1
|
Vanni E, Beauloye C, Horman S, Bertrand L. AMPK and O-GlcNAcylation: interplay in cardiac pathologies and heart failure. Essays Biochem 2024; 68:363-377. [PMID: 39319471 DOI: 10.1042/ebc20240003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Heart failure (HF) represents a multifaceted clinical syndrome characterized by the heart's inability to pump blood efficiently to meet the body's metabolic demands. Despite advances in medical management, HF remains a major cause of morbidity and mortality worldwide. In recent years, considerable attention has been directed toward understanding the molecular mechanisms underlying HF pathogenesis, with a particular focus on the role of AMP-activated protein kinase (AMPK) and protein O-GlcNAcylation. This review comprehensively examines the current understanding of AMPK and O-GlcNAcylation signalling pathways in HF, emphasizing their interplay and dysregulation. We delve into the intricate molecular mechanisms by which AMPK and O-GlcNAcylation contribute to cardiac energetics, metabolism, and remodelling, highlighting recent preclinical and clinical studies that have explored novel therapeutic interventions targeting these pathways.
Collapse
Affiliation(s)
- Ettore Vanni
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Christophe Beauloye
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
- Division of Cardiology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Sandrine Horman
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| |
Collapse
|
2
|
Gomdola D, McKenzie EHC, Bundhun D, Jayawardena RS. Morpho-molecular characterization of phoma-like fungi from Morus alba in northern Thailand; a novel species (Boeremia albae) and a new host record (B. maritima). Fungal Biol 2024; 128:2139-2147. [PMID: 39384283 DOI: 10.1016/j.funbio.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 10/11/2024]
Abstract
Boeremia was established to accommodate phoma-resembling fungi. Its species occur in terrestrial ecosystems as endophytes, saprobes and pathogens, except one species reported from a marine ecosystem. Boeremia species are characterized by hyaline, thin-walled, and aseptate (occasionally 1(-2)-septate) conidia that are variable in shape, and hyaline, straight or slightly curved, thick-walled, and 1-septate ascospores that are usually constricted at the septum. In the past, host associations were used to delimit Boeremia species. However, since Boeremia taxa have overlapping morphological characters and are cryptic, it renders taxonomic identification arduous. Therefore, the use of other approaches including multi-gene phylogenetic analyses are imperative. Recommended DNA markers for species delineation are the internal transcribed spacer (ITS, nuclear rDNA consisting of ITS1-5.8S-ITS2) and large subunit (28S, D1-D2 domains of nuclear 28S rDNA) loci, and the genes for actin (ACT1), beta-tubulin (TBB1), RNA polymerase 2 (RPB2) and translation elongation factor 1α (TEF1). Here, we applied morphological and molecular phylogenetic analyses to establish a new taxon (B. albae), and a new host and geographical record for B. maritima associated with leaf spots of Morus alba (Moraceae) in northern Thailand. By providing sequence data for three additional gene regions, our phylogenetic analyses impart a stable phylogenetic placement of the ex-type strain of B. maritima, as illustrated. This is the first study that reports Boeremia species from M. alba, and B. maritima from a terrestrial habitat.
Collapse
Affiliation(s)
- Deecksha Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand; Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand.
| | - Eric H C McKenzie
- Manaaki Whenua-Landcare Research, Private Mail Bag, 92170, Auckland, New Zealand.
| | - Digvijayini Bundhun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand; Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand.
| | - Ruvishika S Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand; Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand; Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
3
|
Ntalouka F, Tsirivakou A. Morus alba: natural and valuable effects in weight loss management. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2024; 5:1395688. [PMID: 39544693 PMCID: PMC11561453 DOI: 10.3389/fcdhc.2024.1395688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024]
Abstract
Overweight and obesity are conditions associated with serious comorbidities, such as diabetes and cardiovascular disease. Prevalence of excessive fat accumulation is increasing worldwide, and thus the need for efficient and sustainable weight loss regimes has become a major issue in clinical practice. Despite the important advances in the development of anti-obesity medications (AOM), their side effects, cost, and accessibility, are limiting factors for their routine use. Conversely, the studies of medicinal plants for weight management holds strong promise as a growing area of research. This review consolidates the representative evidence about the beneficial impacts of Morus alba on weight management and associated metabolic parameters, encompassing: inhibition of digestive enzymes, and thus contribution to the energy deficit required for weight loss, improvements in glucose and lipid metabolism, and attenuation of adiposity. Findings from in vitro, in vivo, and clinical investigations reviewed in the paper, demonstrate that white mulberry extracts have the potency to supplement efficiently and safely a healthy weight management approach.
Collapse
Affiliation(s)
- Foteini Ntalouka
- Department of Research and Development, Herbalist P.C., Athens, Greece
| | | |
Collapse
|
4
|
Matin M, Hrg D, Litvinova O, Łysek-Gładysinska M, Wierzbicka A, Horbańczuk JO, Jóźwik A, Atanasov AG. The global patent landscape of functional food innovation. Nat Biotechnol 2024; 42:1493-1497. [PMID: 39402344 DOI: 10.1038/s41587-024-02410-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Affiliation(s)
- Maima Matin
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
| | - Dalibor Hrg
- Hrg Scientific, Varaždin, Croatia
- Artificial Intelligence and Innovation in Healthcare Lab, AI2H Laboratory, Varaždin, Croatia
| | - Olena Litvinova
- National University of Pharmacy of the Ministry of Health of Ukraine, Kharkiv, Ukraine
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
| | | | - Agnieszka Wierzbicka
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
| | - Artur Jóźwik
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland.
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Guan X, Zhao D, Yu T, Liu S, Chen S, Huang J, Lai G, Lin B, Huang J, Lai C, Wang Q. Phytochemical and Flavor Characteristics of Mulberry Juice Fermented with Lactiplantibacillus plantarum BXM2. Foods 2024; 13:2648. [PMID: 39272413 PMCID: PMC11394243 DOI: 10.3390/foods13172648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Fermentation of mulberry juice not only improves its shelf life, but also effectively enhances their flavor and nutritional quality. This study elucidated the phytochemical and flavor characteristics of mulberry juice fermented with Lactiplantibacillus plantarum BXM2, originally isolated from naturally fermented fruit beverage, through widely targeted metabolomics. The fermentation produced the unique flavor of fermented juice and decreased the pH from 4.15 to 3.19. The metabolomic analysis detected 907 non-volatile metabolites, from which 359 significantly different non-volatile metabolites (up 238, down 121) were screened out. Among 731 identified volatile metabolites, 26 flavor substances were the major contributors to the flavor differences between fermented and unfermented mulberry juices. It is hypothesized that lipid metabolism and amino acid catabolism are crucial pathways for the flavor enhancement of mulberry juice fermented with L. plantarum BXM2. Meanwhile, significant increases of the contents of a variety of bioactive substances, such as indole-3-lactic acid, octadeca-9,12,15-trienoic acid, di-/tri-peptides, etc., conferred additional health potential to BXM2-fermented mulberry juice.
Collapse
Affiliation(s)
- Xuefang Guan
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- Key Laboratory of Processing of Subtropical Characteristic Fruits, Vegetables and Edible Fungi, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350002, China
| | - Dazhou Zhao
- Bio-Fermentation Research Center, Xiamen Yuanzhidao Biotechnology Co., Ltd., Xiamen 361028, China
| | - Tian Yu
- Bio-Fermentation Research Center, Xiamen Yuanzhidao Biotechnology Co., Ltd., Xiamen 361028, China
| | - Shaoquan Liu
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Shuying Chen
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Junyang Huang
- Bio-Fermentation Research Center, Xiamen Yuanzhidao Biotechnology Co., Ltd., Xiamen 361028, China
| | - Gongti Lai
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- Key Laboratory of Processing of Subtropical Characteristic Fruits, Vegetables and Edible Fungi, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350002, China
| | - Bin Lin
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- Key Laboratory of Processing of Subtropical Characteristic Fruits, Vegetables and Edible Fungi, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350002, China
| | - Juqing Huang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- Key Laboratory of Processing of Subtropical Characteristic Fruits, Vegetables and Edible Fungi, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350002, China
| | - Chengchun Lai
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- Key Laboratory of Processing of Subtropical Characteristic Fruits, Vegetables and Edible Fungi, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350002, China
| | - Qi Wang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- Key Laboratory of Processing of Subtropical Characteristic Fruits, Vegetables and Edible Fungi, Ministry of Agriculture and Rural Affairs of China, Fuzhou 350002, China
| |
Collapse
|
6
|
Abbas Z, Tong Y, Wang J, Zhang J, Wei X, Si D, Zhang R. Potential Role and Mechanism of Mulberry Extract in Immune Modulation: Focus on Chemical Compositions, Mechanistic Insights, and Extraction Techniques. Int J Mol Sci 2024; 25:5333. [PMID: 38791372 PMCID: PMC11121110 DOI: 10.3390/ijms25105333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Mulberry is a rapidly growing plant that thrives in diverse climatic, topographical, and soil types, spanning temperature and temperate countries. Mulberry plants are valued as functional foods for their abundant chemical composition, serving as a significant reservoir of bioactive compounds like proteins, polysaccharides, phenolics, and flavonoids. Moreover, these compounds displayed potent antioxidant activity by scavenging free radicals, inhibiting reactive oxygen species generation, and restoring elevated nitric oxide production induced by LPS stimulation through the downregulation of inducible NO synthase expression. Active components like oxyresveratrol found in Morus demonstrated anti-inflammatory effects by inhibiting leukocyte migration through the MEK/ERK signaling pathway. Gallic and chlorogenic acids in mulberry leaves (ML) powder-modulated TNF, IL-6, and IRS1 proteins, improving various inflammatory conditions by immune system modulation. As we delve deeper into understanding its anti-inflammatory potential and how it works therapeutically, it is crucial to refine the extraction process to enhance the effectiveness of its bioactive elements. Recent advancements in extraction techniques, such as solid-liquid extraction, pressurized liquid extraction, superficial fluid extraction, microwave-assisted extraction, and ultrasonic-assisted extraction, are being explored. Among the extraction methods tested, including Soxhlet extraction, maceration, and ultrasound-assisted extraction (UAE), UAE demonstrated superior efficiency in extracting bioactive compounds from mulberry leaves. Overall, this comprehensive review sheds light on the potential of mulberry as a natural immunomodulatory agent and provides insights into its mechanisms of action for future research and therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rijun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.A.); (Y.T.); (J.W.); (J.Z.); (X.W.); (D.S.)
| |
Collapse
|
7
|
Fauzi A, Kifli N, Noor MHM, Hamzah H, Azlan A. Hematological, biochemical, and histopathological evaluation of the Morus alba L. leaf extract from Brunei Darussalam: Acute toxicity study in ICR mice. Open Vet J 2024; 14:750-758. [PMID: 38682142 PMCID: PMC11052622 DOI: 10.5455/ovj.2024.v14.i3.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/07/2024] [Indexed: 05/01/2024] Open
Abstract
Background Studies have reported that the phytochemical content of Mulberry (Morus alba Linn.) is influenced by the area where it grows. On the other hand, the study of the bioactivity and toxicity of mulberry leaves from Brunei Darussalam still needs to be completed. In particular, the investigation regarding the safe dose for Mulberry's application from Brunei Darussalam has yet to be studied. Hence, toxicity information must be considered even though the community has used it for generations. Aim This study investigated Morus alba ethanolic leaf extract (MAE) to observe the acute toxicity in mice. Methods In particular, this study utilized 12 female Institute of Cancer Research mice, 8 weeks old, divided into 2 groups: the control group and the MAE group (2,000 mg/kg single dose). Physiology, hematology, biochemistry, and histology were analyzed during the study. Results The examination result indicated no mortality and behavioral changes throughout the testing period. However, the mice developed mild anemia and leukopenia, followed by decreased numbers of neutrophils, lymphocytes, and monocytes. In addition, the mice developed a mild hepatocellular injury, indicated by significant (p < 0.05) elevations of both alanine aminotransferase (ALT) and aspartate transaminase (AST). The histopathological findings of the liver were also consistent with the increment of ALT and AST, indicating mild hepatocellular necrosis through the eosinophilic cytoplasm and pyknosis (p > 0.05). Conclusion It was evident that a single oral administration of MAE was not lethal for mice (LD50, which was higher than 2,000 mg/kg). However, the administration of high doses of MAE must be carefully considered.
Collapse
Affiliation(s)
- Ahmad Fauzi
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia UPM, Serdang, Malaysia
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Brawijaya, Malang, Indonesia
| | - Nurolaini Kifli
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| | - Mohd. Hezmee Mohd. Noor
- Department of Veterinary Pre-clinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia UPM, Serdang, Malaysia
| | - Hazilawati Hamzah
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia UPM, Serdang, Malaysia
| | - Azrina Azlan
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
8
|
Wang Y, Jiang W, Li C, Wang Z, Lu C, Cheng J, Wei S, Yang J, Yang Q. Integrated transcriptomic and metabolomic analyses elucidate the mechanism of flavonoid biosynthesis in the regulation of mulberry seed germination under salt stress. BMC PLANT BIOLOGY 2024; 24:132. [PMID: 38383312 PMCID: PMC10880279 DOI: 10.1186/s12870-024-04804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
Seed propagation is the main method of mulberry expansion in China, an important economic forest species. However, seed germination is the most sensitive stage to various abiotic stresses, especially salinity stress. To reveal the molecular regulatory mechanism of mulberry seed germination under salt stress, flavonoid metabolomics and transcriptomics analyses were performed on mulberry seeds germinated under 50 and 100 mmol/L NaCl stress. Analysis of the flavonoid metabolome revealed that a total of 145 differential flavonoid metabolites (DFMs) were classified into 9 groups, 40 flavonols, 32 flavones, 16 chalcones and 14 flavanones. Among them, 61.4% (89) of the DFMs accumulated continuously with increasing salt concentration, reaching the highest level at a 100 mmol/L salt concentration; these DFMs included quercetin-3-O-glucoside (isoquercitrin), kaempferol (3,5,7,4'-tetrahydroxyflavone), quercetin-7-O-glucoside, taxifolin (dihydroquercetin) and apigenin (4',5,7-trihydroxyflavone), indicating that these flavonoids may be key metabolites involved in the response to salt stress. Transcriptional analysis identified a total of 3055 differentially expressed genes (DEGs), most of which were enriched in flavonoid biosynthesis (ko00941), phenylpropanoid biosynthesis (ko00940) and biosynthesis of secondary metabolites (ko01110). Combined analysis of flavonoid metabolomic and transcriptomic data indicated that phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), flavonol synthase (FLS), bifunctional dihydroflavonol 4-reductase/flavanone 4-reductase (DFR) and anthocyanidin reductase (ANR) were the key genes involved in flavonoid accumulation during mulberry seed germination under 50 and 100 mmol/L NaCl stress. In addition, three transcription factors, MYB, bHLH and NAC, were involved in the regulation of flavonoid accumulation under salt stress. The results of quantitative real-time PCR (qRT‒PCR) validation showed that the expression levels of 11 DEGs, including 7 genes involved in flavonoid biosynthesis, under different salt concentrations were consistent with the transcriptomic data, and parallel reaction monitoring (PRM) results showed that the expression levels of 6 key enzymes (proteins) involved in flavonoid synthesis were consistent with the accumulation of flavonoids. This study provides a new perspective for investigating the regulatory role of flavonoid biosynthesis in the regulation of mulberry seed germination under salt stress at different concentrations.
Collapse
Affiliation(s)
- Yi Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China.
| | - Wei Jiang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Chenlei Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Zhenjiang Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, 510610, China
| | - Can Lu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Junsen Cheng
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Shanglin Wei
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Jiasong Yang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Qiang Yang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| |
Collapse
|
9
|
Ding B, Zhao S, Zhang W, Lin Y, Xiong L. The Effect of Co-Culture with Different Pichia kluyveri and Saccharomyces cerevisiae on Volatile Compound and Characteristic Fingerprints of Mulberry Wine. Foods 2024; 13:422. [PMID: 38338556 PMCID: PMC10855979 DOI: 10.3390/foods13030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, changes in volatile compounds co-fermented by different Pichia kluyveri with Saccharomyces cerevisiae were analyzed using GC-IMS and compared with S. cerevisiae fermentation, to investigate the production of aroma in mulberry wine during the fermentation process. A total of 61 compounds were accurately identified, including 21 esters, 10 alcohols, 8 aldehydes, 6 ketones, and 19 other volatiles. Compared with the single strain fermentation (S. cerevisiae), the content of 2-methylpropyl acetate, allyl Isothiocyanate, ethyl crotonate, isobutyl propanoate, and butyl 2-methylbutanoate, co-fermentation groups (S. cerevisiae with different P. kluyveri) showed a significant decrease. Alcohols, aldehydes, ketones, and organic acid were lower in both the F(S-P1) and F(S-P2) groups than in the F(S) group throughout fermentation. The 2-methylpentanoic acid only was contained in the F(S) group. The co-fermentation with different P. kluyveri could also be well distinguished. The content of Benzaldehyde and 4-methylphenol in the F(S-P1) group was significantly lower than that in the F(S-P2) group. The PCA results revealed effective differentiation of mulberry wine fermented by different fermentation strains from GC-IMS. The result showed that P. kluyveri could establish a new flavor system for mulberry wine, which plays a crucial role in enhancing the flavor of fruit wine.
Collapse
Affiliation(s)
- Bo Ding
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (B.D.); (S.Z.); (Y.L.); (L.X.)
| | - Shutian Zhao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (B.D.); (S.Z.); (Y.L.); (L.X.)
| | - Wenxue Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (B.D.); (S.Z.); (Y.L.); (L.X.)
- School of Liquor-Brewing Engineering, Sichuan University of Jinjiang College, Meishan 620860, China
| | - Ying Lin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (B.D.); (S.Z.); (Y.L.); (L.X.)
| | - Ling Xiong
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (B.D.); (S.Z.); (Y.L.); (L.X.)
| |
Collapse
|
10
|
Pradhan SP, Tejaswani P, Behera A, Sahu PK. Phytomolecules from conventional to nano form: Next-generation approach for Parkinson's disease. Ageing Res Rev 2024; 93:102136. [PMID: 38000511 DOI: 10.1016/j.arr.2023.102136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
The incidence of neurodegenerative diseases is increasing exponentially worldwide. Parkinson's disease (PD) is a neurodegenerative disease caused by factors like oxidative stress, gene mutation, mitochondrial dysfunction, neurotoxins, activation of microglial inflammatory mediators, deposition of Lewy's bodies, and α- synuclein proteins in the neurons leading to neuroinflammation and neurodegeneration in the substantia nigra. Hence the development of efficacious neuro-therapy is in demand which can prevent neurodegeneration and protect the nigrostriatal pathway. One of the approaches for managing PD is reducing oxidative stress due to aging and other co-morbid diseased conditions. The phytomolecules are reported as safe and efficacious antioxidants as they contain different secondary metabolites. However, the limitations of low solubility restricted permeability through the blood-brain barrier, and low bioavailability limits their clinical evaluation and application. This review discusses the therapeutic efficacy of phytomolecules in PD and different nanotechnological approaches to improve their brain permeability.
Collapse
Affiliation(s)
- Sweta Priyadarshini Pradhan
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - P Tejaswani
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Anindita Behera
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India.
| | - Pratap Kumar Sahu
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
11
|
Li W, Linli F, Yang W, Chen X. Enhancing the stability of natural anthocyanins against environmental stressors through encapsulation with synthetic peptide-based gels. Int J Biol Macromol 2023; 253:127133. [PMID: 37802437 DOI: 10.1016/j.ijbiomac.2023.127133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
The instability of anthocyanin to environmental stressors severely limits its applications as a natural bioactive pigment. To overcome these limitations, this proof-of-concept study utilizes the high biocompatibility of peptide molecules and the unique gel microstructure to develop innovative peptide-based gels. Characterization of the gels was conducted through AFM, SEM, rheological analysis, and CD spectrum. These analyses confirmed the fibrous mesh structure and impressive mechanical strength of the peptide-based gels. The cytotoxicity evaluation using MTT and hemolysis analysis showed high biocompatibility. Encapsulation efficiency analysis and fluorescence microscopy images demonstrated successful and efficient encapsulation of anthocyanins in all four peptide-based gels, with uniform distribution. Moreover, systematic investigations were conducted to assess the impact of peptide-based gels on the stability of natural anthocyanins under environmental stressors such as temperature, pH variations, and exposure to metal ions. Notably, the results revealed a significant enhancement in stability, including improved long-term storage and antioxidant activity. In conclusion, this study successfully developed four novel peptide-based gels that effectively protect natural anthocyanins from environmental stressors, highlighting their potential in various fields such as food and biology.
Collapse
Affiliation(s)
- Wenjun Li
- School of Food and Bioengineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, Sichuan Province 611130, China.
| | - Fangzhou Linli
- School of Food and Bioengineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, Sichuan Province 611130, China
| | - Wenyu Yang
- School of Food and Bioengineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, Sichuan Province 611130, China.
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, Sichuan Province 611130, China.
| |
Collapse
|
12
|
Kumar R V, Gosipatala SB, Kumar R, Srivastava D, Singh V, Suman K, Tripathi DK, Verma A, Mishra A, Vishwakarma KK, Singh SA, Pandey T, Agarwal S, Elyies M, Singh I, Sah PK, Sharma C, Parag R, Saxena P, Raj A, Tripathi A, Devi P, Poluri KM. Characterization, Antioxidant, and Antimicrobial Properties of Mulberry Lattices. ACS OMEGA 2023; 8:47758-47772. [PMID: 38144072 PMCID: PMC10733998 DOI: 10.1021/acsomega.3c06069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023]
Abstract
In order to find the most advantageous bioactive compounds from mulberry latex for drug development in the near future, this study was conducted to characterize and evaluate antioxidant and antimicrobial properties from four different mulberry lattices (BR-2, S-1, AR-14, and S-146). The characterization of the lattices was performed by scanning electron microscopy with energy-dispersive X-ray spectroscopy, gas chromatography coupled to mass spectroscopy, and Fourier transform infrared spectroscopy. Further, screenings of the antioxidant and antimicrobial potential of selected lattices were performed in vitro using 2,2-diphenyl-1-picrylhydrazyl assay and agar well diffusion methods, respectively. Interestingly, the outcome of the current study revealed that tested mulberry lattices contain a considerable amount of bioactive phytoconstituents, particularly antimicrobial and antioxidant compounds, as revealed by chromatographic analysis. BR-2 latex was found to have significant antioxidant activity (75%) followed by S-146 (64.6%) and AR-14 (52.9%). The maximum antimicrobial activity was found in BR-2 latex compared to other tested latex varieties. The results of this investigation showed that mulberry latex from the BR-2 type may successfully control both bacterial and fungal infections, with the added benefit of having enhanced antioxidant capabilities.
Collapse
Affiliation(s)
- Venkatesh Kumar R
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Sunil Babu Gosipatala
- Departmentof
Biotechnology, Babasaheb Bhimrao Ambedkar
University, Lucknow, Uttar Pradesh 226025, India
| | - Ram Kumar
- Department
of Zoology, Shri Venkateshwara University, Gajraula, Uttar Pradesh 244236, India
| | - Devika Srivastava
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Vandana Singh
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Kusumala Suman
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Deepak Kumar Tripathi
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Abhishek Verma
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Akash Mishra
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Karan Kumar Vishwakarma
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Stuti Annapurna Singh
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Tripti Pandey
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Sanskrati Agarwal
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Mohd Elyies
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Ishani Singh
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Pinky Kumari Sah
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Chaya Sharma
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Rishabh Parag
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Pragya Saxena
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Akanksha Raj
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Anshika Tripathi
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Poonam Devi
- Department
of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Krishna Mohan Poluri
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
13
|
Huang WC, Wu SJ, Hsu FW, Fang LW, Liou CJ. Mulberroside F improves airway hyperresponsiveness and inflammation in asthmatic mice. Kaohsiung J Med Sci 2023; 39:1213-1221. [PMID: 37819590 DOI: 10.1002/kjm2.12764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 10/13/2023] Open
Abstract
Mulberroside F is isolated from the leaves and roots of Morus alba L. Here, we investigated whether mulberroside F could alleviate airway inflammation and eosinophil infiltration in the lungs of asthmatic mice. We also examined whether mulberroside F attenuated inflammatory responses in human tracheal epithelial BEAS-2B cells. Female BALB/c mice were sensitized and challenged with ovalbumin (OVA), and administered different doses of mulberroside F via intraperitoneal injection. Additionally, tumor necrosis factor (TNF)-α-stimulated BEAS-2B cells were treated with various doses of mulberroside F, followed by detection of the expressions of inflammatory cytokines and chemokines. The results demonstrated that mulberroside F mitigated the levels of proinflammatory cytokines and chemokines, and CCL11, in inflammatory BEAS-2B cells. Mulberroside F also suppressed reactive oxygen species (ROS) production and ICAM-1 expression in TNF-α-stimulated BEAS-2B cells, which effectively suppressed monocyte cell adherence. In an animal model of asthma, mulberroside F treatment attenuated airway hyperresponsiveness, eosinophil infiltration, and goblet cell hyperplasia. Mulberroside F treatment also decreased lung fibrosis and airway inflammation in OVA-sensitized mice. Moreover, mulberroside F significantly reduced expressions of Th2-associated cytokines (including interleukin(IL)-4, IL-5, and IL-13) in bronchoalveolar lavage fluid compared to OVA-sensitized mice. Our results confirmed that mulberroside F is a novel bioactive compound that can effectively reduce airway inflammation and eosinophil infiltration in asthmatic mice via inhibition of Th2-cell activation.
Collapse
Affiliation(s)
- Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei, Taiwan
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Shu-Ju Wu
- Department of Nutrition and Health Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Feng-Wen Hsu
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| | - Li-Wen Fang
- Department of Nutrition, I-Shou University, Kaohsiung City, Taiwan
| | - Chian-Jiun Liou
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| |
Collapse
|
14
|
Urbanek Krajnc A, Senekovič J, Cappellozza S, Mikulic-Petkovsek M. The Darker the Better: Identification of Chemotype Profile in Soroses of Local and Introduced Mulberry Varieties with Respect to the Colour Type. Foods 2023; 12:3985. [PMID: 37959104 PMCID: PMC10650418 DOI: 10.3390/foods12213985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Mulberries are the "essence of the past", the so-called Proust effect, for the inhabitants of the sericultural regions who enthusiastically remember feeding silkworms with mulberry leaves and picking the different coloured fruits that were their favourite sweets in childhood. To determine the chemistry behind the colour and taste of mulberry soroses, the main metabolites of the local and introduced varieties were studied. The soroses were classified into five different colour types and the size parameters were determined. The main sugars identified were glucose and fructose, while the predominant organic acids were citric and malic acids, which were highest in the darker varieties, and fumaric and tartaric acids, which were highest in the lighter varieties. A total of 42 phenolic compounds were identified. The predominant phenolic acid was chlorogenic acid, followed by other caffeoylquinic acids and coumaroylquinic acids. The predominant anthocyanins were cyanidin-3-glucoside and cyanidin-3-rutinoside. According to PCA analysis, the colour types showed a clear chemotype character. The sweet taste of the yellowish-white soroses was defined by 49% fructose, followed by 45% glucose and 6% organic acids. The sour character of the black genotypes was characterised by a lower sugar and higher (11%) organic acid content. The colour- and species-dependent effect was observed in the proportion of caffeoylquinic acids and quercetin glycosides, which decreased with increasing colour intensity from 60% of the total to 7%, and from 17% to 1%, respectively. An upward trend was observed for flavanols (5% to 29%) and anthocyanins, which accounted for 62% of the total phenolics in black varieties. This article gives an insight into the metabolite composition of mulberry soroses as the sweets of choice between light and sweet and dark and sour.
Collapse
Affiliation(s)
- Andreja Urbanek Krajnc
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia; (A.U.K.); (J.S.)
| | - Jan Senekovič
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia; (A.U.K.); (J.S.)
| | - Silvia Cappellozza
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Agricoltura e Ambiente (CREA-AA), Via Eulero 6a, 35143 Padua, Italy;
| | - Maja Mikulic-Petkovsek
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Tang S, Cheng Y, Xu T, Wu T, Pan S, Xu X. Hypoglycemic effect of Lactobacillus plantarum-fermented mulberry pomace extract in vitro and in Caenorhabditis elegans. Food Funct 2023; 14:9253-9264. [PMID: 37750031 DOI: 10.1039/d3fo02386a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Mulberry pomace is rich in phytochemicals, but there are few studies on its utilization as a by-product. Natural foods containing phytochemicals can alleviate the toxic effects of excessive glucose intake. In this study, we investigated the protective effect of Lactobacillus plantarum-fermented mulberry pomace extract (FMPE) under hyperglycemic conditions. The phenolic compounds and α-glucosidase inhibition of FMPE were determined using UPLC-MS and chemical models. Furthermore, Caenorhabditis elegans was a model system to study the hypoglycemic effects. The results showed that the polyphenolics and α-glucosidase inhibition were improved during fermentation. Three phenolic components (cyanidin, 2,4,6-trihydroxybenzaldehyde, and taxifolin) were important variables for α-glucosidase inhibition. FMPE and the three key compound treatments reduced the glucose content and reactive oxygen species (ROS) level in Caenorhabditis elegans. The protective mechanism occurred by activating DAF-16/FOXO and SKN-1/Nrf2. This study suggests that Lactobacillus plantarum-fermentation was a potential way to utilize mulberry pomace polyphenols as hypoglycemic food ingredients.
Collapse
Affiliation(s)
- Shuxin Tang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Yuxin Cheng
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Tingting Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
16
|
Sun Z, Zhou Y, Zhu W, Yin Y. Assessment of the Fruit Chemical Characteristics and Antioxidant Activity of Different Mulberry Cultivars ( Morus spp.) in Semi-Arid, Sandy Regions of China. Foods 2023; 12:3495. [PMID: 37761204 PMCID: PMC10529437 DOI: 10.3390/foods12183495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
As a traditional cash crop with ecological and nutritional values, mulberry is gradually expanding its consumption worldwide due to its great regional adaptability and superior health functions. The widespread interest in nutrients has led to a growing need to explore in depth the health benefits of mulberries. Many studies are actively being conducted to investigate the adaptability of the diversity of mulberries in different applications. This study systematically investigated the physicochemical properties and antioxidant activity of four mulberry genotypes cultivated in China's semi-arid sandy regions to better understand the composition and health-promoting potential of this super crop. Chemical composition identification was identified via HPLC and antioxidant activity was further determined via DPPH and FRAP. The moisture, crude protein, ash, soluble solids, phenolics, anthocyanins, and flavonoids contents of mulberry were comparatively analyzed. The study revealed that the four mulberry genotypes showed significant differences in quality and content of the analyzed characteristics. The greatest antioxidant activity was found in Shensang 1, which had the most soluble solids (17%) and the highest amounts of free sugar (fructose: 5.14% and glucose: 5.46%). Ji'an had the most minerals (K: 2.35 mg/g, Ca: 2.27 mg/g, and Fe: 467.32 mg/kg) and it also contained chlorogenic acid, which has the potential to be turned into a natural hypoglycemic agent. PCA and Pearson correlation analysis indicated that the antioxidant activity was closely related to the chemical contents of total phenols, flavonoids, anthocyanins, and soluble sugars. If the antioxidant activity and nutrient content of the developed plants are considered, Shen Sang 1 is the most favorable variety. This finding can be used to support the widespread cultivation of mulberries to prevent desertification as well as to promote the development of the mulberry industry.
Collapse
Affiliation(s)
- Zhiyu Sun
- Life Science and Technology College, Dalian University, Dalian 116622, China;
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China;
| | - Yongbin Zhou
- Life Science and Technology College, Dalian University, Dalian 116622, China;
- Institute of Modern Agricultural Research, Dalian University, Dalian 116622, China
| | - Wenxu Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China;
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Tieling 110161, China
| | - You Yin
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China;
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Tieling 110161, China
| |
Collapse
|
17
|
Sun C, Li H, Hui X, Ma Y, Yin Z, Chen Q, Chen C, Wu H, Wu X. Protective Effects of Mulberry ( Morus atropurpurea Roxb.) Leaf Protein Hydrolysates and Their In Vitro Gastrointestinal Digests on AAPH-Induced Oxidative Stress in Human Erythrocytes. Foods 2023; 12:3468. [PMID: 37761177 PMCID: PMC10528887 DOI: 10.3390/foods12183468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Mulberry leaf protein hydrolysates (HMP), and their in vitro gastrointestinal digests (GHMP), have shown favorable chemical antioxidant activities. The aim of this study is to investigate the potential protective effects of HMP and GHMP against 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress in human erythrocytes. The inhibition rate of hemolysis, the reactive oxygen species (ROS) level, the concentration of malondialdehyde (MDA), the reduced glutathione (GSH) and oxidized glutathione (GSSH), and the enzymatic activities of total superoxide dismutase (SOD), catalase (CAT), and cellular glutathione peroxidase (GSH-Px) were evaluated as the biomarkers of oxidative status in human erythrocytes. The results showed that HMP and GHMP effectively inhibit the occurrence of erythrocyte hemolysis in the range of 0.025-1.0 mg/mL, and the inhibition rates of HMP and GHMP reached 92% and 90% at concentrations of 0.4 mg/mL and 1.0 mg/mL, respectively. HMP and GHMP reduced the AAPH-induced oxidative hemolysis damage via suppressing the generation of ROS by inhibiting the formation of MDA, maintaining the balance of GSH/GSSG, and preserving the activities of the antioxidant enzymes, including SOD, GSH-Px, and CAT. Our findings revealed that both HMP and GHMP could be used as natural antioxidants, and have the potential for further application in the development of functional foods.
Collapse
Affiliation(s)
- Chongzhen Sun
- School of Public Health, Guangdong Pharmaceutical University, Jianghai Avenue 283, Haizhu District, Guangzhou 510006, China; (C.S.); (H.L.); (Z.Y.); (Q.C.)
| | - Hongyan Li
- School of Public Health, Guangdong Pharmaceutical University, Jianghai Avenue 283, Haizhu District, Guangzhou 510006, China; (C.S.); (H.L.); (Z.Y.); (Q.C.)
| | - Xiaodan Hui
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China;
| | - Yurong Ma
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
| | - Zhina Yin
- School of Public Health, Guangdong Pharmaceutical University, Jianghai Avenue 283, Haizhu District, Guangzhou 510006, China; (C.S.); (H.L.); (Z.Y.); (Q.C.)
| | - Qingsong Chen
- School of Public Health, Guangdong Pharmaceutical University, Jianghai Avenue 283, Haizhu District, Guangzhou 510006, China; (C.S.); (H.L.); (Z.Y.); (Q.C.)
| | - Cong Chen
- Department of Food Science and Engineering, Jinan University, Huangpu Road 601, Guangzhou 510632, China;
| | - Hui Wu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiyang Wu
- Department of Food Science and Engineering, Jinan University, Huangpu Road 601, Guangzhou 510632, China;
| |
Collapse
|
18
|
Dong H, Yu P, Long B, Peng T, He Y, Xu B, Liao L, Lu L. Total Synthesis of Kuwanons A and B and Discovery of Their Antibacterial Mechanism. JOURNAL OF NATURAL PRODUCTS 2023; 86:2022-2030. [PMID: 37499116 DOI: 10.1021/acs.jnatprod.3c00466] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Kuwanons A (1) and B (2) are two natural prenylated flavones isolated from the root bark of Morus alba L. In this study, the first total syntheses of kuwanons A (1) and B (2) were achieved from a common intermediate with overall yields of 6.6% and 11.6%, respectively. Kuwanon B (2) exhibited antibacterial activity against Gram-positive bacteria and concentration-dependent bactericidal activity against Staphylococcus aureus bacteria. Preliminary mechanism of action studies suggested that this compound killed bacteria rapidly by disrupting bacterial membrane integrity.
Collapse
Affiliation(s)
- Hongbo Dong
- Engineering Research Center for Pharmaceuticals and Equipment of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, People's Republic of China
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, People's Republic of China
| | - Pei Yu
- Engineering Research Center for Pharmaceuticals and Equipment of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, People's Republic of China
| | - Bin Long
- Engineering Research Center for Pharmaceuticals and Equipment of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, People's Republic of China
| | - Ting Peng
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, People's Republic of China
| | - Yujiao He
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, People's Republic of China
| | - Bing Xu
- Department of Pediatric Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, People's Republic of China
| | - Li Liao
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, People's Republic of China
| | - Lan Lu
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, People's Republic of China
| |
Collapse
|
19
|
Ji M, Gong J, Tian Y, Ao C, Li Y, Tan J, Du G. Comparison of microbial communities and volatile profiles of wines made from mulberry and grape. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12632-y. [PMID: 37382613 DOI: 10.1007/s00253-023-12632-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023]
Abstract
In this study, three kinds of wines separately made from mulberry (MW), grape (GW), or mulberry/grape (MGW) were developed and their enological parameters, sensory scores, volatile components, and microbiota were investigated and compared. Contrary to the order of residual sugar and acidity of the three kinds of wines, the order of alcohol content from high to low is GW, MW, and MGW. A total of 60 volatile components (VCs), including esters (17), alcohols (12), acids (6), aldehydes (7), ketones (3), alkenes (3), amines (3), alkanes (4), pyrazines (2), benzene (1), sulfide (1), and thiazole (1), were identified by gas chromatography-ion mobility spectrometer (GC-IMS). The fingerprint of VCs and principal component analysis revealed that the volatile profiles of MGW and GW were more similar in comparison to that of MW and were significantly correlated with the mass ratio of mulberry to grape. Lactobacillus, Weissella, Pantoea, Leuconostoc, Lactococcus, Paenibacillus, Pediococcus, and Saccharomyces were identified as the main microflora at the genus level shared by the MW, MGW, and GW, suggesting that the heterolactic bacteria may contribute more to the high content of volatile acids in MW and MGW. The heatmap of core microbiota and main VCs of MW, MGW, and GW suggested the complicated and significant correlation between them. The above data implied that the volatile profiles were more closely related to the raw materials of winemaking and markedly affected by the fermentation microorganisms. This study provides references for evaluation and characterization of MGW and MW and improvement of MGW and MW winemaking process. KEY POINTS: • Fruit wine enological parameters, volatile profile, and microbiota were compared. • Sixty volatile compounds were identified by GC-IMS in three types of fruit wines. • Winemaking materials and microbiota affect volatile profiles of the fruit wines.
Collapse
Affiliation(s)
- Mingyue Ji
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Jiangang Gong
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Yiling Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Changwei Ao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Yue Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Jianxin Tan
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
| | - Guoqiang Du
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
| |
Collapse
|
20
|
Ahmed M, Bose I, Goksen G, Roy S. Himalayan Sources of Anthocyanins and Its Multifunctional Applications: A Review. Foods 2023; 12:foods12112203. [PMID: 37297448 DOI: 10.3390/foods12112203] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Anthocyanins, the colored water-soluble pigments, have increasingly drawn the attention of researchers for their novel applications. The sources of anthocyanin are highly diverse, and it can be easily extracted. The unique biodiversity of the Himalayan Mountain range is an excellent source of anthocyanin, but it is not completely explored. Numerous attempts have been made to study the phytochemical aspects of different Himalayan plants. The distinct flora of the Himalayas can serve as a potential source of anthocyanins for the food industry. In this context, this review is an overview of the phytochemical studies conducted on Himalayan plants for the estimation of anthocyanins. For that, many articles have been studied to conclude that plants (such as Berberis asiatica, Morus alba, Ficus palmata, Begonia xanthina, Begonia palmata, Fragaria nubicola, etc.) contain significant amounts of anthocyanin. The application of Himalayan anthocyanin in nutraceuticals, food colorants, and intelligent packaging films have also been briefly debated. This review creates a path for further research on Himalayan plants as a potential source of anthocyanins and their sustainable utilization in the food systems.
Collapse
Affiliation(s)
- Mustafa Ahmed
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
| | - Ipsheta Bose
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Swarup Roy
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India
| |
Collapse
|
21
|
Suriyaprom S, Srisai P, Intachaisri V, Kaewkod T, Pekkoh J, Desvaux M, Tragoolpua Y. Antioxidant and Anti-Inflammatory Activity on LPS-Stimulated RAW 264.7 Macrophage Cells of White Mulberry ( Morus alba L.) Leaf Extracts. Molecules 2023; 28:molecules28114395. [PMID: 37298871 DOI: 10.3390/molecules28114395] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The white mulberry (Morus alba L.) is widely used as a medicinal plant in Asia. In this study, the bioactive compounds of ethanolic extracts of white mulberry leaves from the Sakon Nakhon and Buriram cultivars were evaluated. The ethanolic extracts of mulberry leaves from the Sakon Nakhon cultivar showed the highest total phenolic content of 49.68 mg GAE/g extract and antioxidant activities of 4.38 mg GAE/g extract, 4.53 mg TEAC/g extract, and 92.78 mg FeSO4/g extract using 2,2 diphenyl-1-picrylhydrazyl (DPPH), 2,20-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) assays, respectively. The resveratrol and oxyresveratrol compounds in mulberry leaves were also investigated by high-performance liquid chromatography (HPLC). The mulberry leaf extracts from the Sakon Nakhon and Buriram cultivars showed oxyresveratrol contents of 1.20 ± 0.04 mg/g extract and 0.39 ± 0.02 mg/g extract, respectively, whereas resveratrol was not detected. It was also found that the potent anti-inflammatory properties of mulberry leaf extracts and its compounds, resveratrol and oxyresveratrol, suppressed the LPS-stimulated inflammatory responses in RAW 264.7 macrophage cells by significantly reducing nitric oxide production in a concentration-dependent manner. These compounds further inhibited interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) production and suppressed the mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW 264.7 macrophage cells. Therefore, it is established that mulberry leaf extract and its bioactive compounds contribute to its anti-inflammatory activity.
Collapse
Affiliation(s)
- Sureeporn Suriyaprom
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
- INRAE, UCA, UMR0454 MEDIS, 63000 Clermont-Ferrand, France
| | | | - Varachaya Intachaisri
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thida Kaewkod
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
22
|
Zhang L, Zhou X, Chen H, You L, Zhang T, Cheng M, Yao Y, Pan X, Yang X. Mulberry extract ameliorates T2DM-related symptoms via AMPK pathway in STZ-HFD-induced C57BL/6J mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116475. [PMID: 37120060 DOI: 10.1016/j.jep.2023.116475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/25/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mulberry (Morus alba L.) is not only a tasty food but also a beneficial medicinal substance that has been historically used to treat diabetes, as recorded in Tang Ben Cao. Recent research on animal models has shown that the ethyl acetate extract of Morus alba L. fruits (EMF) has hypoglycemic and hypolipidemic properties. However, there is a lack of documentation on the specific mechanisms through which EMF exerts its hypoglycemic effects. OBJECTIVE OF THE STUDY This study aimed to investigate the impact of EMF on L6 cells and C57/BL6J mice and to elucidate the potential mechanisms underlying its effects. The findings of this study can contribute to the existing evidence for the application of EMF as a therapeutic drug or dietary supplement in the management of type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS The UPLC-Q-TOF-MS technique was utilized to gather MS data. Masslynx 4.1 software in conjunction with the SciFinder database and other relevant references were used to analyze and identify the chemical composition of EMF. A series of in vitro investigations including MTT assay, glucose uptake assay and Western blot analysis were performed using an L6 cell model stably expressing IRAP-mOrange after EMF treatment. In vivo investigations were performed on a STZ-HFD co-induced T2DM mouse model, which included assessments of body composition, biochemical tests, histopathological analysis, and Western blot analysis. RESULTS MTT results revealed that EMF had no toxic effects on the cells at various concentrations. When EMF was administered to L6 cells, there was an increase in glucose transporter type 4 (GLUT4) translocation activity and a significant dose-dependent enhancement of glucose uptake by L6 myotubes. EMF treatment led to a marked increase in P-AMPK levels and GLUT4 expression in the cells, but these effects were reversed by an AMPK inhibitor (Compound C). In diabetic mice with STZ-HFD-induced diabetes, EMF treatment improved oral glucose tolerance, hyperglycemia, and hyperinsulinemia. Furthermore, EMF supplementation significantly reduced insulin resistance (IR) in diabetic mice, as evaluated using a steady-state model of the insulin resistance index. Histopathological sections demonstrated that acute EMF treatment reduced hepatic steatosis, pancreatic damage, and adipocyte hypertrophy. Western blot analysis demonstrated that EMF treatment also reduced abnormally high PPARγ expression, elevated the level of p-AMPK and p-ACC, and augmented the abundance of GLUT4 in insulin-sensitive peripheral tissues. SUMMARY The results suggest that EMF may exert beneficial effects on T2DM through the AMPK/GLUT4 and AMPK/ACC pathways, as well as by regulating PPARγ expression.
Collapse
Affiliation(s)
- Lulu Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Min-Zu Road, Wuhan, 430074, China
| | - Xiuteng Zhou
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huijian Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Min-Zu Road, Wuhan, 430074, China
| | - Liangzhen You
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Min-Zu Road, Wuhan, 430074, China
| | - Meng Cheng
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yudi Yao
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Min-Zu Road, Wuhan, 430074, China
| | - Xin Pan
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Min-Zu Road, Wuhan, 430074, China.
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Min-Zu Road, Wuhan, 430074, China.
| |
Collapse
|
23
|
Sung TS, Ryoo SB, Lee CH, Choi SM, Nam JW, Kim HB, Lee JY, Lim JD, Park KJ, Lee HT. Prokinetic Activity of Mulberry Fruit, Morus alba L. Nutrients 2023; 15:nu15081889. [PMID: 37111108 PMCID: PMC10143206 DOI: 10.3390/nu15081889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The fruit of Morus alba L. (MAF) has been consumed as a food worldwide. MAF has also been widely used in traditional medicine for thousands of years in East Asia, and its diverse bioactivities have been reported in numerous publications. However, no prokinetic activity has been reported for MAF or its components. In the present study, therefore, we investigated the effects of MAF on gastrointestinal motor function by measuring the intestinal transit rate (ITR) of Evans blue in mice in vivo. The ITR values accelerated by MAF were significantly higher than those accelerated by cisapride or metoclopramide, suggesting that MAF has potential as a new prokinetic agent to replace cisapride and metoclopramide. We also investigated the effects of MAF on myogenic and neurogenic contractions in human intestinal smooth muscles by measuring spontaneous contractions of smooth muscle strips, smooth muscle contractions induced by neural stimulation, and migrating motor complexes from intestinal segments in the human ileum and sigmoid colon in situ. MAF increased both myogenic and neurogenic contractions to enhance ileal and colonic motility in the human intestine. Taken together, these results indicate that MAF enhanced intestinal motility by increasing both myogenic and neurogenic contractions, thereby accelerating the ITR.
Collapse
Affiliation(s)
- Tae Sik Sung
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seung-Bum Ryoo
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chang-Hyun Lee
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - Seon-Min Choi
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Hyun-Bok Kim
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Ji Young Lee
- Department of Ophthalmology and Visual Science, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jung-Dae Lim
- Department of Herbal Medicine Resource, Kangwon National University, Samcheok 25949, Republic of Korea
| | - Kyu Joo Park
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyun-Tai Lee
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-Eui University, Busan 47340, Republic of Korea
- Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea
| |
Collapse
|
24
|
Soltanikazemi M, Abdanan Mehdizadeh S, Heydari M, Faregh SM. Development of a smart spectral analysis method for the determination of mulberry ( Morus alba var. nigra L.) juice quality parameters using FT-IR spectroscopy. Food Sci Nutr 2023; 11:1808-1817. [PMID: 37051349 PMCID: PMC10084983 DOI: 10.1002/fsn3.3211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Recently, the application of Fourier transform infrared (FT-IR) spectroscopy as a noninvasive technique combined with chemometric methods has been widely noted for quality evaluation of agricultural products. Mulberry (Morus alba var. nigra L.) is a native fruit of Iran and there is limited information about its quality characteristics. The present study aims at assessing a nondestructive optical method for determining the internal quality of mulberry juice. To do so, first, FT-IR spectra were acquired in the spectral range 1000-8333 nm. Then, the principal component analysis (PCA) was used to extract the principal components (PCs) which were given as inputs to three predictive models (support vector regression (SVR), partial least square (PLS), and artificial neural network (ANN)) to predict the internal parameters of the mulberry juice. The performance of predictive models showed that SVR got better results for the prediction of ascorbic acid (R 2 = .84, RMSE = 0.29), acidity (R 2 = .71, RMSE = 0.0004), phenol (R 2 = .35, RMSE = 0.19), total anthocyanin (R 2 = .93, RMSE = 5.85), and browning (R 2 = .89, RMSE = 0.062) compared to PLS and ANN. However, the ANN predicted the parameters TSS (R 2 = .98, RMSE = 0.003) and pH (R 2 = .99, RMSE = 0.0009) better than the other two models. The results indicated that a good prediction performance was obtained using the FT-IR technique along with SVR and this method could be easily adapted to detect the quality parameters of mulberry juice.
Collapse
Affiliation(s)
- Maryam Soltanikazemi
- Department of Mechanics of Biosystems Engineering, Faculty of Agricultural and Rural DevelopmentAgricultural Sciences and Natural Resources University of KhuzestanMollasaniIran
| | - Saman Abdanan Mehdizadeh
- Department of Mechanics of Biosystems Engineering, Faculty of Agricultural and Rural DevelopmentAgricultural Sciences and Natural Resources University of KhuzestanMollasaniIran
| | - Mokhtar Heydari
- Department of Horticulture, Faculty of AgricultureAgricultural Sciences and Natural Resources University of KhuzestanMollasaniIran
| | - Seyed Mojtaba Faregh
- Department of Mechanics of Biosystems Engineering, Faculty of Agricultural and Rural DevelopmentAgricultural Sciences and Natural Resources University of KhuzestanMollasaniIran
| |
Collapse
|
25
|
Niu J, Liu X, Xu J, Li F, Wang J, Zhang X, Yang X, Wang L, Ma S, Li D, Zhu X, Wang C, Shi Y, Cui Y. Effects of Silage Diet on Meat Quality through Shaping Gut Microbiota in Finishing Pigs. Microbiol Spectr 2023; 11:e0241622. [PMID: 36507700 PMCID: PMC9927310 DOI: 10.1128/spectrum.02416-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
With increasing demand for high-quality pork, development of green and healthy feed for finishing pigs is urgently needed. In this study, the effects and mechanisms of mulberry and paper mulberry silages on growth performance, meat quality, and intestinal health of finishing pigs were explored. Intestinal microbiota were profiled, and microbially produced short-chain fatty acids (SCFAs) were measured. The average daily gain (ADG) and feed conversion rate (FCR) with mulberry and paper mulberry silages were not significantly different from those of the control. Meat quality as measured by pork marbling and fatty acids in the longissimus dorsi was better with mulberry silage. The highest concentration of SCFAs was also with mulberry silage. According to 16S rRNA sequencing, Clostridium_sensu_stricto_1, Terrisporobacter, and Lachnospiraceae, which are important in SCFA production, were biomarkers of mulberry silage. PICRUSt functional analysis of intestinal microbes indicated that galactose metabolism, starch and sucrose metabolism, and carbohydrate digestion and absorption decreased significantly in silage treatments but increased in the control. Correlations between intestinal microbes and SCFAs and fatty acids indicated Clostridium_sensu_stricto_1, Terrisporobacter, and Lachnospiraceae were closely associated with SCFA and fatty acid contents. The results indicated that mulberry silage could increase SCFA content through shaping intestinal microbes to affect the deposition of fatty acids, which laid a solid theoretical foundation for improving pork quality. IMPORTANCE To avoid competition between people and animals for food, it is essential to develop nontraditional feeds. In this study, the effects of the silages of the unconventional feed resources mulberry and paper mulberry on meat quality of finishing pigs were examined. With mulberry silage in the diet, meat quality improved as indicated by meat color, marbling score, and beneficial fatty acids in the longissimus dorsi muscle. Pigs fed mulberry silage had the highest concentrations of short-chain fatty acids (SCFAs), and 16S rRNA sequencing identified Clostridium_sensu_stricto_1, Terrisporobacter, and Lachnospiraceae as biomarkers, which are important in SCFA production. Functions of intestinal microbes in the two silage groups primarily involved amino acid metabolism and SCFA production. Correlations between intestinal microbes and SCFAs and fatty acids indicated that Clostridium_sensu_stricto-1, Terrisporobacter, and Lachnospiraceae were closely associated with SCFA contents in the intestine and fatty acids in the longissimus dorsi.
Collapse
Affiliation(s)
- Jiakuan Niu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiao Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Junying Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Fen Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jincan Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xixi Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xu Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lin Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Sen Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, Henan, China
| | - Defeng Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, Henan, China
| | - Xiaoyan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, Henan, China
| | - Chengzhang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, Henan, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, Henan, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, Henan, China
| |
Collapse
|
26
|
Effect of Storage and Drying Treatments on Antioxidant Activity and Phenolic Composition of Lemon and Clementine Peel Extracts. Molecules 2023; 28:molecules28041624. [PMID: 36838611 PMCID: PMC9958772 DOI: 10.3390/molecules28041624] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Obtaining polyphenols from horticultural waste is an emerging trend that enables the valorization of resources and the recovery of value-added compounds. However, a pivotal point in the exploitation of these natural extracts is the assessment of their chemical stability. Hence, this study evaluates the effect of temperature storage (20 and -20 °C) and drying methods on the phenolic composition and antioxidant activity of clementine and lemon peel extracts, applying HPLC-DAD-MS, spectrophotometric methods, and chemometric tools. Vacuum-drying treatment at 60 °C proved to be rather suitable for retaining the highest antioxidant activity and the hesperidin, ferulic, and coumaric contents in clementine peel extracts. Lemon extracts showed an increase in phenolic acids after oven-drying at 40 °C, while hesperidin and rutin were sustained better at 60 °C. Hydroethanolic extracts stored for 90 days preserved antioxidant activity and showed an increase in the total phenolic and flavonoid contents in lemon peels, unlike in clementine peels. Additionally, more than 50% of the initial concentration was maintained up to 51 days, highlighting a half-life time of 71 days for hesperidin in lemon peels. Temperature was not significant in the preservation of the polyphenols evaluated, except for in rutin and gallic acid, thus, the extracts could be kept at 20 °C.
Collapse
|
27
|
Heart Failure in Menopause: Treatment and New Approaches. Int J Mol Sci 2022; 23:ijms232315140. [PMID: 36499467 PMCID: PMC9735523 DOI: 10.3390/ijms232315140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Aging is an important risk factor for the development of heart failure (HF) and half of patients with HF have preserved ejection fraction (HFpEF) which is more common in elderly women. In general, sex differences that lead to discrepancies in risk factors and to the development of cardiovascular disease (CVD) have been attributed to the reduced level of circulating estrogen during menopause. Estrogen receptors adaptively modulate fibrotic, apoptotic, inflammatory processes and calcium homeostasis, factors that are directly involved in the HFpEF. Therefore, during menopause, estrogen depletion reduces the cardioprotection. Preclinical menopause models demonstrated that several signaling pathways and organ systems are closely involved in the development of HFpEF, including dysregulation of the renin-angiotensin system (RAS), chronic inflammatory process and alteration in the sympathetic nervous system. Thus, this review explores thealterations observed in the condition of HFpEF induced by menopause and the therapeutic targets with potential to interfere with the disease progress.
Collapse
|
28
|
Noh DJ, Yoon GA. Mulberry ( Morus alba L.) ethanol extract attenuates lipid metabolic disturbance and adipokine imbalance in high-fat fed rats. Nutr Res Pract 2022; 16:716-728. [PMID: 36467763 PMCID: PMC9702542 DOI: 10.4162/nrp.2022.16.6.716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/21/2022] [Accepted: 03/25/2022] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND/OBJECTIVES An imbalanced adipokine profile in obesity increases the susceptibility to obesity-related cardiometabolic alterations, including type 2 diabetes, hypertension, dyslipidemia, and non-alcoholic fatty liver disease. The mulberry plant has been reported to have health benefits, such as hypolipidemic and hepatoprotective effects. This study examined the effects of a mulberry (Morus alba L.) fruit ethanol extract (MBEE) on dyslipidemia, liver steatosis, and adipokine imbalance in response to a high-fat diet. MATERIALS/METHODS Male Sprague-Dawley rats were assigned to one of 4 groups containing 6 rats each and fed either a control diet (CON), a high-fat diet (HFD), or a high-fat diet with MBEE of 150 mg/kg/day (LMB) or 300 mg/kg/day (HMB). The triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activities were measured spectrophotometrically. The leptin, adiponectin, and plasminogen activator inhibitor-1 (PAI-1) levels were determined by an enzyme-linked immunosorbent assay. RESULTS The plasma TG levels were similar in the 4 groups. Plasma cholesterol and low-density lipoprotein cholesterol (LDL-C) levels and TC/HDL-C ratio increased in the HFD group compared with the CON group, whereas those values decreased in the LMB group (P < 0.05), indicating that MBEE had a plasma lipid-lowering effect. HDL-C decreased in the HFD group, but MBEE did not affect the HDL-C level. The HFD rats significantly increased hepatic TG and cholesterol levels and plasma ALT and AST activities compared to the CON group. The hepatic TG level and ALT and AST activities were reduced markedly by the MBEE treatment. The HFD group showed a higher PAI-1 level, whereas MBEE treatment, especially in the HMB group, significantly reduced leptin level, and leptin/adiponectin and PAI-1/adiponectin ratios. These findings suggest that MBEE altered the imbalance between the pro- and anti-inflammatory adipokines to a more anti-inflammatory state. CONCLUSIONS MBEE could protect against abnormal lipid metabolism and hepatic steatosis induced by a high-fat diet, lowering plasma cholesterol, LDL-C and TC/HDL-C, and hepatic TG. These findings are associated with the regulating effect of MBEE on the leptin/adiponectin and PAI-1/adiponectin ratios.
Collapse
Affiliation(s)
- Da-jung Noh
- Department of Food and Nutrition, College of Nursing, Healthcare Sciences and Human Ecology, Dongeui University, Busan 47340, Korea
| | - Gun-Ae Yoon
- Department of Food and Nutrition, College of Nursing, Healthcare Sciences and Human Ecology, Dongeui University, Busan 47340, Korea
| |
Collapse
|
29
|
Choudhary N, Tewari D, Nabavi SF, Kashani HRK, Lorigooini Z, Filosa R, Khan FB, Masoudian N, Nabavi SM. Plant based food bioactives: A boon or bane for neurological disorders. Crit Rev Food Sci Nutr 2022; 64:3279-3325. [PMID: 36369694 DOI: 10.1080/10408398.2022.2131729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Neurological disorders are the foremost occurring diseases across the globe resulting in progressive dysfunction, loss of neuronal structure ultimately cell death. Therefore, attention has been drawn toward the natural resources for the search of neuroprotective agents. Plant-based food bioactives have emerged as potential neuroprotective agents for the treatment of neurodegenerative disorders. This comprehensive review primarily focuses on various plant food bioactive, mechanisms, therapeutic targets, in vitro and in vivo studies in the treatment of neurological disorders to explore whether they are boon or bane for neurological disorders. In addition, the clinical perspective of plant food bioactives in neurological disorders are also highlighted. Scientific evidences point toward the enormous therapeutic efficacy of plant food bioactives in the prevention or treatment of neurological disorders. Nevertheless, identification of food bioactive components accountable for the neuroprotective effects, mechanism, clinical trials, and consolidation of information flow are warranted. Plant food bioactives primarily act by mediating through various pathways including oxidative stress, neuroinflammation, apoptosis, excitotoxicity, specific proteins, mitochondrial dysfunction, and reversing neurodegeneration and can be used for the prevention and therapy of neurodegenerative disorders. In conclusion, the plant based food bioactives are boon for neurological disorders.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh University, Bathinda, Punjab, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Seyed Fazel Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rosanna Filosa
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain, 15551 United Arab Emirates
| | - Nooshin Masoudian
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| |
Collapse
|
30
|
So-In C, Sunthamala N. The effects of mulberry ( Morus alba Linn.) leaf supplementation on growth performance, blood parameter, and antioxidant status of broiler chickens under high stocking density. Vet World 2022; 15:2715-2724. [PMID: 36590133 PMCID: PMC9798068 DOI: 10.14202/vetworld.2022.2715-2724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022] Open
Abstract
Background and Aim A stocking density system in boilers is well known for increasing productivity. However, this system increases stress and affects the growth performance of broilers. Mulberry is a valuable plant with therapeutic applications in traditional medicine; moreover, it reduces free radicals and improves growth performance in broilers. This study was conducted to investigate the effects of mulberry on the blood biochemistry parameters and the antioxidant status of broilers exposed to various raising systems. Materials and Methods Two hundred and seventy-six 3-week-old male broilers were randomly assigned to nine categories composed of three growing systems: Semi-intensive, low stocking density, and high stocking density. Each group was fed with a control diet mixed with and without 10% mulberry leaf extract; the positive control group was provided with vitamin C. During the study, phytochemical screening of mulberry leaf extract, growth performances, hematological parameters, and antioxidant profiles were measured over the 4 weeks of the treatment. Results In the high stocking density group, lipid peroxidation gradually increased while antioxidant activities decreased; however, the level of lipid peroxidation was reduced, whereas catalase and superoxide dismutase activities were significantly increased. The growth performance and blood biochemistry were improved after being fed with 10% mulberry leaf extract. Conclusion This finding indicates that mulberry leaf extract reduced oxidative stress, activated antioxidant enzyme activities, and enhanced broilers' growth performance when raised under stress conditions.
Collapse
Affiliation(s)
- Charinya So-In
- Department of Veterinary Technology, Faculty of Agricultural Technology, Kalasin University, Kalasin 46000, Thailand
| | - Nuchsupha Sunthamala
- Department of Biology, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand,Corresponding author: Nuchsupha Sunthamala, e-mail: Co-author: CS:
| |
Collapse
|
31
|
Liu P, Zhu Y, Ye J, Lin T, Lv Z, Xu Z, Xu L, Chen L, Wei J. Biological characteristics, bioactive compounds, and antioxidant activities of off-season mulberry fruit. FRONTIERS IN PLANT SCIENCE 2022; 13:1034013. [PMID: 36407578 PMCID: PMC9667739 DOI: 10.3389/fpls.2022.1034013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
To understand the yield and quality of off-season mulberry fruits, which are cultivated in open fields from autumn, the biological characteristics, bioactive compounds, and antioxidant activities of them were analyzed. Compared with mulberry fruits in normal season, the fruit length, fruit diameter, single fruit weight, fruit yield per meter strip, and the fruits yield per 667 m2 are significantly lower. The moisture content and juice yield of off-season mulberry fruits are lower than the mulberry fruits in normal season; the pH and soluble solids are higher. The contents of mass fraction of crude protein, total sugar, reducing sugar, total acids, total anthocyanins, and total flavonoids decreased significantly in all batches of off-season mulberry fruits compared with those of normal season. Of off-season mulberry fruits, the contents of glucose, fructose and sucrose, expression, anthocyanin biosynthesis genes, and antioxidant capacity are significantly lower than those in normal season.
Collapse
Affiliation(s)
- Peigang Liu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yan Zhu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jingjing Ye
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, China
| | - Tianbao Lin
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhiqiang Lv
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zilong Xu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lushan Xu
- Economic Specialty Technology Extension Station, Jinhua Municipal Bureau of Agriculture and Rural Affairs, Jinhua, China
| | - Leyang Chen
- Economic Specialty Technology Extension Station, Jinhua Municipal Bureau of Agriculture and Rural Affairs, Jinhua, China
| | - Jia Wei
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
32
|
Herman R, Ayepa E, Fometu S, Shittu S, Davids J, Wang J. Mulberry fruit post-harvest management: Techniques, composition and influence on quality traits -A review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Hu Y, Chen X, Hu M, Zhang D, Yuan S, Li P, Feng L. Medicinal and edible plants in the treatment of dyslipidemia: advances and prospects. Chin Med 2022; 17:113. [PMID: 36175900 PMCID: PMC9522446 DOI: 10.1186/s13020-022-00666-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
Dyslipidemia is an independent risk factor of cardiovascular diseases (CVDs), which lead to the high mortality, disability, and medical expenses in the worldwide. Based on the previous researches, the improvement of dyslipidemia could efficiently prevent the occurrence and progress of cardiovascular diseases. Medicinal and edible plants (MEPs) are the characteristics of Chinese medicine, and could be employed for the disease treatment and health care mostly due to their homology of medicine and food. Compared to the lipid-lowering drugs with many adverse effects, such as rhabdomyolysis and impaired liver function, MEPs exhibit the great potential in the treatment of dyslipidemia with high efficiency, good tolerance and commercial value. In this review, we would like to introduce 20 kinds of MEPs with lipid-lowering effect in the following aspects, including the source, function, active component, target and underlying mechanism, which may provide inspiration for the development of new prescription, functional food and complementary therapy for dyslipidemia.
Collapse
Affiliation(s)
- Ying Hu
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xingjuan Chen
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China
| | - Mu Hu
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dongwei Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Shuo Yuan
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Ping Li
- Beijing University of Chinese Medicine, Beijing, 100029, China.
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China.
| | - Ling Feng
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China.
- China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
34
|
Oddioside A, a New Phenolic Glycoside Isolated from the Fruits of Morus alba (Mulberry), Protects TNF-α-Induced Human Dermal Fibroblast Damage. Antioxidants (Basel) 2022; 11:antiox11101894. [DOI: 10.3390/antiox11101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
In our preliminary study, a hot water extract from the fruits of Morus alba (mulberry) inhibited the secretion of metalloproteinase-1 (MMP-1) against tumor necrosis factor-α (TNF-α)-stimulated human dermal fibroblasts (HDFs), and therefore we researched its active compounds. In the present study, a new phenolic glycoside (oddioside A, 1) and 21 known compounds (2−22) were isolated from the hot water extract from the fruits of M. alba by repeated chromatography. The chemical structure of the new compound 1 was elucidated by its spectroscopic data (1D− and 2D−NMR and HRMS) measurement and by acidic hydrolysis. The presence of sargentodoside E (2), eugenyl glucoside (6), 2-O-β-d-glucopyranosyl-4,6-dihydroxybenzaldehyde (7), 7S,8R-erythro-7,9,9’-trihydroxy-3,3’-dimethoxy-8-O-4’-neolignan-4-O-β-d-glucopyranoside (11), pinoresinol-4-O-β-d-glucopyranoside (12), taxifolin-7-O-β-d-glucopyranoside (20), and pinellic acid (21) were reported from M. alba for the first time in this study. The new compound oddioside A (1) suppressed the secretion of MMP-1 and increased collagen in TNF-α-stimulated HDFs. In addition, the phosphorylation of mitogen-activated protein kinases (MAPKs) was inhibited by oddioside A. In conclusion, the extract from fruits of M. alba and its constituent oddioside A may be a potential agent to prevent inflammation-related skin aging and other skin disorders.
Collapse
|
35
|
Haskap Berry Leaves (Lonicera caerulea L.)—The Favorable Potential of Medical Use. Nutrients 2022; 14:nu14193898. [PMID: 36235552 PMCID: PMC9573050 DOI: 10.3390/nu14193898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The presented research evaluates the medical use potential of Lonicera caerulea leaves, which are waste plants in cultivating berries. The study’s screening activity included the leaves of five varieties of Lonicera caerulea: Atut, Duet, Wojtek, Zojka, and Jugana. The microbiological analysis confirmed the safety of using Lonicera caerulea leaves without significant stabilization. Lonicera caerulea leaves standardization was carried out based on the results of the chromatographic analysis, and it showed differences in the contents of active compounds (loganic, chlorogenic and caffeic acids, and rutin), which are attributed to biological activity. For the Lonicera caerulea leaves varieties tested, the differences in the content of total polyphenol content, chlorophylls, and carotenoids were also confirmed. The screening of biological activity of five Lonicera caerulea leaf varieties was carried out concerning the possibility of inhibiting the activity of α-glucosidase, lipase, and hyaluronidase as well, and the antioxidant potential was determined. The defined profile of the biological activity of Lonicera caerulea leaves makes it possible to indicate this raw material as an essential material supporting the prevention and treatment of type II diabetes. However, this research showed that tested enzymes were strongly inhibited by the variety Jugana. The health-promoting potential of Lonicera caerulea leaves was correlated with the highest chlorogenic acid and rutin content in the variety Jugana.
Collapse
|
36
|
Wan M, Li Q, Lei Q, Zhou D, Wang S. Polyphenols and Polysaccharides from Morus alba L. Fruit Attenuate High-Fat Diet-Induced Metabolic Syndrome Modifying the Gut Microbiota and Metabolite Profile. Foods 2022; 11:foods11121818. [PMID: 35742014 PMCID: PMC9223293 DOI: 10.3390/foods11121818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/22/2022] Open
Abstract
Morus alba L. fruit, a medicinal and edible fruit in East Asia, showed potential health-promoting effects against metabolic syndrome (MetS). However, both the protective effects and mechanisms of different fractions extracted from Morus alba L. fruit against MetS remain unclear. Additionally, the gut microbiota and its metabolites are regarded as key factors in the development of MetS. This study aimed to investigate the potential role of polyphenols and polysaccharides derived from Morus alba L. fruit against MetS in high-fat diet (HFD)-fed mice, individually and in combination, focusing on remodeling effects on gut microbiota and metabolite profiles. In the study, polyphenols and polysaccharides derived from Morus alba L. fruit improved the traditional pharmacodynamic parameters of MetS, including reductions in body weight (BW) and fat accumulation, improvement in insulin resistance, regulation of dyslipidemia, prevention of pathological changes in liver, kidney and proximal colon tissue, and suppressive actions against oxidative stress. In particular, the group treated with polyphenols and polysaccharides in combination showed better efficacy. The relative abundance of beneficial bacterial genera Muribaculum and Lachnospiraceae_NK4A136_group were increased to various degrees, while opportunistic pathogens such as Prevotella_2, Bacteroides, Faecalibacterium and Fusobacterium were markedly decreased after treatments. Moreover, fecal metabolite profiles revealed 23 differential metabolites related to treatments with polyphenols and polysaccharides derived from Morus alba L. fruit, individually and in combination. Altogether, these results demonstrated that polyphenols and polysaccharides derived from Morus alba L. fruit attenuated MetS in HFD-fed mice, and improved the gut microbiota composition and fecal metabolite profiles.
Collapse
Affiliation(s)
- Meixia Wan
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (M.W.); (Q.L.); (Q.L.); (D.Z.)
- Qibo College of Medicine, Longdong University, Qingyang 745000, China
| | - Qing Li
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (M.W.); (Q.L.); (Q.L.); (D.Z.)
| | - Qianya Lei
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (M.W.); (Q.L.); (Q.L.); (D.Z.)
| | - Dan Zhou
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (M.W.); (Q.L.); (Q.L.); (D.Z.)
| | - Shu Wang
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (M.W.); (Q.L.); (Q.L.); (D.Z.)
- Correspondence: ; Tel.: +86-028-85-503-950
| |
Collapse
|
37
|
Hamdan DI, Salah S, Hassan WHB, Morsi M, Khalil HMA, Ahmed-Farid OAH, El-Shiekh RA, Nael MA, Elissawy AM. Anticancer and Neuroprotective Activities of Ethyl Acetate Fractions from Morus macroura Miq. Plant Organs with Ultraperformance Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry Profiling. ACS OMEGA 2022; 7:16013-16027. [PMID: 35571826 PMCID: PMC9096986 DOI: 10.1021/acsomega.2c01148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Column chromatography afforded the isolation of seven secondary metabolites (1-(2,4,6-trihydroxy phenyl)-ethanone-4-O-β-d-glucopyranoside, naringenin-7-O-β-d-glucopyranoside, kaempferol-3-O-α-l-rhamnoside, kaempferol-3-O-β-d-glucopyranoside, quercetin-3-O-β-d-glucopyranoside, quercetin-3-O-β-d-galactopyranoside, rutin) from the ethyl acetate (ET) fractions of Morus macroura Miq. stems (S), leaves (L), and fruits (F). Their identification based on ultraviolet (UV), electron ionization (EI), electrospray ionization-mass spectrometry (ESI-MS), and 1D and 2D NMR data. In addition, profiling of ET fractions using ultraperformance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) resulted in the identification of 82 compounds belonging to different classes, mainly polyphenolic constituents. Chemical profiling as well as molecular docking directed us to biological evaluation. Interestingly, the ET-L fraction exhibited a robust cytotoxic activity against HepG-2, MCF-7, and HELA cell lines. Also, it displayed a neuromodulatory activity against cisplatin neurotoxicity in rats by ameliorating the neurobehavioral dysfunction visualized in the open field and Y-maze test and modulating the neurochemical parameters such as brain amino acid levels (glutamate, aspartate, serine, and histidine), oxidative stress markers (GSH, MDA, and 8-hydroxy-2'-deoxyguanosine), and purinergic cell energy (adenosine triphosphate (ATP) and adenosine monophosphate (AMP)). In conclusion, the isolated compounds (kaempferol-3-O-β-glucoside and quercetin-3-O-β-glucoside) from the ET-L fraction could serve as potent anticancer agents due to their strong antioxidant, in vitro cytotoxicity, and in vivo neuroprotective activity.
Collapse
Affiliation(s)
- Dalia Ibrahim Hamdan
- Department
of Pharmacognosy, Faculty of Pharmacy Menoufia
University, Shibin
Elkom 32511, Egypt
| | - Samia Salah
- Department
of Pharmacognosy, Faculty of Pharmacy, Zagazig
University, Zagazig 44519, Egypt
| | | | - Mai Morsi
- Department
of Pharmacognosy, Faculty of Pharmacy, Zagazig
University, Zagazig 44519, Egypt
| | - Heba Muhammed Ali Khalil
- Department
of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | | | - Riham Adel El-Shiekh
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, Kasr el Aini
Street, Cairo 11562, Egypt
| | - Manal AbdElaziz Nael
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Ahmed Mohamed Elissawy
- Pharmacognosy
Department, Faculty of Pharmacy, Ain Shams
University, Abbassia, Cairo 11566, Egypt
| |
Collapse
|
38
|
Su X, Zhou M, Li Y, Zhang J, An N, Yang F, Zhang G, Yuan C, Chen H, Wu H, Xing Y. Protective effects of natural products against myocardial ischemia/reperfusion: Mitochondria-targeted therapeutics. Biomed Pharmacother 2022; 149:112893. [PMID: 35366532 DOI: 10.1016/j.biopha.2022.112893] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with ischemic heart disease receiving reperfusion therapy still need to face left ventricular remodeling and heart failure after myocardial infarction. Reperfusion itself paradoxically leads to further cardiomyocyte death and systolic dysfunction. Ischemia/reperfusion (I/R) injury can eliminate the benefits of reperfusion therapy in patients and causes secondary myocardial injury. Mitochondrial dysfunction and structural disorder are the basic driving force of I/R injury. We summarized the basic relationship and potential mechanisms of mitochondrial injury in the development of I/R injury. Subsequently, this review summarized the natural products (NPs) that have been proven to targeting mitochondrial therapeutic effects during I/R injury in recent years and related cellular signal transduction pathways. We found that these NPs mainly protected the structural integrity of mitochondria and improve dysfunction, such as reducing mitochondrial division and fusion abnormalities, improving mitochondrial Ca2+ overload and inhibiting reactive oxygen species overproduction, thereby playing a role in protecting cardiomyocytes during I/R injury. This data would deepen the understanding of I/R-induced mitochondrial pathological process and suggested that NPs are expected to be transformed into potential therapies targeting mitochondria.
Collapse
Affiliation(s)
- Xin Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Mingyang Zhou
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Yingjian Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Jianzhen Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Na An
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guoxia Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chao Yuan
- Dezhou Second People's Hospital, Dezhou 253000, China
| | - Hengwen Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Hongjin Wu
- Beijing Haidian Hospital, Haidian Section of Peking University Third Hospital, Beijing 100191, China.
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
39
|
Chen T, Shuang FF, Fu QY, Ju YX, Zong CM, Zhao WG, Zhang DY, Yao XH, Cao FL. Evaluation of the Chemical Composition and Antioxidant Activity of Mulberry ( Morus alba L.) Fruits from Different Varieties in China. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092688. [PMID: 35566039 PMCID: PMC9102544 DOI: 10.3390/molecules27092688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022]
Abstract
Mulberry (Morus alba L.) fruit is a fruit with nutritional and medicinal value. It is widely cultivated in different regions of China, which may result in differences in its chemical composition. In this research, 25 mulberry fruit samples from six provinces in China were investigated. The contents of anthocyanins were evaluated by high-performance liquid chromatography (HPLC). The contents of two main anthocyanins, cyanidin-3-O-glucoside (C3G) and cyanidin-3-O-rutinoside (C3R), ranged from 0.656 ± 0.006 mg/g to 4.367 ± 0.243 mg/g and from 0.226 ± 0.007 mg/g to 1.649 ± 0.013 mg/g, respectively. Additionally, the contents of total phenolic, total flavonoid, vitamin C, titratable acids, reducing sugars and antioxidant capacity (FRAP, DPPH, scavenging and hydroxyl radical scavenging activity) were also assessed. The results and principal component analysis showed that the Zhongsang 5801 variety from Sichuan, Dechang had the greatest health value with the highest active compound contents. Based on our analysis, the variety from Sichuan, Dechang is a high-quality plant source for mulberry fruit cultivation. This research provides a basis for the rational development and utilization of mulberry fruit resources in China.
Collapse
Affiliation(s)
- Tao Chen
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (T.C.); (F.-F.S.); (Q.-Y.F.); (Y.-X.J.); (C.-M.Z.); (W.-G.Z.); (D.-Y.Z.)
| | - Fei-Fan Shuang
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (T.C.); (F.-F.S.); (Q.-Y.F.); (Y.-X.J.); (C.-M.Z.); (W.-G.Z.); (D.-Y.Z.)
| | - Qing-Yue Fu
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (T.C.); (F.-F.S.); (Q.-Y.F.); (Y.-X.J.); (C.-M.Z.); (W.-G.Z.); (D.-Y.Z.)
| | - Yu-Xiong Ju
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (T.C.); (F.-F.S.); (Q.-Y.F.); (Y.-X.J.); (C.-M.Z.); (W.-G.Z.); (D.-Y.Z.)
| | - Chen-Man Zong
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (T.C.); (F.-F.S.); (Q.-Y.F.); (Y.-X.J.); (C.-M.Z.); (W.-G.Z.); (D.-Y.Z.)
| | - Wei-Guo Zhao
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (T.C.); (F.-F.S.); (Q.-Y.F.); (Y.-X.J.); (C.-M.Z.); (W.-G.Z.); (D.-Y.Z.)
| | - Dong-Yang Zhang
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (T.C.); (F.-F.S.); (Q.-Y.F.); (Y.-X.J.); (C.-M.Z.); (W.-G.Z.); (D.-Y.Z.)
| | - Xiao-Hui Yao
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (T.C.); (F.-F.S.); (Q.-Y.F.); (Y.-X.J.); (C.-M.Z.); (W.-G.Z.); (D.-Y.Z.)
- Co-Innovation Centre for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (X.-H.Y.); (F.-L.C.); Tel./Fax: +86-511-8561-6673 (X.-H.Y.)
| | - Fu-Liang Cao
- Co-Innovation Centre for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (X.-H.Y.); (F.-L.C.); Tel./Fax: +86-511-8561-6673 (X.-H.Y.)
| |
Collapse
|
40
|
Anti-Inflammatory and Anti-Bacterial Potential of Mulberry Leaf Extract on Oral Microorganisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19094984. [PMID: 35564380 PMCID: PMC9099889 DOI: 10.3390/ijerph19094984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 01/25/2023]
Abstract
Mulberry leaves extract (Morus alba extracts; MAE) is known to have therapeutic potentials for numerous human diseases, including diabetes, neurological disorders, cardiovascular diseases, and cancers. However, there has not been sufficient research proving therapeutic effects on oral disease and its related oral risk factors. Thus, we investigated whether MAE has any anti-inflammatory and anti-bacterial effects on risk factors causing oral infectious diseases. To examine the anti-inflammatory response and bacterial inhibition of MAE, we measured intracellular reactive oxygen species (ROS) generation, production of pro-inflammatory cytokines, and the bacterial growth rate. Our study showed that MAE has anti-inflammatory activities, which inhibit the ROS generation and suppressed the production of pro-inflammatory cytokines (TNF-α and IL-6) in human monocyte THP-1 cells by stimulating lipopolysaccharide (LPS) and/or F. nucleatum, which are the virulent factors in periodontal diseases. Furthermore, MAE inhibited the bacterial growth on oral microorganisms (F. nucleatum and S. mutans) infected THP-1 cells. These findings suggested that MAE could be a potential natural source for therapeutic drugs in oral infectious disease.
Collapse
|
41
|
Manzoor MF, Hussain A, Tazeddinova D, Abylgazinova A, Xu B. Assessing the Nutritional-Value-Based Therapeutic Potentials and Non-Destructive Approaches for Mulberry Fruit Assessment: An Overview. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6531483. [PMID: 35371246 PMCID: PMC8970939 DOI: 10.1155/2022/6531483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/15/2022] [Indexed: 01/22/2023]
Abstract
Among different fruits, mulberry is the most highlighted natural gift in its superior nutritional and bioactive composition, indispensable for continuing a healthy life. It also acts as a hepatoprotective immunostimulator and improves vision, anti-microbial, anti-cancer agent, anti-stress activity, atherosclerosis, neuroprotective functions, and anti-obesity action. The mulberry fruits also help reduce neurological disorders and mental illness. The main reason for that is the therapeutic potentials present in the nutritional components of the mulberry fruit. The available methods for assessing mulberry fruits are mainly chromatographic based, which are destructive and possess many limitations. However, recently some non-invasive techniques, including chlorophyll fluorescence, image processing, and hyperspectral imaging, were employed to detect various mulberry fruit attributes. The present review attempts to collect and explore available information regarding the nutritional and medicinal importance of mulberry fruit. Besides, non-destructive methods established for the fruit are also elaborated. This work helps encourage many more research works to dug out more hidden information about the essential nutrition of mulberry that can be helpful to resolve many mental-illness-related issues.
Collapse
Affiliation(s)
| | - Abid Hussain
- Department of Agriculture and Food Technology, Karakoram International University, Gilgit, Pakistan
| | - Diana Tazeddinova
- Department of Technology and Catering Organization, South Ural State University, Chelyabinsk, Russia
- Higher School of Technologies of Food and Processing Productions, Zhangir Khan West Kazakhstan Agrarian Technical University, Uralsk, Kazakhstan
| | - Aizhan Abylgazinova
- Higher School of Technologies of Food and Processing Productions, Zhangir Khan West Kazakhstan Agrarian Technical University, Uralsk, Kazakhstan
- Scientific-Production Center of Livestock and Veterinary Medicine, Nur-Sultan, Kazakhstan
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
42
|
Hamdan DI, Hafez SS, Hassan WHB, Morsi MM, Khalil HMA, Ahmed YH, Ahmed-Farid OA, El-Shiekh RA. Chemical profiles with cardioprotective and anti-depressive effects of Morus macroura Miq. leaves and stem branches dichloromethane fractions on isoprenaline induced post-MI depression. RSC Adv 2022; 12:3476-3493. [PMID: 35425386 PMCID: PMC8979319 DOI: 10.1039/d1ra08320a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/04/2022] [Indexed: 12/27/2022] Open
Abstract
This study was conducted to explore the potential cardioprotective and anti-depressive effects of dichloromethane (DCM) fractions of Morus macroura leaves (L) and stem branches (S) on post-myocardial infarction (MI) depression induced by isoprenaline (ISO) in rats in relation to their metabolites. The study was propped with a UPLC-ESI-MS/MS profiling and chromatographic isolation of the secondary metabolites. Column chromatography revealed the isolation of lupeol palmitate (6) that was isolated for the first time from nature with eight known compounds. In addition, more than forty metabolites belonging, mainly to flavonoids, and anthocyanins groups were identified. The rats were injected with ISO (85 mg kg−1, s.c) in the first two days, followed by the administration of M. macroura DCM-L and DCM-S fractions (200 mg kg−1 p.o) for 19 days. Compared with the ISO exposed rats, the treated rats displayed a reduction in cardiac biomarkers (LDH and CKMB), anxiety, and depressive-like behaviour associated with an increase in the brain defense system (SOD and GSH), neuronal cell energy, GABA, serotonin, and dopamine, confirmed by histopathological investigations. In conclusion, DCM-L and DCM-S fractions' cardioprotective and anti-depressive activities are attributed to their metabolite profile. Therefore, they could serve as a potential agent in amending post-MI depression. This study was conducted to explore the potential cardioprotective and anti-depressive effects of dichloromethane fractions of Morus macroura leaves and stem branches on post-myocardial infarction depression induced by isoprenaline in rats in relation to their metabolites.![]()
Collapse
Affiliation(s)
- Dalia I Hamdan
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University Shibin Elkom 32511 Egypt
| | - Samia S Hafez
- Pharmacognosy Department, Faculty of Pharmacy, Zagazig University Zagazig 44519 Egypt
| | - Wafaa H B Hassan
- Pharmacognosy Department, Faculty of Pharmacy, Zagazig University Zagazig 44519 Egypt
| | - Mai M Morsi
- Pharmacognosy Department, Faculty of Pharmacy, Zagazig University Zagazig 44519 Egypt
| | - Heba M A Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University Giza 12211 Egypt +201013666331
| | - Yasmine H Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University Giza 12211 Egypt
| | - Omar A Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research Giza Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Kasr El Aini St. Cairo 11562 Egypt +201064763764
| |
Collapse
|
43
|
Comparison of chemometric strategies for potential exposure marker discovery and false-positive reduction in untargeted metabolomics: application to the serum analysis by LC-HRMS after intake of Vaccinium fruit supplements. Anal Bioanal Chem 2022; 414:1841-1855. [PMID: 35028688 DOI: 10.1007/s00216-021-03815-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 11/01/2022]
Abstract
Untargeted liquid chromatographic-high-resolution mass spectrometric (LC-HRMS) metabolomics for potential exposure marker (PEM) discovery in nutrikinetic studies generates complex outputs. The correct selection of statistically significant PEMs is a crucial analytical step for understanding nutrition-health interactions. Hence, in this paper, different chemometric selection workflows for PEM discovery, using multivariate or univariate parametric or non-parametric data analyses, were comparatively tested and evaluated. The PEM selection protocols were applied to a small-sample-size untargeted LC-HRMS study of a longitudinal set of serum samples from 20 volunteers after a single intake of (poly)phenolic-rich Vaccinium myrtillus and Vaccinium corymbosum supplements. The non-parametric Games-Howell test identified a restricted group of significant features, thus minimizing the risk of false-positive retention. Among the forty-seven PEMs exhibiting a statistically significant postprandial kinetics, twelve were successfully annotated as purine pathway metabolites, benzoic and benzodiol metabolites, indole alkaloids, and organic and fatty acids, and five (i.e. octahydro-methyl-β-carboline-dicarboxylic acid, tetrahydro-methyl-β-carboline-dicarboxylic acid, citric acid, caprylic acid, and azelaic acid) were associated to Vaccinium berry consumption for the first time. The analysis of the area under the curve of the longitudinal dataset highlighted thirteen statistically significant PEMs discriminating the two interventions, including four intra-intervention relevant metabolites (i.e. abscisic acid glucuronide, catechol sulphate, methyl-catechol sulphate, and α-hydroxy-hippuric acid). Principal component analysis and sample classification through linear discriminant analysis performed on PEM maximum intensity confirmed the discriminating role of these PEMs.
Collapse
|
44
|
Effect of Morus alba leaf extract dose on lipid oxidation, microbiological stability, and sensory evaluation of functional liver pâtés during refrigerated storage. PLoS One 2021; 16:e0260030. [PMID: 34941877 PMCID: PMC8699953 DOI: 10.1371/journal.pone.0260030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/29/2021] [Indexed: 11/19/2022] Open
Abstract
Mulberry (Morus alba L.), and above all the extract from the leaves of this plant, is a natural medicine that has been used in traditional medicine for hundreds of years. Mulberry leaves contains polyphenol compounds: flavonoids, coumarins, numerous phenolic acids, as well as terpenes and steroids. The antioxidant effect of these compounds may be beneficial to the fat fraction of meat products, thereby increasing their functional qualities. The aim of the study was to evaluate the effectiveness of the use of mulberry water leaf extract, as an additive limiting adverse fat changes and affecting the functionality in model liver pâtés. Pork pâtés were prepared by replacing 20% of animal fat with rapeseed oil (RO), and water extract of mulberry leaves was added in the proportion of 0.2%, 0.6% and 1.0%. It has been shown that the addition of mulberry leaf extract delayed the appearance of primary and secondary fat oxidation products. The most effective antioxidant effect during 15-day storage was observed in the sample with the addition of 0.6% and 1.0% water mulberry leaf extract. These samples also showed inhibiting activity against angiotensin-converting enzymes and cholinesterase's. During storage, the tested pâtés had a high sensory quality with unchanged microbiological quality. Mulberry leaf extract can be an interesting addition to the production of fat meat products, delaying adverse changes in the lipid fraction and increasing the functionality of products.
Collapse
|
45
|
Suriyaprom S, Kaewkod T, Promputtha I, Desvaux M, Tragoolpua Y. Evaluation of Antioxidant and Antibacterial Activities of White Mulberry ( Morus alba L.) Fruit Extracts. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122736. [PMID: 34961207 PMCID: PMC8703457 DOI: 10.3390/plants10122736] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 05/26/2023]
Abstract
The fruit of mulberry trees (Morus sp.), mulberries, are traditionally utilised as a nutritional food and provide health benefits as well as skin nourishment in Thailand. White mulberries (Morus alba L.) from Chiang Mai and Mae Hong Son provinces were evaluated for their antioxidant and antibacterial activities. The antioxidant activities as well as the total phenolic, flavonoid and anthocyanin content of the aqueous and ethanolic extracts were determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) (ABTS) and ferric reducing antioxidant power (FRAP) assays. The aqueous extracts of mulberries exhibited the highest antioxidant activity, which was associated with a higher phenolic and anthocyanin content. In testing the potent antibacterial activity against Escherichia coli, Salmonella Typhi, Shigella dysenteriae, Staphylococcus aureus and Vibrio cholerae, the mulberry extracts proved to be quite efficient, especially following water extraction. Time-kill and antibacterial adhesion assays further indicated that aqueous mulberry extracts could inhibit bacterial growth and prevent adhesions of pathogenic enteric bacteria on intestinal epithelial cells. It thus appears that mulberries can potentially be consumed as a good source of antioxidants, containing antimicrobial properties against some pathogenic bacteria which cause gastrointestinal tract infections.
Collapse
Affiliation(s)
- Sureeporn Suriyaprom
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (T.K.); (I.P.)
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
- UMR454 MEDiS, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France;
| | - Thida Kaewkod
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (T.K.); (I.P.)
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (T.K.); (I.P.)
| | - Mickaël Desvaux
- UMR454 MEDiS, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France;
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (T.K.); (I.P.)
- Research Center in Bioresources for Agriculture, Industry, and Medicine, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
46
|
Lee D, Lee SR, Park BJ, Song JH, Kim JK, Ko Y, Kang KS, Kim KH. Identification of Renoprotective Phytosterols from Mulberry ( Morus alba) Fruit against Cisplatin-Induced Cytotoxicity in LLC-PK1 Kidney Cells. PLANTS (BASEL, SWITZERLAND) 2021; 10:2481. [PMID: 34834844 PMCID: PMC8623081 DOI: 10.3390/plants10112481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 11/29/2022]
Abstract
The aim of this study was to explore the protective effects of bioactive compounds from the fruit of the mulberry tree (Morus alba L.) against cisplatin-induced apoptosis in LLC-PK1 pig kidney epithelial cells. Morus alba fruit is a well-known edible fruit commonly used in traditional folk medicine. Chemical investigation of M. alba fruit resulted in the isolation and identification of six phytosterols (1-6). Their structures were determined as 7-ketositosterol (1), stigmast-4-en-3β-ol-6-one (2), (3β,6α)-stigmast-4-ene-3,6-diol (3), stigmast-4-ene-3β,6β-diol (4), 7β-hydroxysitosterol 3-O-β-d-glucoside (5), and 7α-hydroxysitosterol 3-O-β-d-glucoside (6) by analyzing their physical and spectroscopic data as well as liquid chromatography/mass spectrometry data. All compounds displayed protective effects against cisplatin-induced LLC-PK1 cell damage, improving cisplatin-induced cytotoxicity to more than 80% of the control value. Compound 1 displayed the best effect at a relatively low concentration by inhibiting the percentage of apoptotic cells following cisplatin treatment. Its molecular mechanisms were identified using Western blot assays. Treatment of LLC-PK1 cells with compound 1 decreased the upregulated phosphorylation of p38 and c-Jun N-terminal kinase (JNK) following cisplatin treatment. In addition, compound 1 significantly suppressed cleaved caspase-3 in cisplatin-induced LLC-PK1 cells. Taken together, these findings indicated that cisplatin-induced apoptosis was significantly inhibited by compound 1 in LLC-PK1 cells, thereby supporting the potential of 7-ketositosterol (1) as an adjuvant candidate for treating cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| | - Seoung Rak Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Bang Ju Park
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Korea;
| | - Ji Hoon Song
- Jeju Institute of Korean Medicine, Jeju 63309, Korea;
| | - Jung Kyu Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea;
| | - Yuri Ko
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA;
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
47
|
Xu DQ, Cheng SY, Zhang JQ, Lin HF, Chen YY, Yue SJ, Tian M, Tang YP, Zhao YC. Morus alba L. Leaves - Integration of Their Transcriptome and Metabolomics Dataset: Investigating Potential Genes Involved in Flavonoid Biosynthesis at Different Harvest Times. FRONTIERS IN PLANT SCIENCE 2021; 12:736332. [PMID: 34868120 PMCID: PMC8637763 DOI: 10.3389/fpls.2021.736332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/07/2021] [Indexed: 06/04/2023]
Abstract
The mulberry leaf is a classic herb commonly used in traditional Chinese medicine. It has also been used as animal feed for livestock and its fruits have been made into a variety of food products. Traditionally, mulberry (Morus alba L.) leaf harvesting after frost is thought to have better medicinal properties, but the underlying mechanism remains largely unsolved. To elucidate the biological basis of mulberry leaves after frost, we first explored the content changes of various compounds in mulberry leaves at different harvest times. Significant enrichment of flavonoids was observed with a total of 224 differential metabolites after frost. Subsequently, we analyzed the transcriptomic data of mulberry leaves collected at different harvest times and successfully annotated 22,939 unigenes containing 1,695 new genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed 26, 20, and 59 unigenes related to flavonoids synthesis in three different groups harvested at different times. We found that the expression levels of flavonoid biosynthesis-related unigenes also increased when harvested at a delayed time, which was consistent with the flavonoid accumulation discovered by the metabolomic analysis. The results indicated that low temperature may be a key trigger in flavonoid biosynthesis of mulberry leaves by increasing the expression of flavonoid biosynthesis-related genes. This study also provided a theoretical basis for the optimal harvest time of mulberry leaves.
Collapse
Affiliation(s)
- Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Shu-Yan Cheng
- Department of Resources Science of Traditional Chinese Medicines, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jun-Qing Zhang
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Han-Feng Lin
- Department of Resources Science of Traditional Chinese Medicines, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Meng Tian
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Yu-Cheng Zhao
- Department of Resources Science of Traditional Chinese Medicines, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
48
|
Molecular Studies on the Nephroprotective Potential of Celastrus paniculatus against Lead-Acetate-Induced Nephrotoxicity in Experimental Rats: Role of the PI3K/AKT Signaling Pathway. Molecules 2021; 26:molecules26216647. [PMID: 34771053 PMCID: PMC8587739 DOI: 10.3390/molecules26216647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
Chemicals can induce nephrotoxicity, with damage to different segments of the nephron and deterioration of renal function. Nephrotoxicity due to exposure to a toxin such as carbon tetrachloride, sodium oxalate, or heavy metals is the most common cause of kidney injury. The current study aimed to evaluate the protective effects of Celastrus paniculatus seed extract against lead-acetate-induced nephrotoxicity by evaluating the histopathology, immunohistochemistry, ultrastructure, and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. Twenty-four rats were divided into four groups (n = 6 per group): group 1 contained normal animals and served as the control; group 2 received lead acetate (30 mg/kg body weight (b.w.)/day, oral); group 3 received lead acetate and the standard drug N-acetylcysteine (NAC, 200 mg/kg b.w./day, oral); and group 4 received lead acetate and the ethanolic extract of C. paniculatus seed (EECP; 800 mg/kg b.w./day, oral). Treatment was given for 28 consecutive days. The data were analyzed using one-way analysis of variance with SIGMA PLOT 13 using SYSTAT software followed by Newman–Keul’s test for comparison between the groups. EECP ameliorated the adverse changes caused by lead acetate. PI3K and AKT messenger RNA (mRNA) levels were diminished in lead-acetate-treated rats. Treatment with EECP inhibited the occurrence of shrunken cells, the atrophy of glomeruli, and degenerative changes in renal tubules caused by lead acetate. Interestingly, the PI3K and AKT mRNA levels were significantly increased in EECP-treated animals. Our results clearly evidence for the first time that C. paniculatus seed extract inhibits lead-acetate-induced detrimental changes in kidneys by regulating PI3K/AKT signaling pathways.
Collapse
|
49
|
Hu J, Vinothkanna A, Wu M, Ekumah J, Akpabli‐Tsigbe NDK, Ma Y. Tracking the dynamic changes of a flavor, phenolic profile, and antioxidant properties of Lactiplantibacillus plantarum- and Saccharomyces cerevisiae-fermented mulberry wine. Food Sci Nutr 2021; 9:6294-6306. [PMID: 34760259 PMCID: PMC8565223 DOI: 10.1002/fsn3.2590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
The process of fermentation renders the superior quality of mulberry wine based on the microorganisms utilized. The present study aimed at investigating the changes and correlation between phenols and product quality of mulberry wine fermented with Lactiplantibacillus plantarum and Saccharomyces cerevisiae combinatorially. Total anthocyanins concentration (TAC), polyphenols concentration (TPC), flavonoids concentration (TFC), and antioxidant capacity decreased significantly with high correlation in the fermentation process. TAC gradually reduced with a loss rate of 47.98% from 0 to third day of fermentation. Fermented mulberry wine obtained indicated a dynamic balance due to the presence of p-hydroxybenzoic acids as compared to the primary phenolic constituent. Chlorogenic acid usually presents in mulberry juice. The relative intensity of sourness was the most prominent and reached the maximum (10.93) on day 2 of fermentation. A total of 21 volatile esters were quantified (6621.59 μg/L), which contributed significantly to the aroma of mulberry wine. The enhanced quality of fermented mulberry wine showed contraindications with decreased constituents and escalated wine quality. Rather than usual single inoculum, fermentation combination of LAB and yeast holistically influenced the color, taste, fragrance, phenolic profiles, and antioxidant properties in mulberry wine, ensuring palatability and fit for commercialization prospects.
Collapse
Affiliation(s)
- Jie Hu
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | | | - Meng Wu
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - John‐Nelson Ekumah
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | | | - Yongkun Ma
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| |
Collapse
|
50
|
Chang BY, Koo BS, Kim SY. Pharmacological Activities for Morus alba L., Focusing on the Immunostimulatory Property from the Fruit Aqueous Extract. Foods 2021; 10:foods10081966. [PMID: 34441742 PMCID: PMC8393821 DOI: 10.3390/foods10081966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 12/21/2022] Open
Abstract
Depending on the extraction method, numerous compounds that have specific pharmacological effects can be obtained from M. alba L. There is a growing scientific interest in health problems related to aging. Efforts to develop safe immune-enhancing pharmaceuticals are increasing. This review aims to summarize and critically discuss the immunity enhancement effects and pharmaceutical efficacy of M. alba L. extracts. The scientific database search was conducted using Google Scholar, Web of Science, and PubMed until May 2021. Additional articles were identified and obtained from references in the retrieved articles. Ethanol or methanol extraction of various parts of M. alba L. identified a large amount of phenols and flavonoids, which are effective for immunosuppression, antioxidants, and cardiovascular diseases, and are antibacterial, and anticancer. Water extraction of M. alba L. enhanced the innate immune response based on immune cell activation. A polysaccharide and an alkaloid related to increased macrophage activity were isolated from M. alba L. fruit extracts. M. alba L. fruit water extracts primarily induced the production of pro-inflammatory substances, in model organisms, via TLR4 in immune cells. Water extracts have been shown to be effective in pathogen defense and tumor suppression by enhancing macrophage activity. Based on our literature review on the bioactivity of M. alba L. fruit extracts, particularly in relation to their immunity enhancement activity, we anticipate that M. alba-derived pharmaceuticals will have excellent potential in future medical research.
Collapse
Affiliation(s)
- Bo-Yoon Chang
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Jeonbuk, Iksan 54538, Korea;
| | - Bong-Seong Koo
- ForBioKorea Co., Ltd., Geumcheon-gu, Seoul 08592, Korea;
| | - Sung-Yeon Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Jeonbuk, Iksan 54538, Korea;
- Correspondence: ; Tel.: +82-63-850-6806
| |
Collapse
|