1
|
Amr A, Abdel Karim AE, Abd El-Wahed AA, El-Seedi HR, Augustyniak M, El Wakil A, El-Samad LM, Hassan MA. Liquid chromatography–mass spectrometry profiling of propolis and royal jelly and their ameliorative effects on cadmium-instigated pathological consequences in ovarian tissues of rats. Microchem J 2024; 207:111800. [DOI: 10.1016/j.microc.2024.111800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
|
2
|
Helmy MW, Youssef MH, Yamari I, Amr A, Moussa FI, El Wakil A, Chtita S, El-Samad LM, Hassan MA. Repurposing of sericin combined with dactolisib or vitamin D to combat non-small lung cancer cells through computational and biological investigations. Sci Rep 2024; 14:27034. [PMID: 39505930 PMCID: PMC11541877 DOI: 10.1038/s41598-024-76947-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
This study aims to repurpose sericin in combating non-small lung cancer cells (A549 and H460) by combining it with dactolisib or vitamin D to reduce the dose of dactolisib and boost the anticancer effectiveness of dactolisib and vitamin D. Therefore, the binding affinities of individual and combined drugs were examined using in silico and protein-protein interaction studies, targeting NF-κB, Cyclin D1, p-AKT, and VEGF1 proteins. The findings manifested remarkable affinities for combinatorial drugs compared to individual compounds. To substantiate these findings, the combined IC50 for each combination (sericin + dactolisib and sericin + vitamin D) were determined, reporting 31.9 and 41.8 µg/ml, respectively, against A549 cells and 47.9 and 55.3 µg/ml, respectively, against H460 cells. Furthermore, combination indices were assessed to lower the doses of each drug. Interestingly, in vitro results exhibited marked diminutions in NF-κB, Cyclin D1, p-AKT, and VEGF1 after treatment with sericin + dactolisib and sericin + vitamin D compared to control lung cancer cells and those treated with a single drug. Moreover, A549 and H460 cells treated with both combinations demonstrated augmented caspase-3 levels, implying substantial apoptotic activity. Altogether, these results accentuated the prospective implementation of sericin in combination with dactolisib and vitamin D at low doses to preclude lung cancer cell proliferation.
Collapse
Affiliation(s)
- Maged W Helmy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Damanhour University, 22511, Damanhour, Egypt
| | - Mariam H Youssef
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Imane Yamari
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, P. O. Box 7955, Casablanca, Morocco
| | - Alaa Amr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Farouzia I Moussa
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, P. O. Box 7955, Casablanca, Morocco
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| |
Collapse
|
3
|
El-Samad LM, Arafat EA, Nour OM, Kheirallah N, Gad ME, Hagar M, El-Moaty ZA, Hassan MA. Biomonitoring of Heavy Metal Toxicity in Freshwater Canals in Egypt Using Creeping Water Bugs ( Ilyocoris cimicoides): Oxidative Stress, Histopathological, and Ultrastructural Investigations. Antioxidants (Basel) 2024; 13:1039. [PMID: 39334698 PMCID: PMC11428737 DOI: 10.3390/antiox13091039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The abundance of metal pollutants in freshwater habitats poses serious threats to the survival and biodiversity of aquatic organisms and human beings. This study intends for the first time to assess the pernicious influences of heavy metals in Al Marioteya canal freshwater in Egypt, compared to Al Mansoureya canal as a reference site utilizing the creeping water bug (Ilyocoris cimicoides) as an ecotoxicological model. The elemental analysis of the water showed a significantly higher incidence of heavy metals, including cadmium (Cd), cobalt (Co), chromium (Cr), nickel (Ni), and lead (Pb), in addition to the calcium (Ca) element than the World Health Organization's (WHO) permitted levels. The Ca element was measured in the water samples to determine whether exposure to heavy metals-induced oxidative stress engendered Ca deregulation in the midgut tissues of the creeping water bug. Remarkably, increased levels of these heavy metals were linked to an increase in chemical oxygen demand (COD) at the polluted site. Notably, the accumulation of these heavy metals in the midgut tissues resulted in a substantial reduction in antioxidant parameters, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and ascorbate peroxidase (APOX), along with a marked rise in malondialdehyde (MDA), cytochrome P450, and protein carbonyl levels. These results clearly indicate a noticeable disturbance in the antioxidant defense system due to uncontrollable reactive oxygen species (ROS). Notably, the results demonstrated that oxidative stress caused disturbances in Ca levels in the midgut tissue of I. cimicoides from polluted sites. Furthermore, the comet and flow cytometry analyses showed considerable proliferations of comet cells and apoptotic cells in midgut tissues, respectively, exhibiting prominent correlations, with pathophysiological deregulation. Interestingly, histopathological and ultrastructural examinations exposed noticeable anomalies in the midgut, Malpighian tubules, and ovarioles of I. cimicoides, emphasizing our findings. Overall, our findings emphasize the potential use of I. cimicoides as a bioindicator of heavy metal pollution in freshwater to improve sustainable water management in Egypt.
Collapse
Affiliation(s)
- Lamia M. El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (L.M.E.-S.); (E.A.A.); (N.K.)
| | - Esraa A. Arafat
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (L.M.E.-S.); (E.A.A.); (N.K.)
| | - Ola Mohamed Nour
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria 21526, Egypt;
| | - Nessrin Kheirallah
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (L.M.E.-S.); (E.A.A.); (N.K.)
| | - Mohammed E. Gad
- Department of Zoology and Entomology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Mohamed Hagar
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt;
| | - Zeinab A. El-Moaty
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (L.M.E.-S.); (E.A.A.); (N.K.)
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohamed A. Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| |
Collapse
|
4
|
Amr A, Karim AEA, Augustyniak M, Wakil AE, El-Samad LM, Hassan MA. Efficacy of propolis and royal jelly in attenuating cadmium-induced spermatogenesis and steroidogenesis dysregulation, causing infertility in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53052-53073. [PMID: 39172338 DOI: 10.1007/s11356-024-34673-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Bee-derived pharmaceutical products, including propolis (PRO) and royal jelly (ROJ), possess outstanding pharmacological properties. However, their efficiency in counteracting the deleterious influences of cadmium (Cd) in testes and the relevant mechanisms entail further investigations. Therefore, this study sheds light on the therapeutic efficacy of PRO and ROJ against testicular dysfunction and infertility induced by Cd. Toward this end, 30 mature male Wistar albino rats were randomly divided into six groups (5 animals/group), including (I) control, (II) Cd, (III) PRO, (IV) ROJ, (V) PRO + Cd, and (VI) ROJ + Cd groups. Furthermore, antioxidant factors, semen quality, hormonal levels, steroidogenic enzymes, and genotoxicity were assessed. Moreover, histopathological and ultrastructural attributes and offspring rates were investigated. The Cd-treated group revealed marked reductions in reduced glutathione (GSH), total antioxidant capacity (TAC), and superoxide dismutase (SOD) with an amplification of lipid peroxidation in testes, indicating disruption of the antioxidant defense system. Furthermore, myeloperoxidase (MPO) activity and DNA damage were significantly heightened, implying inflammation and genotoxicity, respectively. Moreover, steroidogenic enzymes, including 17β-Hydroxy Steroid Dehydrogenase 3 (HSD17b3), 3β-Hydroxy Steroid Dehydrogenase 2 (HSD3b2), 17α-hydroxylase/17,20-lyase (CYP17A1), and steroid 5α-reductase 2 (SRD5A2) were markedly diminished accompanied with disorders in luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone. Besides, spermatozoa quality was reduced, associated with a diminution in the diameter of seminiferous tubules. By contrast, PRO or ROJ significantly protected and/or counteracted the Cd-induced pathophysiological consequences, ameliorating antioxidant and inflammatory biomarkers, steroidogenic enzymes, hormonal levels, and sperm properties, along with lessening DNA impairments. Critically, histological and ultrastructural analyses manifested several anomalies in the testicular tissues of the Cd-administered group, including the Leydig and Sertoli cells and spermatozoa. Conversely, PRO or ROJ sustained testicular tissues' structure, enhancing spermatozoa integrity and productivity. Interestingly, treatment with PRO or ROJ improved fertility indices through offspring rates compared to the Cd-animal group. Our data suggest that PRO is a more effective countermeasure than ROJ against Cd toxicity for securing the delicate testicular microenvironment for spermatogenesis and steroidogenesis.
Collapse
Affiliation(s)
- Alaa Amr
- Department of Zoology, Faculty of Science, Alexandria University, 21568, Alexandria, Egypt
| | - Ahmed E Abdel Karim
- Department of Zoology, Faculty of Science, Alexandria University, 21568, Alexandria, Egypt
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Abeer El Wakil
- Biological and Geological Sciences Department, Faculty of Education, Alexandria University, 21526, Alexandria, Egypt
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, 21568, Alexandria, Egypt
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| |
Collapse
|
5
|
Mahmood WK, Dakhal GY, Younus D, Issa AA, El-Sayed DS. Comparative properties of ZnO modified Au/Fe nanocomposite: electronic, dynamic, and locator annealing investigation. J Mol Model 2024; 30:165. [PMID: 38735975 DOI: 10.1007/s00894-024-05956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024]
Abstract
CONTEXT A computational representation was used to model the doping and nanomodification of ZnO nanoparticles incorporated in Au/Fe nanocomposite. Au/Fe nanostructure was geometrically and discussed to investigate its electronic properties such electronic band structure and PDOS spectra. Moreover, the ZnO interacted with Au/Fe system was illustrated concerning the modified properties present on the surface of the nanocomposite as it may behave different attribution of band gap evaluated after ZnO modification included. Molecular dynamic simulation of the whole nano system was studied to predict the system stability concerning temperature and energy parameters during 100 ps simulation time. The most effective models under investigation were evaluated using adsorption annealing computations associated with the adsorption energy surface. A highly stable energetic adsorption system was anticipated by the periodic adsorption-annealing calculation. METHODS Au and Fe pure metals nanostructures were studied as a separate molecule with (0 0 1) plane surface for optimum energy minimization. Dmol3 module in/materials studio software was utilized for this protocol. The designed Au/Fe layers for nanostructure building material was computationally optimized, where DFT level was considered involving generalized gradient approximation (GGA) with Perdew-Burke-Ernzerh (PBE) exchange functional. In the computations of the structure matrix simulation, the global orbital cutoff was selected. To address the weak quantification of the standard DFT functionals, Tkatchenko-Schefer (TS) (DFT + D) was utilized to precisely correct the pairwise dispersion of the functionals. The electrical parameters were interpreted using the reciprocal space of the ultrasoft pseudopotential representation. To overcome the issues of self-electron interaction, the nonlocal hybrid functional with PBE0 method was utilized to calculate the electronic properties of the studied systems. The computations generated are predicated on a particular trajectory of the gamma k-point band energy interpolations proposed in this examination. An investigation into the position of adsorption came after geometric optimization. Adsorbed on an optimized Au/Fe surface, ZnO nanostructure was computationally explored using the Dmol3 simulation software.
Collapse
Affiliation(s)
- Waleed K Mahmood
- Computer Department, Faculty of Basic Education, Mustansiriyah University, Baghdad, Iraq
| | - Ghaith Y Dakhal
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Dhurgham Younus
- Department of Architectural Engineering, University of Technology, Baghdad, Iraq
| | - Ali Abdullah Issa
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Doaa S El-Sayed
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
6
|
Arafat EA, El-Samad LM, Hassan MA. Scuttle fly Megaselia scalaris (Loew) (Diptera: Phoridae) endoparasitoid as a novel biocontrol agent against adult American cockroaches (Periplaneta americana). Sci Rep 2024; 14:9762. [PMID: 38684676 PMCID: PMC11058772 DOI: 10.1038/s41598-024-59547-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
The American cockroach, Periplaneta americana (Linnaeus, 1758) (Blattodea: Blattidae), is one of the most common pests that thrive in diverse environments and carries various pathogens, causing critical threats to public health and the ecosystem. We thus report in this study the first observation of decapitated American cockroaches as a result of infestation with scuttle fly parasitoids. Interestingly, behavioral alterations in the form of zombification-like behavior could be observed in cockroaches reared in the laboratory before being decapitated, implying that the insect targets cockroach heads. To identify this parasitoid, cockroaches' corpora were isolated in jars, and apodous larvae were observed. Larvae developed into small coarctate pupae, and adults emerged. The scuttle flies were collected and exhibited tiny black, brown, to yellowish bodies. The fly was initially identified based on its morphological properties as a member of the order Diptera, family Phoridae. To provide further insights into the morphological attributes of the phorid species, the fly was examined using a scanning electron microscope (SEM) and then identified as Megaselia scalaris accordingly. SEM analysis revealed the distinctive structure of M. scalaris concerning the head, mouth parts, and legs. Specifically, the mouth parts include the labrum, labellum, rostrum, and maxillary palps. Although further investigations are still required to understand the complicated relationships between M. scalaris and American cockroaches, our findings provide a prominent step in the control of American cockroaches using M. scalaris as an efficient biological control agent.
Collapse
Affiliation(s)
- Esraa A Arafat
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| |
Collapse
|
7
|
Wang YL, Lee YH, Chou CL, Chang YS, Liu WC, Chiu HW. Oxidative stress and potential effects of metal nanoparticles: A review of biocompatibility and toxicity concerns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123617. [PMID: 38395133 DOI: 10.1016/j.envpol.2024.123617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Metal nanoparticles (M-NPs) have garnered significant attention due to their unique properties, driving diverse applications across packaging, biomedicine, electronics, and environmental remediation. However, the potential health risks associated with M-NPs must not be disregarded. M-NPs' ability to accumulate in organs and traverse the blood-brain barrier poses potential health threats to animals, humans, and the environment. The interaction between M-NPs and various cellular components, including DNA, multiple proteins, and mitochondria, triggers the production of reactive oxygen species (ROS), influencing several cellular activities. These interactions have been linked to various effects, such as protein alterations, the buildup of M-NPs in the Golgi apparatus, heightened lysosomal hydrolases, mitochondrial dysfunction, apoptosis, cell membrane impairment, cytoplasmic disruption, and fluctuations in ATP levels. Despite the evident advantages M-NPs offer in diverse applications, gaps in understanding their biocompatibility and toxicity necessitate further research. This review provides an updated assessment of M-NPs' pros and cons across different applications, emphasizing associated hazards and potential toxicity. To ensure the responsible and safe use of M-NPs, comprehensive research is conducted to fully grasp the potential impact of these nanoparticles on both human health and the environment. By delving into their intricate interactions with biological systems, we can navigate the delicate balance between harnessing the benefits of M-NPs and minimizing potential risks. Further exploration will pave the way for informed decision-making, leading to the conscientious development of these nanomaterials and safeguarding the well-being of society and the environment.
Collapse
Affiliation(s)
- Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, 406, Taiwan
| | - Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, 320, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wen-Chih Liu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, 114, Taiwan; Section of Nephrology, Department of Medicine, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung, 928, Taiwan; Department of Nursing, Meiho University, Pingtung, 912, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
8
|
El-Samad LM, Bakr NR, Abouzid M, Shedid ES, Giesy JP, Khalifa SAM, El-Seedi HR, El Wakil A, Al Naggar Y. Nanoparticles-mediated entomotoxicology: lessons from biologica. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:305-324. [PMID: 38446268 DOI: 10.1007/s10646-024-02745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Nanotechnology has grown in importance in medicine, manufacturing, and consumer products. Nanoparticles (NPs) are also widely used in the field of insect pest management, where they show a variety of toxicological effects on insects. As a result, the primary goal of this review is to compile and evaluate available information on effects of NPs on insects, by use of a timely, bibliometric analysis. We also discussed the manufacturing capacity of NPs from insect tissues and the toxic effects of NPs on insects. To do so, we searched the Web of Science database for literature from 1995 to 2023 and ran bibliometric analyses with CiteSpace© and Bibliometrix©. The analyses covered 614 journals and identified 1763 relevant documents. We found that accumulation of NPs was one of the top trending topics. China, India, and USA had the most published papers. The most overall reported models of insects were those of Aedes aegypti (yellow fever mosquito), Culex quinquefasciatus (southern house mosquito), Bombyx mori (silk moth), and Anopheles stephensi (Asian malaria mosquito). The application and methods of fabrication of NPs using insect tissues, as well as the mechanism of toxicity of NPs on insects, were also reported. A uniform legal framework is required to allow nanotechnology to fully realize its potential while minimizing harm to living organisms and reducing the release of toxic metalloid nanoparticles into the environment.
Collapse
Affiliation(s)
- Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nahed R Bakr
- Department of Zoology, Faculty of Science, Damanhour University, Damanhur, Egypt
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Eslam S Shedid
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, 32512, Egypt
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
- Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX, 76798-7266, USA
| | - Shaden A M Khalifa
- Psychiatry and Psychology Department, Capio Saint Göran's Hospital, Sankt Göransplan 1, 112 19, Stockholm, Sweden
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Nanjing, 210024, China
| | - Abeer El Wakil
- Biological and Geological Sciences Department, Faculty of Education, Alexandria University, Alexandria, Egypt.
| | - Yahya Al Naggar
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
9
|
Saad M, Selim N, El-Samad LM. Comprehensive toxicity assessment of nanodiamond on Blaps polychresta: implications and novel findings. INSECT SCIENCE 2024. [PMID: 38531693 DOI: 10.1111/1744-7917.13357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
With the increasing development of nanomaterials, the use of nanodiamonds (NDs) has been broadly manifested in many applications. However, their high penetration into the ecosystem indubitably poses remarkable toxicological risks. This paper investigates the toxic effects of NDs on the darkling beetle, Blaps polychresta Forskal, 1775 (Coleoptera: Tenebrionidae). Survival analysis was carried out by monitoring the beetles for 30 d after the injection of four different doses of NDs. A dose of 10.0 mg NDs/g body weight, causing less than 50% mortality effect, was assigned in the analysis of the different organs of studied beetles, including testis, ovary, and midgut. Structural and ultrastructural analyses were followed using light, TEM, and SEM microscopes. In addition, a variety of stress markers and enzyme activities were assessed using spectrophotometric methods. Furthermore, cell viability and DNA damage were evaluated using cytometry and comet assay, respectively. Compared to the control group, the NDs-treated group was exposed to various abnormalities within all the studied organs as follows. Significant disturbances in enzyme activities were accompanied by an apparent dysregulation in the antioxidant system. The flow cytometry results indicated a substantial decrease of viable cells along with a rise of apoptotic and necrotic cells. The comet assay demonstrated a highly increased level of DNA damage. Likewise, histological analyses accentuated the same findings showing remarkable deformities in the studied organs. Prominently, the research findings substantially contribute for the first time to evaluating the critical effects of NDs on B. polychresta, adopted as the bioindicator in this paper.
Collapse
Affiliation(s)
- Marwa Saad
- Faculty of Science, Department of Zoology, Alexandria University, Alexandria, Egypt
| | - Nabila Selim
- Faculty of Science, Department of Zoology, Alexandria University, Alexandria, Egypt
| | - Lamia M El-Samad
- Faculty of Science, Department of Zoology, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Hassan MA, Abd El-Aziz S, Nabil-Adam A, Tamer TM. Formulation of novel bioactive gelatin inspired by cinnamaldehyde for combating multi-drug resistant bacteria: Characterization, molecular docking, pharmacokinetic analyses, and in vitro assessments. Int J Pharm 2024; 652:123827. [PMID: 38253268 DOI: 10.1016/j.ijpharm.2024.123827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
This study set out to formulate antibacterial and antioxidant gelatin boosted by cinnamaldehyde for combating multi-drug resistant bacteria previously obtained from chronic wounds. Towards this end, gelatin amine groups were conjugated with carbonyl groups of cinnamaldehyde, producing cinnamyl-gelatin Schiff bases. The physicochemical attributes of cinnamyl-gelatin Schiff bases were probed concerning alterations in chemical structures and microstructures compared to native gelatin. Besides, cinnamyl-gelatin Schiff bases exhibited higher thermal stability than gelatin, with a diminishing in solubility due to increases in hydrophobicity features. Interestingly, cinnamyl-gelatin derivatives exerted antibacterial activities versus multi-drug resistant Gram-negative and Gram-positive bacteria, showing maximum growth inhibition at the highest concentration of cinnamaldehyde incorporated into gelatin. The scavenging activities of gelatin against DPPH and ABTS•+ were promoted in cinnamyl-gelatin derivatives from 11.93 ± 0.6 % to 49.9 ± 2.5 % and 12.54 ± 0.63 % to 49.9 ± 3.12 %, respectively. Remarkably, cinnamyl-gelatin derivatives induced the proliferation of fibroblast cells, implying their prospective applications in tissue engineering. Molecular docking and pharmacokinetic investigations disclosed the potential antibacterial mechanisms of cinnamyl-gelatin derivatives alongside their biopharmaceutical applications. Altogether, these findings suggest that cinnamyl-gelatin derivatives could be utilized to tailor antibacterial-free antibiotics and antioxidant wound dressings against virulent bacteria to promote chronic wound recovery.
Collapse
Affiliation(s)
- Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt.
| | - Sarah Abd El-Aziz
- Polymer Materials Research Department, Advanced Technologies, and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt
| | - Asmaa Nabil-Adam
- Marine Biotechnology and Natural Products Laboratory, National Institute of Oceanography & Fisheries, Cairo 11516, Egypt
| | - Tamer M Tamer
- Polymer Materials Research Department, Advanced Technologies, and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt.
| |
Collapse
|
11
|
Sun L, Zhou J, Lai J, Zheng X, Zhang LM. Multifunctional chitosan-based gel sponge with efficient antibacterial, hemostasis and strong adhesion. Int J Biol Macromol 2024; 256:128505. [PMID: 38040147 DOI: 10.1016/j.ijbiomac.2023.128505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Developing wound dressings with solid adhesive properties that enable efficient, painless hemostasis and prevent wound infection remain a huge challenge. Herein, the tris(hydroxymethyl) methyl glycine-modified chitosan derivative (CTMG) was prepared and freeze-dried after simply adjusting the concentration of CTMG to obtain the chitosan-based gel sponge with desired multi-hollow structure, special antibacterial and biocompatibility. The adhesion strength on porcine skin was impressive up to 113 KPa, much higher than fibrin glue. It can withstand the pressure that far exceeds blood pressure. CTMG exhibits bacteriostatic abilities as demonstrated in a bacteriostatic assay, and alongside biocompatibility, as shown in cytotoxicity and hemolytic assays. Moreover, CTMG gel sponge showed hemostatic properties in both in vivo and in vitro hemostasis experiments. During an experiment on liver hemorrhage in rats, CTMG gel sponge proved to be more effective in controlling bleeding than other hemostatic sponges available on the market, indicating its promising hemostatic properties. CTMG gel sponge possesses the potential to function as a wound dressing and hemostatic material, making it suitable for various clinical applications.
Collapse
Affiliation(s)
- Lanfang Sun
- DSAPM Lab and PCFM Lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Junyi Zhou
- DSAPM Lab and PCFM Lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jieying Lai
- DSAPM Lab and PCFM Lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xue Zheng
- DSAPM Lab and PCFM Lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Li-Ming Zhang
- DSAPM Lab and PCFM Lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
12
|
Habiba ES, Harby SA, El-Sayed NS, Omar EM, Bakr BA, Augustyniak M, El-Samad LM, Hassan MA. Sericin and melatonin mitigate diethylnitrosamine-instigated testicular impairment in mice: Implications of oxidative stress, spermatogenesis, steroidogenesis, and modulation of Nrf2/WT1/SF-1 signaling pathways. Life Sci 2023; 334:122220. [PMID: 37898455 DOI: 10.1016/j.lfs.2023.122220] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
AIMS This study aimed to investigate the therapeutic influence of combination therapy with sericin and melatonin on attenuating diethylnitrosamine (DEN)-instigated testicular dysfunction in mice and defining the molecular mechanisms involved in orchestrating redox signaling pathways and restoring spermatogenesis and steroidogenesis. MATERIALS AND METHODS Different groups of male Swiss albino mice were established and injected with respective drugs intraperitoneally. Semen analysis, hormonal assays, and oxidative stress biomarkers were evaluated. Additionally, melatonin and its receptors, WT1, SF-1, vimentin, Nrf2, and ANXA1 expressions were assessed. Histopathological and ultrastructural features of the testes were investigated by semithin, SEM, and TEM analyses. KEY FINDINGS Exposure to DEN exhibited pathophysiological consequences, including a remarkable increase in lipid peroxidation associated with substantial diminutions in SOD, CAT, GPx, GSH, GSH:GSSG, and GST. Furthermore, it disrupted spermatozoa integrity, testosterone, FSH, LH, melatonin, and its receptors (MT1 and MT2) levels, implying spermatogenesis dysfunction. By contrast, treatment with sericin and melatonin significantly restored these disturbances. Interestingly, the combination therapy of sericin and melatonin noticeably augmented the Nrf2, WT1, and SF-1 expressions compared to DEN-treated mice, deciphering the amelioration perceived in antioxidant defense and spermatogenesis inside cells. Furthermore, immunohistochemical detection of ANXA1 alongside histopathological and ultrastructural analyses revealed evident maintenance of testicular structures without discernible inflammation or anomalies in mice administered with sericin and melatonin compared to the DEN-treated group. SIGNIFICANCE Our findings highlighted that treatment with sericin and melatonin alleviated the testicular tissues in mice from oxidative stress and dysregulated spermatogenesis and steroidogenesis engendered by DEN.
Collapse
Affiliation(s)
- Esraa S Habiba
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Egypt
| | - Sahar A Harby
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Egypt
| | - Norhan S El-Sayed
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Egypt
| | - Eman M Omar
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Egypt
| | - Basant A Bakr
- Department of Zoology, Faculty of Science, Alexandria University, Egypt
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Egypt
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt.
| |
Collapse
|
13
|
Sezen S, Ertuğrul MS, Balpınar Ö, Bayram C, Özkaraca M, Okkay IF, Hacımüftüoğlu A, Güllüce M. Assessment of antimicrobial activity and In Vitro wound healing potential of ZnO nanoparticles synthesized with Capparis spinosa extract. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117609-117623. [PMID: 37872332 DOI: 10.1007/s11356-023-30417-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/08/2023] [Indexed: 10/25/2023]
Abstract
Agents that will accelerate wound healing maintain their clinical importance in all aspects. The aim of this study is to determine the antimicrobial activity of zinc oxide nanoparticles (ZnO NPs) ZnO nanoparticles obtained by green synthesis from Capparis spinosa L. extract and their effect on in vitro wound healing. ZnO NPs were synthesized and characterized using Capparis spinosa L. extract. ZnO NPs were tested against nine ATCC-coded pathogen strains to determine antimicrobial activity. The effects of different doses (0.0390625-20 µg/mL) of NPs on cell viability were determined by MTT assay. The effect of ZnO NPs doses (0.0390625 µg/mL, 0.078125 µg/mL, 0.15625 µg/mL, 0.3125 µg/mL, 0.625 µg/mL, 1.25 µg/mL) that increase proliferation and migration on wound healing was investigated in an in vitro wound experiment. Cell culture medium obtained from the in vitro wound assay was used for biochemical analysis, and plate alcohol-fixed cells were used for immunohistochemical staining. It was determined that NPs formed an inhibition zone against the tested Gram-positive bacteria. The ZnO NPs doses determined in the MTT test provided faster wound closure in in-vitro conditions compared to the DMSO group. Biochemical analyses showed that inflammation and oxidative status decreased, while antioxidant levels increased in ZnO NPs groups. Immunohistochemical analyses showed increased expression levels of Bek/FGFR2, IGF, and TGF-β associated with wound healing. The findings reveal the antimicrobial effect of ZnO nanoparticles obtained using Capparis spinosa L. extract in vitro and their potential applications in wound healing.
Collapse
Affiliation(s)
- Selma Sezen
- Department of Medical Pharmacology, Faculty of Medicine, Agri Ibrahim Cecen University, Agri, Türkiye
| | | | - Özge Balpınar
- Hemp Research Institute, Ondokuz Mayıs University, Samsun, Türkiye
| | - Cemil Bayram
- Department of Pharmacology and Toxicology, Faculty of Veterinary, Ataturk University, Erzurum, Türkiye
| | - Mustafa Özkaraca
- Department of Pathology, Faculty of Veterinary, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Irmak Ferah Okkay
- Department of Pharmacology, Faculty of Pharmacy, Ataturk University, Erzurum, Türkiye
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Türkiye
| | - Medine Güllüce
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Türkiye
| |
Collapse
|
14
|
Bibi T, Bano S, Ud Din F, Ali H, Khan S. Preparation, characterization, and pharmacological application of oral Honokiol-loaded solid lipid nanoparticles for diabetic neuropathy. Int J Pharm 2023; 645:123399. [PMID: 37703961 DOI: 10.1016/j.ijpharm.2023.123399] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Honokiol is a phytochemical component with a variety of pharmacological properties. However, the major limitation of Honokiol is its poor solubility and low oral bioavailability. In this study, we formulated and characterized oral Honokiol-loaded solid lipid nanoparticles (SLNs) to enhance bioavailability and then evaluated their effectiveness in experimental diabetic neuropathy (DN). The finalized formulation has a spherical morphology, a particle size (PS) of 121.31 ± 9.051 nm, a polydispersity index (PDI) of 0.249 ± 0.002, a zeta potential (ZP) of -20.8 ± 2.72 mV, and an entrapment efficiency (% EE) of 88.66 ± 2.30 %. In-vitro release data shows, Honokiol-SLNs displayed a sustained release profile at pH (7.4). The oral bioavailability of Honokiol-SLNs was remarkably greater (8-fold) than Honokiol-Pure suspension. The neuroprotective property of Honokiol-SLNs was initially demonstrated against hydrogen peroxide H2O2-stimulated PC12 (pheochromocytoma) cells. Furthermore, results of in-vivo studies demonstrated that treatment with Honokiol-SLNs significantly (p < 0.001) suppressed oxidative stress by inhibition of nuclear factor kappa B (NF-κB) and significant (p < 0.001) upregulation of nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling in the spinal cord. The expression of transient receptor potential melastatin 8(TRPM8) and transient receptor potential vanilloid 1 (TRPV1) was significantly (p < 0.001) downregulated. Honokiol-SLNs inhibited apoptosis by significant (p < 0.001) downregulation of cleaved caspase-3 expression in the spinal cord. These findings demonstrate that Honokiol-SLNs providedbetter neuroprotection in DN because of higher oral bioavailability.
Collapse
Affiliation(s)
- Tehmina Bibi
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shahar Bano
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
15
|
Hassan MA, Elmageed GMA, El-Qazaz IG, El-Sayed DS, El-Samad LM, Abdou HM. The Synergistic Influence of Polyflavonoids from Citrus aurantifolia on Diabetes Treatment and Their Modulation of the PI3K/AKT/FOXO1 Signaling Pathways: Molecular Docking Analyses and In Vivo Investigations. Pharmaceutics 2023; 15:2306. [PMID: 37765275 PMCID: PMC10535482 DOI: 10.3390/pharmaceutics15092306] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
This study was aimed at probing the modulatory influence of polyflavonoids extracted from Citrus aurantifolia, lemon peel extract (LPE-polyflavonoids), on attenuating diabetes mellitus (DM) and its complications. HPLC investigations of the LPE exhibited the incidence of five flavonoids, including diosmin, biochanin A, hesperidin, quercetin, and hesperetin. The in silico impact on ligand-phosphatidylinositol 3-kinase (PI3K) interaction was investigated in terms of polyflavonoid class to explore the non-covalent intakes and binding affinity to the known protein active site. The drug likeness properties and pharmacokinetic parameters of the LPE-polyflavonoids were investigated to assess their bioavailability in relation to Myricetin as a control. Remarkably, the molecular docking studies demonstrated a prominent affinity score of all these agents together with PI3K, implying the potency of the extract to orchestrate PI3K, which is the predominant signal for lessening the level of blood glucose. To verify these findings, in vivo studies were conducted, utilizing diabetic male albino rats treated with LPE-polyflavonoids and other groups treated with hesperidin and diosmin as single flavonoids. Our findings demonstrated that the LPE-polyflavonoids significantly ameliorated the levels of glucose, insulin, glycogen, liver function, carbohydrate metabolizing enzymes, G6Pd, and AGEs compared to the diabetic rats and those exposed to hesperidin and diosmin. Furthermore, the LPE-polyflavonoids regulated the TBARS, GSH, CAT, TNF-α, IL-1β, IL-6, and AFP levels in the pancreatic and hepatic tissues, suggesting their antioxidant and anti-inflammatory properties. In addition, the pancreatic and hepatic GLUT4 and GLUT2 were noticeably increased in addition to the pancreatic p-AKT in the rats administered with the LPE-polyflavonoids compared to the other diabetic rats. Remarkably, the administration of LPE-polyflavonoids upregulated the expression of the pancreatic and hepatic PI3K, AMPK, and FOXO1 genes, emphasizing the efficiency of the LPE in orchestrating all the signaling pathways necessitated to reduce the diabetes mellitus. Notably, the histopathological examinations of the pancreatic and hepatic tissues corroborated the biochemical results. Altogether, our findings accentuated the potential therapeutic role of LPE-polyflavonoids in controlling diabetes mellitus.
Collapse
Affiliation(s)
- Mohamed A. Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Egypt
| | - Ghada M. Abd Elmageed
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (G.M.A.E.); (I.G.E.-Q.); (L.M.E.-S.)
| | - Ibtehal G. El-Qazaz
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (G.M.A.E.); (I.G.E.-Q.); (L.M.E.-S.)
| | - Doaa S. El-Sayed
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt;
| | - Lamia M. El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (G.M.A.E.); (I.G.E.-Q.); (L.M.E.-S.)
| | - Heba M. Abdou
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (G.M.A.E.); (I.G.E.-Q.); (L.M.E.-S.)
| |
Collapse
|
16
|
Arafat EA, El-Samad LM, Moussian B, Hassan MA. Insights into spermatogenesis in the migratory locust, Locusta migratoria (Linnaeus, 1758) (Orthoptera: Acrididae), following histological and ultrastructural features of the testis. Micron 2023; 172:103502. [PMID: 37422968 DOI: 10.1016/j.micron.2023.103502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/24/2023] [Accepted: 06/24/2023] [Indexed: 07/11/2023]
Abstract
The migratory locust, Locusta migratoria (Linnaeus, 1758), is one of the most destructive agricultural pests globally, and this species is particularly localized in several regions of Egypt. However, so far, very little attention has been paid to the characteristics of the testes. Furthermore, spermatogenesis requires careful analysis to characterize and track developmental episodes. We thus investigated, for the first time, the histological and ultrastructural properties of the testis in L. migratoria employing a light microscope, a scanning electron microscope (SEM), and a transmission electron microscope (TEM). Our results revealed that the testis comprises several follicles, emerging with distinct outer surface wrinkle patterns for each follicle throughout the length of the follicular wall. Furthermore, histological examination of the follicles showed that each has three developmental zones. Each zone has cysts with characteristic spermatogenic elements, beginning with the spermatogonia at the distal end of each follicle and ending with the spermatozoa at the proximal end. Moreover, spermatozoa are arranged in spermatozoa bundles called spermatodesms. Overall, this research provides novel insights into the structure of the testes of L. migratoria, which will significantly contribute to formulating effective pesticides against locusts.
Collapse
Affiliation(s)
- Esraa A Arafat
- Department of Zoology, Faculty of Science, Alexandria University, Egypt
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Egypt
| | - Bernard Moussian
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, France
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt.
| |
Collapse
|
17
|
Tamer TM, Zhou H, Hassan MA, Abu-Serie MM, Shityakov S, Elbayomi SM, Mohy-Eldin MS, Zhang Y, Cheang T. Synthesis and physicochemical properties of an aromatic chitosan derivative: In vitro antibacterial, antioxidant, and anticancer evaluations, and in silico studies. Int J Biol Macromol 2023; 240:124339. [PMID: 37028626 DOI: 10.1016/j.ijbiomac.2023.124339] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/25/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
This study was designed to synthesize a functionalized chitosan by coupling the amine groups of chitosan with 2,4,6-Trimethoxybenzaldehyde, producing a chitosan Schiff base (Cs-TMB). The development of Cs-TMB was verified employing FT-IR, 1H NMR, the electronic spectrum, and elemental analysis. Antioxidant assays exhibited significant ameliorations of Cs-TMB, reporting scavenging activities of 69.67 ± 3.48 % and 39.65 ± 1.98 % for ABTS•+ and DPPH, respectively, while native chitosan showed scavenging ratios of 22.69 ± 1.13 % and 8.24 ± 0.4.1 % toward ABTS•+ and DPPH, respectively. Besides, Cs-TMB exerted significant antibacterial activity up to 90 % with remarkable bactericidal capacity against virulent gram-negative and gram-positive bacteria compared to the original chitosan. Furthermore, Cs-TMB exhibited a safe profile against normal fibroblast cells (HFB4). Interestingly, flow cytometric analysis showed that Cs-TMB demonstrated prominent anticancer properties of 52.35 ± 2.99 % against human skin cancer cells (A375), compared to 10.66 ± 0.55 % for Cs-treated cells. Moreover, Python and PyMOL in-house scripts were used to predict the interaction of Cs-TMB with the adenosine A1 receptor and visualized as a protein-ligand system submerged in a lipid membrane. Overall, these findings accentuate that Cs-TMB could be a favorable representative for wound dressing formulations and skin cancer treatment.
Collapse
Affiliation(s)
- Tamer M Tamer
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt.
| | - Hongyan Zhou
- Department of Neurology, Hospital of Sun Yat-sen University, Guangdong 510080, China.
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Sergey Shityakov
- Infochemistry Scientific Center, ITMO University, Saint-Petersburg 191002, Russia
| | - Smaher M Elbayomi
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta City, Damietta 34517, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Yongcheng Zhang
- Department of Breast Care Surgery, Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong 510080, China.
| | - Tuckyun Cheang
- Department of Neurosurgery, Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong 510080, China.
| |
Collapse
|
18
|
Gerbolés AG, Galetti M, Rossi S, lo Muzio FP, Pinelli S, Delmonte N, Caffarra Malvezzi C, Macaluso C, Miragoli M, Foresti R. Three-Dimensional Bioprinting of Organoid-Based Scaffolds (OBST) for Long-Term Nanoparticle Toxicology Investigation. Int J Mol Sci 2023; 24:6595. [PMID: 37047568 PMCID: PMC10095512 DOI: 10.3390/ijms24076595] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The toxicity of nanoparticles absorbed through contact or inhalation is one of the major concerns for public health. It is mandatory to continually evaluate the toxicity of nanomaterials. In vitro nanotoxicological studies are conventionally limited by the two dimensions. Although 3D bioprinting has been recently adopted for three-dimensional culture in the context of drug release and tissue regeneration, little is known regarding its use for nanotoxicology investigation. Therefore, aiming to simulate the exposure of lung cells to nanoparticles, we developed organoid-based scaffolds for long-term studies in immortalized cell lines. We printed the viscous cell-laden material via a customized 3D bioprinter and subsequently exposed the scaffold to either 40 nm latex-fluorescent or 11-14 nm silver nanoparticles. The number of cells significantly increased on the 14th day in the 3D environment, from 5 × 105 to 1.27 × 106, showing a 91% lipid peroxidation reduction over time and minimal cell death observed throughout 21 days. Administered fluorescent nanoparticles can diffuse throughout the 3D-printed scaffolds while this was not the case for the unprinted ones. A significant increment in cell viability from 3D vs. 2D cultures exposed to silver nanoparticles has been demonstrated. This shows toxicology responses that recapitulate in vivo experiments, such as inhaled silver nanoparticles. The results open a new perspective in 3D protocols for nanotoxicology investigation supporting 3Rs.
Collapse
Affiliation(s)
| | - Maricla Galetti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority-INAIL, 00078 Rome, Italy
| | - Stefano Rossi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Nicola Delmonte
- Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy
| | | | - Claudio Macaluso
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Michele Miragoli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Humanitas Research Hospital, IRCCS, 20089 Milan, Italy
- CERT, Center of Excellence for Toxicological Research, 43126 Parma, Italy
| | - Ruben Foresti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- CERT, Center of Excellence for Toxicological Research, 43126 Parma, Italy
- CNR-IMEM, Italian National Research Council, Institute of Materials for Electronics and Magnetism, 43124 Parma, Italy
| |
Collapse
|