1
|
Pogorzelska-Nowicka E, Hanula M, Pogorzelski G. Extraction of polyphenols and essential oils from herbs with green extraction methods - An insightful review. Food Chem 2024; 460:140456. [PMID: 39084104 DOI: 10.1016/j.foodchem.2024.140456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
The demand for polyphenols and essential oils (EOs) on the food market is high and grows every year. Its partially the result of the fact that these compounds can be used in formulation of clean label foods, a fast growing food sector. A significant share of polyphenols and EOs are extracted from herbs. The quality of the extracts is determined mainly by the extraction method. Conventional extraction techniques of phytochemicals are time-consuming, operate at high temperatures, and require usage of organic solvents and energy in large quantities. According to the United Nations Sustainability Development Plan, chemical processes should be replaced by green alternatives that would reduce the use of solvents and energy. Ultrasound-Assisted Extraction (UAE), Microwave-Assisted Extraction (MAE) and Cold Plasma-Assisted Extraction (CPAE) meets these criteria. The review shows that each of these techniques seems to be a great alternative for conventional extraction methods ensuring higher yields of bioactive compounds.
Collapse
Affiliation(s)
- Ewelina Pogorzelska-Nowicka
- Institute of Human Nutrition Sciences, Department of Technique and Food Product Development, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159 c street, 02-776 Warsaw, Poland.
| | - Monika Hanula
- Institute of Human Nutrition Sciences, Department of Technique and Food Product Development, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159 c street, 02-776 Warsaw, Poland.
| | - Grzegorz Pogorzelski
- The Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland.
| |
Collapse
|
2
|
Zhang X, Liu M, Wang Z, Wang P, Kong L, Wu J, Wu W, Ma L, Jiang S, Ren W, Du L, Ma W, Liu X. A review of the botany, phytochemistry, pharmacology, synthetic biology and comprehensive utilization of Silybum marianum. Front Pharmacol 2024; 15:1417655. [PMID: 39055491 PMCID: PMC11269164 DOI: 10.3389/fphar.2024.1417655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Silybum marianum (L.) Gaertn, a herbaceous plant with a long history in traditional medicine for the treatment of hepatobiliary diseases, particularly in Europe, which has attracted attention for its remarkable therapeutic effect. This review systematically summarizes the research progress in the botany, phytochemistry, pharmacology, comprehensive utilization and synthetic biology of S. marianum. Up to now, more than 20 types of flavonolignan components have been isolated from S. marianum. In addition, the rearch on fatty acids and triterpenoids is also constantly improving. Among them, silybin is the most active compound in flavonolignans components. Its pharmacological effects in vivo and in vitro include anti-inflammatory, antioxidant, anti-tumour, hypoglycaemic, neuroprotective and immunoregulatory properties. The use of coniferyl alcohol and taxifolin as substrates to produce silybin and isosilybin under the action of enzyme catalysis is the commonly used biosynthetic pathway of silymarin, which provides support for a comprehensive analysis of the synthetic pathway of silymarin. In addition to medicinal use, the extracts of plants also have broad application prospects in the production of food, healthcare products, cosmetics and other aspects. In addition, the chemical composition, pharmacological mechanism and synthetic biology of S. marianum need to be further studied, which is very important for its clinical efficacy and resource development.
Collapse
Affiliation(s)
- Xiaozhuang Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meiqi Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhen Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Panpan Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lingyang Kong
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jianhao Wu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Wu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lengleng Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shan Jiang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weichao Ren
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Likun Du
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiubo Liu
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, China
| |
Collapse
|
3
|
Wojtkiewicz AM, Oleksy G, Malinowska MA, Janeczko T. Enzymatic synthesis of a skin active ingredient - glochidone by 3-ketosteroid dehydrogenase from Sterolibacterium denitrificans. J Steroid Biochem Mol Biol 2024; 241:106513. [PMID: 38521362 DOI: 10.1016/j.jsbmb.2024.106513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
In this study, we applied AcmB2, sourced from Sterolibacterium denitrificans, to catalyze the oxidative dehydrogenation of 3-ketolupeol (lupenone), a derivative of lupeol, triterpene obtained from birch bark. This enzymatic Δ1-dehydrogenation catalyzed by AcmB2 yielded glochidone, a bioactive compound frequently obtained from medicinal plants like Salvia trichoclada and Maytenus boria. Glochidone is known for its broad biological activities, including antibacterial, antifungal, anti-inflammatory, anticancer, antidiabetic as well as acetylcholinesterase inhibition. Our research demonstrates >99% conversion efficiency with 100% regioselectivity of the reaction. The effective conversion to glochidone employed an electron acceptor e.g., potassium hexacyanoferrate III, in mild, environmentally friendly conditions: 8-16% 2-hydroxypropyl-β-cyclodextrin, and 2-3% 2-methoxyethanol. AcmB2 reaction optimum was determined at pH 8.0 and 30 °C. Enzyme's biochemical attributes such as electron acceptor type, concentration and steroid substrate specificity were investigated. Among 4-, 5- and 6-ring steroid derivatives androst-4-en-3,17-dione and testosterone propionate were determined as the best substrates of AcmB2. Δ1-Dehydrogenation of substrates such as lupenone, diosgenone and 3-ketopetromyzonol was confirmed. We have assessed the antioxidant and rejuvenating characteristics of glochidone as an active component in formulations, considering its precursors, lupeol, and lupenone as well. Glochidone exhibited limited antioxidant and chelating capabilities compared to lupeol and reference compounds. However, it demonstrated robust rejuvenating properties, with a sirtuin induction level of 61.5 ± 1.87%, notably surpassing that of the reference substance, E-resveratrol (45.15 ± 0.09%). Additionally, glochidone displayed 26.5±0.67 and 19.41±0.76% inhibition of elastase and collagenase, respectively. The safety of all studied triterpenes was confirmed on skin reconstructed human Epidermis model. These findings provide valuable insights into the potential applications of glochidone in formulations aimed at addressing skin health concerns. This research presents the first example of an enzyme in the 3-ketosteroid dehydrogenase (KstD) family catalyzing the Δ1-dehydrogenation of a pentacyclic triterpene. We also explored structural differences between AcmB, AcmB2, and related KstDs pointing to G52 and P532 as potentially responsible for the unique substrate specificity of AcmB2. Our findings not only highlight the enzyme's capabilities but also present novel enzymatic pathways for bioactive compound synthesis.
Collapse
Affiliation(s)
- Agnieszka M Wojtkiewicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Krakow PL30239, Poland.
| | - Gabriela Oleksy
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Krakow PL30239, Poland
| | - Magdalena A Malinowska
- Organic Chemistry and Technology Department, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawa 24, Krakow 31-155, Poland
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, Wrocław 50-375, Poland
| |
Collapse
|
4
|
Neelab, Zeb A, Jamil M. Milk thistle protects against non-alcoholic fatty liver disease induced by dietary thermally oxidized tallow. Heliyon 2024; 10:e31445. [PMID: 38818175 PMCID: PMC11137523 DOI: 10.1016/j.heliyon.2024.e31445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic condition caused by several factors including thermally oxidized tallow. Various strategies have been considered to ameliorate NAFLD. However, the role of milk thistle (MT) in ameliorating NAFLD caused by thermally oxidized tallow has not been reported. The purpose of this study was to evaluate the ability of milk thistle to protect rabbits from the toxicity of oxidized tallow (OT). The rabbits were given OT and an extract of MT. The composition of MT was analyzed using HPLC-DAD, and tallow samples were studied using GC-MS. The study also examined liver histology, antioxidant levels, liver-related inflammatory markers, and serum lipid profile. The results showed that the major components of the MT extract were silybin B, formononetin-glucuronic acid, proanthocyanidin B1, silychristin B, silydianin, and isosilybin A. The group given OT showed elevated lipid profiles, lower antioxidant status, higher levels of hepatic inflammatory markers, and lower levels of anti-inflammatory markers. This group also had higher fat storage in the liver compared to the control or treatment groups. However, when MT was supplemented, the pro-inflammatory cytokines (IL-1, IL-4, IL-6, and TNF-α) and antioxidant status (CAT, SOD, GSH-Px, GSH, and TBARS) of the liver returned to normal. This suggests that MT extract is an excellent source of hepatoprotective compounds. It protects the liver by increasing antioxidant enzymes, decreasing pro-inflammatory cytokines, and increasing anti-inflammatory markers.
Collapse
Affiliation(s)
- Neelab
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Alam Zeb
- The Bioactive Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- Department of Biochemistry, University of Malakand, Chakdara, Pakistan
| | - Muhammad Jamil
- Department of Surgery, Timergara Teaching Hospital, Timergara, Pakistan
| |
Collapse
|
5
|
Comparing the extraction methods, chemical composition, phenolic contents and antioxidant activity of edible oils from Cannabis sativa and Silybum marianu seeds. Sci Rep 2022; 12:20609. [PMID: 36446937 PMCID: PMC9708685 DOI: 10.1038/s41598-022-25030-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
In the study the cold-pressed, natural (unfiltered, unrefined) vegetable oils: hemp and milk thistle seed oils were tested for their chemical composition and antioxidant properties. The physico-chemical parameters, content of saturated and unsaturated fatty acids were determined. Solid phase extraction and simple extraction with the use of methanol, ethanol, 80% methanol, 80% ethanol were used to obtain the extracts for the analysis of antioxidant activity and phenolic compounds in oils. The composition of phenolic compounds was studied by means of high-performance liquid chromatography (HPLC-DAD) and spectrophotometric test with the Folin-Ciocalteu reagent. The antioxidant property of extracts was established by means of the following methods: with the DPPH• (2,2-diphenyl-1-picrylhydrazyl) radical, ABTS•+ (2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical, FRAP (ferric ion reducing antioxidant parameter) and CUPRAC (cupric-reducing antioxidant capacity). Moreover the influence of chlorogenic acid on the inhibition of lipid peroxidation process in the hemp and milk thistle seed oils was also investigated. The tested oils showed different antioxidant properties which was related to the their different chemical composition. The main phenolic compounds present in hemp seed oil were vanillic, ferulic and p-coumaric acids, (-)epicatechin, catechin, kaempferol and procyanidin B2, whereas in milk thistle seed oil-catechins, procyanidin B2, procyanidin C1, p-coumaric acid, phloridzin, quercetin, protocatechuic acid, kaempferol, and syringic acid. The methanolic extracts of hemp and milk thistle seed oils showed the highest antiradical activity, whereas the ethanolic extracts revealed the best reducing properties. The obtained antioxidant parameters for hemp seed oil were: the IC50 = 3.433 ± 0.017 v/v (DPPH test), the percent of ABTS•+ inhibition = 93.301 ± 1.099%, FRAP value = 1063.883 ± 39.225 µmol Fe2+, CUPRAC value = 420.471 ± 1.765 µmol of Trolox. Whereas the antioxidant parameters for milk thistle seed oil were: the IC50 = 5.280 ± 0.584 v/v (DPPH test), 79.59 ± 3.763% (ABTS test), 2891.08 ± 270.044 µmol Fe2+ (FRAP test), 255.48 ± 26.169 µmol of Trolox (CUPRAC assay). Chlorogenic acid effectively inhibited the lipid peroxidation process in hemp and milk thistle seed oils.
Collapse
|
6
|
Tungmunnithum D, Garros L, Drouet S, Cruz-Martins N, Hano C. Extraction Kinetics and Reaction Rates of Sacred Lotus Stamen Tea Infusion-Derived Flavonoids in Relation with Its Antioxidant Capacity. PLANTS 2022; 11:plants11172234. [PMID: 36079616 PMCID: PMC9459831 DOI: 10.3390/plants11172234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022]
Abstract
Stamen tea from Nelumbo nucifera Gaertn. (or the so-called sacred lotus) is widely consumed, and its flavonoids provide various human health benefits. The method used for tea preparation for consumption, namely the infusion time, may affect the levels of extractable flavonoids, ultimately affecting their biological effects. To date, there is no report on this critical information. Thus, this study aims to determine the kinetics of solid liquid extraction of flavonoid from sacred lotus stamen using the traditional method of preparing sacred lotus stamen tea. Phytochemical composition was also analyzed using high-performance liquid chromatography (HPLC). The antioxidant potential of stamen tea was also determined. The results indicated that the infusion time critically affects the concentrations of flavonoids and the antioxidant capacity of sacred lotus stamen tea, with a minimum infusion time of 5–12 min being required to release the different flavonoids from the tea. The extraction was modeled using second order kinetics. The rate of release was investigated by the glycosylation pattern, with flavonoid diglycosides, e.g., rutin and Kae-3-Rob, being released faster than flavonoid monoglycosides. The antioxidant activity was also highly correlated with flavonoid levels during infusion. Taken together, data obtained here underline that, among others, the infusion time should be considered for the experimental design of future epidemiological studies and/or clinical trials to reach the highest health benefits.
Collapse
Affiliation(s)
- Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Department of Chemical Biology, Eure et Loir Campus, University of Orleans, 28000 Chartres, France
- Le Studium Institue for Advanced Studies, 1 Rue Dupanloup, 45000 Orléans, France
- Correspondence: (D.T.); (C.H.)
| | - Laurine Garros
- Department of Chemical Biology, Eure et Loir Campus, University of Orleans, 28000 Chartres, France
| | - Samantha Drouet
- Department of Chemical Biology, Eure et Loir Campus, University of Orleans, 28000 Chartres, France
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-319 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Christophe Hano
- Department of Chemical Biology, Eure et Loir Campus, University of Orleans, 28000 Chartres, France
- Le Studium Institue for Advanced Studies, 1 Rue Dupanloup, 45000 Orléans, France
- Correspondence: (D.T.); (C.H.)
| |
Collapse
|
7
|
Antioxidant Capacities and Enzymatic Inhibitory Effects of Different Solvent Fractions and Major Flavones from Celery Seeds Produced in Different Geographic Areas in China. Antioxidants (Basel) 2022; 11:antiox11081542. [PMID: 36009261 PMCID: PMC9404946 DOI: 10.3390/antiox11081542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
To extend the application of celery (Apium graveolens L.) seeds, the antioxidant and enzymatic inhibitory activities of different fractions and their main flavones were investigated. The n-butanol fractions possessed the highest total phenolic content (TPC) and total flavonoid content (TFC) values. The n-butanol fractions from Northeast China samples exhibited the strongest free radical scavenging (DPPH IC50 = 20.27 μg/mL, ABTS IC50 = 15.11 μg/mL) and ferric reducing antioxidant power (FRAP 547.93 mg trolox (TE)/g) capacity, while those collected from Hubei China showed the optimal cupric reducing antioxidant capacity (CUPRAC) values (465.78 mg TE/g). In addition, the dichloromethane fractions from Jiangsu samples displayed a maximum Fe2+ chelating capacity (20.81 mg ethylene diamine tetraacetic acid (EDTA)/g). Enzyme level experiments indicated polyphenolic compounds might be the main hypoglycemic active components. Subsequently, the enzyme inhibitory activity of nine main flavones was evaluated. Chrysoeriol-7-O-glucoside showed better α-glucosidase inhibitory activity than others. However, apigenin showed the best inhibitory effect on α-amylases, while the presence of glycosides would reduce its inhibitory effect. This study is the first scientific report on the enzymatic inhibitory activity, molecular docking, and antioxidant capacity of celery seed constituents, providing a basis for treating or preventing oxidative stress-related diseases and hyperglycemia.
Collapse
|
8
|
Insanu M, Pramasatya H, Buddhisuharto AK, Tarigan C, Zahra AA, Haniffadi A, Sabila N, Fidrianny I. Unused Parts of Jackfruit (Artocarpus heterophyllus): Prospective In Vitro Antioxidative Activity. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND: Free radical is unstable and highly reactive, which may lead to oxidative stress that causes various diseases, that is, diabetes mellitus. Antioxidant can prevent oxidation process by scavenging free radicals. Jackfruit (Artocarpus heterophyllus) is a native tropical fruit that can easily be found in Indonesia. When the flesh is commonly eaten, the unused parts – such as the leaves, fruit peels, and pulps will be considered waste to be thrown away. However, these unused parts of Jackfruit are rich in antioxidant compounds that potentially can work as therapeutic agents.
AIM: The aim of the study was to determine the antioxidant properties of leaves, peels, and pulps of A. heterophyllus by calculating their antioxidant activity index (AAI) with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Cupric Ion-Reducing Antioxidant Capacity (CUPRAC) method; total phenolic content (TPC) and total flavonoid content (TFC); observing the correlation between TPC and TFC with AAI DPPH and CUPRAC; as well as the correlation between AAI DPPH and CUPRAC.
MATERIALS AND METHODS: Extraction process was carried out using reflux method using three different polarity solvents. UV-visible spectrophotometer was used to determine the TPC, TFC, AAI DPPH, and AAI CUPRAC. Pearson’s method was used to observe the correlation between TPC and TFC with AAI DPPH and CUPRAC, as well as the correlation between both methods.
RESULTS: The AAI in DPPH method were varied from 0.0310 to 36.8852, while CUPRAC from 0.1156 to 1.2503. Ethanol leaves extract gave the highest TPC value (5.53 g GAE/100 g) and n-hexane peels extract exposed the highest TFC value (16.07 g QE/100 g). The correlation between TPC and AAI of leaves, peels, and pulps extracts with DPPH method, as well as between TFC and AAI CUPRAC of peels extracts was positive and significant. Rutin was determined as the marker compound, valuing at 0.0106%.
CONCLUSION: Phenols and flavonoids (including rutin) content contributed to DPPH and CUPRAC antioxidant activity. The antioxidant property between both methods was not linear in leaves, peels, and pulps extracts. Unused parts (peels and leaves) of A. heterophyllus might be potential to be developed as natural antioxidant sources.
Collapse
|
9
|
Abderrezag N, Montenegro ZJS, Louaer O, Meniai AH, Cifuentes A, Ibáñez E, Mendiola JA. One-step sustainable extraction of Silymarin compounds of wild Algerian milk thistle (Silybum marianum) seeds using Gas Expanded Liquids. J Chromatogr A 2022; 1675:463147. [PMID: 35640448 DOI: 10.1016/j.chroma.2022.463147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
This work reports the application of Gas Expanded Liquid (GXL) extraction to concentrate the flavonolignan fraction (silymarin) and taxifolin from Silybum marianum seeds, which have proven to be highly valuable health-promoting compounds. GXL using green solvents was used to isolate silymarin with the objective of replacing conventional methods. In one hand, the effect of different compositions of solvents, aqueous ethanol (20%, 50% or 80% (v/v)) at different CO2/liquid (25, 50 and 75%) ratios, on the GXL extraction was investigated. The obtained extracts have been chemically and functionally characterized by means of UHPLC-ESI-MS/MS (triple quadrupole) and in-vitro assays such as anti-inflammatory, anti-cholinergic and antioxidant. Results revealed that the operating conditions influenced the extraction yield, the total phenolic content and the presence of the target compounds. The best obtained yield was 55.97% using a ternary mixture of solvents composed of CO2:EtOH:H2O (25:60:15) at 40 °C and 9 MPa in 160 min. Furthermore, the results showed that obtained extracts had significant antioxidant and anti-inflammatory activities (with best IC50 value of 8.80 µg/mL and 28.52 µg/mL, respectively) but a moderate anti-cholinesterase activity (with best IC50 value of 125.09 µg/mL). Otherwise, the concentration of silymarin compounds in extract can go up to 59.6% using the present one-step extraction method without further purification, being silybinA+B the predominant identified compound, achieving value of 545.73 (mg silymarin/g of extract). The obtained results demonstrate the exceptional potential of GXL to extract high-added values molecules under sustainable conditions from different matrices.
Collapse
Affiliation(s)
- Norelhouda Abderrezag
- Laboratory of Environmental Processes Engineering, University of Salah Boubnider Constantine 3, Ali Mendjli, 25000 Constantine, Algeria; Profesora Facultad de Ingeniería Agroindustrial, Universidad de Nariño (UdeNar), Pasto, Colombia
| | | | - Ouahida Louaer
- Laboratory of Environmental Processes Engineering, University of Salah Boubnider Constantine 3, Ali Mendjli, 25000 Constantine, Algeria
| | - Abdeslam-Hassen Meniai
- Laboratory of Environmental Processes Engineering, University of Salah Boubnider Constantine 3, Ali Mendjli, 25000 Constantine, Algeria
| | - Alejandro Cifuentes
- Foodomics Laboratory, Bioactivity and Food Analysis Department, Institute of Food Science Research CIAL (CSIC-UAM), Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Elena Ibáñez
- Foodomics Laboratory, Bioactivity and Food Analysis Department, Institute of Food Science Research CIAL (CSIC-UAM), Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Jose A Mendiola
- Foodomics Laboratory, Bioactivity and Food Analysis Department, Institute of Food Science Research CIAL (CSIC-UAM), Nicolas Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
10
|
Flavonoid Profiles and Antioxidant Potential of Monochoria angustifolia (G. X. Wang) Boonkerd & Tungmunnithum, a New Species from the Genus Monochoria C. Presl. Antioxidants (Basel) 2022; 11:antiox11050952. [PMID: 35624816 PMCID: PMC9138080 DOI: 10.3390/antiox11050952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 12/10/2022] Open
Abstract
Plants of the genus Monochoria have long been utilized in food, cosmetics, and traditional herbal treatments. Thailand has the highest species diversity of this genus and a new member, Monochoria angustifolia (G. X. Wang) Boonkerd & Tungmunnithum has been recently described. This plant is called “Siam Violet Pearl” as a common name or “Khimuk Si Muang Haeng Siam” as its vernacular name with the same meaning in the Thai language. Despite their importance, little research on Monochoria species has been conducted. This study, thus, provides the results to fill in this gap by: (i) determining flavonoid phytochemical profiles of 25 natural populations of M. angustifolia covering the whole floristic regions in Thailand, and (ii) determining antioxidant activity using various antioxidant assays to investigate probable mechanisms. The results revealed that M. angustifolia presents a higher flavonoid content than the outgroup, M. hastata. Our results also revealed that flavonoids might be used to investigate Monochoria evolutionary connections and for botanical authentication. The various antioxidant assays revealed that M. angustifolia extracts preferentially act through a hydrogen atom transfer antioxidant mechanism. Pearson correlation analysis indicated significant correlations, emphasizing that the antioxidant capacity is most probably due to the complex action of several phytochemicals rather than that of a single molecule. Together, these results showed that this new species provide an attractive alternative starting material with phytochemical variety and antioxidant potential for the phytopharmaceutical industry.
Collapse
|
11
|
Jiang G, Sun C, Wang X, Mei J, Li C, Zhan H, Liao Y, Zhu Y, Mao J. Hepatoprotective mechanism of Silybum marianum on nonalcoholic fatty liver disease based on network pharmacology and experimental verification. Bioengineered 2022; 13:5216-5235. [PMID: 35170400 PMCID: PMC8974060 DOI: 10.1080/21655979.2022.2037374] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/29/2022] [Indexed: 12/12/2022] Open
Abstract
The study aimed to identify the key active components in Silybum marianum (S. marianum) and determine how they protect against nonalcoholic fatty liver disease (NAFLD). TCMSP, DisGeNET, UniProt databases, and Venny 2.1 software were used to identify 11 primary active components, 92 candidate gene targets, and 30 core hepatoprotective gene targets in this investigation, respectively. The PPI network was built using a string database and Cytoscape 3.7.2. The KEGG pathway and GO biological process enrichment, biological annotation, as well as the identified hepatoprotective core gene targets were analyzed using the Metascape database. The effect of silymarin on NAFLD was determined using H&E on pathological alterations in liver tissues. The levels of liver function were assessed using biochemical tests. Western blot experiments were used to observe the proteins that were expressed in the associated signaling pathways on the hepatoprotective effect, which the previous network pharmacology predicted. According to the KEGG enrichment study, there are 35 hepatoprotective signaling pathways. GO enrichment analysis revealed that 61 biological processes related to the hepatoprotective effect of S. marianum were identified, which mainly involved in response to regulation of biological process and immune system process. Silymarin was the major ingredient derived from S. marianum, which exhibited the hepatoprotective effect by reducing the levels of ALT, AST, TC, TG, HDL-C, LDL-C, decreasing protein expressions of IL-6, MAPK1, Caspase 3, p53, VEGFA, increasing protein expression of AKT1. The present study provided new sights and a possible explanation for the molecular mechanisms of S. marianum against NAFLD.
Collapse
Affiliation(s)
- Guoyan Jiang
- Department of Emergency, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunhong Sun
- Department of Emergency, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Wang
- Chongqing Medical and Pharmaceutical College, School of Clinical medicine, Chongqing, China
| | - Jie Mei
- Department of periodontal, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| | - Honghong Zhan
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Yixuan Liao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Yongjun Zhu
- Department of Orthopedics, The Ninth People’s Hospital of Chongqing, Chongqing, China
| | - Jingxin Mao
- Chongqing Medical and Pharmaceutical College, School of Clinical medicine, Chongqing, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
- College of Basic Medical Science, Southwest University, Chongqing, China
| |
Collapse
|
12
|
Athanasopoulou S, Kapetanou M, Magouritsas MG, Mougkolia N, Taouxidou P, Papacharalambous M, Sakellaridis F, Gonos E. Antioxidant and Antiaging Properties of a Novel Synergistic Nutraceutical Complex: Readouts from an In Cellulo Study and an In Vivo Prospective, Randomized Trial. Antioxidants (Basel) 2022; 11:antiox11030468. [PMID: 35326118 PMCID: PMC8944750 DOI: 10.3390/antiox11030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Aging is a dynamic procedure that is developed in multiple layers and characterized by distinct hallmarks. The use of biomarkers that target different hallmarks of aging is substantial in predicting adverse outcomes during the aging process, implementing specifically designed antiaging interventions and monitoring responses to these interventions. The present study aimed to develop a novel composition of plant extracts, comprising identified active ingredients that synergistically target different hallmarks of aging in cellulo and in vivo. The selected single extracts and the developed composition were tested through a powerful set of biomarkers that we have previously identified and studied. The composition of selected extracts simultaneously increased cellular lifespan, reduced the cellular oxidative load and enhanced antioxidant defense mechanisms by increasing proteasome activity and content. In addition, the combination prevented telomere attrition and preserved optimum DNA methylation levels. Remarkably, biomarker profiling of healthy volunteers who received the identified combination in the form of a nutritional supplement within the frame of a prospective, randomized, controlled 3-month trial revealed an unprecedented antioxidant capacity in humans. In conclusion, our results support the notion that interventions with specifically designed combinations of natural compounds targeting multiple hallmarks of aging represent an effective way to improve healthspan and well-being.
Collapse
Affiliation(s)
- Sophia Athanasopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (S.A.); (M.K.); (N.M.)
- Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larisa, Greece
| | - Marianna Kapetanou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (S.A.); (M.K.); (N.M.)
| | | | - Nikoletta Mougkolia
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (S.A.); (M.K.); (N.M.)
| | - Polykseni Taouxidou
- Department of Physical Education and Sport Science, Aristotle University, 57001 Thessaloniki, Greece;
| | | | | | - Efstathios Gonos
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (S.A.); (M.K.); (N.M.)
- Hellenic Pasteur Institute, 11521 Athens, Greece
- Correspondence: ; Tel.: +30-210-6478860
| |
Collapse
|
13
|
Tungmunnithum D, Drouet S, Lorenzo JM, Hano C. Characterization of Bioactive Phenolics and Antioxidant Capacity of Edible Bean Extracts of 50 Fabaceae Populations Grown in Thailand. Foods 2021; 10:3118. [PMID: 34945669 PMCID: PMC8700874 DOI: 10.3390/foods10123118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
Fabaceae is the third largest family containing great variation among populations. However, previous studies mainly focus on single species, and phytochemicals at population level have never been reported. This work aims to complete this knowledge with 50 populations from throughout Thailand by (1) determining total phenolic (TPC), flavonoid (TFC), and anthocyanin (TAC) contents; and (2) investigating in vitro and cellular antioxidant potentials. Phytochemicals of 50 populations from different localities are differed, illustrating high heterogeneity occurring in polyphenols accumulations. Vigna unguiculata subsp. sesquipedalis populations showed low variability in TPC ranging from 628.3 to 717.3 mg/100 g DW gallic acid equivalent, whereas the high variability found in TFC and TAC range from 786.9 to 1536.1 mg/100 g DW quercetin equivalent, and 13.4 to 41.6 mg/100 g DW cyanidin equivalent. Red cultivar population #16 had the greatest TAC, but surprisingly the cream cultivars were relatively high in anthocyanins. HPLC quantification of genistein and daidzein showed great variations among populations. In vitro antioxidant results indicated that antioxidant capacity mediated by electron transfer. Cellular antioxidants ranged from 59.7% to 87.9% of ROS/RNS in yeast model. This study investigated at the population level contributing to better and frontier knowledge for nutraceutical/phytopharmaceutical sectors to seek potential raw plant material.
Collapse
Affiliation(s)
- Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Campus Eure et Loir, Orleans University, 28000 Chartres, France;
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Campus Eure et Loir, Orleans University, 28000 Chartres, France;
| |
Collapse
|
14
|
Green Extraction of Antioxidant Flavonoids from Pigeon Pea ( Cajanus cajan (L.) Millsp.) Seeds and Its Antioxidant Potentials Using Ultrasound-Assisted Methodology. Molecules 2021; 26:molecules26247557. [PMID: 34946637 PMCID: PMC8703396 DOI: 10.3390/molecules26247557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/25/2022] Open
Abstract
Pigeon pea is an important pea species in the Fabaceae family that has long been used for food, cosmetic, and other phytopharmaceutical applications. Its seed is reported as a rich source of antioxidants and anti-inflammatory flavonoids, especially isoflavones, i.e., cajanin, cajanol, daidzein, and genistein. In today’s era of green chemistry and green cosmetic development, the development and optimization of extraction techniques is increasing employed by the industrial sectors to provide environmentally friendly products for their customers. Surprisingly, there is no research report on improving the extraction of these isoflavonoids from pigeon pea seeds. In this present study, ultrasound-assisted extraction (USAE) methodology, which is a green extraction that provides a shorter extraction time and consumes less solvent, was optimized and compared with the conventional methods. The multivariate strategy, the Behnken–Box design (BBD) combined with response surface methodology, was employed to determine the best extraction conditions for this USAE utilizing ethanol as green solvent. Not only in vitro but also cellular antioxidant activities were evaluated using different assays and approaches. The results indicated that USAE provided a substantial gain of ca 70% in the (iso)flavonoids extracted and the biological antioxidant activities were preserved, compared to the conventional method. The best extraction conditions were 39.19 min with a frequency of 29.96 kHz and 63.81% (v/v) aqueous ethanol. Both the antioxidant and anti-aging potentials of the extract were obtained under optimal USAE at a cellular level using yeast as a model, resulting in lower levels of malondialdehyde. These results demonstrated that the extract can act as an effective activator of the cell longevity protein (SIR2/SIRT1) and cell membrane protector against oxidative stress. This finding supports the potential of pigeon pea seeds and USAE methodology to gain potential antioxidant and anti-aging (iso)flavonoids-rich sources for the cosmetic and phytopharmaceutical sectors.
Collapse
|
15
|
Micek I, Nawrot J, Seraszek-Jaros A, Jenerowicz D, Schroeder G, Spiżewski T, Suchan A, Pawlaczyk M, Gornowicz-Porowska J. Taxifolin as a Promising Ingredient of Cosmetics for Adult Skin. Antioxidants (Basel) 2021; 10:1625. [PMID: 34679758 PMCID: PMC8533573 DOI: 10.3390/antiox10101625] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022] Open
Abstract
Active substances, effective in the reduction in or delay of skin changes caused by aging occurring in natural compounds, are desirable. Taxifolin (TXF), a flavonoid of strong antioxidant activity found in the plant Stizolophus balsamita (S. balsamita), has been tested for its biological effects on adult human skin. The aim of the study was to investigate the effects of two creams: 3% S. balsamita extract and 3% TXF on the function of adult skin. In total, 97 Caucasian women with clinical signs of skin aging were investigated. The biophysical and biomechanical skin parameters were measured before and after applying the creams, using Colorimeter CL400, Mexameter MX16, Skin-pH-Meter PH900, Skin-Thermometer ST 500, Glossymeter GL200, and Cutiscan SC100. Patch tests were performed with the investigated products to assess their potential irritant properties. The percutaneous penetration of creams was examined with the use of electrospray ionization mass spectrometry (ESI-MS) and confocal Raman spectroscopy. The 3% S. balsamita extract cream reduced hyperpigmentation, erythema, and elevated pH. All the tested preparations were proven to be nonirritant. A higher penetration rate was revealed for the 3% TXF cream than for the 3% S. balsamita extract cream. A total of 3% TXF cream improved skin viscoelasticity. The obtained results suggested that S. balsamita extract and TXF may be considered as ingredients of skincare products for adults.
Collapse
Affiliation(s)
- Iwona Micek
- Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medicinal Sciences, Mazowiecka 33, 60-623 Poznan, Poland; (I.M.); (J.N.); (M.P.)
| | - Joanna Nawrot
- Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medicinal Sciences, Mazowiecka 33, 60-623 Poznan, Poland; (I.M.); (J.N.); (M.P.)
| | - Agnieszka Seraszek-Jaros
- Department of Bioinformatics and Computational Biology, Poznan University of Medical Sciences, 4 Rokietnicka Street, 60-806 Poznan, Poland;
| | - Dorota Jenerowicz
- Department of Dermatology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-356 Poznan, Poland;
| | - Grzegorz Schroeder
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznan, Poland;
| | - Tomasz Spiżewski
- Department of Vegetable Crops, Poznan University of Life Sciences, Dąbrowskiego 159 Street, 60-594 Poznan, Poland;
| | - Adela Suchan
- AVA Cosmetic Laboratory, Całowanie 103B, 05-480 Karczew, Poland;
| | - Mariola Pawlaczyk
- Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medicinal Sciences, Mazowiecka 33, 60-623 Poznan, Poland; (I.M.); (J.N.); (M.P.)
| | - Justyna Gornowicz-Porowska
- Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medicinal Sciences, Mazowiecka 33, 60-623 Poznan, Poland; (I.M.); (J.N.); (M.P.)
| |
Collapse
|
16
|
Evaluation of variability of silymarin complex in Silybi mariani fructus harvested during two production years. EUROPEAN PHARMACEUTICAL JOURNAL 2021. [DOI: 10.2478/afpuc-2020-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Milk thistle [Silybum marianum (L.) Gaertn.], a member of Asteraceae family, is one of the most cultivated medicinal plants widespread throughout the world. The pharmacological drug is a ripe fruit without pappus – Silybi mariani fructus – containing flavonolignans and generating silymarin complex. In folk medicine, it is used for the treatment of liver disorders, kidney problems, rheumatism as well as gastronomic disturbances, cardiac and neurotic disorders, and fever. The components of silymarin complex are useful in cancer prevention and treatment. The aim of the study was to determine the amount of silymarin complex contained in the fruit of the harvest of two consecutive years and how much they differ from one another. Representative samples of fruit were collected in 2015 and 2016 and distributed by a company Agrofos (Slovakia). Regarding the analytical method, we used a high-performance liquid chromatography (HPLC); the method was approved by the European Pharmacopoeia 10. The statistical significance was on the level P < 0.05. The total content of silymarin complex was 15.28 ± 0.06 g.kg−1 (in 2015) and 16.65 ± 0.09 g.kg−1 (in 2016). In both studied years, the highest representation of silybin B was observed (7.04 ± 0.07 g.kg−1 versus 5.92 ± 0.08 g.kg−1). The differences between the individual fractions of the silymarin complex were statistically significant. There was also a significant difference of 9% in the total silymarin content between 2015 and 2016. In conclusion, we can state that both samples of Silybi mariani fructus meet the requirements of the European Pharmacopoeia.
Collapse
|
17
|
Nano-Elicitation as an Effective and Emerging Strategy for In Vitro Production of Industrially Important Flavonoids. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041694] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Flavonoids represent a popular class of industrially important bioactive compounds. They possess valuable health-benefiting and disease preventing properties, and therefore they are an important component of the pharmaceutical, nutraceutical, cosmetical and medicinal industries. Moreover, flavonoids possess significant antiallergic, antihepatotoxic, anti-inflammatory, antioxidant, antitumor, antiviral, and antibacterial as well as cardio-protective activities. Due to these properties, there is a rise in global demand for flavonoids, forming a significant part of the world market. However, obtaining flavonoids directly from plants has some limitations, such as low quantity, poor extraction, over-exploitation, time consuming process and loss of flora. Henceforth, there is a shift towards the in vitro production of flavonoids using the plant tissue culture technique to achieve better yields in less time. In order to achieve the productivity of flavonoids at an industrially competitive level, elicitation is a useful tool. The elicitation of in vitro cultures induces stressful conditions to plants, activates the plant defense system and enhances the accumulation of secondary metabolites in higher quantities. In this regard, nanoparticles (NPs) have emerged as novel and effective elicitors for enhancing the in vitro production of industrially important flavonoids. Different classes of NPs, including metallic NPs (silver and copper), metallic oxide NPs (copper oxide, iron oxide, zinc oxide, silicon dioxide) and carbon nanotubes, are widely reported as nano-elicitors of flavonoids discussed herein. Lastly, the mechanisms of NPs as well as knowledge gaps in the area of the nano-elicitation of flavonoids have been highlighted in this review.
Collapse
|
18
|
Shah M, Jan H, Drouet S, Tungmunnithum D, Shirazi JH, Hano C, Abbasi BH. Chitosan Elicitation Impacts Flavonolignan Biosynthesis in Silybum marianum (L.) Gaertn Cell Suspension and Enhances Antioxidant and Anti-Inflammatory Activities of Cell Extracts. Molecules 2021; 26:791. [PMID: 33546424 PMCID: PMC7913645 DOI: 10.3390/molecules26040791] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/03/2023] Open
Abstract
Silybum marianum (L.) Gaertn is a rich source of antioxidants and anti-inflammatory flavonolignans with great potential for use in pharmaceutical and cosmetic products. Its biotechnological production using in vitro culture system has been proposed. Chitosan is a well-known elicitor that strongly affects both secondary metabolites and biomass production by plants. The effect of chitosan on S. marianum cell suspension is not known yet. In the present study, suspension cultures of S. marianum were exploited for their in vitro potential to produce bioactive flavonolignans in the presence of chitosan. Established cell suspension cultures were maintained on the same hormonal media supplemented with 0.5 mg/L BAP (6-benzylaminopurine) and 1.0 mg/L NAA (α-naphthalene acetic acid) under photoperiod 16/8 h (light/dark) and exposed to various treatments of chitosan (ranging from 0.5 to 50.0 mg/L). The highest biomass production was observed for cell suspension treated with 5.0 mg/L chitosan, resulting in 123.3 ± 1.7 g/L fresh weight (FW) and 17.7 ± 0.5 g/L dry weight (DW) productions. All chitosan treatments resulted in an overall increase in the accumulation of total flavonoids (5.0 ± 0.1 mg/g DW for 5.0 mg/L chitosan), total phenolic compounds (11.0 ± 0.2 mg/g DW for 0.5 mg/L chitosan) and silymarin (9.9 ± 0.5 mg/g DW for 0.5 mg/L chitosan). In particular, higher accumulation levels of silybin B (6.3 ± 0.2 mg/g DW), silybin A (1.2 ± 0.1 mg/g DW) and silydianin (1.0 ± 0.0 mg/g DW) were recorded for 0.5 mg/L chitosan. The corresponding extracts displayed enhanced antioxidant and anti-inflammatory capacities: in particular, high ABTS antioxidant activity (741.5 ± 4.4 μM Trolox C equivalent antioxidant capacity) was recorded in extracts obtained in presence of 0.5 mg/L of chitosan, whereas highest inhibitions of cyclooxygenase 2 (COX-2, 30.5 ± 1.3 %), secretory phospholipase A2 (sPLA2, 33.9 ± 1.3 %) and 15-lipoxygenase (15-LOX-2, 31.6 ± 1.2 %) enzymes involved in inflammation process were measured in extracts obtained in the presence of 5.0 mg/L of chitosan. Taken together, these results highlight the high potential of the chitosan elicitation in the S. marianum cell suspension for enhanced production of antioxidant and anti-inflammatory silymarin-rich extracts.
Collapse
Affiliation(s)
- Muzamil Shah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad-45320, Pakistan; (M.S.); (H.J.)
| | - Hasnain Jan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad-45320, Pakistan; (M.S.); (H.J.)
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), University of Orleans, INRAE USC1328, F28000 Chartres, France;
| | - Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, Thailand;
| | - Jafir Hussain Shirazi
- Department of Pharmacy, Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), University of Orleans, INRAE USC1328, F28000 Chartres, France;
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad-45320, Pakistan; (M.S.); (H.J.)
| |
Collapse
|
19
|
Kotecka-Majchrzak K, Sumara A, Fornal E, Montowska M. Identification of species-specific peptide markers in cold-pressed oils. Sci Rep 2020; 10:19971. [PMID: 33203972 PMCID: PMC7672054 DOI: 10.1038/s41598-020-76944-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/02/2020] [Indexed: 01/23/2023] Open
Abstract
In recent years, cold-pressed vegetable oils have become very popular on the global market. Therefore, new versatile methods with high sensitivity and specificity are needed to find and combat fraudulent practices. The objective of this study was to identify oilseed species-specific peptide markers, using proteomic techniques, for authentication of 10 cold-pressed oils. In total, over 380 proteins and 1050 peptides were detected in the samples. Among those peptides, 92 were found to be species-specific and unique to coconut, evening primrose, flax, hemp, milk thistle, nigella, pumpkin, rapeseed, sesame, and sunflower oilseed species. Most of the specific peptides were released from major seed storage proteins (11 globulins, 2S albumins), and oleosins. Additionally, the presence of allergenic proteins in the cold-pressed oils, including pumpkin Cuc ma 5, sunflower Hel a 3, and six sesame allergens (Ses i 1, Ses i 2, Ses i 3, Ses i 4, Ses i 6, and Ses i 7) was confirmed in this study. This study provides novel information on specific peptides that will help to monitor and verify the declared composition of cold-pressed oil as well as the presence of food allergens. This study can be useful in the era of widely used unlawful practices.
Collapse
Affiliation(s)
- Klaudia Kotecka-Majchrzak
- Department of Meat Technology, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624, Poznan, Poland
| | - Agata Sumara
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Emilia Fornal
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624, Poznan, Poland.
| |
Collapse
|
20
|
Flavonoids Profile, Taxonomic Data, History of Cosmetic Uses, Anti-Oxidant and Anti-Aging Potential of Alpinia galanga (L.) Willd. COSMETICS 2020. [DOI: 10.3390/cosmetics7040089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Alpinia galanga is a well-known medicinal plant in Southeast Asia and has been used for a long time as food and medicine. A large number of flavonoid phytochemical compounds have been identified in various parts of this medicinal herb. Flavonoids are commonly known as attractive compounds that can be applied to cosmetic or cosmeceutical product development because of their antioxidant, anti-aging and many other potential biological activities. This recent review aims to illustrate and update the taxonomic status as well as the species description that will be helpful for a rigorous identification and authenticate the raw material or living specimen from A. galanga. The flavonoid phytochemical compounds and the bioactivity of this medicinal plant are also provided. The future perspectives and research directions of A. galanga and its flavonoids are pointed out in this study as well.
Collapse
|
21
|
Elateeq AA, Sun Y, Nxumalo W, Gabr AM. Biotechnological production of silymarin in Silybum marianum L.: A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Drouet S, Tungmunnithum D, Lainé É, Hano C. Gene Expression Analysis and Metabolite Profiling of Silymarin Biosynthesis during Milk Thistle ( Silybum marianum (L.) Gaertn.) Fruit Ripening. Int J Mol Sci 2020; 21:E4730. [PMID: 32630801 PMCID: PMC7370286 DOI: 10.3390/ijms21134730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Mature fruits (i.e., achenes) of milk thistle (Silybum marianum (L.) Gaertn., Asteraceae) accumulate high amounts of silymarin (SILM), a complex mixture of bioactive flavonolignans deriving from taxifolin. Their biological activities in relation with human health promotion and disease prevention are well described. However, the conditions of their biosynthesis in planta are still obscure. To fill this gap, fruit development stages were first precisely defined to study the accumulation kinetics of SILM constituents during fruit ripening. The accumulation profiles of the SILM components during fruit maturation were determined using the LC-MS analysis of these defined developmental phases. The kinetics of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS) and peroxidase (POX) activities suggest in situ biosynthesis of SILM from l-Phenylalanine during fruit maturation rather than a transport of precursors to the achene. In particular, in contrast to laccase activity, POX activity was associated with the accumulation of silymarin, thus indicating a possible preferential involvement of peroxidase(s) in the oxidative coupling step leading to flavonolignans. Reference genes have been identified, selected and validated to allow accurate gene expression profiling of candidate biosynthetic genes (PAL, CAD, CHS, F3H, F3'H and POX) related to SILM accumulation. Gene expression profiles were correlated with SILM accumulation kinetic and preferential location in pericarp during S. marianum fruit maturation, reaching maximum biosynthesis when desiccation occurs, thus reinforcing the hypothesis of an in situ biosynthesis. This observation led us to consider the involvement of abscisic acid (ABA), a key phytohormone in the control of fruit ripening process. ABA accumulation timing and location during milk thistle fruit ripening appeared in line with a potential regulation of the SLIM accumulation. A possible transcriptional regulation of SILM biosynthesis by ABA was supported by the presence of ABA-responsive cis-acting elements in the promoter regions of the SILM biosynthetic genes studied. These results pave the way for a better understanding of the biosynthetic regulation of SILM during the maturation of S. marianum fruit and offer important insights to better control the production of these medicinally important compounds.
Collapse
Affiliation(s)
- Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, University of Orleans, 21 rue de Loigny la Bataille, F-28000 Chartres, France; (S.D.); (D.T.); (É.L.)
- Bioactifs et Cosmétiques, CNRS GDR3711, CEDEX 2, 45067 Orléans, France
| | - Duangjai Tungmunnithum
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, University of Orleans, 21 rue de Loigny la Bataille, F-28000 Chartres, France; (S.D.); (D.T.); (É.L.)
- Bioactifs et Cosmétiques, CNRS GDR3711, CEDEX 2, 45067 Orléans, France
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, Thailand
| | - Éric Lainé
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, University of Orleans, 21 rue de Loigny la Bataille, F-28000 Chartres, France; (S.D.); (D.T.); (É.L.)
- Bioactifs et Cosmétiques, CNRS GDR3711, CEDEX 2, 45067 Orléans, France
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, University of Orleans, 21 rue de Loigny la Bataille, F-28000 Chartres, France; (S.D.); (D.T.); (É.L.)
- Bioactifs et Cosmétiques, CNRS GDR3711, CEDEX 2, 45067 Orléans, France
| |
Collapse
|
23
|
Tungmunnithum D, Drouet S, Kabra A, Hano C. Enrichment in Antioxidant Flavonoids of Stamen Extracts from Nymphaea lotus L. Using Ultrasonic-Assisted Extraction and Macroporous Resin Adsorption. Antioxidants (Basel) 2020; 9:E576. [PMID: 32630721 PMCID: PMC7402147 DOI: 10.3390/antiox9070576] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
Nymphaea lotus L. is the medicinal plant that has long been used for food, cosmetics and traditional medicines in Africa and Asia since ancient times. Its flavonoids and other interesting phytochemical compounds from rhizome, leaf and the whole flowers have been reported in the previous published research. However, stamens, which are essential for reproductive functions, may also represent new alternative sources of potential antioxidant flavonoids, as investigated in this study. The innovative green chemistry methods, i.e., ultrasound-assisted extraction (UAE) as well as a macroporous resin (MPR) purification procedure, were employed in this current research. Using a full factorial design coupled to three-dimensional (3D) surface plot methodology, the influence of three variables, namely aqEtOH concentration (ranging from 50 to 100% (v/v), US frequency (ranging from 0 (no US applied) to 45 kHz), and the extraction duration (ranging from 20 to 60 min), were evaluated. Five MPRs with different surface areas, average pore diameters, matrix types and polarities were also investigated for the purification of total flavonoids. The optimal UAE condition is 90% (v/v) aqEtOH with 34.65 khz ultrasonic frequency and 46 min of extraction duration. Compared with the conventional heat reflux extraction (HRE) method, a significant 1.35-fold increase in total flavonoids content was obtained using optimized UAE conditions (169.64 for HRE vs. 235.45 mg/g dry weight for UAE), causing a 2.80-fold increase when this UAE associated with MPR purification (475.42 mg/g dry weight). In vitro cell free antioxidant activity of N. lotus stamen extracts and in cellulo antioxidant investigation using yeast model showed the same trend, indicating that the best antioxidant flavonoid can be found in UAE coupled with MPR purification. Moreover, in the yeast model, the expression of key antioxidant genes such as SIR2 and SOD2 were expressed at the highest level in yeast cells treated with the extract from UAE together with MPR purification. Consequently, it can be seen that the UAE combined with MPR purification can help enhance the flavonoid antioxidant potential of the stamens extract from this medicinal species.
Collapse
Affiliation(s)
- Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, University of Orleans, CEDEX 2, 45067 Orléans, France;
- Bioactifs et Cosmetiques, CNRS GDR 3711 Orleans, CEDEX 2, 45067 Orléans, France
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, University of Orleans, CEDEX 2, 45067 Orléans, France;
- Bioactifs et Cosmetiques, CNRS GDR 3711 Orleans, CEDEX 2, 45067 Orléans, France
| | - Atul Kabra
- School of Pharmacy, Raffles University, Neemrana 301705, Alwar, Rajasthan, India;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, University of Orleans, CEDEX 2, 45067 Orléans, France;
- Bioactifs et Cosmetiques, CNRS GDR 3711 Orleans, CEDEX 2, 45067 Orléans, France
| |
Collapse
|
24
|
A Quick, Green and Simple Ultrasound-Assisted Extraction for the Valorization of Antioxidant Phenolic Acids from Moroccan Almond Cold-Pressed Oil Residues. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093313] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Almond (Prunus dulcis (Mill.) D.A. Webb) is one of the most important nut crops both in terms of area and production. Over the last few decades, an important part of the beneficial actions for health associated with their consumption was attributed to the phenolic compounds, mainly accumulated in almond skin. Interestingly, after cold-pressed oil extraction, most of these antioxidant phenolic compounds are retained in a skin-enriched by-product, a so-called almond cold-pressed oil residue. In Morocco, the fifth highest ranking producer in the world, this production generates an important part of this valuable byproduct. In the present study, using a multivariate Box–Behnken design, an ultrasound-assisted extraction method of phenolic compounds from Moroccan almond cold-pressed oil residue was developed and validated. Response surface methodology resulted in the optimal extraction conditions: the use of aqueous ethanol 53.0% (v/v) as a green solvent, applying an ultrasound frequency of 27.0 kHz for an extraction duration of 29.4 min. The present ultrasound-assisted extraction allowed substantial gains in terms of extraction efficiency compared to conventional heat reflux extraction. Applied to three different local Beldi genotypes growing at three different experimental sites, the optimal conditions for ultrasound-assisted extraction led to a total phenolic content of 13.86 mg/g dry weight. HPLC analysis revealed that the main phenolic compounds from this valuable byproduct were: chlorogenic acid followed by protocatechuic acid, p-hydroxybenzoic acid, and p-coumaric acid. The accumulation of these phenolic compounds appeared to be more dependent on the genetic background than on the environmental impact here represented by the three experimental culture sites. Both in vitro cell free and cellular antioxidant assays were performed, and revealed the great potential of these extracts. In particular, correlation analysis provided evidence of the prominent roles of chlorogenic acid, protocatechuic acid, and p-hydroxybenzoic acid. To summarize, the validated ultrasound-assisted extraction method presented here is a quick, green, simple and efficient for the possible valorization of antioxidant phenolic compounds from Moroccan almond cold-pressed oil residues, making it possible to generate extracts with attractive antioxidant activities for future nutraceutical and/or cosmetic applications.
Collapse
|
25
|
Hano C, Tungmunnithum D. Plant Polyphenols, More than Just Simple Natural Antioxidants: Oxidative Stress, Aging and Age-Related Diseases. MEDICINES (BASEL, SWITZERLAND) 2020; 7:E26. [PMID: 32397520 PMCID: PMC7281114 DOI: 10.3390/medicines7050026] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/28/2022]
Abstract
The present editorial serves as an introduction to the Special Issue "Antioxidant and Anti-aging Action of Plant Polyphenols". It also provides a summary of the polyphenols, their biological properties and possible functions as medicines, the importance of traditional medicines as a source of inspiration, the rationalization of new uses of plant extracts which lead to applications in modern medicine, the status of modern green-chemistry extraction methods, and some reflections on future prospects. Here, the articles from this Special Issue, and the main aspects of the antioxidant and anti-aging effects of plant polyphenols are discussed in the form of seven questions.
Collapse
Affiliation(s)
- Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, Université d’Orléans, 21 rue de Loigny la Bataille, F-28000 Chartres, France;
- Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France
| | - Duangjai Tungmunnithum
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, Université d’Orléans, 21 rue de Loigny la Bataille, F-28000 Chartres, France;
- Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, Thailand
| |
Collapse
|