1
|
Zhang Y, Cao S, Zeng F, Pan D, Cai L, Zhou Y, Wang H, Qin G, Zhang C, Chen W. Dihydroartemisinin enhances the radiosensitivity of breast cancer by targeting ferroptosis signaling pathway through hsa_circ_0001610. Eur J Pharmacol 2024; 983:176943. [PMID: 39182549 DOI: 10.1016/j.ejphar.2024.176943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVE This study aimed to elucidate how DHA enhances the radiosensitivity of BC and to explain its potential mechanisms of action. METHODS The circular structure of hsa_circ_0001610 was confirmed by Sanger sequencing, RNase R treatment, RT-PCR analysis using gDNA or cDNA. Cellular localization of hsa_circ_0001610 and microRNA-139-5p (miR-139-5p) was detected by fluorescence in situ hybridization. Cell counting kit-8 assay, wound healing and colony formation tests for assessing cell proliferation, while flow cytometry was utilized to estimate cell cycle progression and apoptosis. Reactive oxygen species and malondialdehyde experiments were conducted to validate ferroptosis of BC cells. The expression of ncRNAs and mRNAs was quantified via qRT-PCR, and protein expression was analyzed using Western blot. The effects of hsa_circ_0001610 and DHA on radiosensitivity of BC in vivo were studied by establishing BC mice model. RESULTS In vivo and in vitro experimental results indicate that DHA promotes ferroptosis of BC cells at least partly by inhibiting hsa_circ_0001610/miR-139-5p/SLC7A11 pathway, thereby enhancing the radiosensitivity of BC cells. CONCLUSIONS Our findings showed that DHA can induce ferroptosis of BC cells by down-regulation of hsa_circ_0001610, thus enhancing radiosensitivity, suggesting a promising therapeutic strategy for enhancing BC radiosensitivity that is worthy of further exploration.
Collapse
Affiliation(s)
- YiWen Zhang
- Department of Radiology, NanFang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - ShuYi Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, 510000, China
| | - FengXia Zeng
- Department of Radiology, NanFang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - DeRun Pan
- Department of Radiology, NanFang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - LongMei Cai
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - YingYing Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - HongMei Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - GengGeng Qin
- Department of Radiology, NanFang Hospital, Southern Medical University, Guangzhou, 510000, China.
| | - Chao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, 510000, China.
| | - WeiGuo Chen
- Department of Radiology, NanFang Hospital, Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
2
|
Vijayarangam V, Gopalakrishnan Deviparasakthi MK, Balasubramanian P, Palaniyandi T, Ravindran R, Suliman M, Saeed M, Natarajan S, Sivaji A, Baskar G. Ferroptosis as a hero against oral cancer. Pathol Res Pract 2024; 263:155637. [PMID: 39393267 DOI: 10.1016/j.prp.2024.155637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Cancer is an abnormal condition altering the cells to proliferate out of control simultaneously being susceptible to evolution. The lining which is made up of tissues in the lips, upper throat and mouth can undergo mutations, is recognised as mouth cancer or oral cancer. Substantial number of mouth lesions are identified at a point where it is typically not possible to get effective remedial care. Ferroptosis is a cutting-edge instance of cellular destruction which stands out in distinction to other sorts of cell death. It appears to have distinctive cellular, molecular and gene-level attributes and scavenges on deposits of reactive oxygen species triggered via iron-induced lipid peroxidation. It is said to be involved dichotomously in cancer development. Because the ferroptotic tumour cells put out numerous chemicals that alternatively signal for cancer attenuation or growth. There is increasing proof that researchers are now keenly investigating to stimulate ferroptosis through various inducers and pathways in the intent for oral cancer therapeutics, specifically to kill malignant tumours that refuse to respond well to conventional treatments. Also, it has the ability to reverse chemotherapy and radiotherapy resistance in victims maximising the success rate of the treatments. This review centres on the stimulation of ferroptosis as a stand-alone therapy for oral cancer, or in combination with other medicines, agents and pathways.
Collapse
Affiliation(s)
- Varshini Vijayarangam
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai 600095, India
| | | | - Priyanka Balasubramanian
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai 600095, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai 600095, India; ACS-Advanced Medical Research Institute, Dr. M.G.R Educational and Research Institute, Chennai 600077, India.
| | - Rekha Ravindran
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602105, India
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Sudhakar Natarajan
- Department of Tuberculosis, ICMR - National Institute for Research in Tuberculosis (NIRT), Chennai 600031, India
| | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore 632001, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai 600095, India
| |
Collapse
|
3
|
Yang Y, Zhang T, Li Q, Ling Y, Ma Y, Tao S. SQSTM1 improves acute lung injury via inhibiting airway epithelium ferroptosis in a vitamin D receptor/autophagy-mediated manner. Free Radic Biol Med 2024; 222:588-600. [PMID: 38996820 DOI: 10.1016/j.freeradbiomed.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Emerging evidence has reported that acute lung injury (ALI), characterized by inflammation and oxidative stress in airway epithelium, is regulated by programmed cell death. Ferroptosis, a regulated form of cell death spurred by uncontrolled lipid peroxidation, has been proven to implicate various diseases. Inhibiting ferroptosis represents a feasible strategy for ALI through the suppression of lipid peroxidation, while the mechanism remains to be further elucidated. Here, we identified Sequestosome 1 (SQSTM1) as a negative regulator of airway epithelium ferroptosis during ALI. SQSTM1 knockdown cells manifested higher sensitivity to ferroptosis. Mechanistically, SQSTM1 was found to directly interact with vitamin D receptor (VDR) through its nuclear receptor (NR) box motif, facilitating its nuclear translocation and initiating autophagy at the transcriptional level. To further validate these findings, an in vivo preventive model utilizing spermidine, a proven inducer of SQSTM1 was established. The results consistently demonstrated that spermidine supplementation significantly induced SQSTM1 and ameliorated ALI by mitigating airway epithelial ferroptosis. Notably, these effects were abrogated in the absence of SQSTM1. Taken together, this study identified SQSTM1 as a negative regulator of airway epithelium ferroptosis in a VDR-mediated autophagy manner, making it a potential therapeutic target for the treatment of ALI.
Collapse
Affiliation(s)
- Youjing Yang
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China.
| | - Tao Zhang
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Qianmin Li
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yi Ling
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yu Ma
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Shasha Tao
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China.
| |
Collapse
|
4
|
Zhu H, Yang Y, Duan Y, Zheng X, Lin Z, Zhou J. Nrf2/FSP1/CoQ10 axis-mediated ferroptosis is involved in sodium aescinate-induced nephrotoxicity. Arch Biochem Biophys 2024; 759:110100. [PMID: 39033970 DOI: 10.1016/j.abb.2024.110100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Sodium aescinate (SA), an active compound found in horse chestnut seeds, is widely used in clinical practice. Recently, the incidence of SA-induced adverse events, particularly renal impairment, has increased. Our previous work demonstrated that SA causes severe nephrotoxicity via nephrocyte ferroptosis; however, the underlying mechanism remains to be fully elucidated. In the current study, we investigated additional molecular pathways involved in SA-induced nephrotoxicity. Our results showed that SA inhibited cell viability, disrupted cellular membrane integrity, and enhanced reactive oxygen species (ROS), ferrous iron (Fe2+), and malondialdehyde (MDA) levels, as well as lipid peroxidation in rat proximal renal tubular epithelial cell line (NRK-52E) cells. SA also depleted coenzyme Q10 (CoQ10, ubiquinone) and nicotinamide adenine dinucleotide (NADH) and reduced ferroptosis suppressor protein 1 (FSP1) and polyprenyltransferase (coenzyme Q2, COQ2) activity, triggering lipid peroxidation and ROS accumulation in mouse kidneys and NRK-52E cells. The overexpression of COQ2, FSP1, or CoQ10 (ubiquinone) supplementation effectively attenuated SA-induced ferroptosis, whereas iFSP1 or 4-formylbenzoic acid (4-CBA) pretreatment exacerbated SA-induced nephrotoxicity. Additionally, SA decreased nuclear factor-erythroid-2-related factor 2 (Nrf2) levels and inhibited Nrf2 binding to the -1170/-1180 bp ARE site in FSP1 promoter, resulting in FSP1 suppression. Overexpression of Nrf2 or its agonist dimethyl fumarate (DMF) promoted FSP1 expression, thereby improving cellular antioxidant capacity and alleviating SA-induced ferroptosis. These results suggest that SA-triggers renal injury through oxidative stress and ferroptosis, driven by the suppression of the Nrf2/FSP1/CoQ10 axis.
Collapse
Affiliation(s)
- Haiyan Zhu
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Yijing Yang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Yenan Duan
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Xin Zheng
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Zixiong Lin
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Jie Zhou
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China.
| |
Collapse
|
5
|
Dai Q, Wei X, Zhao J, Zhang D, Luo Y, Yang Y, Xiang Y, Liu X. Inhibition of FSP1: A new strategy for the treatment of tumors (Review). Oncol Rep 2024; 52:105. [PMID: 38940330 PMCID: PMC11228423 DOI: 10.3892/or.2024.8764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/10/2024] [Indexed: 06/29/2024] Open
Abstract
Ferroptosis, a regulated form of cell death, is intricately linked to iron‑dependent lipid peroxidation. Recent evidence strongly supports the induction of ferroptosis as a promising strategy for treating cancers resistant to conventional therapies. A key player in ferroptosis regulation is ferroptosis suppressor protein 1 (FSP1), which promotes cancer cell resistance by promoting the production of the antioxidant form of coenzyme Q10. Of note, FSP1 confers resistance to ferroptosis independently of the glutathione (GSH) and glutathione peroxidase‑4 pathway. Therefore, targeting FSP1 to weaken its inhibition of ferroptosis may be a viable strategy for treating refractory cancer. This review aims to clarify the molecular mechanisms underlying ferroptosis, the specific pathway by which FSP1 suppresses ferroptosis and the effect of FSP1 inhibitors on cancer cells.
Collapse
Affiliation(s)
- Qiangfang Dai
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Xiaoli Wei
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Jumei Zhao
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Die Zhang
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Yidan Luo
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Yue Yang
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Yang Xiang
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
- College of Physical Education, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Xiaolong Liu
- School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| |
Collapse
|
6
|
Zhang M, Zhong J, Song Z, Xu Q, Chen Y, Zhang Z. Regulatory mechanisms and potential therapeutic targets in precancerous lesions of gastric cancer: A comprehensive review. Biomed Pharmacother 2024; 177:117068. [PMID: 39018877 DOI: 10.1016/j.biopha.2024.117068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024] Open
Abstract
Precancerous lesions of gastric cancer (PLGC) represent a critical pathological stage in the transformation from normal gastric mucosa to gastric cancer (GC). The global incidence of PLGC has been rising over the past few decades, with a trend towards younger onset ages. Increasing evidence suggests that early prevention and treatment of PLGC can effectively reverse the malignant development of gastric mucosal epithelial cells. However, there is currently a lack of effective therapeutic drugs and methods. Recent years have witnessed substantial advancements in PLGC research, with the elucidation of novel regulatory mechanisms offering promising avenues for clinical intervention and drug development. This review aims to delineate potential targets for early prevention and diagnosis of GC while exploring innovative approaches to PLGC management. This article focuses on elucidating the regulatory mechanisms of the inflammatory microenvironment, bile acids (BA), glycolysis, autophagy, apoptosis, ferroptosis, and cellular senescence. We pay particular attention to potential therapeutic targets for PLGC, with the goal of providing insights and theoretical basis for clinical research on PLGC.
Collapse
Affiliation(s)
- Maofu Zhang
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Jialin Zhong
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Zhongyang Song
- Department of Oncology, Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730020, China
| | - Qian Xu
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Yuchan Chen
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Zhiming Zhang
- Department of Oncology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, Gansu 730050, China.
| |
Collapse
|
7
|
Ming T, Lei J, Peng Y, Wang M, Liang Y, Tang S, Tao Q, Wang M, Tang X, He Z, Liu X, Xu H. Curcumin suppresses colorectal cancer by induction of ferroptosis via regulation of p53 and solute carrier family 7 member 11/glutathione/glutathione peroxidase 4 signaling axis. Phytother Res 2024; 38:3954-3972. [PMID: 38837315 DOI: 10.1002/ptr.8258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/07/2024]
Abstract
Driven by iron-dependent lipid peroxidation, ferroptosis is regulated by p53 and solute carrier family 7 member 11 (SLC7A11)/glutathione/glutathione peroxidase 4 (GPX4) axis in colorectal cancer (CRC). This study aimed to investigate the influence of curcumin (CUR) on ferroptosis in CRC. The efficacies of CUR on the malignant phenotype of CRC cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, wound healing, and clonogenic assays. The effects of CUR on ferroptosis of CRC cells were evaluated by transmission electron microscopy, lactate dehydrogenase release assay, Fe2+ staining, and analyses of reactive oxygen species, lipid peroxide, malondialdehyde, and glutathione levels. CUR's targets in ferroptosis were predicted by network pharmacological study and molecular docking. With SW620 xenograft tumors, the efficacy of CUR on CRC was investigated, and the effects of CUR on ferroptosis were assessed by detection of Fe2+, malondialdehyde, and glutathione levels. The effects of CUR on expressions of p53, SLC7A11, and GPX4 in CRC cells and tumors were analyzed by quantitative reverse transcription-polymerase chain reaction, western blotting, and immunohistochemistry. CUR suppressed the proliferation, migration, and clonogenesis of CRC cells and xenograft tumor growth by causing ferroptosis, with enhanced lactate dehydrogenase release and Fe2+, reactive oxygen species, lipid peroxide, and malondialdehyde levels, but attenuated glutathione level in CRC. In silico study indicated that CUR may bind p53, SLC7A11, and GPX4, consolidated by that CUR heightened p53 but attenuated SLC7A11 and GPX4 mRNA and protein levels in CRC. CUR may exert an inhibitory effect on CRC by inducing ferroptosis via regulation of p53 and SLC7A11/glutathione/GPX4 axis.
Collapse
Affiliation(s)
- Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiarong Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhui Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Minmin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanjing Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Muqing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaomeng Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziyu He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Cheng P, Xia R, Wang X. Ferroptosis: a promising target for fumarate hydratase-deficient tumor therapeutics literature review. Transl Cancer Res 2024; 13:3126-3141. [PMID: 38988939 PMCID: PMC11231789 DOI: 10.21037/tcr-24-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/24/2024] [Indexed: 07/12/2024]
Abstract
Background and Objective This review aims to investigate the ferroptosis mechanism of fumarate hydratase (FH)-related tumors for the purpose of possible treatment of tumors. Ferroptosis is an iron (Fe)-dependent form of regulated cell death caused by lipid peroxidation on the cell membrane. Studies have implicated FH in tumorigenesis. As mutations in the FH gene alter cellular metabolism and increase tumorigenesis risk, particularly in the kidneys. As most tumor cells require higher amounts of ferrous ions (Fe2+) than normal cells, they are more susceptible to ferroptosis. Recent studies have indicated that ferroptosis is inhibited the pathogenesis and progression of FH-deficient tumors by regulating lipid and iron metabolism, glutathione-glutathione peroxidase 4 (GSH-GPX4), nuclear factor-erythroid 2-related factor 2 (NRF2)/heme oxygenase-1 (HO-1) pathways. While the Fe2+ content is significantly lower in FH-deficient tumor cells, than that in normal cells. It is promising to promote ferroptosis by increasing the concentration of Fe2+ in cells to achieve the purpose of tumor treatment. Methods In this study, we searched for relevant articles on ferroptosis and FH-deficient tumors using PubMed database. Key Content and Findings FH is a tumor suppressor. A number of basic studies have shown that the loss of FH plays an important role in hereditary leiomyomas and tumors such as renal cell carcinoma, ovarian cancer, and other tumors. This type of tumor cells can through induce ferroptosis, inhibit proliferation, migration and invasion of tumor cells, increase the sensitivity of tumor cells to chemotherapy, and reverse the drug resistance through various molecular mechanisms. At present, the research on ferroptosis in FH-related tumors is still in the basic experimental stage. Conclusions This article reviews the anti-tumor effects and mechanisms of FH and ferroptosis, in order to further explore the medical value of ferroptosis in FH-related tumor therapy.
Collapse
Affiliation(s)
- Ping Cheng
- Department of Biochemistry and Molecular Biology, Health Science Center, Yangtze University, Jingzhou, China
| | - Ruohan Xia
- Department of Biochemistry and Molecular Biology, Health Science Center, Yangtze University, Jingzhou, China
| | - Xianwang Wang
- Department of Biochemistry and Molecular Biology, Health Science Center, Yangtze University, Jingzhou, China
- Shannan Maternal and Child Health Hospital, Shannan, China
| |
Collapse
|
9
|
Yang Y, Lin Y, Han Z, Wang B, Zheng W, Wei L. Ferroptosis: a novel mechanism of cell death in ophthalmic conditions. Front Immunol 2024; 15:1440309. [PMID: 38994366 PMCID: PMC11236620 DOI: 10.3389/fimmu.2024.1440309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
Ferroptosis, a new type of programmed cell death proposed in recent years, is characterized mainly by reactive oxygen species and iron-mediated lipid peroxidation and differs from programmed cell death, such as apoptosis, necrosis, and autophagy. Ferroptosis is associated with a variety of physiological and pathophysiological processes. Recent studies have shown that ferroptosis can aggravate or reduce the occurrence and development of diseases by targeting metabolic pathways and signaling pathways in tumors, ischemic organ damage, and other degenerative diseases related to lipid peroxidation. Increasing evidence suggests that ferroptosis is closely linked to the onset and progression of various ophthalmic conditions, including corneal injury, glaucoma, age-related macular degeneration, diabetic retinopathy, retinal detachment, and retinoblastoma. Our review of the current research on ferroptosis in ophthalmic diseases reveals significant advancements in our understanding of the pathogenesis, aetiology, and treatment of these conditions.
Collapse
Affiliation(s)
- Yaqi Yang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yumeng Lin
- Naniing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
- Naniing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Bo Wang
- Ophthalmology Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Wei Zheng
- Ophthalmology Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Lijuan Wei
- Ophthalmology Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
10
|
Mokhtarpour K, Razi S, Rezaei N. Ferroptosis as a promising targeted therapy for triple negative breast cancer. Breast Cancer Res Treat 2024:10.1007/s10549-024-07387-7. [PMID: 38874688 DOI: 10.1007/s10549-024-07387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE Triple negative breast cancer (TNBC) is a challenging subtype characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Standard treatment options are limited, and approximately 45% of patients develop distant metastasis. Ferroptosis, a regulated form of cell death triggered by iron-dependent lipid peroxidation and oxidative stress, has emerged as a potential targeted therapy for TNBC. METHODS This study utilizes a multifaceted approach to investigate the induction of ferroptosis as a therapeutic strategy for TNBC. It explores metabolic alterations, redox imbalance, and oncogenic signaling pathways to understand their roles in inducing ferroptosis, characterized by lipid peroxidation, reactive oxygen species (ROS) generation, and altered cellular morphology. Critical pathways such as Xc-/GSH/GPX4, ACSL4/LPCAT3, and nuclear factor erythroid 2-related factor 2 (NRF2) are examined for their regulatory roles in ferroptosis and their potential dysregulation contributing to cancer cell survival and resistance. RESULTS Inducing ferroptosis has been shown to inhibit tumor growth, enhance the efficacy of conventional therapies, and overcome drug resistance in TNBC. Lipophilic antioxidants, GPX4 inhibitors, and inhibitors of the Xc- system have been demonstrated to be potential ferroptosis inducers. Additionally, targeting the NRF2 pathway and exploring other ferroptosis regulators, such as ferroptosis suppressor protein 1 (FSP1), and the PERK-eIF2α-ATF4-CHOP pathway, may offer novel therapeutic avenues. CONCLUSION Further research is needed to understand the mechanisms, optimize therapeutic strategies, and evaluate the safety and efficacy of ferroptosis-targeted therapies in TNBC treatment. Overall, targeting ferroptosis represents a promising approach to improving treatment outcomes and overcoming the challenges posed by TNBC.
Collapse
Affiliation(s)
- Kasra Mokhtarpour
- Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Imunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
| | - Nima Rezaei
- Research Center for Imunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
11
|
Li M, Gong J, Liu Q, Wu W. Research progress on the mechanism and signalling pathway of ferroptosis and its potential role in dermatosis research. Exp Dermatol 2024; 33:e15114. [PMID: 38853773 DOI: 10.1111/exd.15114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/28/2024] [Accepted: 05/26/2024] [Indexed: 06/11/2024]
Abstract
Ferroptosis is a novel type of cell death that is dependent on lipid peroxidation and iron accumulation, which distinguishes it from other types of programmed cell death. Current research indicates a significant association between ferroptosis and various pathological conditions, including cancer, neurological disorders, and cardiovascular diseases, albeit with a relatively unexplored role in dermatological afflictions. This paper elaborates on the mechanisms and signalling pathways of ferroptosis, summarizing the recent studies on ferroptosis and its related factors in dermatosis. Our objective is to shed light on novel perspectives and therapeutic strategies for dermatosis, enhancing the understanding of this under-researched area through this comprehensive review.
Collapse
Affiliation(s)
- Min Li
- Clinical School of Medicine, Jiangxi University of Chinese Medicine, Nan Chang, People's Republic of China
| | - Jian Gong
- Department of Integrated Traditional Chinese and Western Medicine of Dermatology, Dermatology Hospital of Jiangxi Province, Nanchang, Jiangxi, People's Republic of China
- Jiangxi Provincial Clinical Research Center for Skin Diseases, Nanchang, Jiangxi, People's Republic of China
| | - Qiao Liu
- Clinical School of Medicine, Jiangxi University of Chinese Medicine, Nan Chang, People's Republic of China
| | - Weiwei Wu
- Department of Plastic and Dermatological Surgery, The Fifth People's Hospital of Hainan Province, Haikou, Hainan, People's Republic of China
| |
Collapse
|
12
|
Roy N, Paira P. Glutathione Depletion and Stalwart Anticancer Activity of Metallotherapeutics Inducing Programmed Cell Death: Opening a New Window for Cancer Therapy. ACS OMEGA 2024; 9:20670-20701. [PMID: 38764686 PMCID: PMC11097382 DOI: 10.1021/acsomega.3c08890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 05/21/2024]
Abstract
The cellular defense system against exogenous substances makes therapeutics inefficient as intracellular glutathione (GSH) exhibits an astounding antioxidant activity in scavenging reactive oxygen species (ROS) or reactive nitrogen species (RNS) or other free radicals produced by the therapeutics. In the cancer cell microenvironment, the intracellular GSH level becomes exceptionally high to fight against oxidative stress created by the production of ROS/RNS or any free radicals, which are the byproducts of intracellular redox reactions or cellular respiration processes. Thus, in order to maintain redox homeostasis for survival of cancer cells and their rapid proliferation, the GSH level starts to escalate. In this circumstance, the administration of anticancer therapeutics is in vain, as the elevated GSH level reduces their potential by reduction or by scavenging the ROS/RNS they produce. Therefore, in order to augment the therapeutic potential of anticancer agents against elevated GSH condition, the GSH level must be depleted by hook or by crook. Hence, this Review aims to compile precisely the role of GSH in cancer cells, the importance of its depletion for cancer therapy and examples of anticancer activity of a few selected metal complexes which are able to trigger cancer cell death by depleting the GSH level.
Collapse
Affiliation(s)
- Nilmadhab Roy
- Department of Chemistry, School of
Advanced Sciences, Vellore Institute of
Technology, Vellore-632014, Tamilnadu, India
| | - Priyankar Paira
- Department of Chemistry, School of
Advanced Sciences, Vellore Institute of
Technology, Vellore-632014, Tamilnadu, India
| |
Collapse
|
13
|
Man S, Ma W, Jiang H, Haider A, Shi S, Li X, Wu Z, Song Y. Evaluating the efficacy and mechanisms of Hua-Zhuo-Ning-Fu-Decoction on psoriasis using integrated bioinformatics analysis and metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117856. [PMID: 38316220 DOI: 10.1016/j.jep.2024.117856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hua Zhuo Ning Fu Decoction (HZD) is an empirical prescription from traditional Chinese medicine that shows excellent clinical results for psoriasis patients. Uncertainty lingered over HZD's potential anti-psoriasis mechanisms. AIM OF THE STUDY The study's objective is to investigate the pharmacological processes and therapeutic effects of HZD on psoriasis. MATERIALS AND METHODS In the initial phase of the study, an investigation was conducted to assess the effects of HZD on psoriasis-afflicted mice using an imiquimod (IMQ)-induced murine model. The experimental mice were randomly allocated to different groups, including the IMQ-induced model group, the control group, the HZD therapy groups with varying dosage levels (low, medium, and high), and Dexamethasone (DEX, the positive control medicine) group. Bioinformatics analysis and molecular docking were subsequently employed to identify the primary components and molecular targets associated with the therapeutic action of HZD in the context of psoriasis. Additionally, to find the impacts on metabolite regulation, plasma metabolomics based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) was used. It's interesting to note that the combined mechanisms from metabolomics were examined in tandem with the targets. In vivo tests were the last step in validating the potential mechanism. Throughout the trial, the following data were recorded: body weight, psoriasis area and severity index (PASI). The molecular targets connected to HZD's anti-psoriasis activities were revealed using histological examination, western blot (WB), and ELISA investigation. RESULTS In mice induced with IMQ, HZD shown good anti-psoriasis effects in terms of PASI score and epidermal acanthosis. 95 HZD targets and 77 bioactive chemicals connected to psoriasis were found by bioinformatics research; of these, 7 key targets (EPHX2, PLA2G2A, TBXAS1, MAOA, ALDH1A3, ADH1A, and ADH1B) were linked to the mechanisms of HZD, the combination degree of which was finally expressed by the score of docking. In addition, HZD regulated nine metabolites. In line with this, HZD modified three metabolic pathways. Additionally, a combined examination of 7 key targets and 9 metabolites suggested that the metabolism of arachidonic acid might be the key metabolic route, which was identified by ELISA analysis. The in vivo investigation shown that HZD could control cytokines associated to inflammation (IL-10, TGF-β, IL-17A, and IL-23), as well as important antioxidant system markers (ROS, GSH, and MDA). Moreover, HZD controlled iron levels and the expression of ferroptosis-related proteins (ACSL4 and GPX4), suggesting that ferroptosis played a crucial role in this process. CONCLUSIONS Our findings demonstrated the whole mechanism and anti-psoriasis effectiveness of HZD, which will promote its clinical application and aid in the investigation of new bioactive components of HZD against psoriasis.
Collapse
Affiliation(s)
- Shuai Man
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wenke Ma
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hao Jiang
- Pharmacy School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ali Haider
- Department of Allied Health Sciences, The University of Lahore, Gujrat Campus, 50700, Pakistan
| | - Shasha Shi
- Pharmacy School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Zhuzhu Wu
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Yongmei Song
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
14
|
Li Y, Yan J, Sun H, Liang Y, Zhao Q, Yu S, Zhang Y. Ferroptosis inhibitor alleviates sorafenib-induced cardiotoxicity by attenuating KLF11-mediated FSP1-dependent ferroptosis. Int J Biol Sci 2024; 20:2622-2639. [PMID: 38725840 PMCID: PMC11077382 DOI: 10.7150/ijbs.86479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Sorafenib is a standard first-line drug for advanced hepatocellular carcinoma, but the serious cardiotoxic effects restrict its therapeutic applicability. Here, we show that iron-dependent ferroptosis plays a vital role in sorafenib-induced cardiotoxicity. Remarkably, our in vivo and in vitro experiments demonstrated that ferroptosis inhibitor application neutralized sorafenib-induced heart injury. By analyzing transcriptome profiles of adult human sorafenib-treated cardiomyocytes, we found that Krüppel-like transcription factor 11 (KLF11) expression significantly increased after sorafenib stimulation. Mechanistically, KLF11 promoted ferroptosis by suppressing transcription of ferroptosis suppressor protein 1 (FSP1), a seminal breakthrough due to its ferroptosis-repressing properties. Moreover, FSP1 knockdown showed equivalent results to glutathione peroxidase 4 (GPX4) knockdown, and FSP1 overexpression counteracted GPX4 inhibition-induced ferroptosis to a substantial extent. Cardiac-specific overexpression of FSP1 and silencing KLF11 by an adeno-associated virus serotype 9 markedly improved cardiac dysfunction in sorafenib-treated mice. In summary, FSP1-mediated ferroptosis is a crucial mechanism for sorafenib-provoked cardiotoxicity, and targeting ferroptosis may be a promising therapeutic strategy for alleviating sorafenib-induced cardiac damage.
Collapse
Affiliation(s)
- Yilan Li
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150086, China
| | - Jingru Yan
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150086, China
| | - Heng Sun
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Yating Liang
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150086, China
| | - Qianqian Zhao
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150086, China
| | - Shan Yu
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yao Zhang
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150086, China
| |
Collapse
|
15
|
Abu-Serie MM. Synergistic eradicating impact of 5-fluouracil with FeO nanoparticles-diethyldithiocarbamate in colon cancer spheroids. Nanomedicine (Lond) 2024; 19:979-994. [PMID: 38578787 PMCID: PMC11221372 DOI: 10.2217/nnm-2024-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/14/2024] [Indexed: 04/07/2024] Open
Abstract
Background: Cancer stem cells' (CSCs) resistance to 5-fluorouracil (Fu), which is the main obstacle in treating colon cancer (CC), can be overcome by ferroptosis. The latter, herein, can be triggered by FeO nanoparticles (inducer of iron accumulation) and diethyldithiocarbamate-inhibited glutathione system and aldehyde dehydrogenase (ALDH1A1-maintained stemness, therapeutic resistance and metastasis). Materials & methods: Nanocomplex of FeO nanoparticles and diethyldithiocarbamate (FD) was used in combination with Fu to investigate its potential synergistic anti-CSC influence using CC spheroid models. Results: In Fu + FD-treated spheroids, the strongest growth inhibition, the highest cell death percentage, and the lowest CD133+-CSCs percentage and stemness gene expressions (e.g., drug efflux transporter), and the strongest antimetastatic effect were recorded with high synergistic indexes. Conclusion: Fu + FD represents effective combination therapy for chemoresistant CC cells.
Collapse
Affiliation(s)
- Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 21934, Egypt
| |
Collapse
|
16
|
Zhang J, Xiang F, Ding Y, Hu W, Wang H, Zhang X, Lei Z, Li T, Wang P, Kang X. Identification and validation of RNA-binding protein SLC3A2 regulates melanocyte ferroptosis in vitiligo by integrated analysis of single-cell and bulk RNA-sequencing. BMC Genomics 2024; 25:236. [PMID: 38438962 PMCID: PMC10910712 DOI: 10.1186/s12864-024-10147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The pathogenesis of vitiligo remains unclear. The genes encoding vitiligo-related RNA-binding proteins (RBPs) and their underlying pathogenic mechanism have not been determined. RESULTS Single-cell transcriptome sequencing (scRNA-seq) data from the CNCB database was obtained to identify distinct cell types and subpopulations and the relative proportion changes in vitiligo and healthy samples. We identified 14 different cell types and 28 cell subpopulations. The proportion of each cell subpopulation significantly differed between the patients with vitiligo and healthy groups. Using RBP genes for unsupervised clustering, we obtained the specific RBP genes of different cell types in vitiligo and healthy groups. The RBP gene expression was highly heterogeneous; there were significant differences in some cell types, such as keratinocytes, Langerhans, and melanocytes, while there were no significant differences in other cells, such as T cells and fibroblasts, in the two groups. The melanocyte-specific RBP genes were enriched in the apoptosis and immune-related pathways in the patients with vitiligo. Combined with the bulk RNA-seq data of melanocytes, key RBP genes related to melanocytes were identified, including eight upregulated RBP genes (CDKN2A, HLA-A, RPL12, RPL29, RPL31, RPS19, RPS21, and RPS28) and one downregulated RBP gene (SLC3A2). Cell experiments were conducted to explore the role of the key RBP gene SLC3A2 in vitiligo. Cell experiments confirmed that melanocyte proliferation decreased, whereas apoptosis increased, after SLC3A2 knockdown. SLC3A2 knockdown in melanocytes also decreased the SOD activity and melanin content; increased the Fe2+, ROS, and MDA content; significantly increased the expression levels of TYR and COX2; and decreased the expression levels of glutathione and GPX4. CONCLUSION We identified the RBP genes of different cell subsets in patients with vitiligo and confirmed that downregulating SLC3A2 can promote ferroptosis in melanocytes. These findings provide new insights into the pathogenesis of vitiligo.
Collapse
Affiliation(s)
- Jingzhan Zhang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Fang Xiang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Yuan Ding
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Wen Hu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Hongjuan Wang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Xiangyue Zhang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Zixian Lei
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Tingting Li
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Peng Wang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Xiaojing Kang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China.
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China.
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China.
| |
Collapse
|
17
|
Punziano C, Trombetti S, Cesaro E, Grosso M, Faraonio R. Antioxidant Systems as Modulators of Ferroptosis: Focus on Transcription Factors. Antioxidants (Basel) 2024; 13:298. [PMID: 38539832 PMCID: PMC10967371 DOI: 10.3390/antiox13030298] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 10/28/2024] Open
Abstract
Ferroptosis is a type of programmed cell death that differs from apoptosis, autophagy, and necrosis and is related to several physio-pathological processes, including tumorigenesis, neurodegeneration, senescence, blood diseases, kidney disorders, and ischemia-reperfusion injuries. Ferroptosis is linked to iron accumulation, eliciting dysfunction of antioxidant systems, which favor the production of lipid peroxides, cell membrane damage, and ultimately, cell death. Thus, signaling pathways evoking ferroptosis are strongly associated with those protecting cells against iron excess and/or lipid-derived ROS. Here, we discuss the interaction between the metabolic pathways of ferroptosis and antioxidant systems, with a particular focus on transcription factors implicated in the regulation of ferroptosis, either as triggers of lipid peroxidation or as ferroptosis antioxidant defense pathways.
Collapse
Affiliation(s)
- Carolina Punziano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
| | - Silvia Trombetti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Elena Cesaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
| | - Raffaella Faraonio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
| |
Collapse
|
18
|
Tian X, Li X, Pan M, Yang LZ, Li Y, Fang W. Progress of Ferroptosis in Ischemic Stroke and Therapeutic Targets. Cell Mol Neurobiol 2024; 44:25. [PMID: 38393376 PMCID: PMC10891262 DOI: 10.1007/s10571-024-01457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Ferroptosis is an iron-dependent form of programmed cell death (PCD) and ischemic stroke (IS) has been confirmed to be closely related to ferroptosis. The mechanisms of ferroptosis were summarized into three interrelated aspects: iron metabolism, lipid peroxide metabolism, as well as glutathione and amino acid metabolism. What's more, the causal relationship between ferroptosis and IS has been elucidated by several processes. The disruption of the blood-brain barrier, the release of excitatory amino acids, and the inflammatory response after ischemic stroke all lead to the disorder of iron metabolism and the antioxidant system. Based on these statements, we reviewed the reported effects of compounds and drugs treating IS by modulating key molecules in ferroptosis. Through detailed analysis of the roles of these key molecules, we have also more clearly demonstrated the essential effect of ferroptosis in the occurrence of IS so as to provide new targets and ideas for the therapeutic targets of IS.
Collapse
Affiliation(s)
- Xinjuan Tian
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Xiang Li
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Mengtian Pan
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Lele Zixin Yang
- The Pennsylvania State University, State College, PA, 16801, USA
| | - Yunman Li
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| | - Weirong Fang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|
19
|
Daimon T, Bhattacharya A, Wang K, Haratake N, Nakashoji A, Ozawa H, Morimoto Y, Yamashita N, Kosaka T, Oya M, Kufe DW. MUC1-C is a target of salinomycin in inducing ferroptosis of cancer stem cells. Cell Death Discov 2024; 10:9. [PMID: 38182558 PMCID: PMC10770371 DOI: 10.1038/s41420-023-01772-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024] Open
Abstract
The oncogenic MUC1-C transmembrane protein is a critical effector of the cancer stem cell (CSC) state. Addiction to MUC1-C for self-renewal in the progression of human cancers has emphasized the need for development of anti-MUC1-C agents. However, there are presently no approved small molecules for targeting MUC1-C-dependent CSCs. In screening for small molecules, we identified salinomycin (SAL), an inducer of ferroptosis, as a potent inhibitor of MUC1-C signaling. We demonstrate that SAL suppresses MUC1-C expression by disrupting a NF-κB/MUC1-C auto-inductive circuit that is necessary for ferroptosis resistance. Our results show that SAL-induced MUC1-C suppression downregulates a MUC1-C→MYC pathway that activates genes encoding (i) glutathione-disulfide reductase (GSR), and (ii) the LDL receptor related protein 8 (LRP8), which inhibit ferroptosis by generating GSH and regulating selenium levels, respectively. GSR and LRP8 contribute to the function of glutathione peroxidase 4 (GPX4), an essential negative regulator of ferroptotic cell death. We demonstrate that targeting MUC1-C genetically or with the GO-203 peptide inhibitor suppresses GPX4 expression and GPX activity in association with the induction of ferroptosis. Studies of CSCs enriched by serial passage as tumorspheres further demonstrate that the effects of SAL are mediated by downregulation of MUC1-C and thereby overcoming resistance to ferroptosis. As confirmation of these results, rescue of MUC1-C downregulation with the MUC1-C cytoplasmic domain (i) reversed the suppression of GSR, LRP8 and GPX4 expression, and (ii) attenuated the induction of ferroptosis. These findings identify SAL as a unique small molecule inhibitor of MUC1-C signaling and demonstrate that MUC1-C is an important effector of resistance to ferroptosis.
Collapse
Affiliation(s)
- Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Keyi Wang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Naoki Haratake
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ayako Nakashoji
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hiroki Ozawa
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yoshihiro Morimoto
- Department of Gastroenterological Surgery, Kinan Hospital, Wakayama, Japan
| | - Nami Yamashita
- Breast Surgical Oncology, Breast Oncology Center, The Cancer Institute Hospital of the JFCR, Tokyo, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Donald W Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Pourhanifeh MH, Hosseinzadeh A, Koosha F, Reiter RJ, Mehrzadi S. Therapeutic Effects of Melatonin in the Regulation of Ferroptosis: A Review of Current Evidence. Curr Drug Targets 2024; 25:543-557. [PMID: 38706348 DOI: 10.2174/0113894501284110240426074746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 05/07/2024]
Abstract
Ferroptosis is implicated in the pathogenesis of multiple diseases, including neurodegenerative diseases, cardiovascular diseases, kidney pathologies, ischemia-reperfusion injury, and cancer. The current review article highlights the involvement of ferroptosis in traumatic brain injury, acute kidney damage, ethanol-induced liver injury, and PM2.5-induced lung injury. Melatonin, a molecule produced by the pineal gland and many other organs, is well known for its anti- aging, anti-inflammatory, and anticancer properties and is used in the treatment of different diseases. Melatonin's ability to activate anti-ferroptosis pathways including sirtuin (SIRT)6/p- nuclear factor erythroid 2-related factor 2 (Nrf2), Nrf2/ antioxidant responsive element (ARE)/ heme oxygenase (HO-1)/SLC7A11/glutathione peroxidase (GPX4)/ prostaglandin-endoperoxide synthase 2 (PTGS2), extracellular signal-regulated kinase (ERK)/Nrf2, ferroportin (FPN), Hippo/ Yes-associated protein (YAP), Phosphoinositide 3-kinase (PI3K)/ protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) and SIRT6/ nuclear receptor coactivator 4 (NCOA4)/ ferritin heavy chain 1 (FTH1) signaling pathways suggests that it could serve as a valuable therapeutic agent for preventing cell death associated with ferroptosis in various diseases. Further research is needed to fully understand the precise mechanisms by which melatonin regulates ferroptosis and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Koosha
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cellular & Structural Biology, University of Texas, Health Science Center, San Antonio, USA
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Wang G, Wang S, Ouyang X, Wang H, Li X, Yao Z, Chen S, Fan C. Glycolipotoxicity conferred tendinopathy through ferroptosis dictation of tendon-derived stem cells by YAP activation. IUBMB Life 2023; 75:1003-1016. [PMID: 37503658 DOI: 10.1002/iub.2771] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
Tendinopathy is a condition characterized by chronic, complex, and multidimensional pathological changes in the tendons. The etiology of tendinopathy is the combination of several factors, and diabetes mellitus (DM) is a risk factor. Increasing evidence has shown that the diabetic microenvironment plays an important role in tendinopathy. However, the mechanism causing tendinopathy in patients with DM remains unclear. Our study found that ferroptosis played an important role in tendinopathy in patients with DM. In vitro, high glucose and high fat treatment was used to simulate the DM microenvironment. Results showed that such a mechanism significantly increased ferroptosis, which was characterized by mass cell death, lipid peroxide accumulation, mitochondrial morphological changes, mitochondrial membrane potential decline, iron overload, and the activation of ferroptosis-related genes, in tendon-derived stem cells cultured in vitro. In the animal studies, db/db mice were used in the DM model, and the db mice had severe tendon injury and high ACSL4 and TfR1 expressions. These phenomena could be alleviated by the ferroptosis inhibitor ferrostatin-1. In conclusion, ferroptosis is associated with tendinopathy in patients with DM, and ferroptosis targeting may be a novel approach for treating diabetic tendinopathy. Our results can provide a new strategy for managing tendinopathy clinically in patients with DM.
Collapse
Affiliation(s)
- Gang Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Department of Orthopedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Shikun Wang
- Department of Orthopedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Xingyu Ouyang
- Department of Orthopedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Hui Wang
- Department of Orthopedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiao Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Zhixiao Yao
- Department of Orthopedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Shuai Chen
- Department of Orthopedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Engineering Research Center for Orthopedic Material Innovation and Tissue Regeneration, Shanghai, China
| |
Collapse
|
22
|
Cai S, Zhang B, Huang C, Deng Y, Wang C, Yang Y, Xiang Z, Ni Y, Wang Z, Wang L, Zhang B, Guo X, He J, Ma K, Yu Z. CTRP6 protects against ferroptosis to drive lung cancer progression and metastasis by destabilizing SOCS2 and augmenting the xCT/GPX4 pathway. Cancer Lett 2023; 579:216465. [PMID: 38084702 DOI: 10.1016/j.canlet.2023.216465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023]
Abstract
Lung cancer is a highly heterogeneous malignancy, and despite the rapid development of chemotherapy and radiotherapy, acquired drug resistance and tumor progression still occur. Thus, it is urgent to identify novel therapeutic targets. Our research aims to screen novel biomarkers associated with the prognosis of lung carcinoma patients and explore the potential regulatory mechanisms. We obtained RNA sequencing (RNA-seq) data of lung cancer patients from public databases. Clinical signature analysis, weighted gene coexpression network analysis (WGCNA) and the random forest algorithm showed that C1q/tumor necrosis factor-related protein-6 (CTRP6) is a core gene related to lung cancer prognosis, and it was determined to promote tumor proliferation and metastasis both in vivo and in vitro. Mechanistically, silencing CTRP6 was determined to promote xCT/GPX4-involved ferroptosis through functional assays related to lipid peroxidation, Fe2+ concentration and mitochondrial ultrastructure. By performing interactive proteomics analyses in lung tumor cells, we identified the interaction between CTRP6 and suppressor of cytokine signaling 2 (SOCS2) leading to SOCS2 ubiquitination degradation, subsequently enhancing the downstream xCT/GPX4 signaling pathway. Moreover, significant correlations between CTRP6-mediated SOCS2 and ferroptosis were revealed in mouse models and clinical specimens of lung cancer. As inducing ferroptosis has been gradually regarded as an alternative strategy to treat tumors, targeting CTRP6-mediated ferroptosis could be a potential strategy for lung cancer therapy.
Collapse
Affiliation(s)
- Songhua Cai
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Baohui Zhang
- Department of Physiology, School of Life Science, China Medical University, Shenyang, China
| | - Chujian Huang
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Youjun Deng
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Chunguang Wang
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Yikun Yang
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Zichang Xiang
- Shenzhen University Medical School, Shenzhen, Guangdong, 518055, China
| | - Yao Ni
- Shenzhen University Medical School, Shenzhen, Guangdong, 518055, China
| | - Zhe Wang
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Lixu Wang
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Baihua Zhang
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Xiaotong Guo
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China; Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Kai Ma
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| | - Zhentao Yu
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| |
Collapse
|
23
|
Zhou ZQ, Lv X, Liu SB, Qu HC, Xie QP, Sun LF, Li G. The induction of ferroptosis by KLF11/NCOA4 axis: the inhibitory role in clear cell renal cell carcinoma. Hum Cell 2023; 36:2162-2178. [PMID: 37642832 DOI: 10.1007/s13577-023-00973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Ferroptosis is a form of cell death and has great potential application in the treatment of many cancers, including clear cell renal cell carcinoma (ccRCC). Herein, we identified the essential roles of Krüppel-like factor 11 (KLF11) in suppressing the progression of ccRCC. By analyzing mRNA expression data from the Gene Expression Omnibus (GEO) database, we found that KLF11 was a significantly downregulated gene in ccRCC tissues. The results of subsequent functional assays verified that KLF11 played an antiproliferative role in ccRCC cells and xenograft tumors. Furthermore, gene set enrichment analysis indicated that ferroptosis was involved in ccRCC development, and correlation analysis revealed that KLF11 was positively related to ferroptosis drivers. We also found that KLF11 promoted ferroptosis in ccRCC by downregulating the protein expression of ferritin, system xc (-) cystine/glutamate antiporter (xCT), and glutathione peroxidase 4 (GPX4), acting as the inhibitory factors of ferroptosis and increasing the intracellular levels of lipid reactive oxygen species (ROS). As a transcriptional regulator, KLF11 significantly increased the promoter activity of nuclear receptor coactivator 4 (NCOA4), a gene significantly downregulated in ccRCC and whose low expression is associated with poor survival. The characteristics of ccRCC cells caused by KLF11 overexpression were reversed after NCOA4 silencing. In summary, the present study suggests that KLF11 suppresses the progression of ccRCC by increasing NCOA4 transcription. Therefore, the KLF11/NCOA4 axis may serve as a novel therapeutic target for human ccRCC.
Collapse
Affiliation(s)
- Zi-Qi Zhou
- Department of Urology,, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), No. 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China
| | - Xi Lv
- Department of Urology,, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), No. 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China
| | - Shi-Bo Liu
- Department of Urology,, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), No. 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China
| | - Hong-Chen Qu
- Department of Urology,, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), No. 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China
| | - Qing-Peng Xie
- Department of Urology,, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), No. 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China
| | - Long-Feng Sun
- Department of Geriatric Cardiology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning Province, China.
| | - Gang Li
- Department of Urology,, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), No. 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China.
| |
Collapse
|
24
|
Wang X, Shen T, Lian J, Deng K, Qu C, Li E, Li G, Ren Y, Wang Z, Jiang Z, Sun X, Li X. Resveratrol reduces ROS-induced ferroptosis by activating SIRT3 and compensating the GSH/GPX4 pathway. Mol Med 2023; 29:137. [PMID: 37858064 PMCID: PMC10588250 DOI: 10.1186/s10020-023-00730-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/17/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Intestinal ischemia-reperfusion injury occurs in acute intestinal obstruction, intussusception, acute mesenteric artery embolism, and other diseases and can lead to local intestinal necrosis, distant organ involvement, or systemic reactions, with high morbidity and mortality. Ferroptosis plays a crucial role in intestinal ischemia-reperfusion injury, and inhibition of ferroptosis may provide new approaches for treating the disease. SIRT3 protects cells from oxidative stress and may be involved in the process of ferroptosis. We hypothesized that resveratrol, an agonist of SIRT3, could ameliorate intestinal ischemia-reperfusion injury by compensating the GSH/GPX4 pathway. METHODS Intestinal ischemia-reperfusion (I/R) and Caco-2 hypoxia-reoxygenation models were established. Transmission electron microscopy was used to assess mitochondrial function; the Chiu's score was used to evaluate the degree of intestinal mucosal injury based on HE staining; and Western blot was used to detect the SIRT3/FoxO3a pathway, tight junction proteins and ferroptosis-related protein expression. Sirt3-/- C57, shSIRT3-Caco-2 cells and siFoxO3a-Caco-2 cells were established. C11-BODIPY was used to detect lipid peroxide in cells; FD4 and IFABP were used to detect intestinal permeability; MitoSOX was used to detect ROS levels; and MitoTracker and immunofluorescence colocalization were used to detect SIRT3 levels. RESULTS In the intestinal I/R model, I/R injury occurs mainly during the reperfusion period and leads to ferroptosis through the GSH/GPX4 pathway. Resveratrol could reduce ferroptosis and ameliorate I/R injury by activating SIRT3. In Sirt3-/- mice, more intestinal mucosal cells underwent ferroptosis, I/R injury was more severe, and resveratrol lost the ability to ameliorate I/R injury. In addition, hypoxia-reoxygenation increased RSL3-induced ferroptosis sensitivity in Caco-2 cells in vitro. In the presence of shSIRT3 or RSL3 alone, resveratrol could ameliorate Caco-2 ferroptosis, but not RSL3-induced shSIRT3-Caco-2 ferroptosis. Furthermore, resveratrol might activate the SIRT3/FoxO3a pathway, increase the expression of SOD2 and catalase, and inhibit ROS generation, thus reducing lipid peroxidation and ferroptosis. CONCLUSION To date, this is the first study to show that resveratrol ameliorates intestinal ischemia-reperfusion injury by activating SIRT3 and reducing ferroptosis. Resveratrol can reduce intestinal ischemia-reperfusion injury by activating the SIRT3/FoxO3a pathway, increasing the expression of SOD2 and catalase, reducing ROS and LPO production, compensating for the GSH/GPX4 pathway and inhibiting ferroptosis. Resveratrol increases the expression of SOD2 and catalase, reduces the production of ROS and LPO, compensates for the GSH/GPX4 pathway and inhibits ferroptosis by activating the SIRT3/FoxO3a pathway.
Collapse
Affiliation(s)
- Xingjie Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tianli Shen
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jie Lian
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Kai Deng
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Chao Qu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Enmeng Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Gan Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yiwei Ren
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zijun Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhengdong Jiang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xuejun Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Xuqi Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
25
|
Xu J, Zhi X, Zhang Y, Ding R. Tanshinone IIA alleviates chondrocyte apoptosis and extracellular matrix degeneration by inhibiting ferroptosis. Open Life Sci 2023; 18:20220666. [PMID: 37589005 PMCID: PMC10426267 DOI: 10.1515/biol-2022-0666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/08/2023] [Accepted: 07/04/2023] [Indexed: 08/18/2023] Open
Abstract
Articular cartilage degeneration caused by chondrocyte damage is the primary pathological mechanism of osteoarthritis (OA). Oxidative stress is correlated with chondrocyte injury by potentiating ferroptosis, a newly identified form of cell death. Given the effects of Tanshinone IIA (Tan IIA) on alleviating oxidative stress, we further explored whether Tan IIA inhibited chondrocyte death and cartilage degeneration by decreasing ferroptosis. ATDC5 chondrocytes were treated with lipopolysaccharides (LPS) and Tan IIA, and cell viability was assessed using cell counting kit-8 (CCK-8) assays. Matrix metalloproteinase-13 (MMP13), a disintegrin and metalloproteinase with thrombospondin motif-5 (ADAMTS5), and type II collagen (Col II) levels were measured using quantitative real-time polymerase chain reaction (qRT‒PCR), western blotting, and immunofluorescence (IF) analysis. We demonstrated that Tan IIA treatment prominently increased ATDC5 cell viability and decreased cell apoptosis in the presence of LPS-induced stress. MMP13 and ADAMTS5 expression was increased, and Col II expression was decreased in ATDC5 cells after LPS stimulation, whereas these changes were reversed by Tan IIA. Mechanistically, Tan IIA inhibited LPS-induced ferroptosis in ATDC5 cells, as indicated by decreased levels of iron, reactive oxygen species, and malondialdehyde and increased GSH levels. Importantly, a ferroptosis agonist partially abrogated the effect of Tan IIA on alleviating chondrocyte damage and death. Taken together, these results suggest that Tan IIA ameliorates chondrocyte apoptosis and cartilage degeneration by inhibiting ferroptosis and may be a potential therapeutic agent for OA.
Collapse
Affiliation(s)
- Jin Xu
- Department of Orthopaedics, Baoshan District Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Baoshan District, Shanghai, 201999, China
| | - Xiaocheng Zhi
- Department of Orthopaedics, Baoshan District Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Baoshan District, Shanghai, 201999, China
| | - Yunhui Zhang
- Department of Orthopaedics, Baoshan District Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Baoshan District, Shanghai, 201999, China
| | - Ren Ding
- Department of Orthopaedics, Baoshan District Shanghai Integrated Traditional Chinese and Western Medicine Hospital, No 181 You Yi Road, Baoshan District, Shanghai, 201999, China
| |
Collapse
|
26
|
Cao H, Wu X, Gao R, Chen L, Feng Y, Wang D. QiLing Decoction promotes ferroptosis of castration-resistant prostate cancer cells by inhibiting FSP1 in vitro and in vivo. J Cancer 2023; 14:2236-2245. [PMID: 37576395 PMCID: PMC10414048 DOI: 10.7150/jca.84363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/03/2023] [Indexed: 08/15/2023] Open
Abstract
QiLing Decoction (QLD) showed therapeutic effects against prostate cancer with an unclear underlying mechanism. This study explored the underlying mechanisms of QLD against castration-resistant prostate cancer (CRPC). Clinical specimens were collected from the patients with CRPC. Stable cells including knockdown and overexpression cell lines were established by plasmid transfection. The xenograft animal model was constructed. Cell viability was determined by using cell-counting kit 8 assay. Biochemical assays were used to determine the levels of iron (Fe2+) and lipid reactive oxygen species (ROS). qRT-PCR and Western blotting were used to determine levels of target genes, respectively. Treatment of QLD inhibited ferroptosis suppressor protein (FSP) 1 at mRNA and protein levels in patients with CRPC. Additionally, cells treated with QLD-containing serum displayed a decrease in cell viability and an increase in Fe2+ and lipid ROS with or without erastin, whereas ferroptosis inhibitor reversed QLD-induced ferroptosis. The regulatory effects of QLD on PC3 cell ferroptosis were associated with its inhibitory effects against FSP1. Consistently, QLD inhibited PC3 tumor growth by inhibiting FSP1. Moreover, treatment of QLD increased the sensitivity of PC3-AbiR cells to abiraterone by inhibiting FSP1. QLD promoted ferroptosis in CRPC cells in part by inhibiting FSP1 in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | - Lei Chen
- Surgical Department I (Urology Department), LONGHUA Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping Road South, Xuhui District, Shanghai 200032, China
| | - Yigeng Feng
- Surgical Department I (Urology Department), LONGHUA Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping Road South, Xuhui District, Shanghai 200032, China
| | - Dan Wang
- Surgical Department I (Urology Department), LONGHUA Hospital Shanghai University of Traditional Chinese Medicine, No. 725 Wanping Road South, Xuhui District, Shanghai 200032, China
| |
Collapse
|
27
|
Crescenzi E, Leonardi A, Pacifico F. Iron Metabolism in Cancer and Senescence: A Cellular Perspective. BIOLOGY 2023; 12:989. [PMID: 37508419 PMCID: PMC10376531 DOI: 10.3390/biology12070989] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Iron participates in a number of biological processes and plays a crucial role in cellular homeostasis. Alterations in iron metabolism are considered hallmarks of cancer and drivers of aggressive behaviors, such as uncontrolled proliferation, resistance to apoptosis, enhanced metastatic ability, increased cell plasticity and stemness. Furthermore, a dysregulated iron metabolism has been associated with the development of an adverse tumor microenvironment. Alterations in iron metabolism have been described in cellular senescence and in aging. For instance, iron has been shown to accumulate in aged tissues and in age-related diseases. Furthermore, in vitro studies demonstrate increases in iron content in both replicative and stress-induced senescent cells. However, the role, the mechanisms of regulation and dysregulation and the effects of iron metabolism on senescence remain significantly less characterized. In this review, we first provide an overview of iron metabolism and iron regulatory proteins. Then, we summarize alterations in iron homeostasis in cancer and senescence from a cellular point of view.
Collapse
Affiliation(s)
- Elvira Crescenzi
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, CNR, Via S. Pansini, 5, 80131 Naples, Italy
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, "Federico II" University of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Francesco Pacifico
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, CNR, Via S. Pansini, 5, 80131 Naples, Italy
| |
Collapse
|
28
|
Prasad Panda S, Kesharwani A, Prasanna Mallick S, Prasanth D, Kumar Pasala P, Bharadwaj Tatipamula V. Viral-induced neuronal necroptosis: Detrimental to brain function and regulation by necroptosis inhibitors. Biochem Pharmacol 2023; 213:115591. [PMID: 37196683 DOI: 10.1016/j.bcp.2023.115591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Neuronal necroptosis (programmed necrosis) in the CNS naturally occurs through a caspase-independent way and, especially in neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parknson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and viral infections. Understanding necroptosis pathways (death receptor-dependent and independent), and its connections with other cell death pathways could lead to new insights into treatment. Receptor-interacting protein kinase (RIPK) mediates necroptosis via mixed-lineage kinase-like (MLKL) proteins. RIPK/MLKL necrosome contains FADD, procaspase-8-cellular FLICE-inhibitory proteins (cFLIPs), RIPK1/RIPK3, and MLKL. The necrotic stimuli cause phosphorylation of MLKL and translocate to the plasma membrane, causing an influx of Ca2+ and Na+ ions and, the immediate opening of mitochondrial permeability transition pore (mPTP) with the release of inflammatory cell damage-associated molecular patterns (DAMPs) like mitochondrial DNA (mtDNA), high-mobility group box1 (HMGB1), and interleukin1 (IL-1). The MLKL translocates to the nucleus to induce transcription of the NLRP3 inflammasome complex elements. MLKL-induced NLRP3 activity causes caspase-1 cleavage and, IL-1 activation which promotes neuroinflammation. RIPK1-dependent transcription increases illness-associated microglial and lysosomal abnormalities to facilitate amyloid plaque (Aβ) aggregation in AD. Recent research has linked neuroinflammation and mitochondrial fission with necroptosis. MicroRNAs (miRs) such as miR512-3p, miR874, miR499, miR155, and miR128a regulate neuronal necroptosis by targeting key components of necroptotic pathways. Necroptosis inhibitors act by inhibiting the membrane translocation of MLKL and RIPK1 activity. This review insights into the RIPK/MLKL necrosome-NLRP3 inflammasome interactions during death receptor-dependent and independent neuronal necroptosis, and clinical intervention by miRs to protect the brain from NDDs.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Sarada Prasanna Mallick
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhrapradesh, India
| | - Dsnbk Prasanth
- Department of Pharmacognosy, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, AP, India
| | | | - Vinay Bharadwaj Tatipamula
- Center for Molecular Biology, College of Medicine and Pharmacy, Duy Tan University, Danang 550000, Viet Nam
| |
Collapse
|
29
|
Yan X, Liu Y, Li C, Mao X, Xu T, Hu Z, Zhang C, Lin N, Lin Y, Zhang Y. Pien-Tze-Huang prevents hepatocellular carcinoma by inducing ferroptosis via inhibiting SLC7A11-GSH-GPX4 axis. Cancer Cell Int 2023; 23:109. [PMID: 37280673 PMCID: PMC10246043 DOI: 10.1186/s12935-023-02946-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Malignant transformation from hepatic fibrosis to carcinogenesis may be a therapeutic target for hepatocellular carcinoma (HCC). The aim of this study was to evaluate anti-cancer efficacy of Pien-Tze-Huang (PZH), and to investigate the underlying mechanisms by integrating transcriptional regulatory network analysis and experimental validation. METHODS A diethylnitrosamine (DEN)-induced HCC model in rats was established and used to evaluate the anti-cancer efficacy of PZH. After detecting a transcriptomic profiling, the "disease-related gene-drug effective target" interaction network was constructed, and the candidate targets of PZH against malignant transformation from hepatic fibrosis to HCC were identified and verified in vitro. RESULTS PZH effectively alleviated the pathological changes of hepatic fibrosis and cirrhosis, and inhibited tumor formation and growth in DEN-induced HCC rats. Additionally, the administration of PZH reduced the levels of various hepatic function-related serological indicators significantly. Mechanically, a ferroptosis-related SLC7A11-GSH-GPX4 axis might be one of potential targets of PZH against malignant transformation from hepatic fibrosis to HCC. Especially, high SLC7A11 expression may be associated with poor prognosis of HCC patients. Experimentally, the administration of PZH markedly increased the trivalent iron and ferrous ion, suppressed the expression levels of SLC7A11 and GPX4 proteins, and reduced the GSH/GSSG ratio in the liver tissues of DEN-induced HCC rats. CONCLUSIONS Our data offer an evidence that PZH may effectively improve the hepatic fibrosis microenvironment and prevent the occurrence of HCC through promoting ferroptosis in tumor cells via inhibiting the SLC7A11-GSH-GPX4 axis, implying that PZH may be a potential candidate drug for prevention and treatment of HCC at an early stage.
Collapse
Affiliation(s)
- Xiangying Yan
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Shangjie Town, Minhou County, Fuzhou, 350122, China
| | - Yudong Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Congchong Li
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Shangjie Town, Minhou County, Fuzhou, 350122, China
| | - Xia Mao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Tengteng Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Zhixing Hu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Shangjie Town, Minhou County, Fuzhou, 350122, China
| | - Chu Zhang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Shangjie Town, Minhou County, Fuzhou, 350122, China
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Ya Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Shangjie Town, Minhou County, Fuzhou, 350122, China.
| | - Yanqiong Zhang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Shangjie Town, Minhou County, Fuzhou, 350122, China.
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| |
Collapse
|
30
|
Dalhat MH, Choudhry H, Khan MI. NAT10, an RNA Cytidine Acetyltransferase, Regulates Ferroptosis in Cancer Cells. Antioxidants (Basel) 2023; 12:antiox12051116. [PMID: 37237981 DOI: 10.3390/antiox12051116] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Recently, we reported that N-acetyltransferase 10 (NAT10) regulates fatty acid metabolism through ac4C-dependent RNA modification of key genes in cancer cells. During this work, we noticed ferroptosis as one of the most negatively enriched pathways among other pathways in NAT10-depleted cancer cells. In the current work, we explore the possibility of whether NAT10 acts as an epitranscriptomic regulator of the ferroptosis pathway in cancer cells. Global ac4C levels and expression of NAT10 with other ferroptosis-related genes were assessed via dotblot and RT-qPCR, respectively. Flow cytometry and biochemical analysis were used to assess oxidative stress and ferroptosis features. The ac4C-mediated mRNA stability was conducted using RIP-PCR and mRNA stability assay. Metabolites were profiled using LC-MS/MS. Our results showed significant downregulation in expression of essential genes related to ferroptosis, namely SLC7A11, GCLC, MAP1LC3A, and SLC39A8 in NAT10-depleted cancer cells. Further, we noticed a reduction in cystine uptake and reduced GSH levels, along with elevated ROS, and lipid peroxidation levels in NAT10-depleted cells. Consistently, overproduction of oxPLs, as well as increased mitochondrial depolarization and decreased activities of antioxidant enzymes, support the notion of ferroptosis induction in NAT10-depleted cancer cells. Mechanistically, a reduced ac4C level shortens the half-life of GCLC and SLC7A11 mRNA, resulting in low levels of intracellular cystine and reduced GSH, failing to detoxify ROS, and leading to increased cellular oxPLs, which facilitate ferroptosis induction. Collectively, our findings suggest that NAT10 restrains ferroptosis by stabilizing the SLC7A11 mRNA transcripts in order to avoid oxidative stress that induces oxidation of phospholipids to initiate ferroptosis.
Collapse
Affiliation(s)
- Mahmood Hassan Dalhat
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Imran Khan
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
31
|
Shi H, Xiong L, Yan G, Du S, Liu J, Shi Y. Susceptibility of cervical cancer to dihydroartemisinin-induced ferritinophagy-dependent ferroptosis. Front Mol Biosci 2023; 10:1156062. [PMID: 37065442 PMCID: PMC10102504 DOI: 10.3389/fmolb.2023.1156062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
The clinical therapeutics of cervical cancer is limited due to the drug resistance and metastasis of tumor. As a novel target for antitumor therapy, ferroptosis is deemed to be more susceptible for those cancer cells with resistance to apoptosis and chemotherapy. Dihydroartemisinin (DHA), the primary active metabolites of artemisinin and its derivatives, has exhibited a variety of anticancer properties with low toxicity. However, the role of DHA and ferroptosis in cervical cancer remained unclear. Here, we showed that DHA could time-dependently and dose-dependently inhibit the proliferation of cervical cancer cells, which could be alleviated by the inhibitors of ferroptosis rather than apoptosis. Further investigation confirmed that DHA treatment initiated ferroptosis, as evidenced by the accumulation of reactive oxygen species (ROS), malondialdehyde (MDA) and liquid peroxidation (LPO) levels and simultaneously depletion of glutathione peroxidase 4 (GPX4) and glutathione (GSH). Moreover, nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy was also induced by DHA leading to subsequent increases of intracellular labile iron pool (LIP), exacerbated the Fenton reaction resulting in excessive ROS production, and enhanced cervical cancer ferroptosis. Among them, we unexpectedly found that heme oxygenase-1 (HO-1) played an antioxidant role in DHA-induced cell death. In addition, the results of synergy analysis showed that the combination of DHA and doxorubicin (DOX) emerged a highly synergistic lethal effect for cervical cancer cells, which was related also to ferroptosis. Overall, our data revealed the molecular mechanisms that DHA triggered ferritinophagy-dependent ferroptosis and sensitized to DOX in cervical cancer, which may provide novel avenues for future therapy development.
Collapse
Affiliation(s)
- Hanqiang Shi
- Central Laboratory of Molecular Medicine Research Center, Jiaxing Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Jiaxing, China
- Jiaxing Key Laboratory of Diabetic Angiopathy Research, Jiaxing, China
| | - Lie Xiong
- Central Laboratory of Molecular Medicine Research Center, Jiaxing Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Jiaxing, China
- Jiaxing Key Laboratory of Diabetic Angiopathy Research, Jiaxing, China
| | - Guang Yan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuqin Du
- Central Laboratory of Molecular Medicine Research Center, Jiaxing Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Jiaxing, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Jie Liu
- Oncology Department, Jiaxing Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Jiaxing, China
| | - Yanbo Shi
- Central Laboratory of Molecular Medicine Research Center, Jiaxing Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Jiaxing, China
- Jiaxing Key Laboratory of Diabetic Angiopathy Research, Jiaxing, China
- *Correspondence: Yanbo Shi,
| |
Collapse
|
32
|
Lee J, Roh JL. SLC7A11 as a Gateway of Metabolic Perturbation and Ferroptosis Vulnerability in Cancer. Antioxidants (Basel) 2022; 11:antiox11122444. [PMID: 36552652 PMCID: PMC9774303 DOI: 10.3390/antiox11122444] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
SLC7A11 is a cell transmembrane protein composing the light chain of system xc-, transporting extracellular cystine into cells for cysteine production and GSH biosynthesis. SLC7A11 is a critical gateway for redox homeostasis by maintaining the cellular levels of GSH that counter cellular oxidative stress and suppress ferroptosis. SLC7A11 is overexpressed in various human cancers and regulates tumor development, proliferation, metastasis, microenvironment, and treatment resistance. Upregulation of SLC7A11 in cancers is needed to adapt to high oxidative stress microenvironments and maintain cellular redox homeostasis. High basal ROS levels and SLC7A11 dependences in cancer cells render them vulnerable to further oxidative stress. Therefore, cyst(e)ine depletion may be an effective new strategy for cancer treatment. However, the effectiveness of the SLC7A11 inhibitors or cyst(e)inase has been established in many preclinical studies but has not reached the stage of clinical trials for cancer patients. A better understanding of cysteine and SLC7A11 functions regulating and interacting with redox-active proteins and their substrates could be a promising strategy for cancer treatment. Therefore, this review intends to understand the role of cysteine in antioxidant and redox signaling, the regulators of cysteine bioavailability in cancer, the role of SLC7A11 linking cysteine redox signaling in cancer metabolism and targeting SLC7A11 for novel cancer therapeutics.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam 13496, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam 13496, Republic of Korea
- Correspondence: ; Tel.: +82-31-780-2988
| |
Collapse
|
33
|
Chen W, Yang W, Zhang C, Liu T, Zhu J, Wang H, Li T, Jin A, Ding L, Xian J, Tian T, Pan B, Guo W, Wang B. Modulation of the p38 MAPK Pathway by Anisomycin Promotes Ferroptosis of Hepatocellular Carcinoma through Phosphorylation of H3S10. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6986445. [PMID: 36466092 PMCID: PMC9715334 DOI: 10.1155/2022/6986445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 07/25/2023]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignant tumor worldwide. Ferroptosis is emerging as an effective target for tumor treatment as it has been shown to potentiate cell death in some malignancies. However, it remains unclear whether histone phosphorylation events, an epigenetic mechanism that regulates transcriptional expression, are involved in ferroptosis. Our study found that supplementation with anisomycin, an agonist of p38 mitogen-activated protein kinase (MAPK), induced ferroptosis in HCC cells, and the phosphorylation of histone H3 on serine 10 (p-H3S10) was participated in anisomycin-induced ferroptosis. To investigate the anticancer effects of anisomycin-activated p38 MAPK in HCC, we analyzed cell viability, colony formation, cell death, and cell migration in Hep3B and HCCLM3 cells. The results showed that anisomycin could significantly suppress HCC cell colony formation and migration and induce HCC cell death. The hallmarks of ferroptosis, such as abnormal accumulation of iron and elevated levels of lipid peroxidation and malondialdehyde, were detected to confirm the ability of anisomycin to promote ferroptosis. Furthermore, coincubation with SB203580, an inhibitor of activated p38 MAPK, partially rescued anisomycin-induced ferroptosis. And the levels of p-p38 MAPK and p-H3S10 were successively increased by anisomycin treatment. The relationship between p-H3S10 and ferroptosis was revealed by ChIP sequencing. The reverse transcription PCR and immunofluorescence results showed that NCOA4 was upregulated both in mRNA and protein levels after anisomycin treatment. And by C11-BODIPY staining, we found that anisomycin-induced lipid reactive oxygen species was reduced after NCOA4 knockdown. In conclusion, the anisomycin-activated p38 MAPK promoted ferroptosis of HCC cells through H3S10 phosphorylation.
Collapse
Affiliation(s)
- Wei Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenjing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunyan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Te Liu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Zhu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tong Li
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Anli Jin
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Ding
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingrong Xian
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tongtong Tian
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Effect of Echinochrome A on Submandibular Gland Dysfunction in Ovariectomized Rats. Mar Drugs 2022; 20:md20120729. [PMID: 36547876 PMCID: PMC9785380 DOI: 10.3390/md20120729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Post-menopausal dry mouth or xerostomia is caused by reduced salivary secretion. This study aimed to investigate the efficacy of echinochrome A (Ech A) in alleviating submandibular gland dysfunctions in ovariectomized rats that mimic menopause. Female rats that were eight-weeks-old were randomly divided into SHAM-6, -12; OVX-6, -12; and ECH-6, -12 groups (consisting of 6- and 12-weeks post-sham-operated, ovariectomized, and Ech A-treated ovariectomized rats, respectively). The ECH groups had lower body weight than OVX but similar food intake and estradiol or estrogen receptor β expression. However, the ECH groups had lower mRNA expression of sterol-regulatory element binding protein-1c (Srebp-1c), acetyl-CoA carboxylase (Acc), fatty acid synthase (Fasn), cluster of differentiation 36 (Cd36), and lipid vacuole deposition than OVX mice. Moreover, reactive oxygen species (ROS), malondialdehyde (MDA), and iron accumulation were lower in the ECH than in the OVX groups. Fibrosis markers, transforming growth factor β (Tgf-βI and Tgf-βII mRNA) increased in the OVX than SHAM groups but decreased in the ECH groups. Aquaporin (Aqp-1 and Aqp-5 mRNA) and mucin expressions were downregulated in the OVX groups but improved with Ech A. In addition, Ech A prevented post-menopausal salivary gland dysfunction by inhibiting lipogenesis and ferroptosis. These findings suggest Ech A as an effective remedy for treating menopausal dry mouth.
Collapse
|