1
|
Jakubowicz D, Matz Y, Landau Z, Rosenblum RC, Twito O, Wainstein J, Tsameret S. Interaction Between Early Meals (Big-Breakfast Diet), Clock Gene mRNA Expression, and Gut Microbiome to Regulate Weight Loss and Glucose Metabolism in Obesity and Type 2 Diabetes. Int J Mol Sci 2024; 25:12355. [PMID: 39596418 PMCID: PMC11594859 DOI: 10.3390/ijms252212355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The circadian clock gene system plays a pivotal role in coordinating the daily rhythms of most metabolic processes. It is synchronized with the light-dark cycle and the eating-fasting schedule. Notably, the interaction between meal timing and circadian clock genes (CGs) allows for optimizing metabolic processes at specific times of the day. Breakfast has a powerful resetting effect on the CG network. A misaligned meal pattern, such as skipping breakfast, can lead to a discordance between meal timing and the endogenous CGs, and is associated with obesity and T2D. Conversely, concentrating most calories and carbohydrates (CH) in the early hours of the day upregulates metabolic CG expression, thus promoting improved weight loss and glycemic control. Recently, it was revealed that microorganisms in the gastrointestinal tract, known as the gut microbiome (GM), and its derived metabolites display daily oscillation, and play a critical role in energy and glucose metabolism. The timing of meal intake coordinates the oscillation of GM and GM-derived metabolites, which in turn influences CG expression, playing a crucial role in the metabolic response to food intake. An imbalance in the gut microbiota (dysbiosis) can also reciprocally disrupt CG rhythms. Evidence suggests that misaligned meal timing may cause such disruptions and can lead to obesity and hyperglycemia. This manuscript focuses on the reciprocal interaction between meal timing, GM oscillation, and circadian CG rhythms. It will also review studies demonstrating how aligning meal timing with the circadian clock can reset and synchronize CG rhythms and GM oscillations. This synchronization can facilitate weight loss and improve glycemic control in obesity and those with T2D.
Collapse
Affiliation(s)
- Daniela Jakubowicz
- Endocrinology and Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon 58100, Israel
| | - Yael Matz
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Zohar Landau
- Endocrinology and Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon 58100, Israel
| | - Rachel Chava Rosenblum
- Endocrinology and Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon 58100, Israel
| | - Orit Twito
- Endocrinology and Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon 58100, Israel
| | - Julio Wainstein
- Endocrinology and Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon 58100, Israel
| | - Shani Tsameret
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
2
|
Nediani C, Ruzzolini J, Dinu M. Oxidative Stress and Inflammation as Targets for Novel Preventive and Therapeutic Approaches in Non-Communicable Diseases III. Antioxidants (Basel) 2024; 13:1404. [PMID: 39594546 PMCID: PMC11591297 DOI: 10.3390/antiox13111404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Non-communicable diseases (NCDs), including cardiovascular diseases, diabetes, and neurodegenerative disorders, pose a significant global health challenge [...].
Collapse
Affiliation(s)
- Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (C.N.); (J.R.)
| | - Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (C.N.); (J.R.)
| | - Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| |
Collapse
|
3
|
Nunkoo VS, Cristian A, Jurcau A, Diaconu RG, Jurcau MC. The Quest for Eternal Youth: Hallmarks of Aging and Rejuvenating Therapeutic Strategies. Biomedicines 2024; 12:2540. [PMID: 39595108 PMCID: PMC11591597 DOI: 10.3390/biomedicines12112540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/26/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The impressive achievements made in the last century in extending the lifespan have led to a significant growth rate of elderly individuals in populations across the world and an exponential increase in the incidence of age-related conditions such as cardiovascular diseases, diabetes mellitus type 2, and neurodegenerative diseases. To date, geroscientists have identified 12 hallmarks of aging (genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, impaired macroautophagy, mitochondrial dysfunction, impaired nutrient sensing, cellular senescence, stem cell exhaustion, defective intercellular communication, chronic inflammation, and gut dysbiosis), intricately linked among each other, which can be targeted with senolytic or senomorphic drugs, as well as with more aggressive approaches such as cell-based therapies. To date, side effects seriously limit the use of these drugs. However, since rejuvenation is a dream of mankind, future research is expected to improve the tolerability of the available drugs and highlight novel strategies. In the meantime, the medical community, healthcare providers, and society should decide when to start these treatments and how to tailor them individually.
Collapse
Affiliation(s)
| | - Alexander Cristian
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | | | | |
Collapse
|
4
|
Jurcau MC, Jurcau A, Cristian A, Hogea VO, Diaconu RG, Nunkoo VS. Inflammaging and Brain Aging. Int J Mol Sci 2024; 25:10535. [PMID: 39408862 PMCID: PMC11476611 DOI: 10.3390/ijms251910535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Progress made by the medical community in increasing lifespans comes with the costs of increasing the incidence and prevalence of age-related diseases, neurodegenerative ones included. Aging is associated with a series of morphological changes at the tissue and cellular levels in the brain, as well as impairments in signaling pathways and gene transcription, which lead to synaptic dysfunction and cognitive decline. Although we are not able to pinpoint the exact differences between healthy aging and neurodegeneration, research increasingly highlights the involvement of neuroinflammation and chronic systemic inflammation (inflammaging) in the development of age-associated impairments via a series of pathogenic cascades, triggered by dysfunctions of the circadian clock, gut dysbiosis, immunosenescence, or impaired cholinergic signaling. In addition, gender differences in the susceptibility and course of neurodegeneration that appear to be mediated by glial cells emphasize the need for future research in this area and an individualized therapeutic approach. Although rejuvenation research is still in its very early infancy, accumulated knowledge on the various signaling pathways involved in promoting cellular senescence opens the perspective of interfering with these pathways and preventing or delaying senescence.
Collapse
Affiliation(s)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Alexander Cristian
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Vlad Octavian Hogea
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | | | | |
Collapse
|
5
|
Han T, Xu Y, Sun L, Hashimoto M, Wei J. Microglial response to aging and neuroinflammation in the development of neurodegenerative diseases. Neural Regen Res 2024; 19:1241-1248. [PMID: 37905870 PMCID: PMC11467914 DOI: 10.4103/1673-5374.385845] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/30/2023] [Accepted: 07/17/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging; they have a great impact on the aging process and are the main risk factors for neurodegeneration. Reviewing the microglial response to aging and neuroinflammation in neurodegenerative diseases will help understand the importance of microglia in neurodegenerative diseases. This review describes the origin and function of microglia and focuses on the role of different states of the microglial response to aging and chronic inflammation on the occurrence and development of neurodegenerative diseases, including Alzheimer's disease, Huntington's chorea, and Parkinson's disease. This review also describes the potential benefits of treating neurodegenerative diseases by modulating changes in microglial states. Therefore, inducing a shift from the neurotoxic to neuroprotective microglial state in neurodegenerative diseases induced by aging and chronic inflammation holds promise for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Tingting Han
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Yuxiang Xu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Lin Sun
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, China
| | - Makoto Hashimoto
- Department of Basic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| |
Collapse
|
6
|
Calcaterra V, Verduci E, Milanta C, Agostinelli M, Bona F, Croce S, Valsecchi C, Avanzini MA, Zuccotti G. The Benefits of the Mediterranean Diet on Inflamm-Aging in Childhood Obesity. Nutrients 2024; 16:1286. [PMID: 38732533 PMCID: PMC11085692 DOI: 10.3390/nu16091286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
(1) Background: Numerous elements of the Mediterranean diet (MD) have antioxidant and anti-inflammatory qualities. (2) Methods: We present a narrative review of the potential benefits of the Mediterranean dietary pattern (MD) in mitigating aging-related inflammation (inflamm-aging) associated with childhood obesity. The mechanisms underlying chronic inflammation in obesity are also discussed. A total of 130 papers were included after screening abstracts and full texts. (3) Results: A complex interplay between obesity, chronic inflammation, and related comorbidities is documented. The MD emerges as a promising dietary pattern for mitigating inflammation. Studies suggest that the MD may contribute to weight control, improved lipid profiles, insulin sensitivity, and endothelial function, thereby reducing the risk of metabolic syndrome in children and adolescents with obesity. (4) Conclusions: While evidence supporting the anti-inflammatory effects of the MD in pediatric obesity is still evolving, the existing literature underscores its potential as a preventive and therapeutic strategy. However, MD adherence remains low among children and adolescents, necessitating targeted interventions to promote healthier dietary habits. Future high-quality intervention studies are necessary to elucidate the specific impact of the MD on inflammation in diverse pediatric populations with obesity and associated comorbidities.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy;
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (C.M.); (M.A.); (F.B.); (G.Z.)
| | - Elvira Verduci
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (C.M.); (M.A.); (F.B.); (G.Z.)
- Department of Health Sciences, University of Milano, 20142 Milan, Italy
| | - Chiara Milanta
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (C.M.); (M.A.); (F.B.); (G.Z.)
| | - Marta Agostinelli
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (C.M.); (M.A.); (F.B.); (G.Z.)
| | - Federica Bona
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (C.M.); (M.A.); (F.B.); (G.Z.)
| | - Stefania Croce
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.C.); (C.V.); (M.A.A.)
| | - Chiara Valsecchi
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.C.); (C.V.); (M.A.A.)
| | - Maria Antonietta Avanzini
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.C.); (C.V.); (M.A.A.)
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milan, Italy; (C.M.); (M.A.); (F.B.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| |
Collapse
|
7
|
Lin Y, He L, Cai Y, Wang X, Wang S, Li F. The role of circadian clock in regulating cell functions: implications for diseases. MedComm (Beijing) 2024; 5:e504. [PMID: 38469551 PMCID: PMC10925886 DOI: 10.1002/mco2.504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
The circadian clock system orchestrates daily behavioral and physiological rhythms, facilitating adaptation to environmental and internal oscillations. Disruptions in circadian rhythms have been linked to increased susceptibility to various diseases and can exacerbate existing conditions. This review delves into the intricate regulation of diurnal gene expression and cell function by circadian clocks across diverse tissues. . Specifically, we explore the rhythmicity of gene expressions, behaviors, and functions in both immune and non-immune cells, elucidating the regulatory effects and mechanisms imposed by circadian clocks. A detailed discussion is centered on elucidating the complex functions of circadian clocks in regulating key cellular signaling pathways. We further review the circadian regulation in diverse diseases, with a focus on inflammatory diseases, cancers, and systemic diseases. By highlighting the intimate interplay between circadian clocks and diseases, especially through clock-controlled cell function, this review contributes to the development of novel disease intervention strategies. This enhanced understanding holds significant promise for the design of targeted therapies that can exploit the circadian regulation mechanisms for improved treatment efficacy.
Collapse
Affiliation(s)
- Yanke Lin
- Infectious Diseases InstituteGuangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
- Guangdong TCRCure Biopharma Technology Co., Ltd.GuangzhouChina
| | | | - Yuting Cai
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Xiaokang Wang
- Department of PharmacyShenzhen Longhua District Central HospitalShenzhenChina
| | - Shuai Wang
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Feng Li
- Infectious Diseases InstituteGuangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
8
|
Khor YS, Wong PF. MicroRNAs-associated with FOXO3 in cellular senescence and other stress responses. Biogerontology 2024; 25:23-51. [PMID: 37646881 DOI: 10.1007/s10522-023-10059-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
FOXO3 is a member of the FOXO transcription factor family and is known for regulating cellular survival in response to stress caused by various external and biological stimuli. FOXO3 decides cell fate by modulating cellular senescence, apoptosis and autophagy by transcriptional regulation of genes involved in DNA damage response and oxidative stress resistance. These cellular processes are tightly regulated physiologically, with FOXO3 acting as the hub that integrates signalling networks controlling them. The activity of FOXO3 is influenced by post-translational modifications, altering its subcellular localisation. In addition, FOXO3 can also be regulated directly or indirectly by microRNAs (miRNAs) or vice versa. This review discusses the involvement of various miRNAs in FOXO3-driven cellular responses such as senescence, apoptosis, autophagy, redox and inflammation defence. Given that these responses are linked and influence cell fate, a thorough understanding of the complex regulation by miRNAs would provide key information for developing therapeutic strategy and avoid unintended consequences caused by off-site targeting of FOXO3.
Collapse
Affiliation(s)
- Yi-Sheng Khor
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Lotti S, Dinu M, Colombini B, Amedei A, Sofi F. Circadian rhythms, gut microbiota, and diet: Possible implications for health. Nutr Metab Cardiovasc Dis 2023; 33:1490-1500. [PMID: 37246076 DOI: 10.1016/j.numecd.2023.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/30/2023]
Abstract
AIMS Over the past years, interest in chrono-nutrition has grown enormously as the fundamental role of circadian rhythms in regulating most physiological and metabolic processes has become clearer. Recently, the influence of circadian rhythms on the gut microbiota (GM) composition has also emerged, as more than half of the total microbial composition fluctuates rhythmically throughout the day. At the same time, other studies have observed that the GM itself synchronises the host's circadian biological clock through signals of a different nature. Therefore, it has been hypothesised that there is a two-way communication between the circadian rhythms of the host and the GM, but researchers have only just begun to identify some of its action mechanisms. The manuscript aim is, therefore, to gather and combine the latest evidence in the field of chrono-nutrition with the more recent research on the GM, in order to investigate their relationship and their potential impact on human health. DATA SYNTHESIS Considering current evidence, a desynchronization of circadian rhythms is closely associated with an alteration in the abundance and functionality of the gut microbiota with consequent deleterious effects on health, such as increased risk of numerous pathologies, including cardiovascular disease, cancer, irritable bowel disease, and depression. A key role in maintaining the balance between circadian rhythms and GM seems to be attributed to meal-timing and diet quality, as well as to certain microbial metabolites, in particular short-chain fatty acids. CONCLUSIONS Future studies are needed to decipher the link between the circadian rhythms and specific microbial patterns in relation to different disease frameworks.
Collapse
Affiliation(s)
- Sofia Lotti
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, Italy.
| | - Barbara Colombini
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, Italy; Unit of Clinical Nutrition, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
10
|
Baechle JJ, Chen N, Makhijani P, Winer S, Furman D, Winer DA. Chronic inflammation and the hallmarks of aging. Mol Metab 2023; 74:101755. [PMID: 37329949 PMCID: PMC10359950 DOI: 10.1016/j.molmet.2023.101755] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Recently, the hallmarks of aging were updated to include dysbiosis, disabled macroautophagy, and chronic inflammation. In particular, the low-grade chronic inflammation during aging, without overt infection, is defined as "inflammaging," which is associated with increased morbidity and mortality in the aging population. Emerging evidence suggests a bidirectional and cyclical relationship between chronic inflammation and the development of age-related conditions, such as cardiovascular diseases, neurodegeneration, cancer, and frailty. How the crosstalk between chronic inflammation and other hallmarks of aging underlies biological mechanisms of aging and age-related disease is thus of particular interest to the current geroscience research. SCOPE OF REVIEW This review integrates the cellular and molecular mechanisms of age-associated chronic inflammation with the other eleven hallmarks of aging. Extra discussion is dedicated to the hallmark of "altered nutrient sensing," given the scope of Molecular Metabolism. The deregulation of hallmark processes during aging disrupts the delicate balance between pro-inflammatory and anti-inflammatory signaling, leading to a persistent inflammatory state. The resultant chronic inflammation, in turn, further aggravates the dysfunction of each hallmark, thereby driving the progression of aging and age-related diseases. MAIN CONCLUSIONS The crosstalk between chronic inflammation and other hallmarks of aging results in a vicious cycle that exacerbates the decline in cellular functions and promotes aging. Understanding this complex interplay will provide new insights into the mechanisms of aging and the development of potential anti-aging interventions. Given their interconnectedness and ability to accentuate the primary elements of aging, drivers of chronic inflammation may be an ideal target with high translational potential to address the pathological conditions associated with aging.
Collapse
Affiliation(s)
- Jordan J Baechle
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA
| | - Nan Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Priya Makhijani
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - David Furman
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA; Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, CONICET, Pilar, Argentina.
| | - Daniel A Winer
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Laphanuwat P, Gomes DCO, Akbar AN. Senescent T cells: Beneficial and detrimental roles. Immunol Rev 2023; 316:160-175. [PMID: 37098109 PMCID: PMC10952287 DOI: 10.1111/imr.13206] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 04/01/2023] [Indexed: 04/27/2023]
Abstract
As the thymus involutes during aging, the T-cell pool has to be maintained by the periodic expansion of preexisting T cells during adulthood. A conundrum is that repeated episodes of activation and proliferation drive the differentiation of T cells toward replicative senescence, due to telomere erosion. This review discusses mechanisms that regulate the end-stage differentiation (senescence) of T cells. Although these cells, within both CD4 and CD8 compartments, lose proliferative activity after antigen-specific challenge, they acquire innate-like immune function. While this may confer broad immune protection during aging, these senescent T cells may also cause immunopathology, especially in the context of excessive inflammation in tissue microenvironments.
Collapse
Affiliation(s)
- Phatthamon Laphanuwat
- Division of MedicineUniversity College LondonLondonUK
- Department of PharmacologyFaculty of Medicine, Khon Kaen UniversityKhon KaenThailand
| | - Daniel Claudio Oliveira Gomes
- Division of MedicineUniversity College LondonLondonUK
- Núcleo de Doenças InfecciosasUniversidade Federal do Espírito SantoVitoriaBrazil
- Núcleo de BiotecnologiaUniversidade Federal do Espírito SantoVitoriaBrazil
| | - Arne N. Akbar
- Division of MedicineUniversity College LondonLondonUK
| |
Collapse
|
12
|
Sharebiani H, Keramat S, Chavoshan A, Fazeli B, Stanek A. The Influence of Antioxidants on Oxidative Stress-Induced Vascular Aging in Obesity. Antioxidants (Basel) 2023; 12:1295. [PMID: 37372025 PMCID: PMC10295268 DOI: 10.3390/antiox12061295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Obesity is a worldwide trend that is growing in incidence very fast. Adipose tissue dysfunction caused by obesity is associated with the generation of oxidative stress. Obesity-induced oxidative stress and inflammation play a key role in the pathogenesis of vascular diseases. Vascular aging is one of the main pathogenesis mechanisms. The aim of this study is to review the effect of antioxidants on vascular aging caused by oxidative stress in obesity. In order to achieve this aim, this paper is designed to review obesity-caused adipose tissue remodeling, vascular aging generated by high levels of oxidative stress, and the effects of antioxidants on obesity, redox balance, and vascular aging. It seems that vascular diseases in obese individuals are complex networks of pathological mechanisms. In order to develop a proper therapeutic tool, first, there is a need for a better understanding of interactions between obesity, oxidative stress, and aging. Based on these interactions, this review suggests different lines of strategies that include change in lifestyle to prevent and control obesity, strategies for adipose tissue remodelling, oxidant-antioxidant balance, inflammation suppression, and strategies against vascular aging. Some antioxidants support different lines of these strategies, making them appropriate for complex conditions such as oxidative stress-induced vascular diseases in obese individuals.
Collapse
Affiliation(s)
- Hiva Sharebiani
- Vascular Independent Research and Education, European Foundation, 20157 Milan, Italy; (H.S.); (S.K.); (A.C.); (B.F.)
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran
| | - Shayan Keramat
- Vascular Independent Research and Education, European Foundation, 20157 Milan, Italy; (H.S.); (S.K.); (A.C.); (B.F.)
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran
| | - Abdolali Chavoshan
- Vascular Independent Research and Education, European Foundation, 20157 Milan, Italy; (H.S.); (S.K.); (A.C.); (B.F.)
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran
| | - Bahar Fazeli
- Vascular Independent Research and Education, European Foundation, 20157 Milan, Italy; (H.S.); (S.K.); (A.C.); (B.F.)
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran
| | - Agata Stanek
- Vascular Independent Research and Education, European Foundation, 20157 Milan, Italy; (H.S.); (S.K.); (A.C.); (B.F.)
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-902 Bytom, Poland
| |
Collapse
|
13
|
Salminen A. Aryl hydrocarbon receptor (AhR) impairs circadian regulation: impact on the aging process. Ageing Res Rev 2023; 87:101928. [PMID: 37031728 DOI: 10.1016/j.arr.2023.101928] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Circadian clocks control the internal sleep-wake rhythmicity of 24hours which is synchronized by the solar cycle. Circadian regulation of metabolism evolved about 2.5 billion years ago, i.e., the rhythmicity has been conserved from cyanobacteria and Archaea through to mammals although the mechanisms utilized have developed with evolution. While the aryl hydrocarbon receptor (AhR) is an evolutionarily conserved defence mechanism against environmental threats, it has gained many novel functions during evolution, such as the regulation of cell cycle, proteostasis, and many immune functions. There is robust evidence that AhR signaling impairs circadian rhythmicity, e.g., by interacting with the core BMAL1/CLOCK complex and disturbing the epigenetic regulation of clock genes. The maintenance of circadian rhythms is impaired with aging, disturbing metabolism and many important functions in aged organisms. Interestingly, it is known that AhR signaling promotes an age-related tissue degeneration, e.g., it is able to inhibit autophagy, enhance cellular senescence, and disrupt extracellular matrix. These alterations are rather similar to those induced by a long-term impairment of circadian rhythms. However, it is not known whether AhR signaling enhances the aging process by impairing circadian homeostasis. I will examine the experimental evidence indicating that AhR signaling is able to promote the age-related degeneration via a disruption of circadian rhythmicity.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
14
|
Aziz T, Nadeem AA, Sarwar A, Perveen I, Hussain N, Khan AA, Daudzai Z, Cui H, Lin L. Particle Nanoarchitectonics for Nanomedicine and Nanotherapeutic Drugs with Special Emphasis on Nasal Drugs and Aging. Biomedicines 2023; 11:354. [PMID: 36830891 PMCID: PMC9953552 DOI: 10.3390/biomedicines11020354] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
Aging is a multifunctional physiological manifestation. The nasal cavity is considered a major site for easy and cost-effective drug and vaccine administration, due to high permeability, low enzymatic activity, and the presence of a high number of immunocompetent cells. This review article primarily focuses on aging genetics, physical parameters, and the use of nanoparticles as delivery systems of drugs and vaccines via the nasal cavity. Studies have identified various genes involved in centenarian and average-aged people. VEGF is a key mediator involved in angiogenesis. Different therapeutic approaches induce vascular function and angiogenesis. FOLR1 gene codes for folate receptor alpha protein that helps in regulating the transport of vitamin B folate, 5-methyltetrahydrofolate and folate analogs inside the cell. This gene also aids in slowing the aging process down by cellular regeneration and promotes healthy aging by reducing aging symptoms. It has been found through the literature that GATA 6, Yamanaka factors, and FOLR1 work in synchronization to induce healthy and delayed aging. The role and applications of genes including CBS, CISD, SIRT 1, and SIRT 6 play a significant role in aging.
Collapse
Affiliation(s)
- Tariq Aziz
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Abad Ali Nadeem
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore 54590, Pakistan
| | - Abid Sarwar
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore 54590, Pakistan
| | - Ishrat Perveen
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore 54590, Pakistan
| | - Nageen Hussain
- Institute of Microbiology and Molecular Genetics, New Campus, University of the Punjab, Lahore 54590, Pakistan
| | - Ayaz Ali Khan
- Department of Biotechnology, University of Malakand, Chakdara 18800, Pakistan
| | - Zubaida Daudzai
- Department of Bioresources and Biotechnology, King Mongkut University of Technology, Bangkok 10140, Thailand
| | - Haiying Cui
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lin Lin
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|