1
|
Focaccio A, Rossi L, De Luca A. A spotlight on the role of copper in the epithelial to mesenchymal transition. Life Sci 2024; 354:122972. [PMID: 39142503 DOI: 10.1016/j.lfs.2024.122972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The complex process known as epithelial to mesenchymal transition (EMT) plays a fundamental role in several biological settings, encompassing embryonic development, wound healing, and pathological conditions such as cancer and fibrosis. In recent years, a bulk of research has brought to light the key role of copper, a trace element with essential functions in cellular metabolism, cancer initiation and progression. Indeed, copper, besides functioning as cofactor of enzymes required for essential cellular processes, such as energy production and oxidation reactions, has emerged as an allosteric regulator of kinases whose activity is required to fulfill cancer dissemination through the EMT. In this comprehensive review, we try to describe the intricate relationship between the transition metal copper and EMT, spanning from the earliest foundational studies to the latest advancements. Our aim is to shed light on the multifaceted roles undertaken by copper in EMT in cancer and to unveil the diverse mechanisms by which copper homeostasis exerts its influence over EMT regulators, signaling pathways, cell metabolic reprogramming and transcription factors ultimately contributing to the spread of cancer. Therefore, this review not only may contribute to a deeper comprehension of copper-mediated mechanisms in EMT but also supports the hypothesis that targeting copper may contribute to counteract the progression of EMT-associated pathologies.
Collapse
Affiliation(s)
- Antonio Focaccio
- PhD School in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Luisa Rossi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Anastasia De Luca
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
2
|
Li Y, Zhang H, Yang F, Zhu D, Chen S, Wang Z, Wei Z, Yang Z, Jia J, Zhang Y, Wang D, Ma M, Kang X. Mechanisms and therapeutic potential of disulphidptosis in cancer. Cell Prolif 2024:e13752. [PMID: 39354653 DOI: 10.1111/cpr.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/30/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024] Open
Abstract
SLC7A11 plays a pivotal role in tumour development by facilitating cystine import to enhance glutathione synthesis and counteract oxidative stress. Disulphidptosis, an emerging form of cell death observed in cells with high expression of SLC7A11 under glucose deprivation, is regulated through reduction-oxidation reactions and disulphide bond formation. This process leads to contraction and collapse of the F-actin cytoskeleton from the plasma membrane, ultimately resulting in cellular demise. Compared to other forms of cell death, disulphidptosis exhibits distinctive characteristics and regulatory mechanisms. This mechanism provides novel insights and innovative strategies for cancer treatment while also inspiring potential therapeutic approaches for other diseases. Our review focuses on elucidating the molecular mechanism underlying disulphidptosis and its connection with the actin cytoskeleton, identifying alternative metabolic forms of cell death, as well as offering insights into disulphidptosis-based cancer therapy. A comprehensive understanding of disulphidptosis will contribute to our knowledge about fundamental cellular homeostasis and facilitate the development of groundbreaking therapies for disease treatment.
Collapse
Affiliation(s)
- Yanhu Li
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Haijun Zhang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
- The Second People's Hospital of Gansu Province, Lanzhou, PR China
| | - Fengguang Yang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Daxue Zhu
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Shijie Chen
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Zhaoheng Wang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Ziyan Wei
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Zhili Yang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Jingwen Jia
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Yizhi Zhang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Dongxin Wang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Mingdong Ma
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Xuewen Kang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| |
Collapse
|
3
|
Pandey P, Ramniwas S, Pandey S, Lakhanpal S, Padmapriya G, Mishra S, Kaur M, Ashraf A, Kumar MR, Khan F. Review to Elucidate the Correlation between Cuproptosis-Related Genes and Immune Infiltration for Enhancing the Detection and Treatment of Cervical Cancer. Int J Mol Sci 2024; 25:10604. [PMID: 39408933 PMCID: PMC11477161 DOI: 10.3390/ijms251910604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Copper is a vital trace element in oxidized and reduced forms. It plays crucial roles in numerous biological events such as redox chemistry, enzymatic reactions, mitochondrial respiration, iron metabolism, autophagy, and immune modulation. Maintaining the balance of copper in the body is essential because its deficiency and excess can be harmful. Abnormal copper metabolism has a two-fold impact on the development of tumors and cancer treatment. Cuproptosis is a form of cell death that occurs when there is excessive copper in the body, leading to proteotoxic stress and the activation of a specific pathway in the mitochondria. Research has been conducted on the advantageous role of copper ionophores and chelators in cancer management. This review presents recent progress in understanding copper metabolism, cuproptosis, and the molecular mechanisms involved in using copper for targeted therapy in cervical cancer. Integrating trace metals and minerals into nanoparticulate systems is a promising approach for controlling invasive tumors. Therefore, we have also included a concise overview of copper nanoformulations targeting cervical cancer cells. This review offers comprehensive insights into the correlation between cuproptosis-related genes and immune infiltration, as well as the prognosis of cervical cancer. These findings can be valuable for developing advanced clinical tools to enhance the detection and treatment of cervical cancer.
Collapse
Affiliation(s)
- Pratibha Pandey
- Post Doctoral Department, Eudoxia Research University, New Castle, DE 19808, USA;
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, India
| | - Seema Ramniwas
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India;
| | - Shivam Pandey
- School of Applied and Life Sciences, Uttaranchal University, Dehradun 248007, India;
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India;
| | - G. Padmapriya
- Department of Chemistry and Biochemistry, School of Sciences, JAIN Deemed to be University, Bangalore 560069, India;
| | - Shivang Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur 303121, India;
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur 303012, India;
| | - Ayash Ashraf
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali 140307, India;
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam 531162, India;
| | - Fahad Khan
- Center for Global Health Research Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| |
Collapse
|
4
|
Hardesty JE, Warner JB, Wilkey DW, Phinney BS, Salemi MR, Merchant ML, McClain CJ, Warner DR, Kirpich IA. Hepatic Proteomic Changes Associated with Liver Injury Caused by Alcohol Consumption in Fpr2-/- Mice. Int J Mol Sci 2024; 25:9807. [PMID: 39337294 PMCID: PMC11432144 DOI: 10.3390/ijms25189807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Alcohol-associated liver disease (ALD) is a prevalent medical problem with limited effective treatment strategies. Although many biological processes contributing to ALD have been elucidated, a complete understanding of the underlying mechanisms is still lacking. The current study employed a proteomic approach to identify hepatic changes resulting from ethanol (EtOH) consumption and the genetic ablation of the formyl peptide receptor 2 (FPR2), a G-protein coupled receptor known to regulate multiple signaling pathways and biological processes, in a mouse model of ALD. Since previous research from our team demonstrated a notable reduction in hepatic FPR2 protein levels in patients with alcohol-associated hepatitis (AH), the proteomic changes in the livers of Fpr2-/- EtOH mice were compared to those observed in patients with AH in order to identify common hepatic proteomic alterations. Several pathways linked to exacerbated ALD in Fpr2-/- EtOH mice, as well as hepatic protein changes resembling those found in patients suffering from AH, were identified. These alterations included decreased levels of coagulation factors F2 and F9, as well as reduced hepatic levels of glutamate-cysteine ligase catalytic subunit (GCLC) and total glutathione in Fpr2-/- EtOH compared to WT EtOH mice. In conclusion, the data suggest that FPR2 may play a regulatory role in hepatic blood coagulation and the antioxidant system, both in a pre-clinical model of ALD and in human AH, however further experiments are required to validate these findings.
Collapse
Affiliation(s)
- Josiah E. Hardesty
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (J.E.H.); (J.B.W.); (C.J.M.); (D.R.W.)
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Jeffrey B. Warner
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (J.E.H.); (J.B.W.); (C.J.M.); (D.R.W.)
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Daniel W. Wilkey
- The Proteomics Core, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Brett S. Phinney
- Proteomics Core Facility, University of California Davis, Davis, CA 95616, USA; (B.S.P.); (M.R.S.)
| | - Michelle R. Salemi
- Proteomics Core Facility, University of California Davis, Davis, CA 95616, USA; (B.S.P.); (M.R.S.)
| | - Michael L. Merchant
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- The Proteomics Core, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Craig J. McClain
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (J.E.H.); (J.B.W.); (C.J.M.); (D.R.W.)
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Robley Rex Veterans Medical Center, Louisville, KY 40202, USA
- Alcohol Research Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Dennis R. Warner
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (J.E.H.); (J.B.W.); (C.J.M.); (D.R.W.)
| | - Irina A. Kirpich
- Alcohol Research Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
5
|
Mao C, Wang M, Zhuang L, Gan B. Metabolic cell death in cancer: ferroptosis, cuproptosis, disulfidptosis, and beyond. Protein Cell 2024; 15:642-660. [PMID: 38428031 PMCID: PMC11365558 DOI: 10.1093/procel/pwae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
Cell death resistance represents a hallmark of cancer. Recent studies have identified metabolic cell death as unique forms of regulated cell death resulting from an imbalance in the cellular metabolism. This review discusses the mechanisms of metabolic cell death-ferroptosis, cuproptosis, disulfidptosis, lysozincrosis, and alkaliptosis-and explores their potential in cancer therapy. Our review underscores the complexity of the metabolic cell death pathways and offers insights into innovative therapeutic avenues for cancer treatment.
Collapse
Affiliation(s)
- Chao Mao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Min Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
6
|
Sailer J, Nagel J, Akdogan B, Jauch AT, Engler J, Knolle PA, Zischka H. Deadly excess copper. Redox Biol 2024; 75:103256. [PMID: 38959622 PMCID: PMC11269798 DOI: 10.1016/j.redox.2024.103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024] Open
Abstract
Higher eukaryotes' life is impossible without copper redox activity and, literally, every breath we take biochemically demonstrates this. However, this dependence comes at a considerable price to ensure target-oriented copper action. Thereto its uptake, distribution but also excretion are executed by specialized proteins with high affinity for the transition metal. Consequently, malfunction of copper enzymes/transporters, as is the case in hereditary Wilson disease that affects the intracellular copper transporter ATP7B, comes with serious cellular damage. One hallmark of this disease is the progressive copper accumulation, primarily in liver but also brain that becomes deadly if left untreated. Such excess copper toxicity may also result from accidental ingestion or attempted suicide. Recent research has shed new light into the cell-toxic mechanisms and primarily affected intracellular targets and processes of such excess copper that may even be exploited with respect to cancer therapy. Moreover, new therapies are currently under development to fight against deadly toxic copper.
Collapse
Affiliation(s)
- Judith Sailer
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Judith Nagel
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Banu Akdogan
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Adrian T Jauch
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Jonas Engler
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany; Institute of Molecular Toxicology and Pharmacology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
7
|
Speltri G, Porto F, Boschi A, Uccelli L, Martini P. Recent Advances in Preclinical Studies of the Theranostic Agent [ 64Cu]CuCl 2. Molecules 2024; 29:4085. [PMID: 39274933 PMCID: PMC11397388 DOI: 10.3390/molecules29174085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/09/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
64Cu is gaining recognition not only for its diagnostic capabilities in nuclear medical imaging but also for its therapeutic and theranostic potential. The simultaneous β- and Auger emissions of 64Cu can be utilized to induce a therapeutic effect on cancerous lesions. The finding of the exceptional biodistribution characteristics of the radionuclide 64Cu, when administered as basic copper ions, has highlighted its potential therapeutic application in cancer treatment. Preclinical and clinical research on the effectiveness of [64Cu]CuCl2 as a theranostic radiopharmaceutical has commenced only in the past decade. Current clinical studies are increasingly demonstrating the high specificity and uptake of [64Cu]Cu2+ by malignant tissues during early cancer progression, indicating its potential for early cancer diagnosis across various organs. This short review aims to present the latest preclinical studies involving [64Cu]CuCl2, offering valuable insights for researchers planning new in vitro and in vivo studies to explore the theranostic potential of [64Cu]Cu2+.
Collapse
Affiliation(s)
- Giorgia Speltri
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy
| | - Francesca Porto
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandra Boschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy
| | - Licia Uccelli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Petra Martini
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
8
|
Min JH, Sarlus H, Harris RA. Copper toxicity and deficiency: the vicious cycle at the core of protein aggregation in ALS. Front Mol Neurosci 2024; 17:1408159. [PMID: 39050823 PMCID: PMC11267976 DOI: 10.3389/fnmol.2024.1408159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The pathophysiology of ALS involves many signs of a disruption in copper homeostasis, with both excess free levels and functional deficiency likely occurring simultaneously. This is crucial, as many important physiological functions are performed by cuproenzymes. While it is unsurprising that many ALS symptoms are related to signs of copper deficiency, resulting in vascular, antioxidant system and mitochondrial oxidative respiration deficiencies, there are also signs of copper toxicity such as ROS generation and enhanced protein aggregation. We discuss how copper also plays a key role in proteostasis and interacts either directly or indirectly with many of the key aggregate-prone proteins implicated in ALS, such as TDP-43, C9ORF72, SOD1 and FUS as well as the effect of their aggregation on copper homeostasis. We suggest that loss of cuproprotein function is at the core of ALS pathology, a condition that is driven by a combination of unbound copper and ROS that can either initiate and/or accelerate protein aggregation. This could trigger a positive feedback cycle whereby protein aggregates trigger the aggregation of other proteins in a chain reaction that eventually captures elements of the proteostatic mechanisms in place to counteract them. The end result is an abundance of aggregated non-functional cuproproteins and chaperones alongside depleted intracellular copper stores, resulting in a general lack of cuproenzyme function. We then discuss the possible aetiology of ALS and illustrate how strong risk factors including environmental toxins such as BMAA and heavy metals can functionally behave to promote protein aggregation and disturb copper metabolism that likely drives this vicious cycle in sporadic ALS. From this synthesis, we propose restoration of copper balance using copper delivery agents in combination with chaperones/chaperone mimetics, perhaps in conjunction with the neuroprotective amino acid serine, as a promising strategy in the treatment of this incurable disease.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
9
|
Vo TTT, Peng TY, Nguyen TH, Bui TNH, Wang CS, Lee WJ, Chen YL, Wu YC, Lee IT. The crosstalk between copper-induced oxidative stress and cuproptosis: a novel potential anticancer paradigm. Cell Commun Signal 2024; 22:353. [PMID: 38970072 PMCID: PMC11225285 DOI: 10.1186/s12964-024-01726-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024] Open
Abstract
Copper is a crucial trace element that plays a role in various pathophysiological processes in the human body. Copper also acts as a transition metal involved in redox reactions, contributing to the generation of reactive oxygen species (ROS). Under prolonged and increased ROS levels, oxidative stress occurs, which has been implicated in different types of regulated cell death. The recent discovery of cuproptosis, a copper-dependent regulated cell death pathway that is distinct from other known regulated cell death forms, has raised interest to researchers in the field of cancer therapy. Herein, the present work aims to outline the current understanding of cuproptosis, with an emphasis on its anticancer activities through the interplay with copper-induced oxidative stress, thereby providing new ideas for therapeutic approaches targeting modes of cell death in the future.
Collapse
Affiliation(s)
- Thi Thuy Tien Vo
- Faculty of Dentistry, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Tzu-Yu Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Thi Hong Nguyen
- Faculty of Dentistry, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Trang Ngoc Huyen Bui
- Faculty of Dentistry, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Ching-Shuen Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Wei-Ju Lee
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, 110301, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Yang-Che Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
| |
Collapse
|
10
|
Peng Y, Shi R, Yang S, Zhu J. Cuproptosis-related gene DLAT is a biomarker of the prognosis and immune microenvironment of gastric cancer and affects the invasion and migration of cells. Cancer Med 2024; 13:e70012. [PMID: 39031012 PMCID: PMC11258438 DOI: 10.1002/cam4.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/10/2024] [Accepted: 07/03/2024] [Indexed: 07/22/2024] Open
Abstract
OBJECTIVE Cuproptosis is a novel cell death dependent on mitochondrial respiration and regulated by copper. This study aimed to investigate the cuproptosis-related gene DLAT potential value in gastric cancer (GC). METHODS Bioinformatics was used to analyze DLAT expression. DLAT expression in GC cell lines was detected using qRT-PCR. Cell proliferation ability was assessed using CCK8 and cell cycle assay. Cell migration and invasion were assessed using wound healing and transwell assay. A prognostic assessment was performed through survival and Cox regression analysis. DLAT protein expression was analyzed through HPA immunohistochemistry. Biological functions and processes were analyzed through GO and KEGG enrichment analysis and PPI. Correlation with immune cell infiltration and immune checkpoint genes was analyzed for DLAT. RESULTS DLAT expression was upregulated in GC tissues and cells and correlated with shorter survival for patients. Age, gender, histological typing, lymph node metastasis, and distant metastasis were identified as independent prognostic factors affecting OS in GC. DLAT protein was upregulated in GC. The biological functions and pathways enriched in DLAT were mainly linked to mitochondrial respiration and the TCA cycle. The expression of DLAT was found to be positively correlated with the infiltration of Th and Th2 immune cells and only positively correlated with the expression of the BTN2A1 immune checkpoint gene. CONCLUSION DLAT has the potential to serve as a prognostic assessment factor in GC. The expression of DLAT was correlated with immune infiltration and tumor immune escape, providing a new target for immunotherapy of GC.
Collapse
Affiliation(s)
- Yanyu Peng
- Department of Histology and EmbryologyShenyang Medical CollegeShenyangLiaoningChina
| | - Ruimeng Shi
- Shenyang Medical CollegeShenyangLiaoningChina
| | - Siwen Yang
- Shenyang Medical CollegeShenyangLiaoningChina
| | - Jiayi Zhu
- Shenyang Medical CollegeShenyangLiaoningChina
| |
Collapse
|
11
|
Pan Z, Huang L, Gan Y, Xia Y, Yu W. The Molecular Mechanisms of Cuproptosis and Small-Molecule Drug Design in Diabetes Mellitus. Molecules 2024; 29:2852. [PMID: 38930917 PMCID: PMC11206814 DOI: 10.3390/molecules29122852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
In the field of human health research, the homeostasis of copper (Cu) is receiving increased attention due to its connection to pathological conditions, including diabetes mellitus (DM). Recent studies have demonstrated that proteins associated with Cu homeostasis, such as ATOX1, FDX1, ATP7A, ATPB, SLC31A1, p53, and UPS, also contribute to DM. Cuproptosis, characterized by Cu homeostasis dysregulation and Cu overload, has been found to cause the oligomerization of lipoylated proteins in mitochondria, loss of iron-sulfur protein, depletion of glutathione, production of reactive oxygen species, and cell death. Further research into how cuproptosis affects DM is essential to uncover its mechanism of action and identify effective interventions. In this article, we review the molecular mechanism of Cu homeostasis and the role of cuproptosis in the pathogenesis of DM. The study of small-molecule drugs that affect these proteins offers the possibility of moving from symptomatic treatment to treating the underlying causes of DM.
Collapse
Affiliation(s)
- Zhaowen Pan
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (Z.P.); (Y.G.)
| | - Lan Huang
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China;
| | - Yuanyuan Gan
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (Z.P.); (Y.G.)
| | - Yan Xia
- School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China;
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (Z.P.); (Y.G.)
| |
Collapse
|
12
|
Makiabadi E, Nasrollahzadeh J, Nakhaeizadeh R, Shahparvari MR, Roohelhami E. Effects of Perioperative Zinc Supplementation on Copper Circulating Levels and Expression of Metallothionein and Copper Antioxidant Chaperone-1 in Leukocytes in Patients Undergoing CABG Surgery. Biol Trace Elem Res 2024:10.1007/s12011-024-04259-5. [PMID: 38865064 DOI: 10.1007/s12011-024-04259-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/01/2024] [Indexed: 06/13/2024]
Abstract
The use of zinc supplement may have a negative effect on copper status. The objective of this study was to evaluate the effect of zinc and vitamin E supplementation on copper and zinc biomarkers in patients undergoing coronary artery bypass graft (CABG) surgery. The study was an add-on project to a previously published randomized controlled trial (NCT05402826) on patients undergoing CABG surgery. Patients in the zinc-vitamin E group (n = 40) received oral zinc (120 mg) and vitamin E (1200 international units) 1 day before surgery, followed by 30 mg of zinc and 200 units of vitamin E per day until 21 days after surgery, while those in the control group (n = 38) received placebo. Plasma levels of copper, ceruloplasmin, superoxide dismutase (SOD) activity, as well as leukocyte gene expression of metallothionein 2A (MT2A) and antioxidant protein 1 (ATOX1), were determined 3 and 21 days after surgery. The plasma copper level in the zinc-vitamin E group was significantly lower than the placebo group on the 3rd postoperative day, but no significant between-group differences were observed on day 21. Plasma ceruloplasmin concentration and SOD activity were not different. Relative mRNA expression of leukocyte MT2A was increased at both times (days 3 and 21 in the zinc-vitamin E group compared to placebo, but ATOX1 expression was not affected. Although the plasma copper level was transiently decreased early after surgery in the zinc-vitamin E group, considering the lack of change in other copper biomarkers, it seems that the use of zinc supplements at the dose used in the present study does not have a significant negative effect on the role of intracellular copper.
Collapse
Affiliation(s)
- Elham Makiabadi
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Nasrollahzadeh
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Nakhaeizadeh
- Department of Surgery, School of Medicine, Shafa Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Shahparvari
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Roohelhami
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Manchia M, Paribello P, Pinna M, Faa G. The Role of Copper Overload in Modulating Neuropsychiatric Symptoms. Int J Mol Sci 2024; 25:6487. [PMID: 38928192 PMCID: PMC11204094 DOI: 10.3390/ijms25126487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Copper is a transition metal essential for growth and development and indispensable for eukaryotic life. This metal is essential to neuronal function: its deficiency, as well as its overload have been associated with multiple neurodegenerative disorders such as Alzheimer's disease and Wilson's disease and psychiatric conditions such as schizophrenia, bipolar disorder, and major depressive disorders. Copper plays a fundamental role in the development and function of the human Central Nervous System (CNS), being a cofactor of multiple enzymes that play a key role in physiology during development. In this context, we thought it would be timely to summarize data on alterations in the metabolism of copper at the CNS level that might influence the development of neuropsychiatric symptoms. We present a non-systematic review with the study selection based on the authors' judgement to offer the reader a perspective on the most significant elements of neuropsychiatric symptoms in Wilson's disease. We highlight that Wilson's disease is characterized by marked heterogeneity in clinical presentation among patients with the same mutation. This should motivate more research efforts to disentangle the role of environmental factors in modulating the expression of genetic predisposition to this disorder.
Collapse
Affiliation(s)
- Mirko Manchia
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09124 Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Pasquale Paribello
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, 09124 Cagliari, Italy
| | - Martina Pinna
- Forensic Psychiatry Unit, Sardinia Health Agency, 09123 Cagliari, Italy;
| | - Gavino Faa
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
14
|
Li Q, Wang T, Zhou Y, Shi J. Cuproptosis in lung cancer: mechanisms and therapeutic potential. Mol Cell Biochem 2024; 479:1487-1499. [PMID: 37480450 DOI: 10.1007/s11010-023-04815-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
Cuproptosis, a recently identified form of cell death that differs from other forms, is induced by the disruption of the binding of copper to mitochondrial respiratory acylation components. Inducing cell cuproptosis and targeting cell copper death pathways are considered potential directions for treating tumor diseases. We have provided a detailed introduction to the metabolic process of copper. In addition, this study attempts to clarify and summarize the relationships between cuproptosis and therapeutic targets and signaling pathways of lung cancer. This review aims to summarize the theoretical achievements for translating the results of lung cancer and cuproptosis experiments into clinical treatment.
Collapse
Affiliation(s)
- Qixuan Li
- Medical School of Nantong University, Nantong University, Nantong, 226001, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Tianyi Wang
- Medical School of Nantong University, Nantong University, Nantong, 226001, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Youlang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jiahai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
- School of Public Health, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
15
|
Zhao P, Shi W, Ye Y, Xu K, Hu J, Chao H, Tao Z, Xu L, Gu W, Zhang L, Wang T, Wang X, Ji J. Atox1 protects hippocampal neurons after traumatic brain injury via DJ-1 mediated anti-oxidative stress and mitophagy. Redox Biol 2024; 72:103156. [PMID: 38640584 PMCID: PMC11047792 DOI: 10.1016/j.redox.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
Regulation of the oxidative stress response is crucial for the management and prognosis of traumatic brain injury (TBI). The copper chaperone Antioxidant 1 (Atox1) plays a crucial role in regulating intracellular copper ion balance and impacting the antioxidant capacity of mitochondria, as well as the oxidative stress state of cells. However, it remains unknown whether Atox1 is involved in modulating oxidative stress following TBI. Here, we investigated the regulatory role of Atox1 in oxidative stress on neurons both in vivo and in vitro, and elucidated the underlying mechanism through culturing hippocampal HT-22 cells with Atox1 mutation. The expression of Atox1 was significantly diminished following TBI, while mice with overexpressed Atox1 exhibited a more preserved hippocampal structure and reduced levels of oxidative stress post-TBI. Furthermore, the mice displayed notable impairments in learning and memory functions after TBI, which were ameliorated by the overexpression of Atox1. In the stretch injury model of HT-22 cells, overexpression of Atox1 mitigated oxidative stress by preserving the normal morphology and network connectivity of mitochondria, as well as facilitating the elimination of damaged mitochondria. Mechanistically, co-immunoprecipitation and mass spectrometry revealed the binding of Atox1 to DJ-1. Knockdown of DJ-1 in HT-22 cells significantly impaired the antioxidant capacity of Atox1. Mutations in the copper-binding motif or sequestration of free copper led to a substantial decrease in the interaction between Atox1 and DJ-1, with overexpression of DJ-1 failing to restore the antioxidant capacity of Atox1 mutants. The findings suggest that DJ-1 mediates the ability of Atox1 to withstand oxidative stress. And targeting Atox1 could be a potential therapeutic approach for addressing post-traumatic neurological dysfunction.
Collapse
Affiliation(s)
- Pengzhan Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenqian Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yangfan Ye
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ke Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingming Hu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Honglu Chao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - ZeQiang Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liuchao Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tian Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyue Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Gusu School, Nanjing Medical University, Suzhou, China; Department of Neurosurgery, The Affiliated Kizilsu Kirghiz Autonomous Prefecture People's Hospital of Nanjing Medical University, Artux, Xinjiang, China.
| |
Collapse
|
16
|
Chen N, Guo L, Wang L, Dai S, Zhu X, Wang E. Sleep fragmentation exacerbates myocardial ischemia‒reperfusion injury by promoting copper overload in cardiomyocytes. Nat Commun 2024; 15:3834. [PMID: 38714741 PMCID: PMC11076509 DOI: 10.1038/s41467-024-48227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/23/2024] [Indexed: 05/10/2024] Open
Abstract
Sleep disorders increase the risk and mortality of heart disease, but the brain-heart interaction has not yet been fully elucidated. Cuproptosis is a copper-dependent type of cell death activated by the excessive accumulation of intracellular copper. Here, we showed that 16 weeks of sleep fragmentation (SF) resulted in elevated copper levels in the male mouse heart and exacerbated myocardial ischemia-reperfusion injury with increased myocardial cuproptosis and apoptosis. Mechanistically, we found that SF promotes sympathetic overactivity, increases the germination of myocardial sympathetic nerve terminals, and increases the level of norepinephrine in cardiac tissue, thereby inhibits VPS35 expression and leads to impaired ATP7A related copper transport and copper overload in cardiomyocytes. Copper overload further leads to exacerbated cuproptosis and apoptosis, and these effects can be rescued by excision of the sympathetic nerve or administration of copper chelating agent. Our study elucidates one of the molecular mechanisms by which sleep disorders aggravate myocardial injury and suggests possible targets for intervention.
Collapse
Affiliation(s)
- Na Chen
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lizhe Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Sisi Dai
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaocheng Zhu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - E Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China.
| |
Collapse
|
17
|
Ohse VA, Klotz LO, Priebs J. Copper Homeostasis in the Model Organism C. elegans. Cells 2024; 13:727. [PMID: 38727263 PMCID: PMC11083455 DOI: 10.3390/cells13090727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Cellular and organismic copper (Cu) homeostasis is regulated by Cu transporters and Cu chaperones to ensure the controlled uptake, distribution and export of Cu ions. Many of these processes have been extensively investigated in mammalian cell culture, as well as in humans and in mammalian model organisms. Most of the human genes encoding proteins involved in Cu homeostasis have orthologs in the model organism, Caenorhabditis elegans (C. elegans). Starting with a compilation of human Cu proteins and their orthologs, this review presents an overview of Cu homeostasis in C. elegans, comparing it to the human system, thereby establishing the basis for an assessment of the suitability of C. elegans as a model to answer mechanistic questions relating to human Cu homeostasis.
Collapse
Affiliation(s)
| | - Lars-Oliver Klotz
- Nutrigenomics Section, Institute of Nutritional Sciences, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany;
| | - Josephine Priebs
- Nutrigenomics Section, Institute of Nutritional Sciences, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany;
| |
Collapse
|
18
|
Sun XM, Yoshida A, Ishii T, Jiang YR, Gao YL, Ueno M, Hirasaka K, Osatomi K. Transcriptional regulation of the Japanese flounder Cu,Zn-SOD (Jfsod1) gene in RAW264.7 cells during oxidative stress caused by causative bacteria of edwardsiellosis. Biochimie 2024; 218:118-126. [PMID: 37666292 DOI: 10.1016/j.biochi.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/06/2023]
Abstract
Edwardsiellosis is one of the most important bacterial diseases in fish, sometimes causing extensive economic losses in the aquaculture industry. Our previous studies demonstrated that the Cu,Zn-SOD (sod1) activity has significantly increased in Japanese flounder, Paralichthys olivaceus, hepatopancreas infected by causative bacteria of edwardsiellosis Edwardsiella tarda NUF251. In this study, NUF251 stimulated intracellular superoxide radical production in mouse macrophage RAW264.7 cells, which was reduced by N-acetylcysteine. This result suggests that NUF251 infection causes oxidative stress. To evaluate the regulatory mechanism of Jfsod1 at transcriptional levels under oxidative stress induced by NUF251 infection, we cloned and determined the nucleotide sequence (1124 bp) of the 5'-flanking region of the Jfsod1 gene. The sequence analysis demonstrated that the binding sites for the transcription factors C/EBPα and NF-IL6 involved in the transcriptional regulation of the mammalian sod1 gene existed. We constructed a luciferase reporter system with the 5'-flanking region (-1124/-1) of the Jfsod1 gene, and a highly increased transcriptional activity of the region was observed in NUF251-infected RAW264.7 cells. Further studies using several mutants indicated that deletion of the recognition region of NF-IL6 (-272/-132) resulted in a significant decrease in the transcriptional activity of the Jfsod1 gene in NUF251-infected RAW264.7 cells. In particular, the binding site (-202/-194) for NF-IL6 might play a major role in upregulating the transcriptional activity of the 5'-flanking region of the Jfsod1 gene in response to oxidative stress induced by NUF251 infection. These results could be provided a new insight to understand the pathogenic mechanism of causative bacteria of edwardsiellosis.
Collapse
Affiliation(s)
- Xiao-Mi Sun
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Asami Yoshida
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521, Japan.
| | - Takuya Ishii
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Yan-Rong Jiang
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, China
| | - Yi-Li Gao
- College of Science and Technology, Ningbo University, Ningbo, 315300, China
| | - Mikinori Ueno
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Katsuya Hirasaka
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Kiyoshi Osatomi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| |
Collapse
|
19
|
Rivera-Millot A, Harrison LB, Veyrier FJ. Copper management strategies in obligate bacterial symbionts: balancing cost and benefit. Emerg Top Life Sci 2024; 8:29-35. [PMID: 38095549 PMCID: PMC10903467 DOI: 10.1042/etls20230113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 02/23/2024]
Abstract
Bacteria employ diverse mechanisms to manage toxic copper in their environments, and these evolutionary strategies can be divided into two main categories: accumulation and rationalization of metabolic pathways. The strategies employed depend on the bacteria's lifestyle and environmental context, optimizing the metabolic cost-benefit ratio. Environmental and opportunistically pathogenic bacteria often possess an extensive range of copper regulation systems in order to respond to variations in copper concentrations and environmental conditions, investing in diversity and/or redundancy as a safeguard against uncertainty. In contrast, obligate symbiotic bacteria, such as Neisseria gonorrhoeae and Bordetella pertussis, tend to have specialized and more parsimonious copper regulation systems designed to function in the relatively stable host environment. These evolutionary strategies maintain copper homeostasis even in challenging conditions like encounters within phagocytic cells. These examples highlight the adaptability of bacterial copper management systems, tailored to their specific lifestyles and environmental requirements, in the context of an evolutionary the trade-off between benefits and energy costs.
Collapse
Affiliation(s)
- Alex Rivera-Millot
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, Quebec H7V 1B7, Canada
| | - Luke B. Harrison
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, Quebec H7V 1B7, Canada
| | - Frédéric J. Veyrier
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, Quebec H7V 1B7, Canada
| |
Collapse
|
20
|
Wimalasena K, Adetuyi O, Eldani M. Metabolic energy decline coupled dysregulation of catecholamine metabolism in physiologically highly active neurons: implications for selective neuronal death in Parkinson's disease. Front Aging Neurosci 2024; 16:1339295. [PMID: 38450382 PMCID: PMC10914975 DOI: 10.3389/fnagi.2024.1339295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Parkinson's disease (PD) is an age-related irreversible neurodegenerative disease which is characterized as a progressively worsening involuntary movement disorder caused by the loss of dopaminergic (DA) neurons in substantia nigra pars compacta (SNpc). Two main pathophysiological features of PD are the accumulation of inclusion bodies in the affected neurons and the predominant loss of neuromelanin-containing DA neurons in substantia nigra pars compacta (SNpc) and noradrenergic (NE) neurons in locus coeruleus (LC). The inclusion bodies contain misfolded and aggregated α-synuclein (α-Syn) fibrils known as Lewy bodies. The etiology and pathogenic mechanisms of PD are complex, multi-dimensional and associated with a combination of environmental, genetic, and other age-related factors. Although individual factors associated with the pathogenic mechanisms of PD have been widely investigated, an integration of the findings to a unified causative mechanism has not been envisioned. Here we propose an integrated mechanism for the degeneration of DA neurons in SNpc and NE neurons in LC in PD, based on their unique high metabolic activity coupled elevated energy demand, using currently available experimental data. The proposed hypothetical mechanism is primarily based on the unique high metabolic activity coupled elevated energy demand of these neurons. We reason that the high vulnerability of a selective group of DA neurons in SNpc and NE neurons in LC in PD could be due to the cellular energy modulations. Such cellular energy modulations could induce dysregulation of DA and NE metabolism and perturbation of the redox active metal homeostasis (especially copper and iron) in these neurons.
Collapse
Affiliation(s)
- Kandatege Wimalasena
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, KS, United States
| | | | | |
Collapse
|
21
|
Li Y, Du W, Yang R, Wei X, Li H, Zhang X. Copper Chaperone for Superoxide Dismutase Subtypes as a Prognostic Marker in Luminal B Breast Cancer. Clin Med Insights Oncol 2024; 18:11795549231219239. [PMID: 38187458 PMCID: PMC10771053 DOI: 10.1177/11795549231219239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/17/2023] [Indexed: 01/09/2024] Open
Abstract
Background Copper chaperone for superoxide dismutase (CCS) is an essential component of the oxidation-reduction system. In breast cancer cells, CCS expression is highly up-regulated, which contributes to cellular proliferation and migration. Breast cancer is a multifaceted disease with different tumor prognoses and responses to clinical treatments, which may be associated with multiple molecular subtypes of CCS. Methods The CCS expression patterns in breast cancer were investigated by TNMplot, cBioPortal, and HPA network database. The correlation of CCS expression with clinicopathological parameters was analyzed using the UALCAN database. The Cancer Genome Atlas (TCGA) data set was used to analyze the Clinical characteristics of CCS in luminal B patients. The bc-GenExMiner database was used to analyze the effects of BReast-CAncer susceptibility gene (BRCA)1/2, TP53 mutation status, estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor (HER) expression on CCS expression. The survival curves and prognostic value of CCS in luminal B breast cancer were performed through Kaplan-Meier curves, univariate and multivariate Cox regression using the PrognoScan, bc-GenExMiner, and Clinical bioinformatics analysis platform. Results We found that CCS expression was associated with patient age, race, ER, and PR status. We also discovered that BRCA1/2 mutations had an effect on CCS expression. The luminal B subtype had the highest CCS expression, which was linked to poor survival compared with other subtypes. In addition, Kaplan-Meier curve analysis showed that luminal B patients with high CCS mRNA expression showed a poor survival and the CCS gene is an independent predictor of outcome in patients with luminal B breast cancer by univariate and multivariate Cox regression. Conclusions Our findings emphasize the significant expression of CCS in luminal B breast cancer and its potential as an autonomous prognostic determinant for this specific molecular subtype. These findings suggest that CCS holds promise as a prospective marker for the treatment of luminal B breast cancer.
Collapse
Affiliation(s)
- Yanping Li
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Wenfei Du
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Rui Yang
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Xiaonan Wei
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Haibin Li
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Xiaoyuan Zhang
- Comprehensive Medical Training Center, Jining Medical University, Jining, China
| |
Collapse
|
22
|
Katsuyama M. [Toward the complete understanding of the pathogenic mechanism of clioquinol-induced subacute myelo-optic neuropathy (SMON)]. Nihon Yakurigaku Zasshi 2024; 159:78-82. [PMID: 38432923 DOI: 10.1254/fpj.23085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Clioquinol was extensively used as an amebicide to treat indigestion and diarrhea in the mid-1900s. However, it was withdrawn from the market in Japan because its use was epidemiologically linked to an increase in the incidence of subacute myelo-optic neuropathy (SMON). SMON is characterized by the subacute onset of sensory and motor disturbances in the lower extremities with occasional visual impairments, which are preceded by abdominal symptoms. Although pathological studies demonstrated axonopathy of the spinal cord and optic nerves, the underlying mechanisms of clioquinol toxicity have not been elucidated in detail. We previously performed a global analysis of human neuroblastoma cells using DNA chips and demonstrated that clioquinol induced 1) DNA double-strand breaks and subsequent activation of ATM/p53 signaling; 2) the expression of VGF, the precursor of neuropeptides involved in pain reactions, by inducing c-Fos; 3) the expression of interleukin-8, which is reported to be involved in intestinal inflammation, optic neuropathy, and neuropathic pain, by down-regulating GATA-2 and GATA-3. We also demonstrated that clioquinol induced zinc influx and oxidation of the copper chaperone ATOX1, leading to the impairment of the functional maturation of a copper-dependent enzyme dopamine-β-hydroxylase and the inhibition of noradrenaline biosynthesis. Thus, clioquinol-induced neurotoxicity in SMON seems to be mediated by multiple pathways.
Collapse
|
23
|
Fang C, Peng Z, Sang Y, Ren Z, Ding H, Yuan H, Hu K. Copper in Cancer: from transition metal to potential target. Hum Cell 2024; 37:85-100. [PMID: 37751026 DOI: 10.1007/s13577-023-00985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
In recent years, with the continuous in-depth exploration of the molecular mechanisms of tumorigenesis, numerous potential new targets for cancer treatment have been identified, some of which have been further developed in clinical practice and have produced positive outcomes. Notably, researchers' initial motivation for studying copper metabolism in cancer stems from the fact that copper is a necessary trace element for organisms and is closely connected to body growth and metabolism. Moreover, over the past few decades, considerable progress has been made in understanding the molecular processes and correlations between copper and cancer. Certain achievements have been made in the development and use of relevant clinical medications. The concept of "cuproptosis," a novel concept that differs from previous forms of cell death, was first proposed by a group of scientists last year, offering fresh perspectives on the targeting capabilities of copper in the treatment of cancer. In this review, we introduced the fundamental physiological functions of copper, the key components of copper metabolism, and a summary of the current research contributions on the connection between copper and cancer. In addition, the development of new copper-based nanomaterials and their associated mechanisms of action are discussed. Finally, we described how the susceptibility of cancer cells to this metallic nutrition could be leveraged to further improve the existing cancer treatment paradigm in the new setting.
Collapse
Affiliation(s)
- Can Fang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Zhiwei Peng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Yaru Sang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zihao Ren
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Huiming Ding
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Haibo Yuan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Kongwang Hu
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, China.
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China.
| |
Collapse
|
24
|
Guo P, Niu Z, Zhang D, Zhao F, Li J, Lu T, Qin X, Liu S, Li Z, Li Y, Li S. Potential impact of cuproptosis-related genes on tumor immunity in esophageal carcinoma. Aging (Albany NY) 2023; 15:15535-15556. [PMID: 38159255 PMCID: PMC10781504 DOI: 10.18632/aging.205391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2024]
Abstract
Cuproptosis involves a direct interaction with the tricarboxylic acid (TCA) lipid acylation components. This process intricately intersects with post-transcriptional lipid acylation (LA) and is linked to mitochondrial respiration and LA metabolism. Copper ions form direct bonds with acylated DLAT, promoting DLAT oligomerization, reducing Fe-S cluster proteins, and inducing a protein-triggered toxic stress response that culminates in cell demise. Simultaneously, the importance of immune contexture in cancer progression and treatment has significantly increased. We assessed the expression of cuproptosis-related genes (CRGs) across TCGA and validated our findings using the GEO data. Consensus clustering divided esophageal cancer (ESCA) patients into two clusters based on the expression of 7 CRGs. We evaluated the expression of immune checkpoint inhibitor (ICI) targets and calculated the elevated tumor mutational burden (TMB). Weighted gene co-expression network analysis (WGCNA) identified genes associated with the expression of CRGs and immunity. Cluster 1 exhibited increased immune infiltration, higher expression of ICI targets, higher TMB, and a higher incidence of deficiency in mismatch repair-microsatellite instability-high status. WGCNA analysis identified 14 genes associated with the expression of CRGs and immune scores. ROC analysis revealed specific hub genes with strong predictive capabilities. The expression levels of SLC6A3, MITD1, and PDHA1 varied across different pathological stages; CCS, LIPT2, PDHB, and PDHA1 showed variation in response to radiation therapy; MITD1 and PDHA1 exhibited differences related to the pathological M stages of ESCA. CRGs influence the immune contexture and can potentially transform cold tumors into hot tumors in ESCA patients.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Graduate school of Hebei Medical University, Shijiazhuang, China
| | - Zemiao Niu
- Graduate school of Hebei Medical University, Shijiazhuang, China
| | - Dengfeng Zhang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Graduate school of Hebei Medical University, Shijiazhuang, China
| | - Fangchao Zhao
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Graduate school of Hebei Medical University, Shijiazhuang, China
| | - Jing Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Graduate school of Hebei Medical University, Shijiazhuang, China
| | - Tianxing Lu
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuebo Qin
- Department of Thoracic Surgery, Hebei Chest Hospital, Shijiazhuang, China
| | - Shiquan Liu
- Department of Thoracic Surgery, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Zhirong Li
- Clinical Laboratory Center, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yishuai Li
- Department of Thoracic Surgery, Hebei Chest Hospital, Shijiazhuang, China
| | - Shujun Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
25
|
Ahlawat S, Arora R, Sharma R, Chhabra P, Kumar A, Kaur M, Lal SB, Mishra DC, Farooqi MS, Srivastava S. Revelation of genes associated with energy generating metabolic pathways in the fighter type Aseel chicken of India through skeletal muscle transcriptome sequencing. Anim Biotechnol 2023; 34:4989-5000. [PMID: 37288785 DOI: 10.1080/10495398.2023.2219718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, comparative analysis of skeletal muscle transcriptome was carried out for four biological replicates of Aseel, a fighter type breed and Punjab Brown, a meat type breed of India. The profusely expressed genes in both breeds were related to muscle contraction and motor activity. Differential expression analysis identified 961 up-regulated and 979 down-regulated genes in Aseel at a threshold of log2 fold change ≥ ±2.0 (padj<0.05). Significantly enriched KEGG pathways in Aseel included metabolic pathways and oxidative phosphorylation, with higher expression of genes associated with fatty acid beta-oxidation, formation of ATP by chemiosmotic coupling, response to oxidative stress, and muscle contraction. The highly connected hub genes identified through gene network analysis in the Aseel gamecocks were HNF4A, APOA2, APOB, APOC3, AMBP, and ACOT13, which are primarily associated with energy generating metabolic pathways. The up-regulated genes in Punjab Brown chicken were found to be related to muscle growth and differentiation. There was enrichment of pathways such as focal adhesion, insulin signaling pathway and ECM receptor interaction in these birds. The results presented in this study help to improve our understanding of the molecular mechanisms associated with fighting ability and muscle growth in Aseel and Punjab Brown chicken, respectively.
Collapse
Affiliation(s)
- Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Ashish Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Mandeep Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Shashi Bhushan Lal
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Md Samir Farooqi
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sudhir Srivastava
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
26
|
Ciaffaglione V, Rizzarelli E. Carnosine, Zinc and Copper: A Menage a Trois in Bone and Cartilage Protection. Int J Mol Sci 2023; 24:16209. [PMID: 38003398 PMCID: PMC10671046 DOI: 10.3390/ijms242216209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Dysregulated metal homeostasis is associated with many pathological conditions, including arthritic diseases. Osteoarthritis and rheumatoid arthritis are the two most prevalent disorders that damage the joints and lead to cartilage and bone destruction. Recent studies show that the levels of zinc (Zn) and copper (Cu) are generally altered in the serum of arthritis patients. Therefore, metal dyshomeostasis may reflect the contribution of these trace elements to the disease's pathogenesis and manifestations, suggesting their potential for prognosis and treatment. Carnosine (Car) also emerged as a biomarker in arthritis and exerts protective and osteogenic effects in arthritic joints. Notably, its zinc(II) complex, polaprezinc, has been recently proposed as a drug-repurposing candidate for bone fracture healing. On these bases, this review article aims to provide an overview of the beneficial roles of Cu and Zn in bone and cartilage health and their potential application in tissue engineering. The effects of Car and polaprezinc in promoting cartilage and bone regeneration are also discussed. We hypothesize that polaprezinc could exchange Zn for Cu, present in the culture media, due to its higher sequestering ability towards Cu. However, future studies should unveil the potential contribution of Cu in the beneficial effects of polaprezinc.
Collapse
Affiliation(s)
- Valeria Ciaffaglione
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
27
|
Lei G, Tang L, Yu Y, Bian W, Yu L, Zhou J, Li Y, Wang Y, Du J. The potential of targeting cuproptosis in the treatment of kidney renal clear cell carcinoma. Biomed Pharmacother 2023; 167:115522. [PMID: 37757497 DOI: 10.1016/j.biopha.2023.115522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Renal cell carcinoma (RCC) is one of the top ten malignancies and tumor-related causes of death worldwide. The most common histologic subtype is kidney renal clear cell carcinoma (KIRC), accounting for approximately 75% of all RCC cases. Early resection is considered the basic treatment for patients with KIRC. However, approximately 30% of these patients experience recurrence post-operation. Cuproptosis, an autonomous mechanism for controlling cell death, encompasses various molecular mechanisms and multiple cellular metabolic pathways. These pathways mainly include copper metabolic signaling pathways, mitochondrial metabolism signaling pathways, and lipoic acid pathway signaling pathways. Recent evidence shows that cuproptosis is identified as a key cell death modality that plays a meaningful role in tumor progression. However, there is no published systematic review that summarizes the correlation between cuproptosis and KIRC, despite the fact that investigations on cuproptosis and the pathogenesis of KIRC have increased in past years. Researchers have discovered that exogenous copper infusion accelerates the dysfunction of mitochondrial dysfunction and suppresses KIRC cells by inducing cuproptosis. The levels of tricarboxylic acid cycle proteins, lipoic acid protein, copper, and ferredoxin 1 (FDX1) were dysregulated in KIRC cells, and the prognosis of patients with high FDX1 expression is better than that of patients with low expression. Cuproptosis played an indispensable role in the regulation of tumor microenvironment features, tumor progression, and long-term prognosis of KIRC. In this review, we summarized the systemic and cellular metabolic processes of copper and the copper-related signaling pathways, highlighting the potential targets related to cuproptosis for KIRC treatment.
Collapse
Affiliation(s)
- Guojie Lei
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Lusheng Tang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yanhua Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Wenxia Bian
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Lingyan Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Junyu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China.
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
28
|
Karpenko MN, Muruzheva ZM, Ilyechova EY, Babich PS, Puchkova LV. Abnormalities in Copper Status Associated with an Elevated Risk of Parkinson's Phenotype Development. Antioxidants (Basel) 2023; 12:1654. [PMID: 37759957 PMCID: PMC10525645 DOI: 10.3390/antiox12091654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
In the last 15 years, among the many reasons given for the development of idiopathic forms of Parkinson's disease (PD), copper imbalance has been identified as a factor, and PD is often referred to as a copper-mediated disorder. More than 640 papers have been devoted to the relationship between PD and copper status in the blood, which include the following markers: total copper concentration, enzymatic ceruloplasmin (Cp) concentration, Cp protein level, and non-ceruloplasmin copper level. Most studies measure only one of these markers. Therefore, the existence of a correlation between copper status and the development of PD is still debated. Based on data from the published literature, meta-analysis, and our own research, it is clear that there is a connection between the development of PD symptoms and the number of copper atoms, which are weakly associated with the ceruloplasmin molecule. In this work, the link between the risk of developing PD and various inborn errors related to copper metabolism, leading to decreased levels of oxidase ceruloplasmin in the circulation and cerebrospinal fluid, is discussed.
Collapse
Affiliation(s)
- Marina N. Karpenko
- I.P. Pavlov Department of Physiology, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia; (M.N.K.); (Z.M.M.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
| | - Zamira M. Muruzheva
- I.P. Pavlov Department of Physiology, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia; (M.N.K.); (Z.M.M.)
- State Budgetary Institution of Health Care “Leningrad Regional Clinical Hospital”, 194291 St. Petersburg, Russia
| | - Ekaterina Yu. Ilyechova
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
- Research Center of Advanced Functional Materials and Laser Communication Systems, ADTS Institute, ITMO University, 197101 St. Petersburg, Russia
- Department of Molecular Genetics, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Polina S. Babich
- Department of Zoology and Genetics, Faculty of Biology, Herzen State Pedagogical University of Russia, 191186 St. Petersburg, Russia;
| | - Ludmila V. Puchkova
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
- Research Center of Advanced Functional Materials and Laser Communication Systems, ADTS Institute, ITMO University, 197101 St. Petersburg, Russia
- Department of Molecular Genetics, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| |
Collapse
|
29
|
Chen Y, Yao L, Zhao S, Xu M, Ren S, Xie L, Liu L, Wang Y. The oxidative aging model integrated various risk factors in type 2 diabetes mellitus at system level. Front Endocrinol (Lausanne) 2023; 14:1196293. [PMID: 37293508 PMCID: PMC10244788 DOI: 10.3389/fendo.2023.1196293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is a chronic endocrine metabolic disease caused by insulin dysregulation. Studies have shown that aging-related oxidative stress (as "oxidative aging") play a critical role in the onset and progression of T2DM, by leading to an energy metabolism imbalance. However, the precise mechanisms through which oxidative aging lead to T2DM are yet to be fully comprehended. Thus, it is urgent to integrate the underlying mechanisms between oxidative aging and T2DM, where meaningful prediction models based on relative profiles are needed. Methods First, machine learning was used to build the aging model and disease model. Next, an integrated oxidative aging model was employed to identify crucial oxidative aging risk factors. Finally, a series of bioinformatic analyses (including network, enrichment, sensitivity, and pan-cancer analyses) were used to explore potential mechanisms underlying oxidative aging and T2DM. Results The study revealed a close relationship between oxidative aging and T2DM. Our results indicate that nutritional metabolism, inflammation response, mitochondrial function, and protein homeostasis are key factors involved in the interplay between oxidative aging and T2DM, even indicating key indices across different cancer types. Therefore, various risk factors in T2DM were integrated, and the theories of oxi-inflamm-aging and cellular senescence were also confirmed. Conclusion In sum, our study successfully integrated the underlying mechanisms linking oxidative aging and T2DM through a series of computational methodologies.
Collapse
Affiliation(s)
- Yao Chen
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Lilin Yao
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Shuheng Zhao
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Mengchu Xu
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Siwei Ren
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Lu Xie
- Shanghai-MOST Key Laboratory of Health and Disease Genomics & Institute for Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Lei Liu
- Intelligent Medicine Institute, Fudan University, Shanghai, China
| | - Yin Wang
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
30
|
Zhang YY, Ren KD, Luo XJ, Peng J. COVID-19-induced neurological symptoms: focus on the role of metal ions. Inflammopharmacology 2023; 31:611-631. [PMID: 36892679 PMCID: PMC9996599 DOI: 10.1007/s10787-023-01176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/10/2023]
Abstract
Neurological symptoms are prevalent in both the acute and post-acute phases of coronavirus disease 2019 (COVID-19), and they are becoming a major concern for the prognosis of COVID-19 patients. Accumulation evidence has suggested that metal ion disorders occur in the central nervous system (CNS) of COVID-19 patients. Metal ions participate in the development, metabolism, redox and neurotransmitter transmission in the CNS and are tightly regulated by metal ion channels. COVID-19 infection causes neurological metal disorders and metal ion channels abnormal switching, subsequently resulting in neuroinflammation, oxidative stress, excitotoxicity, neuronal cell death, and eventually eliciting a series of COVID-19-induced neurological symptoms. Therefore, metal homeostasis-related signaling pathways are emerging as promising therapeutic targets for mitigating COVID-19-induced neurological symptoms. This review provides a summary for the latest advances in research related to the physiological and pathophysiological functions of metal ions and metal ion channels, as well as their role in COVID-19-induced neurological symptoms. In addition, currently available modulators of metal ions and their channels are also discussed. Collectively, the current work offers a few recommendations according to published reports and in-depth reflections to ameliorate COVID-19-induced neurological symptoms. Further studies need to focus on the crosstalk and interactions between different metal ions and their channels. Simultaneous pharmacological intervention of two or more metal signaling pathway disorders may provide clinical advantages in treating COVID-19-induced neurological symptoms.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
31
|
Palomino-Vizcaino G, Schuth N, Domínguez-Calva JA, Rodríguez-Meza O, Martínez-Jurado E, Serebryany E, King JA, Kroll T, Costas M, Quintanar L. Copper Reductase Activity and Free Radical Chemistry by Cataract-Associated Human Lens γ-Crystallins. J Am Chem Soc 2023; 145:6781-6797. [PMID: 36918380 DOI: 10.1021/jacs.2c13397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Cataracts are caused by high-molecular-weight aggregates of human eye lens proteins that scatter light, causing lens opacity. Metal ions have emerged as important potential players in the etiology of cataract disease, as human lens γ-crystallins are susceptible to metal-induced aggregation. Here, the interaction of Cu2+ ions with γD-, γC-, and γS-crystallins, the three most abundant γ-crystallins in the lens, has been evaluated. Cu2+ ions induced non-amyloid aggregation in all three proteins. Solution turbidimetry, sodium dodecyl sulfate poly(acrylamide) gel electrophoresis (SDS-PAGE), circular dichroism, and differential scanning calorimetry showed that the mechanism for Cu-induced aggregation involves: (i) loss of β-sheet structure in the N-terminal domain; (ii) decreased thermal and kinetic stability; (iii) formation of metal-bridged species; and (iv) formation of disulfide-bridged dimers. Isothermal titration calorimetry (ITC) revealed distinct Cu2+ binding affinities in the γ-crystallins. Electron paramagnetic resonance (EPR) revealed two distinct Cu2+ binding sites in each protein. Spin quantitation demonstrated the reduction of γ-crystallin-bound Cu2+ ions to Cu+ under aerobic conditions, while X-ray absorption spectroscopy (XAS) confirmed the presence of linear or trigonal Cu+ binding sites in γ-crystallins. Our EPR and XAS studies revealed that γ-crystallins' Cu2+ reductase activity yields a protein-based free radical that is likely a Tyr-based species in human γD-crystallin. This unique free radical chemistry carried out by distinct redox-active Cu sites in human lens γ-crystallins likely contributes to the mechanism of copper-induced aggregation. In the context of an aging human lens, γ-crystallins could act not only as structural proteins but also as key players for metal and redox homeostasis.
Collapse
Affiliation(s)
- Giovanni Palomino-Vizcaino
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City 07360, Mexico
| | - Nils Schuth
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City 07360, Mexico
| | - José A Domínguez-Calva
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City 07360, Mexico
| | - Oscar Rodríguez-Meza
- Laboratorio de Biofisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Eduardo Martínez-Jurado
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City 07360, Mexico
| | - Eugene Serebryany
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Jonathan A King
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Miguel Costas
- Laboratorio de Biofisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Liliana Quintanar
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City 07360, Mexico
| |
Collapse
|
32
|
Zhang Y, Wen MH, Qin G, Cai C, Chen TY. Subcellular redox responses reveal different Cu-dependent antioxidant defenses between mitochondria and cytosol. Metallomics 2022; 14:mfac087. [PMID: 36367501 PMCID: PMC9686363 DOI: 10.1093/mtomcs/mfac087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2023]
Abstract
Excess intracellular Cu perturbs cellular redox balance and thus causes diseases. However, the relationship between cellular redox status and Cu homeostasis and how such an interplay is coordinated within cellular compartments has not yet been well established. Using combined approaches of organelle-specific redox sensor Grx1-roGFP2 and non-targeted proteomics, we investigate the real-time Cu-dependent antioxidant defenses of mitochondria and cytosol in live HEK293 cells. The Cu-dependent real-time imaging experiments show that CuCl2 treatment results in increased oxidative stress in both cytosol and mitochondria. In contrast, subsequent excess Cu removal by bathocuproine sulfonate, a Cu chelating reagent, lowers oxidative stress in mitochondria but causes even higher oxidative stress in the cytosol. The proteomic data reveal that several mitochondrial proteins, but not cytosolic ones, undergo significant abundance change under Cu treatments. The proteomic analysis also shows that proteins with significant changes are related to mitochondrial oxidative phosphorylation and glutathione synthesis. The differences in redox behaviors and protein profiles in different cellular compartments reveal distinct mitochondrial and cytosolic response mechanisms upon Cu-induced oxidative stress. These findings provide insights into how redox and Cu homeostasis interplay by modulating specific protein expressions at the subcellular levels, shedding light on understanding the effects of Cu-induced redox misregulation on the diseases.
Collapse
Affiliation(s)
- Yuteng Zhang
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Meng-Hsuan Wen
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Guoting Qin
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
- College of Optometry, University of Houston, Houston, TX 77204, USA
| | - Chengzhi Cai
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Tai-Yen Chen
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
33
|
Carlson AL, Carrazco-Carrillo J, Loder A, Elkhadragy L, Schachtschneider KM, Padilla-Benavides T. The Oncopig as an Emerging Model to Investigate Copper Regulation in Cancer. Int J Mol Sci 2022; 23:14012. [PMID: 36430490 PMCID: PMC9697225 DOI: 10.3390/ijms232214012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Emerging evidence points to several fundamental contributions that copper (Cu) has to promote the development of human pathologies such as cancer. These recent and increasing identification of the roles of Cu in cancer biology highlights a promising field in the development of novel strategies against cancer. Cu and its network of regulatory proteins are involved in many different contextual aspects of cancer from driving cell signaling, modulating cell cycle progression, establishing the epithelial-mesenchymal transition, and promoting tumor growth and metastasis. Human cancer research in general requires refined models to bridge the gap between basic science research and meaningful clinical trials. Classic studies in cultured cancer cell lines and animal models such as mice and rats often present caveats when extended to humans due to inherent genetic and physiological differences. However, larger animal models such as pigs are emerging as more appropriate tools for translational research as they present more similarities with humans in terms of genetics, anatomical structures, organ sizes, and pathological manifestations of diseases like cancer. These similarities make porcine models well-suited for addressing long standing questions in cancer biology as well as in the arena of novel drug and therapeutic development against human cancers. With the emergent roles of Cu in human health and pathology, the pig presents an emerging and valuable model to further investigate the contributions of this metal to human cancers. The Oncopig Cancer Model is a transgenic swine model that recapitulates human cancer through development of site and cell specific tumors. In this review, we briefly outline the relationship between Cu and cancer, and how the novel Oncopig Cancer Model may be used to provide a better understanding of the mechanisms and causal relationships between Cu and molecular targets involved in cancer.
Collapse
Affiliation(s)
- Alyssa L. Carlson
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Jaime Carrazco-Carrillo
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Aaron Loder
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Lobna Elkhadragy
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Kyle M. Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | | |
Collapse
|
34
|
Ferreira CP, Moreira RS, Toledo-Silva G, Schroeder DC, Bainy ACD, Lüchmann KH. Analysis of Crassostrea gasar transcriptome reveals candidate genes involved in metal metabolism. CHEMOSPHERE 2022; 307:136009. [PMID: 35977572 DOI: 10.1016/j.chemosphere.2022.136009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/19/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Oysters have been extensively employed for monitoring of metal pollution in dynamic aquatic ecosystems. Therefore, the use of specific biomarkers can assist in discriminating the ecotoxicological implications of different elements in such complex environments. In this study, we revisited the sequencing data of gills and digestive glands transcripts in the mangrove oyster Crassostrea gasar and generated a reference transcriptome assembly from multiple assemblers, seven in total. Overall, we were able to identify a total of 11,917 transcripts, with 86.6% of them being functionally annotated and 1.4 times more than the first annotation. We screened the annotated transcripts to identify genes potentially involved in metals' transport, storage, and detoxification. Our findings included genes related to Zn distribution in cells (Zn transporters - ZIP, ZnT), metallothionein (MT-I and MT-IV), GSH biosynthesis, Ca+ transporter (NCX and ATP2B), and Cu distribution in cells (ATP7, ATOX1, CCS, and laccase-like). These results provided a reference transcriptome for additional insights into the transcriptional profile of C. gasar and other bivalves to better understand the molecular pathways underpinning metal tolerance and susceptibility. The study also provided an auxiliary tool for biomonitoring metal contamination in dynamic environments as estuaries.
Collapse
Affiliation(s)
- Clarissa P Ferreira
- Multicentric Graduate Program in Biochemistry and Molecular Biology - PMBqBM, Santa Catarina State University, Lages, 88520-000, Brazil
| | - Renato S Moreira
- Federal Institute of Santa Catarina - IFSC, Lages, 88506-400, Brazil
| | - Guilherme Toledo-Silva
- Genomics Laboratory, Cell Biology, Embryology and Genetics Department, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil
| | - Declan C Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA; School of Biological Sciences, University of Reading, Reading, UK
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis, 88034-257, Brazil
| | - Karim H Lüchmann
- Department of Scientific and Technological Education, Santa Catarina State University, Florianópolis, 88035-001, Brazil.
| |
Collapse
|
35
|
Structural and antibacterial properties of doped zinc oxide and their composites with hydroxyapatite. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Harini K, Girigoswami K, Anand AV, Pallavi P, Gowtham P, Elboughdiri N, Girigoswami A. Nano-mediated Strategies for Metal Ion–Induced Neurodegenerative Disorders: Focus on Alzheimer’s and Parkinson’s Diseases. CURRENT PHARMACOLOGY REPORTS 2022; 8:450-463. [DOI: 10.1007/s40495-022-00307-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/09/2022] [Indexed: 11/29/2023]
|
37
|
Memo1 binds reduced copper ions, interacts with copper chaperone Atox1, and protects against copper-mediated redox activity in vitro. Proc Natl Acad Sci U S A 2022; 119:e2206905119. [PMID: 36067318 PMCID: PMC9477392 DOI: 10.1073/pnas.2206905119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Since many proteins depend on copper ions for functionality, it is not surprising that cancer cells have a high demand for copper. Still, free copper ions are toxic as they can potentially catalyze the formation of harmful reactive oxygen species (ROS) upon coupling redox cycling between Cu(I) and Cu(II) with reduction of O2. Here, we investigated copper binding to Memo1, an oncogenic protein linked to cancer. We demonstrate that Memo1 coordinates reduced but not oxidized copper ions, thereby preventing the copper ions from acting as redox catalysts for ROS generation. As Memo1 is a putative target for the treatment of cancer, it is of importance to identify its binding partners (e.g., metal ions) and the functional consequences of such interactions. The protein mediator of ERBB2-driven cell motility 1 (Memo1) is connected to many signaling pathways that play key roles in cancer. Memo1 was recently postulated to bind copper (Cu) ions and thereby promote the generation of reactive oxygen species (ROS) in cancer cells. Since the concentration of Cu as well as ROS are increased in cancer cells, both can be toxic if not well regulated. Here, we investigated the Cu-binding capacity of Memo1 using an array of biophysical methods at reducing as well as oxidizing conditions in vitro. We find that Memo1 coordinates two reduced Cu (Cu(I)) ions per protein, and, by doing so, the metal ions are shielded from ROS generation. In support of biological relevance, we show that the cytoplasmic Cu chaperone Atox1, which delivers Cu(I) in the secretory pathway, can interact with and exchange Cu(I) with Memo1 in vitro and that the two proteins exhibit spatial proximity in breast cancer cells. Thus, Memo1 appears to act as a Cu(I) chelator (perhaps shuttling the metal ion to Atox1 and the secretory path) that protects cells from Cu-mediated toxicity, such as uncontrolled formation of ROS. This Memo1 functionality may be a safety mechanism to cope with the increased demand of Cu ions in cancer cells.
Collapse
|
38
|
Tasić D, Opačić M, Kovačević S, Nikolić Kokić A, Dimitrijević M, Nikolić D, Vojnović Milutinović D, Blagojević D, Djordjevic A, Brkljačić J. Effects of Fructose and Stress on Rat Renal Copper Metabolism and Antioxidant Enzymes Function. Int J Mol Sci 2022; 23:ijms23169023. [PMID: 36012287 PMCID: PMC9409054 DOI: 10.3390/ijms23169023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 12/22/2022] Open
Abstract
The effects of a fructose-rich diet and chronic stress on copper metabolism in the kidneys are still understudied. We investigated whether fructose and/or chronic unpredictable stress modulate copper metabolism in a way that affects redox homeostasis, thus contributing to progression of metabolic disturbances in the kidney. We determined protein level of copper transporters, chaperones, and cuproenzymes including cytochrome c oxidase, as well as antioxidant enzymes function in the kidneys of male Wistar rats subjected to 20% liquid fructose supplementation and/or chronic stress. Liquid fructose supplementation increased level of copper chaperone of superoxide dismutase and decreased metallothionein level, while rendering the level of copper importer and copper chaperones involved in copper delivery to mitochondria and trans Golgi network unaffected. Stress had no effect on renal copper metabolism. The activity and expression of renal antioxidant enzymes remained unaltered in all experimental groups. In conclusion, fructose, independently of stress, decreased renal copper level, and modulated renal copper metabolism as to preserve vital cellular function including mitochondrial energy production and antioxidative defense, at the expense of intracellular copper storage.
Collapse
Affiliation(s)
- Danica Tasić
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Miloš Opačić
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Aleksandra Nikolić Kokić
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Milena Dimitrijević
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Dušan Nikolić
- Department of Biology and Inland Waters Protection, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Duško Blagojević
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
| | - Jelena Brkljačić
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia
- Correspondence: ; Tel.: +381-11-2078318
| |
Collapse
|
39
|
Nicoletti VG, Pajer K, Calcagno D, Pajenda G, Nógrádi A. The Role of Metals in the Neuroregenerative Action of BDNF, GDNF, NGF and Other Neurotrophic Factors. Biomolecules 2022; 12:biom12081015. [PMID: 35892326 PMCID: PMC9330237 DOI: 10.3390/biom12081015] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022] Open
Abstract
Mature neurotrophic factors and their propeptides play key roles ranging from the regulation of neuronal growth and differentiation to prominent participation in neuronal survival and recovery after injury. Their signaling pathways sculpture neuronal circuits during brain development and regulate adaptive neuroplasticity. In addition, neurotrophic factors provide trophic support for damaged neurons, giving them a greater capacity to survive and maintain their potential to regenerate their axons. Therefore, the modulation of these factors can be a valuable target for treating or preventing neurologic disorders and age-dependent cognitive decline. Neuroregenerative medicine can take great advantage by the deepening of our knowledge on the molecular mechanisms underlying the properties of neurotrophic factors. It is indeed an intriguing topic that a significant interplay between neurotrophic factors and various metals can modulate the outcome of neuronal recovery. This review is particularly focused on the roles of GDNF, BDNF and NGF in motoneuron survival and recovery from injuries and evaluates the therapeutic potential of various neurotrophic factors in neuronal regeneration. The key role of metal homeostasis/dyshomeostasis and metal interaction with neurotrophic factors on neuronal pathophysiology is also highlighted as a novel mechanism and potential target for neuronal recovery. The progress in mechanistic studies in the field of neurotrophic factor-mediated neuroprotection and neural regeneration, aiming at a complete understanding of integrated pathways, offers possibilities for the development of novel neuroregenerative therapeutic approaches.
Collapse
Affiliation(s)
- Vincenzo Giuseppe Nicoletti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Medical Biochemistry, University of Catania, 95124 Catania, Italy; (V.G.N.); (D.C.)
| | - Krisztián Pajer
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary;
| | - Damiano Calcagno
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Medical Biochemistry, University of Catania, 95124 Catania, Italy; (V.G.N.); (D.C.)
| | - Gholam Pajenda
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Research Centre for Traumatology of the Austrian Workers, 1200 Vienna, Austria;
- Department for Trauma Surgery, Medical University Vienna, 1090 Vienna, Austria
| | - Antal Nógrádi
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary;
- Correspondence: ; Tel.: +36-6-234-2855
| |
Collapse
|
40
|
Kong L, Price NM. Light Stimulates Copper-Limited Growth of an Oceanic Diatom by Increasing Cellular Copper(II) Reduction─A Rate-Determining Step in Copper Uptake. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9103-9111. [PMID: 35549243 DOI: 10.1021/acs.est.2c01479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Uptake of Cu by Thalassiosira oceanica requires that Cu(II) is reduced to Cu(I) prior to transport across the cell membrane. The reduction step is mediated biochemically by cellular reductases active with a broad range of Cu chemical species. Here, we report on the cellular Cu(II) reduction and Cu(I) uptake of a diatom under saturating and subsaturating irradiance. An increase in growth irradiance, from 50 to 400 μmol photons m-2 s-1, increased the rate of extracellular Cu(II) reduction and steady-state Cu uptake. Under these conditions, Cu-limited cells acquired Cu more efficiently and maintained faster rates of growth than Cu-limited cells in low light. Pseudo-first-order reaction rate constants were about 70-fold faster for Cu(I) uptake than for Cu(II) reduction so that reduction was the rate-determining step in Cu acquisition. Accordingly, steady-state Cu uptake rates predicted from the reduction rate constants agreed well with measured rates of Cu uptake obtained from cultures growing at low nanomolar Cu concentrations. Transcript abundance of putative Cu(II) reductases followed a similar pattern to cupric reductase activity, increasing in Cu-limited cells and with increasing growth irradiance. The results are significant in showing Cu(II) reduction as the rate-determining step in Cu uptake: they suggest that biologically mediated Cu(II) reduction may be an important part of the Cu cycle in surface waters of the open sea.
Collapse
Affiliation(s)
- Liangliang Kong
- Department of Biology, McGill University, Montréal, Québec H3A 1B1, Canada
- College of Marine Life Science, Ocean University of China, Qingdao 266001, Shandong, China
| | - Neil M Price
- Department of Biology, McGill University, Montréal, Québec H3A 1B1, Canada
| |
Collapse
|
41
|
Broiler responses to copper levels and sources: growth, tissue mineral content, antioxidant status and mRNA expression of genes involved in lipid and protein metabolism. BMC Vet Res 2022; 18:223. [PMID: 35698226 PMCID: PMC9195228 DOI: 10.1186/s12917-022-03286-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Five hundred 8-d old male broilers Cobb500 were randomly allotted into 10 treatments in factorial arrangement with 5 Cu levels (0, 4, 8, 12, and 16 mg/kg), and 2 sources (Cu proteinate, CuPro and Cu sulphate, CuSO4.5H2O) for a 10-d-experiment. RESULTS Feed conversion ratio (FCR) was better (P < 0.05) in CuPro fed chicks compared with CuSO4.5H2O group. Average daily feed intake (ADFI) decreased linearly (P < 0.05) as dietary Cu increased. A quadratic response (P < 0.05) to Cu levels was found for FCR, being optimized at 9.87 and 8.84 mg Cu/kg in CuPro and CuSO4.5H2O diets, respectively. Copper supplementation linearly increased liver Cu content (P < 0.05) and tended to linearly increase (P = 0.07) phosphorus (P) and copper in tibia. Manganese and zinc were higher (P < 0.05) in tibia of CuPro fed birds. Broilers fed CuPro exhibited lower liver iron (P < 0.05) content, lower activities of Cu, Zn superoxide dismutase (CuZnSOD) in breast muscle and liver, and glutathione peroxidase in liver. Glutathione peroxidase reduced linearly (P < 0.05) with CuPro levels and increased linearly (P < 0.05) with CuSO4.5H2O levels and were lower (P < 0.05) in all CuPro levels in breast muscle. Breast muscle malondialdehyde concentration tended to be higher (P = 0.08) in broilers fed CuSO4.5H2O. Copper levels linearly increased (P < 0.05) metallothionein (MT) and malate dehydrogenase (MDH) expression in liver, and six-transmembrane epithelial antigen of the prostate-1 (STEAP-1) in the intestine. Copper elicited a quadratic response (P < 0.050) in AKT-1 and mammalian target of rapamycin (mTOR) in breast muscle, CuZnSOD in liver and antioxidant 1 copper chaperone (ATOX 1) in intestine. Broilers fed CuPro exhibited higher mRNA expression of mTOR in muscle breast and lower CuZnSOD in liver and ATOX 1 in intestine. Interaction (P < 0.05) between levels and sources was found in mRNA expression for GSK-3β, MT, and CuZnSOD in breast muscle, FAS and LPL in liver and MT and CTR1 in intestine. CONCLUSIONS CuPro showed beneficial effects on feed conversion and bone mineralization. Organic and inorganic Cu requirements are 9.87 and 8.84 mg Cu/kg, respectively.
Collapse
|
42
|
Su Y, Zhang X, Li S, Xie W, Guo J. Emerging roles of the copper-CTR1 axis in tumorigenesis. Mol Cancer Res 2022; 20:1339-1353. [PMID: 35604085 DOI: 10.1158/1541-7786.mcr-22-0056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
Physiological roles of copper in metabolic homeostasis have been well established, however, whether and how copper is dysregulated in tumors and contributes to tumorigenesis are not recapitulated. Here, we comprehensively summarize the potential origins of copper accumulation in diseases especially in cancers by dysregulating copper transporter 1 (CTR1) or ATPase copper transporting alpha/beta (ATP7A/B) and further demonstrate the underlying mechanism of copper contributing to tumorigenesis. Specifically, in addition to modulating reactive oxygen species (ROS), angiogenesis, immune response, and metabolic homeostasis, copper recently has drawn more attention by directly binding to oncoproteins such as MEK, ULK, Memo, and PDK1 to activate distinct oncogenic signals and account for tumorigenesis. In the end, we disclose the emerging applications of copper in cancer diagnosis and highlight the promising strategies to target the copper-CTR1 axis for cancer therapies.
Collapse
Affiliation(s)
- Yaqing Su
- First Affiliated Hospital of Sun Yat-sen University, guangzhou, guangdong, China
| | - Xiaomei Zhang
- First Affiliated Hospital of Sun Yat-sen University, China
| | - Shaoqiang Li
- The First Affiliatd Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Xie
- First Affiliated Hospital of Sun Yat-sen University, China
| | - Jianping Guo
- First Affiliated Hospital of Sun Yat-sen University, guangzhou, guangdong, China
| |
Collapse
|
43
|
Ho T, Ahmadi S, Kerman K. Do glutathione and copper interact to modify Alzheimer's disease pathogenesis? Free Radic Biol Med 2022; 181:180-196. [PMID: 35092854 DOI: 10.1016/j.freeradbiomed.2022.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder first described in 1906 that is currently estimated to impact ∼40 million people worldwide. Extensive research activities have led to a wealth of information on the pathogenesis, hallmarks, and risk factors of AD; however, therapeutic options remain extremely limited. The large number of pathogenic factors that have been reported to potentially contribute to AD include copper dyshomeostasis as well as increased oxidative stress, which is related to alterations to molecular antioxidants like glutathione (GSH). While the individual roles of GSH and copper in AD have been studied by many research groups, their interactions have received relatively little attention, although they appear to interact and affect each other's regulation. Existing knowledge on how GSH-copper interactions may affect AD is sparse and lacks focus. This review first highlights the most relevant individual roles that GSH and copper play in physiology and AD, and then collects and assesses research concerning their interactions, in an effort to provide a more accessible and understandable picture of the role of GSH, copper, and their interactions in AD.
Collapse
Affiliation(s)
- Talia Ho
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Soha Ahmadi
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
44
|
Chen X, Zhou Y, Yang M, Wang J, Guo C, Wang Y. A novel multi-stimuli-responsive organogel sensor for detecting Cu2+ and Co2+ based on benzotriazole derivative. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Miller MR, Robinson M, Fischer L, DiBattista A, Patel MA, Daley M, Bartha R, Dekaban GA, Menon RS, Shoemaker JK, Diamandis EP, Prassas I, Fraser DD. Putative Concussion Biomarkers Identified in Adolescent Male Athletes Using Targeted Plasma Proteomics. Front Neurol 2022; 12:787480. [PMID: 34987469 PMCID: PMC8721148 DOI: 10.3389/fneur.2021.787480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Sport concussions can be difficult to diagnose and if missed, they can expose athletes to greater injury risk and long-lasting neurological disabilities. Discovery of objective biomarkers to aid concussion diagnosis is critical to protecting athlete brain health. To this end, we performed targeted proteomics on plasma obtained from adolescent athletes suffering a sports concussion. A total of 11 concussed male athletes were enrolled at our academic Sport Medicine Concussion Clinic, as well as 24 sex-, age- and activity-matched healthy control subjects. Clinical evaluation was performed and blood was drawn within 72 h of injury. Proximity extension assays were performed for 1,472 plasma proteins; a total of six proteins were considered significantly different between cohorts (P < 0.01; five proteins decreased and one protein increased). Receiver operating characteristic curves on the six individual protein biomarkers identified had areas-under-the-curves (AUCs) for concussion diagnosis ≥0.78; antioxidant 1 copper chaperone (ATOX1; AUC 0.81, P = 0.003), secreted protein acidic and rich in cysteine (SPARC; AUC 0.81, P = 0.004), cluster of differentiation 34 (CD34; AUC 0.79, P = 0.006), polyglutamine binding protein 1 (PQBP1; AUC 0.78, P = 0.008), insulin-like growth factor-binding protein-like 1 (IGFBPL1; AUC 0.78, P = 0.008) and cytosolic 5'-nucleotidase 3A (NT5C3A; AUC 0.78, P = 0.009). Combining three of the protein biomarkers (ATOX1, SPARC and NT5C3A), produced an AUC of 0.98 for concussion diagnoses (P < 0.001; 95% CI: 0.95, 1.00). Despite a paucity of studies on these three identified proteins, the available evidence points to their roles in modulating tissue inflammation and regulating integrity of the cerebral microvasculature. Taken together, our exploratory data suggest that three or less novel proteins, which are amenable to a point-of-care immunoassay, may be future candidate biomarkers for screening adolescent sport concussion. Validation with protein assays is required in larger cohorts.
Collapse
Affiliation(s)
- Michael R Miller
- Department of Pediatrics, Western University, London, ON, Canada.,Children's Health Research Institute, London, ON, Canada
| | - Michael Robinson
- School of Health Studies, Western University, London, ON, Canada.,School of Kinesiology, Western University, London, ON, Canada.,Department of Family Medicine, Western University, London, ON, Canada
| | - Lisa Fischer
- Department of Family Medicine, Western University, London, ON, Canada
| | - Alicia DiBattista
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Neurolytixs Inc., Toronto, ON, Canada
| | - Maitray A Patel
- Department of Epidemiology, Western University, London, ON, Canada
| | - Mark Daley
- Department of Epidemiology, Western University, London, ON, Canada.,Department of Computer Science, Western University, London, ON, Canada
| | - Robert Bartha
- Department of Medical Biophysics, Western University, London, ON, Canada.,Robarts Research Institute, London, ON, Canada
| | - Gregory A Dekaban
- Robarts Research Institute, London, ON, Canada.,Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Ravi S Menon
- Department of Medical Biophysics, Western University, London, ON, Canada.,Robarts Research Institute, London, ON, Canada
| | | | | | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, University of Toronto, Toronto, ON, Canada
| | - Douglas D Fraser
- Department of Pediatrics, Western University, London, ON, Canada.,Children's Health Research Institute, London, ON, Canada.,Neurolytixs Inc., Toronto, ON, Canada.,Department of Physiology and Pharmacology, Western University, London, ON, Canada.,Depatment of Clinical Neurological Sciences, Western University, London, ON, Canada
| |
Collapse
|
46
|
Okafor M, Gonzalez P, Ronot P, El Masoudi I, Boos A, Ory S, Chasserot-Golaz S, Gasman S, Raibaut L, Hureau C, Vitale N, Faller P. Development of Cu( ii)-specific peptide shuttles capable of preventing Cu–amyloid beta toxicity and importing bioavailable Cu into cells. Chem Sci 2022; 13:11829-11840. [PMID: 36320914 PMCID: PMC9580518 DOI: 10.1039/d2sc02593k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
Copper (Cu) in its ionic forms is an essential element for mammals and its homeostasis is tightly controlled. Accordingly, Cu-dyshomeostasis can be lethal as is the case in the well-established genetic Wilson's and Menkes diseases. In Alzheimer's disease (AD), Cu-accumulation occurs in amyloid plaques, where it is bound to the amyloid-beta peptide (Aβ). In vitro, Cu–Aβ is competent to catalyze the production of reactive oxygen species (ROS) in the presence of ascorbate under aerobic conditions, and hence Cu–Aβ is believed to contribute to the oxidative stress in AD. Several molecules that can recover extracellular Cu from Aβ and transport it back into cells with beneficial effects in cell culture and transgenic AD models were identified. However, all the Cu-shuttles currently available are not satisfactory due to various potential limitations including ion selectivity and toxicity. Hence, we designed a novel peptide-based Cu shuttle with the following properties: (i) it contains a Cu(ii)-binding motif that is very selective to Cu(ii) over all other essential metal ions; (ii) it is tagged with a fluorophore sensitive to Cu(ii)-binding and release; (iii) it is made of a peptide platform, which is very versatile to add new functions. The work presented here reports on the characterization of AKH-αR5W4NBD, which is able to transport Cu ions selectively into PC12 cells and the imported Cu appeared bioavailable, likely via reductive release induced by glutathione. Moreover, AKH-αR5W4NBD was able to withdraw Cu from the Aβ1–16 peptide and consequently inhibited the Cu-Aβ based reactive oxygen species production and related cell toxicity. Hence, AKH-αR5W4NBD could be a valuable new tool for Cu-transport into cells and suitable for mechanistic studies in cell culture, with potential applications in restoring Cu-homeostasis in Cu-related diseases such as AD. The synthetic peptide AKH-αR5W4NBD was designed as a shuttle to counteract copper imbalance in Alzheimer’s disease. In vitro, this shuttle is able to abstract Cu(ii) selectively from amyloid-β and transport it into cells in a bioavailable form.![]()
Collapse
Affiliation(s)
- Michael Okafor
- Laboratory of Biometals and Biological Chemistry, Institut de Chimie (UMR 7177), Université de Strasbourg-CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| | - Paulina Gonzalez
- Laboratory of Biometals and Biological Chemistry, Institut de Chimie (UMR 7177), Université de Strasbourg-CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Pascale Ronot
- Université de Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France
| | - Islah El Masoudi
- Université de Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France
| | - Anne Boos
- Université de Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France
| | - Stéphane Ory
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| | - Sylvette Chasserot-Golaz
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| | - Stéphane Gasman
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| | - Laurent Raibaut
- Laboratory of Biometals and Biological Chemistry, Institut de Chimie (UMR 7177), Université de Strasbourg-CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | | | - Nicolas Vitale
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| | - Peter Faller
- Laboratory of Biometals and Biological Chemistry, Institut de Chimie (UMR 7177), Université de Strasbourg-CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| |
Collapse
|
47
|
Kamiya T. Copper in the tumor microenvironment and tumor metastasis. J Clin Biochem Nutr 2022; 71:22-28. [PMID: 35903604 PMCID: PMC9309082 DOI: 10.3164/jcbn.22-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/12/2022] [Indexed: 11/22/2022] Open
Abstract
Copper (Cu), an essential micronutrient, plays an essential role in several physiological processes, including cell proliferation and angiogenesis; however, its dysregulation induces oxidative stress and inflammatory responses. Significant Cu accumulation is observed in several tumor tissues. The bioavailability of intracellular Cu is tightly controlled by Cu transporters, including Cu transporter 1 (CTR1) and Cu-transporting P-type ATPase α and β (ATP7A and ATP7B), and Cu chaperones, including Cu chaperone for superoxide dismutase 1 (CCS) and antioxidant-1 (Atox-1). In several tumor tissues, these abnormalities that induce intracellular Cu accumulation are involved in tumor progression. In addition, functional disturbance in Cu-containing secretory enzymes, such as superoxide dismutase 3 (SOD3), and lysyl oxidase enzymes (LOX and LOXL1–4) with abnormal Cu dynamics plays a key role in tumor metastasis. For example, the loss of SOD3 in tumor tissues induces oxidative stress, which promotes neovascularization and epithelial-to-mesenchymal transition (EMT). LOX promotes collagen crosslinking, which functions in the metastatic niche formation. Accordingly, restricted Cu regulation may be a novel strategy for the inhibition of tumor metastasis. However, it is unclear how these Cu disturbances occur in tumor tissues and the exact molecular mechanisms underlying Cu secretory enzymes. In this review article, I discuss the role of Cu transporters, Cu chaperones, and Cu-containing secretory enzymes in tumor progression to better understand the role of Cu homeostasis in tumor tissues.
Collapse
Affiliation(s)
- Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University
| |
Collapse
|
48
|
Hepatic Homeostasis of Metal Ions Following Acute Repeated Stress Exposure in Rats. Antioxidants (Basel) 2021; 11:antiox11010085. [PMID: 35052588 PMCID: PMC8773239 DOI: 10.3390/antiox11010085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 01/25/2023] Open
Abstract
Essential metals such as copper, iron, and zinc are cofactors in various biological processes including oxygen utilisation, cell growth, and biomolecular synthesis. The homeostasis of these essential metals is carefully controlled through a system of protein transporters involved in the uptake, storage, and secretion. Some metal ions can be transformed by processes including reduction/oxidation (redox) reactions, and correspondingly, the breakdown of metal ion homeostasis can lead to formation of reactive oxygen and nitrogen species. We have previously demonstrated rapid biochemical responses to stress involving alterations in the redox state to generate free radicals and the resultant oxidative stress. However, the effects of stress on redox-active metals including iron and copper and redox-inert zinc have not been well characterised. Therefore, this study aims to examine the changes in these essential metals following exposure to short-term repeated stress, and to further elucidate the alterations in metal homeostasis through expression analysis of different metal transporters. Outbred male Wistar rats were exposed to unrestrained (control), 1 day, or 3 days of 6 h restraint stress (n = 8 per group). After the respective stress treatment, blood and liver samples were collected for the analysis of biometal concentrations and relative gene expression of metal transporter and binding proteins. Exposure to repeated restraint stress was highly effective in causing hepatic redox imbalance. Stress was also shown to induce hepatic metal redistribution, while modulating the mRNA levels of key metal transporters. Overall, this study is the first to characterise the gene expression profile of metal homeostasis following stress and provide insight into the changes occurring prior to the onset of chronic stress conditions.
Collapse
|
49
|
Alvarez-Rodriguez M, Martinez CA, Roca J, Rodriguez-Martinez H. mRNA expression of oxidative-reductive proteins in boars with documented different fertility can identify relevant prognostic biomarkers. Res Vet Sci 2021; 141:195-202. [PMID: 34763256 DOI: 10.1016/j.rvsc.2021.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/27/2021] [Accepted: 10/28/2021] [Indexed: 11/20/2022]
Abstract
Oxidative stress unbalance is a major factor causing impairment of sperm function and, ultimately, sperm death. In this study, we identified transcriptomic and proteomic markers for oxidative-related protectors from the generation of reactive oxygen species (ROS) in spermatozoa from breeding boars with documented high- or low-fertility. Particular attention was paid to glutathione peroxidases, and to transcripts related to DNA stabilization and compaction, as protamine and transition proteins. mRNA cargo analysis was performed using porcine-specific micro-arrays (GeneChip® miRNA 4.0 and GeneChip® Porcine Gene 1.0 ST) and qPCR validation. Differences between fertility-classed boars were ample among biomarkers; some upregulated only at protein level (catalase (CAT), superoxide dismutase 1 (SOD1) and glutathione proteins), or only at the mRNA level (ATOX1, Antioxidant Protein 1). In addition, protamines 2 and 3, essential for sperm DNA condensation and also transition proteins 1 and 2 (TNP1 and TNP2), required during histone-to-protamine replacement, were overexpressed in spermatozoa from high-fertile boars. This up-regulation seems concerted to reduce DNA accessibility to ROS attack, protecting the DNA. The upregulated intracellular phospholipid hydroperoxide glutathione peroxidase (GPx4), in high-fertile boars at mRNA level, can be considered a most relevant biomarker for fertility disclosure during sperm evaluation.
Collapse
Affiliation(s)
- Manuel Alvarez-Rodriguez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden; Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, 08193, Bellaterra, (Cerdanyola del Vallès), Barcelona, Spain.
| | - Cristina A Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden
| |
Collapse
|
50
|
Slobodian MR, Petahtegoose JD, Wallis AL, Levesque DC, Merritt TJS. The Effects of Essential and Non-Essential Metal Toxicity in the Drosophila melanogaster Insect Model: A Review. TOXICS 2021; 9:269. [PMID: 34678965 PMCID: PMC8540122 DOI: 10.3390/toxics9100269] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
The biological effects of environmental metal contamination are important issues in an industrialized, resource-dependent world. Different metals have different roles in biology and can be classified as essential if they are required by a living organism (e.g., as cofactors), or as non-essential metals if they are not. While essential metal ions have been well studied in many eukaryotic species, less is known about the effects of non-essential metals, even though essential and non-essential metals are often chemically similar and can bind to the same biological ligands. Insects are often exposed to a variety of contaminated environments and associated essential and non-essential metal toxicity, but many questions regarding their response to toxicity remain unanswered. Drosophila melanogaster is an excellent insect model species in which to study the effects of toxic metal due to the extensive experimental and genetic resources available for this species. Here, we review the current understanding of the impact of a suite of essential and non-essential metals (Cu, Fe, Zn, Hg, Pb, Cd, and Ni) on the D. melanogaster metal response system, highlighting the knowledge gaps between essential and non-essential metals in D. melanogaster. This review emphasizes the need to use multiple metals, multiple genetic backgrounds, and both sexes in future studies to help guide future research towards better understanding the effects of metal contamination in general.
Collapse
Affiliation(s)
| | | | | | | | - Thomas J. S. Merritt
- Faculty of Science and Engineering, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON P3E 2C6, Canada; (M.R.S.); (J.D.P.); (A.L.W.); (D.C.L.)
| |
Collapse
|