2
|
Ejubović M, Kapic D, Custovic S, Lazović Salčin E, Lepara O, Kurtović A, Jahić R, Kulo Cesic A, Paralija B, Ziga Smajic N, Jagodić Ejubović A, Hasanbegovic S, Katica M, Besic A, Djesevic E, Fajkić A. Therapeutic Potential of N-acetylcysteine and Glycine in Reducing Pulmonary Injury in Diabetic Rats. Cureus 2024; 16:e72902. [PMID: 39628758 PMCID: PMC11611797 DOI: 10.7759/cureus.72902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2024] [Indexed: 12/06/2024] Open
Abstract
INTRODUCTION Diabetes mellitus is associated with systemic complications, including the development of pulmonary injury, characterized mainly by excessive accumulation of extracellular matrix components and inflammatory cell infiltration in lung tissue. This process is driven by oxidative stress and chronic inflammation, both caused and exacerbated by hyperglycemia. N-acetylcysteine (NAC) and glycine, known for their antioxidant and anti-inflammatory effects, offer potential therapeutic benefits in mitigating diabetes-induced lung injury. OBJECTIVE The study aimed to investigate the effects of supplementation by either NAC or glycine or their combination on reducing lung injury in rats with type 1 diabetes Materials and methods: The study used 30 adult Wistar albino rats (10 weeks old, weighing between 180 g and 380 g). Six of them were used as controls, while 24 adult rats (10 weeks old, 180-380 g) with type 1 diabetes, induced through a single intraperitoneal injection of streptozotocin (STZ) at a dose of 55 mg/kg, were randomly assigned to four experimental groups: control (CTL), diabetic (Db), NAC treatment (diabetic+NAC), glycine treatment (diabetic+glycine), and combined NAC and glycine treatment (diabetic+NAC+glycine). NAC (100 mg/kg) and glycine (250 mg/kg) were administered orally for 12 weeks. At the end of the study, lung tissues were collected for histopathological examination. Qualitative, semi-quantitative, and stereological histological analysis was used to analyze structural changes in the lung tissue. Semi-quantitative scoring was carried out to evaluate the extent of inflammation, while stereological analysis was performed to determine the volume density of alveolar spaces and septal connective tissue. The semi-quantitative scoring included scores ranging from 0 (absent), 1 (minimal), 2 (mild), 3 (moderate), to 4 (severe). RESULTS Qualitative histological analysis revealed pronounced inflammation and fibrosis in the lungs of untreated diabetic rats, characterized by thickened alveolar septa and immune cell infiltration. Both treatments with NAC and glycine individually reduced inflammation and fibrosis compared to untreated diabetic rats. The greatest improvement was observed in the NAC+glycine group, where the alveolar structure appeared almost normal, with minimal inflammation. Semiquantitative analysis showed statistically significant differences in peribronchial and peribrochiolar infiltrates between the diabetic group (2.16±0.47) and the control group (0.33±0.21, p=0.026). The combination of NAC and glycine significantly reduced peribronchial and peribronchiolar infiltrates (0.33±0.33, p=0.026) compared to the diabetic group. Similarly, septal inflammatory infiltrates were significantly lower in the NAC+glycine group (1±0.36) compared to diabetic rats (3.33±0.33, p=0.004). Total airway inflammatory infiltration was also significantly reduced in the NAC+glycine group (1.33±0.33, p=0.002) compared to the diabetic group (5.5±0.5). CONCLUSION As the combination of NAC and glycine demonstrated protective effects against lung inflammation and fibrosis in diabetic rats, a synergistic effect of NAC and glycine in mitigating pulmonary complications associated with type 1 diabetes may be suggested. These findings warrant further exploration of the combination for managing diabetic lung disease and potentially other fibrotic conditions.
Collapse
Affiliation(s)
- Malik Ejubović
- Internal Medicine, Cantonal Hospital Zenica, Zenica, BIH
| | - Dina Kapic
- Histology and Embryology, University of Sarajevo, Sarajevo, BIH
| | - Samra Custovic
- Histology and Embryology, University of Sarajevo, Sarajevo, BIH
| | | | - Orhan Lepara
- Human Physiology, University of Sarajevo, Sarajevo, BIH
| | - Avdo Kurtović
- Orthopedics and Traumatology, Tuzla University Clinical Center, Tuzla, BIH
| | - Rijad Jahić
- Internal Medicine and Cardiology, Sarajevo University Clinical Center, Sarajevo, BIH
| | | | - Belma Paralija
- Pulmonology, Sarajevo University Clinical Center, Sarajevo, BIH
| | | | | | | | | | - Aida Besic
- Veterinary Medicine, University of Sarajevo, Sarajevo, BIH
| | - Enra Djesevic
- Endocrinology, Sarajevo University Clinical Center, Sarajevo, BIH
| | - Almir Fajkić
- Pathophysiology and Internal Medicine, University of Sarajevo, Sarajevo, BIH
| |
Collapse
|
3
|
Qin X, Li H, Zhao H, Fang L, Wang X. Enhancing healthy aging with small molecules: A mitochondrial perspective. Med Res Rev 2024; 44:1904-1922. [PMID: 38483176 DOI: 10.1002/med.22034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/27/2024] [Accepted: 03/04/2024] [Indexed: 06/10/2024]
Abstract
The pursuit of enhanced health during aging has prompted the exploration of various strategies focused on reducing the decline associated with the aging process. A key area of this exploration is the management of mitochondrial dysfunction, a notable characteristic of aging. This review sheds light on the crucial role that small molecules play in augmenting healthy aging, particularly through influencing mitochondrial functions. Mitochondrial oxidative damage, a significant aspect of aging, can potentially be lessened through interventions such as coenzyme Q10, alpha-lipoic acid, and a variety of antioxidants. Additionally, this review discusses approaches for enhancing mitochondrial proteostasis, emphasizing the importance of mitochondrial unfolded protein response inducers like doxycycline, and agents that affect mitophagy, such as urolithin A, spermidine, trehalose, and taurine, which are vital for sustaining protein quality control. Of equal importance are methods for modulating mitochondrial energy production, which involve nicotinamide adenine dinucleotide boosters, adenosine 5'-monophosphate-activated protein kinase activators, and compounds like metformin and mitochondria-targeted tamoxifen that enhance metabolic function. Furthermore, the review delves into emerging strategies that encourage mitochondrial biogenesis. Together, these interventions present a promising avenue for addressing age-related mitochondrial degradation, thereby setting the stage for the development of innovative treatment approaches to meet this extensive challenge.
Collapse
Affiliation(s)
- Xiujiao Qin
- Department of Geriatrics, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Huiying Zhao
- Department of Geriatrics, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Le Fang
- Department of Neurology, The China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
- Beijing National Laboratory for Molecular Sciences, Beijing, China
| |
Collapse
|
4
|
Xu X, Zhang CJ, Talifu Z, Liu WB, Li ZH, Wang XX, Du HY, Ke H, Yang DG, Gao F, Du LJ, Yu Y, Jing YL, Li JJ. The Effect of Glycine and N-Acetylcysteine on Oxidative Stress in the Spinal Cord and Skeletal Muscle After Spinal Cord Injury. Inflammation 2024; 47:557-571. [PMID: 37975960 DOI: 10.1007/s10753-023-01929-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/24/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Oxidative stress is a frequently occurring pathophysiological feature of spinal cord injury (SCI) and can result in secondary injury to the spinal cord and skeletal muscle atrophy. Studies have reported that glycine and N-acetylcysteine (GlyNAC) have anti-aging and anti-oxidative stress properties; however, to date, no study has assessed the effect of GlyNAC in the treatment of SCI. In the present work, we established a rat model of SCI and then administered GlyNAC to the animals by gavage at a dose of 200 mg/kg for four consecutive weeks. The BBB scores of the rats were significantly elevated from the first to the eighth week after GlyNAC intervention, suggesting that GlyNAC promoted the recovery of motor function; it also promoted the significant recovery of body weight of the rats. Meanwhile, the 4-week heat pain results also suggested that GlyNAC intervention could promote the recovery of sensory function in rats to some extent. Additionally, after 4 weeks, the levels of glutathione and superoxide dismutase in spinal cord tissues were significantly elevated, whereas that of malondialdehyde was significantly decreased in GlyNAC-treated animals. The gastrocnemius wet weight ratio and total antioxidant capacity were also significantly increased. After 8 weeks, the malondialdehyde level had decreased significantly in spinal cord tissue, while reactive oxygen species accumulation in skeletal muscle had decreased. These findings suggested that GlyNAC can protect spinal cord tissue, delay skeletal muscle atrophy, and promote functional recovery in rats after SCI.
Collapse
Affiliation(s)
- Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Chun-Jia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Zuliyaer Talifu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100730, China
| | - Wu-Bo Liu
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
- Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong Province, China
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250100, Shandong Province, China
| | - Ze-Hui Li
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Xiao-Xin Wang
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
- Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong Province, China
| | - Hua-Yong Du
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
- Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong Province, China
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250100, Shandong Province, China
| | - De-Gang Yang
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Liang-Jie Du
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Ying-Li Jing
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China
| | - Jian-Jun Li
- School of Rehabilitation, Capital Medical University, Beijing, 100068, China.
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, 100068, China.
- Chinese Institute of Rehabilitation Science, Beijing, 100068, China.
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, China.
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, China.
- Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong Province, China.
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266000, Shandong Province, China.
| |
Collapse
|
5
|
Faria OW, de Aguiar MSS, de Mello JE, Alvez FL, Luduvico KP, Garcia DN, Schneider A, Masternak MM, Spanevello RM, Stefanello FM. Senolytics prevent age-associated changes in female mice brain. Neurosci Lett 2024; 826:137730. [PMID: 38485080 DOI: 10.1016/j.neulet.2024.137730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
PURPOSE Considering that the combination of dasatinib and quercetin (D + Q) demonstrated a neuroprotective action, as well as that females experience a decline in hormonal levels during aging and this is linked to increased susceptibility to Alzheimer's disease, in this study we evaluated the effect of D + Q on inflammatory and oxidative stress markers and on acetylcholinesterase and Na+, K+-ATPase activities in brain of female mice. METHODS Female C57BL/6 mice were divided in Control and D (5 mg/kg) + Q (50 mg/kg) treated. Treatment was administered via gavage for three consecutive days every two weeks starting at 30 days of age. The animals were euthanized at 6 months of age and at 14 months of age. RESULTS Results indicate an increase in reactive species (RS), thiol content and lipid peroxidation followed by a reduction in nitrite levels and superoxide dismutase, catalase and glutathione S-transferase activity in the brain of control animals with age. D+Q protected against age-associated increase in RS and catalase activity reduction. Acetylcholinesterase activity was increased, while Na+, K+-ATPase activity was reduced at 14 months of age and D+Q prevented this reduction. CONCLUSION These data demonstrate that D+Q can protect against age-associated neurochemical alterations in the female brain.
Collapse
Affiliation(s)
- Olivia Wyse Faria
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Mayara Sandrielly Soares de Aguiar
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| | - Julia Eisenhardt de Mello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Fernando Lopez Alvez
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Karina Pereira Luduvico
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | | | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA; Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| |
Collapse
|
6
|
Zou M, Wang D, Chen Y, Yang C, Xu S, Dai Y. Dajianzhong decoction ameliorated D-gal-induced cognitive aging by triggering mitophagy in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117212. [PMID: 37783403 DOI: 10.1016/j.jep.2023.117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dajianzhong decoction (DJZ) is a classical famous formula for treating yang-deficiency-syndrome in traditional Chinese medicine and recorded in Jin-Kui-Yao-Lue in Dynasty of Dong Han. Cognitive aging can present similar features of mitochondrial energy deficits to the clinical features of Yang deficiency. However, there is poor understanding of the effects of DJZ treatment on mitophagy in cognitive aging. AIM OF THE STUDY The aims of this work were to decipher the effectiveness and mechanism of DJZ against cognitive aging, focusing on mitophagy. MATERIALS AND METHODS YFP-Parkin HeLa cells, D-galactose (D-gal) -induced mice (500 mg/kg for 35 d, s. c.) and SH-SY5Y cells (80 mg/ml for 6 h) were established. Firstly, the formation of YFP-Parkin puncta (a well-known mitophagy marker) in YFP-Parkin HeLa cells was employed to discover the mitophagy induction of DJZ. Moreover, the genes and proteins related to PINK1/Parkin pathway and mitochondrial functions were evaluated after treatment with DJZ in vivo (3.5 g/kg or 1.75 g/kg, i. g, 35 d) and in vitro (0.2, 2 and 20 μg/ml, 12 h). Furthermore, the effectiveness of DJZ (3.5 g/kg or 1.75 g/kg, i. g) for alleviating cognitive aging and nerve damage was measured in D-gal mice. Finally, siPINK1 was applied to reverse validation of DJZ in vitro. RESULTS The formation of YFP-Parkin puncta in YFP-Parkin HeLa cells was markedly induced by DJZ in a dose-dependent manner. The immunofluorescence intensity of Parkin and the protein expression of Parkin in mitochondrial membrane in D-gal mice were significantly increased after treatment of DJZ. The inhibition of PINK1/Parkin pathway in D-gal-induced mice and SH-SY5Y cells was significantly activated by DJZ. Simultaneously, the impairment of mitochondrial functions induced by D-gal were markedly reversed by DJZ. In addition, DJZ significantly ameliorated the neuropathological injury and cognitive declines in D-gal mice. Finally, after PINK1 was knocked down by siPINK1 in vitro, the neuroprotective effects of DJZ and the Parkin enhancement effect of DJZ were markedly reversed. CONCLUSION Our findings firstly showed DJZ could relieve cognitive aging through facilitating PINK1/Parkin-mediated mitophagy to protect against mitochondrial functions, indicating DJZ may be regarded as a promising intervention in cognitive aging.
Collapse
Affiliation(s)
- Mi Zou
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Dan Wang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Yuanyuan Chen
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chuan Yang
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shijun Xu
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yuan Dai
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| |
Collapse
|