even at 10× higher doses in the infected rats.
Collapse
Affiliation(s)
- Rahul Maheshwari
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Green Industrial Park, TSIIC, Jadcherla, Hyderabad 509301, India.
| | - Piyush Ghode
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Shirpur, Dhule, Maharashtra 425405, India
| | - Mayank Sharma
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Shirpur, Dhule, Maharashtra 425405, India
| |
Collapse
|
46
|
Wultańska D, Piotrowski M, Pituch H. Antimicrobial Effects of Some Natural Products on Adhesion and Biofilm Inhibition of Clostridioides difficile. Pharmaceutics 2024; 16:478. [PMID: 38675139 PMCID: PMC11054867 DOI: 10.3390/pharmaceutics16040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Understanding the potential antimicrobial properties of natural compounds and their impacts on Clostridioides difficile virulence factors may aid in developing alternative strategies for preventing and treating C. difficile infections (CDI). In this study, we investigated the bactericidal effects of ginger oil (GO), peppermint oil (PO), curcumin (CU), cinnamon aldehyde (CI), and trans-cinnamaldehyde (TCI) on the adhesion and biofilm disruption of C. difficile. We used three reference and five clinical C. difficile strains of different ribotypes. The bactericidal activity was assessed using the broth microdilution method. The adhesion was evaluated using human epithelial cell lines, and biofilm formation was visualized by confocal laser scanning microscopy. All tested strains exhibited susceptibility to CU, with minimum inhibitory concentration (MIC) values ranging from 128 µg/mL to 2048 µg/mL. Similarly, all strains were susceptible to CI and TCI, with MIC values ranging from 6.25% (v/v) to 25% (v/v). Most of the tested substances reduced the adhesion of C. difficile strains, while two tested strains showed significantly higher adhesion when co-incubated with the tested substances. Similar observations were made for biofilm formation, with observed density and morphology varied depending on the strain. In conclusion, the tested products demonstrated bactericidal activity and reduced the adhesion of C. difficile strains. They may be considered for further studies as potential antimicrobial agents targeting biofilm-related infections.
Collapse
Affiliation(s)
- Dorota Wultańska
- Department of Medical Microbiology, Medical University of Warsaw, 02-004 Warsaw, Poland; (M.P.); (H.P.)
| | | | | |
Collapse
|
47
|
Takallu S, Mirzaei E, Zakeri Bazmandeh A, Ghaderi Jafarbeigloo HR, Khorshidi H. Addressing Antimicrobial Properties in Guided Tissue/Bone Regeneration Membrane: Enhancing Effectiveness in Periodontitis Treatment. ACS Infect Dis 2024; 10:779-807. [PMID: 38300991 DOI: 10.1021/acsinfecdis.3c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Guided tissue regeneration (GTR) and guided bone regeneration (GBR) are the two surgical techniques generally used for periodontitis disease treatment. These techniques are based on a barrier membrane to direct the growth of new bone and gingival tissue at sites with insufficient volumes or dimensions of bone or gingiva for proper function, esthetics, or prosthetic restoration. Numerous studies have highlighted biocompatibility, space-creation, cell-blocking, bioactivity, and proper handling as essential characteristics of a membrane's performance. Given that bacterial infection is the primary cause of periodontitis, we strongly believe that addressing the antimicrobial properties of these membranes is of utmost importance. Indeed, the absence of effective inhibition of periodontal pathogens has been recognized as a primary factor contributing to the failure of GTR/GBR membranes. Therefore, we suggest considering antimicrobial properties as one of the key factors in the design of GTR/GBR membranes. Antibiotics are potent medications frequently administered systemically to combat microbes and mitigate bacterial infections. Nevertheless, the excessive use of antibiotics has resulted in a surge in bacterial resistance. To overcome this challenge, alternative antibacterial substances have been developed. In this review, we explore the utilization of alternative substances with antimicrobial properties for topical application in membranes. The use of antibacterial nanoparticles, phytochemical compounds, and antimicrobial peptides in this context was investigated. By carefully selecting and integrating antimicrobial agents into GTR/GBR membranes, we can significantly enhance their effectiveness in combating periodontitis. These antibacterial substances not only act as barriers against pathogenic bacteria but also promote the process of periodontal healing.
Collapse
Affiliation(s)
- Sara Takallu
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 7133654361, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 7133654361, Iran
| | - Abbas Zakeri Bazmandeh
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 7133654361, Iran
| | - Hamid Reza Ghaderi Jafarbeigloo
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, University of Medical Sciences, Fasa 7461686688, Iran
- Student Research Center committee, Fasa University of Medical Sciences, Fasa 7461686688, Iran
| | - Hooman Khorshidi
- Department of Periodontology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz 7195615878, Iran
| |
Collapse
|
48
|
Bertoncini-Silva C, Vlad A, Ricciarelli R, Giacomo Fassini P, Suen VMM, Zingg JM. Enhancing the Bioavailability and Bioactivity of Curcumin for Disease Prevention and Treatment. Antioxidants (Basel) 2024; 13:331. [PMID: 38539864 PMCID: PMC10967568 DOI: 10.3390/antiox13030331] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 01/06/2025] Open
Abstract
Curcumin, a natural polyphenolic component from Curcuma longa roots, is the main bioactive component of turmeric spice and has gained increasing interest due to its proposed anti-cancer, anti-obesity, anti-inflammatory, antioxidant, and lipid-lowering effects, in addition to its thermogenic capacity. While intake from dietary sources such as curry may be sufficient to affect the intestinal microbiome and thus may act indirectly, intact curcumin in the body may be too low (<1 microM) and not sufficient to affect signaling and gene expression, as observed in vitro with cultured cells (10-20 microM). Several strategies can be envisioned to increase curcumin levels in the body, such as decreasing its metabolism or increasing absorption through the formation of nanoparticles. However, since high curcumin levels could also lead to undesired regulatory effects on cellular signaling and gene expression, such studies may need to be carefully monitored. Here, we review the bioavailability of curcumin and to what extent increasing curcumin levels using nanoformulations may increase the bioavailability and bioactivity of curcumin and its metabolites. This enhancement could potentially amplify the disease-preventing effects of curcumin, often by leveraging its robust antioxidant properties.
Collapse
Affiliation(s)
- Caroline Bertoncini-Silva
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (C.B.-S.); (P.G.F.)
| | - Adelina Vlad
- Department of Functional Sciences I/Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Roberta Ricciarelli
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Priscila Giacomo Fassini
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (C.B.-S.); (P.G.F.)
| | - Vivian Marques Miguel Suen
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (C.B.-S.); (P.G.F.)
| | - Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
49
|
Krasian T, Punyodom W, Molloy R, Topham PD, Tighe BJ, Mahomed A, Chaiwarit T, Panraksa P, Rachtanapun P, Jantanasakulwong K, Worajittiphon P. Low cytotoxicity, antibacterial property, and curcumin delivery performance of toughness-enhanced electrospun composite membranes based on poly(lactic acid) and MAX phase (Ti 3AlC 2). Int J Biol Macromol 2024; 262:129967. [PMID: 38316324 DOI: 10.1016/j.ijbiomac.2024.129967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/20/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
MXenes, synthesized from their precursor MAX phases, have been extensively researched as additives to enhance the drug delivery performance of polymer matrices, whereas there is a limited number of previous reports on the use of MAX phases themselves for such applications. The use of MAX phases can exclude the complicated synthesis procedure and lessen resultant production and environmental costs required to convert MAX phases to MXenes. Herein, electrospun membranes of poly(lactic acid) (PLA) and a MAX phase (Ti3AlC2) have been fabricated for curcumin delivery. The composite membrane exhibits significantly higher toughness (8.82 MJ m-3) than the plasticized PLA membrane (0.63 MJ m-3) with low cytotoxicity, supporting proliferation of mouse fibroblast L929 cells. The curcumin-loaded composite membrane exhibits high water vapor transmission (∼7350 g m-2 day-1), porosity (∼85 %), water wettability, and antibacterial properties against E. coli and S. aureus. Seven-day curcumin release is enhanced from 45 % (PLA) to 67 % (composite) due to curcumin diffusion from the polymer fibers and MAX phase surface that contributes to overall increased curcumin adsorption and release sites. This work demonstrates the potential of the MAX phase to enhance both properties and curcumin delivery, promising for other eco-friendly systems for sustainable drug delivery applications.
Collapse
Affiliation(s)
- Tharnthip Krasian
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Robert Molloy
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Paul D Topham
- College of Engineering and Physical Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Brian J Tighe
- College of Engineering and Physical Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Anisa Mahomed
- College of Engineering and Physical Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Tanpong Chaiwarit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pattaraporn Panraksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornchai Rachtanapun
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kittisak Jantanasakulwong
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Patnarin Worajittiphon
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
50
|
Saifi S, Ashraf A, Hasan GM, Shamsi A, Hassan MI. Insights into the preventive actions of natural compounds against Klebsiella pneumoniae infections and drug resistance. Fitoterapia 2024; 173:105811. [PMID: 38168570 DOI: 10.1016/j.fitote.2023.105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Klebsiella pneumoniae is a type of Gram-negative bacteria that causes a variety of infections, including pneumonia, bloodstream infections, wound infections, and meningitis. The treatment of K. pneumoniae infection depends on the type of infection and the severity of the symptoms. Antibiotics are generally used to treat K. pneumoniae infections. However, some strains of K. pneumoniae have become resistant to antibiotics. This comprehensive review examines the potential of natural compounds as effective strategies against K. pneumonia infections. The alarming rise in antibiotic resistance underscores the urgent need for alternative therapies. This article represents current research on the effects of diverse natural compounds, highlighting their anti-microbial and antibiofilm properties against K. pneumonia. Notably, compounds such as andrographolide, artemisinin, baicalin, berberine, curcumin, epigallocatechin gallate, eugenol, mangiferin, piperine, quercetin, resveratrol, and thymol have been extensively investigated. These compounds exhibit multifaceted mechanisms, including disruption of bacterial biofilms, interference with virulence factors, and augmentation of antibiotic effectiveness. Mechanistic insights into their actions include membrane perturbation, oxidative stress induction, and altered gene expression. While promising, challenges such as limited bioavailability and varied efficacy across bacterial strains are addressed. This review further discusses the potential of natural compounds as better alternatives in combating K. pneumonia infection and emphasizes the need for continued research to harness their full therapeutic potential. As antibiotic resistance persists, these natural compounds offer a promising avenue in the fight against K. pneumonia and other multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Sana Saifi
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|