1
|
Yan KX, Ge BJ, Sang R, Zhao P, Liu XM, Yu MH, Liu XT, Qiu Q, Zhang XM. Taraxasterol attenuates zearalenone-induced kidney damage in mice by modulating oxidative stress and endoplasmic reticulum stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117093. [PMID: 39317070 DOI: 10.1016/j.ecoenv.2024.117093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Taraxasterol is one of the bioactive ingredients from traditional Chinese herb Taraxacum, which exhibits multiple pharmacological activities and protective effects. However, the underlying influence and mechanism of its use against kidney damage caused from zearalenone (ZEA) remain unexplored. The ZEA-induced kidney damage model of mice was established by feeding diets containing ZEA (2 mg/kg), and taraxasterol (5 and 10 mg/kg) was administered by gavage for 28 days. Results demonstrated taraxasterol increased average daily gain (ADG) and average daily feed intake (ADFI), reduced feed-to-gain ratio (F/G) and kidney index of mice induced by ZEA. Taraxasterol alleviated histopathological changes of kidney, reduced ZEA residue and the levels of blood urea nitrogen (BUN), uric acid (UA), and creatinine (CRE). Concurrently, taraxasterol reduced the contents of oxidative stress indicator reactive oxygen species (ROS) and malondialdehyde (MDA), and increased the activities of antioxidant enzymes catalase (CAT), total superoxide dismutase (T-SOD), and glutathione peroxidase (GSH-Px). Further, taraxasterol up-regulated the mRNA and protein expression of nuclear factor erythroid-2-related factor 2 (Nrf2), GSH-Px, NAD(P)H quinone oxidoreductase 1 (NQO1), and heme oxygenase-1 (HO-1), and down-regulated the mRNA and protein expression of KELCH like ECH associated protein (Keap1) in Nrf2/Keap1 pathway. Taraxasterol down-regulated the mRNA and protein expression of immunoglobulin binding protein (Bip), C/EBP homologous protein (CHOP), Bcl-2 associated X (Bax), cysteine protease (Caspase)-12, and Caspase-3, and up-regulated B-cell lymphoma 2 (Bcl-2) expression in endoplasmic reticulum stress pathway. This study suggests that taraxasterol attenuates ZEA-induced mouse kidney damage through the modulation of Nrf2/Keapl pathway to play antioxidant role and endoplasmic reticulum stress pathway to enhance anti-apoptotic ability. It will provide a basis for taraxasterol as a potential drug to prevent and treat ZEA-induced kidney damage.
Collapse
Affiliation(s)
- Ke-Xin Yan
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Gongyuan Street, Yanji, Jilin 133000, China.
| | - Bing-Jie Ge
- College of Agriculture, Yanbian University, Gongyuan Street, Yanji, Jilin 133000, China.
| | - Rui Sang
- College of Agriculture, Yanbian University, Gongyuan Street, Yanji, Jilin 133000, China.
| | - Peng Zhao
- College of Agriculture, Yanbian University, Gongyuan Street, Yanji, Jilin 133000, China.
| | - Xin-Man Liu
- College of Agriculture, Yanbian University, Gongyuan Street, Yanji, Jilin 133000, China.
| | - Ming-Hong Yu
- College of Agriculture, Yanbian University, Gongyuan Street, Yanji, Jilin 133000, China.
| | - Xiao-Tong Liu
- College of Agriculture, Yanbian University, Gongyuan Street, Yanji, Jilin 133000, China.
| | - Qian Qiu
- College of Agriculture, Yanbian University, Gongyuan Street, Yanji, Jilin 133000, China.
| | - Xue-Mei Zhang
- College of Agriculture, Yanbian University, Gongyuan Street, Yanji, Jilin 133000, China.
| |
Collapse
|
2
|
Frangiamone M, Lázaro Á, Cimbalo A, Font G, Manyes L. In vitro and in vivo assessment of AFB1 and OTA toxic effects and the beneficial role of bioactive compounds. A systematic review. Food Chem 2024; 447:138909. [PMID: 38489879 DOI: 10.1016/j.foodchem.2024.138909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
The purpose of this review was to investigate the current knowledge about aflatoxin B1 (AFB1) and ochratoxin A (OTA) toxicity and the possible beneficial role of bioactive compounds by using in vitro and in vivo models. Although AFB1 and OTA were tested in a similar percentage, the majority of studies focused on nephrotoxicity, hepatotoxicity, immune toxicity and neurotoxicity in which oxidative stress, inflammation, structural damage and apoptosis were the main mechanisms of action reported. Conversely, several biological compounds were assayed in order to modulate mycotoxins damage mainly in the liver, brain, kidney and immune system. Among them, pumpkin, curcumin and fermented whey were the most employed. Although a clear progress has been made by using in vivo models, further research is needed to assess not only the toxicity of multiple mycotoxins contamination but also the effect of functional compounds mixture, thereby reproducing more realistic situations for human health risk assessment.
Collapse
Affiliation(s)
- Massimo Frangiamone
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Carrer Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Álvaro Lázaro
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Carrer Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Alessandra Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Carrer Vicent Andrés Estellés s/n, 46100 Burjassot, Spain.
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Carrer Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Carrer Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| |
Collapse
|
3
|
Zhao P, Feng L, Jiang W, Wu P, Liu Y, Ren H, Jin X, Zhang L, Mi H, Zhou X. Unveiling the emerging role of curcumin to alleviate ochratoxin A-induced muscle toxicity in grass carp (Ctenopharyngodon idella): in vitro and in vivo studies. J Anim Sci Biotechnol 2024; 15:72. [PMID: 38734645 PMCID: PMC11088780 DOI: 10.1186/s40104-024-01023-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/11/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Ochratoxin A (OTA), a globally abundant and extremely hazardous pollutant, is a significant source of contamination in aquafeeds and is responsible for severe food pollution. The developmental toxicity of OTA and the potential relieving strategy of natural products remain unclear. This study screened the substance curcumin (Cur), which had the best effect in alleviating OTA inhibition of myoblast proliferation, from 96 natural products and investigated its effect and mechanism in reducing OTA myotoxicity in vivo and in vitro. METHODS A total of 720 healthy juvenile grass carp, with an initial average body weight of 11.06 ± 0.05 g, were randomly assigned into 4 groups: the control group (without OTA and Cur), 1.2 mg/kg OTA group, 400 mg/kg Cur group, and 1.2 mg/kg OTA + 400 mg/kg Cur group. Each treatment consisted of 3 replicates (180 fish) for 60 d. RESULTS Firstly, we cultured, purified, and identified myoblasts using the tissue block culture method. Through preliminary screening and re-screening of 96 substances, we examined cell proliferation-related indicators such as cell viability and ultimately found that Cur had the best effect. Secondly, Cur could alleviate OTA-inhibited myoblast differentiation and myofibrillar development-related proteins (MyoG and MYHC) in vivo and in vitro and improve the growth performance of grass carp. Then, Cur could also promote the expression of OTA-inhibited protein synthesis-related proteins (S6K1 and TOR), which was related to the activation of the AKT/TOR signaling pathway. Finally, Cur could downregulate the expression of OTA-enhanced protein degradation-related genes (murf1, foxo3a, and ub), which was related to the inhibition of the FoxO3a signaling pathway. CONCLUSIONS In summary, our data demonstrated the effectiveness of Cur in alleviating OTA myotoxicity in vivo and in vitro. This study confirms the rapidity, feasibility, and effectiveness of establishing a natural product screening method targeting myoblasts to alleviate fungal toxin toxicity.
Collapse
Affiliation(s)
- Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Hongmei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Xiaowan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Lu Zhang
- Tongwei Co., Ltd., Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, 610041, Sichuan, China
| | - Haifeng Mi
- Tongwei Co., Ltd., Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, 610041, Sichuan, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
4
|
Fu M, Chen Y, Yang A. Ochratoxin A induces mitochondrial dysfunction, oxidative stress, and apoptosis of retinal ganglion cells (RGCs), leading to retinal damage in mice. Int Ophthalmol 2024; 44:72. [PMID: 38349605 PMCID: PMC10864473 DOI: 10.1007/s10792-024-03032-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024]
Abstract
PURPOSE Ochratoxin A (OTA) contamination of food and feed is a serious problem worldwide. OTA is considered a carcinogen and immunotoxic, nephrotoxic, and neurotoxic mycotoxin. The present study aims to determine the toxic effects of OTA on retinal ganglion cells (RGCs) and assess the resulting impairment of retinal function in mice. METHODS RGC-5 cells were exposed to OTA (100 and 200 μg/L) for 3 days, and the mice were fed OTA-contain (100 and 200 μg/kg) diets for 4 weeks. Antioxidant indices were detected by spectrophotometer. The apoptosis of RGC-5 cells was determined by flow cytometry. Mitochondrial morphology and mitochondrial membrane potential were detected by immunofluorescence. RGC survival was determined by immunofluorescence staining with Brn3a. Flash electroretinography (ERG) was conducted to assess visual function. RESULTS The oxidative-antioxidant balance suggested that OTA-induced severe oxidative stress, including increased reactive oxygen species (ROS) and malondialdehyde (MDA) levels in the OTA-exposed RGC-5 cells, and the reduced activity of superoxide dismutase (SOD) and glutathione-S-transferase (GST) in the OTA exposed group. Furthermore, OTA exposure led to remarkable apoptosis in RGC-5 cells. The mitochondrial detection showed that OTA caused significant mitochondrial membrane potential reduction and mitochondrial fragmentation, which may be the cause of apoptosis of RGC-5 cells. Additionally, in vivo experiments demonstrated that OTA resulted in significant death of RGCs and subsequent retinal dysfunction in mice. CONCLUSION Ochratoxin A induces mitochondrial dysfunction, oxidative stress, and RGCs death in mice.
Collapse
Affiliation(s)
- Miao Fu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuanyuan Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Anhuai Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Damiano S, Longobardi C, Ferrara G, Piscopo N, Riccio L, Russo V, Meucci V, De Marchi L, Esposito L, Florio S, Ciarcia R. Oxidative Status and Histological Evaluation of Wild Boars' Tissues Positive for Zearalenone Contamination in the Campania Region, Southern Italy. Antioxidants (Basel) 2023; 12:1748. [PMID: 37760051 PMCID: PMC10525666 DOI: 10.3390/antiox12091748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Zearalenone (ZEN) is a mycotoxin produced by fungi belonging to the genera Fusarium spp. and commonly found in feed and food. It is frequently related to reproductive disorders in farm animals and, occasionally, to hyperestrogenic syndromes in humans. Nowadays, knowledge about ZEN effects on wild boars (Sus scrofa) is extremely scarce, despite the fact that they represent one of the most hunted game species in Italy. The aim of this study was to investigate how ZEN affects the liver, kidney, and muscle oxidative status and morphology of wild boars hunted in various locations throughout the province of Avellino, Campania Region, Southern Italy, during the 2021-2022 hunting season. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, as well as the malondialdehyde (MDA) levels, were assessed by colorimetric assays; tissue morphology was evaluated by hematoxylin-eosin and Masson's stains. Our data showed that ZEN contamination might result in oxidative stress (OS) and some histopathological alterations in wild boars' livers and kidneys rather than in muscles, emphasizing the importance of developing a wildlife monitoring and management strategy for dealing not only with the problem of ZEN but the surveillance of mycotoxins in general.
Collapse
Affiliation(s)
- Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Napoli, Italy; (S.D.); (C.L.); (G.F.); (L.R.); (V.R.); (L.E.); (S.F.); (R.C.)
| | - Consiglia Longobardi
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Napoli, Italy; (S.D.); (C.L.); (G.F.); (L.R.); (V.R.); (L.E.); (S.F.); (R.C.)
| | - Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Napoli, Italy; (S.D.); (C.L.); (G.F.); (L.R.); (V.R.); (L.E.); (S.F.); (R.C.)
| | - Nadia Piscopo
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Napoli, Italy; (S.D.); (C.L.); (G.F.); (L.R.); (V.R.); (L.E.); (S.F.); (R.C.)
| | - Lorenzo Riccio
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Napoli, Italy; (S.D.); (C.L.); (G.F.); (L.R.); (V.R.); (L.E.); (S.F.); (R.C.)
| | - Valeria Russo
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Napoli, Italy; (S.D.); (C.L.); (G.F.); (L.R.); (V.R.); (L.E.); (S.F.); (R.C.)
| | - Valentina Meucci
- Department of Veterinary Science, University of Pisa, 56122 Pisa, Italy;
| | - Lucia De Marchi
- Department of Veterinary Science, University of Pisa, 56122 Pisa, Italy;
| | - Luigi Esposito
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Napoli, Italy; (S.D.); (C.L.); (G.F.); (L.R.); (V.R.); (L.E.); (S.F.); (R.C.)
| | - Salvatore Florio
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Napoli, Italy; (S.D.); (C.L.); (G.F.); (L.R.); (V.R.); (L.E.); (S.F.); (R.C.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Napoli, Italy; (S.D.); (C.L.); (G.F.); (L.R.); (V.R.); (L.E.); (S.F.); (R.C.)
| |
Collapse
|
6
|
Jian S, Yang K, Zhang L, Zhang L, Xin Z, Wen C, He S, Deng J, Deng B. The modulation effects of plant‐derived bioactive ingredients on chronic kidney disease: Focus on the gut–kidney axis. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Shiyan Jian
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Kang Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Lingna Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Limeng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Zhongquan Xin
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Chaoyu Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Shansong He
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Jinping Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Baichuan Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| |
Collapse
|
7
|
Sadeghian M, Rahmani S, Jafarieh A, Jamialahmadi T, Sahebkar A. The effect of curcumin supplementation on renal function: A systematic and meta-analysis of randomized controlled trials. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
8
|
Xia D, Mo Q, Yang L, Wang W. Crosstalk between Mycotoxins and Intestinal Microbiota and the Alleviation Approach via Microorganisms. Toxins (Basel) 2022; 14:toxins14120859. [PMID: 36548756 PMCID: PMC9784275 DOI: 10.3390/toxins14120859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungus. Due to their widespread distribution, difficulty in removal, and complicated subsequent harmful by-products, mycotoxins pose a threat to the health of humans and animals worldwide. Increasing studies in recent years have highlighted the impact of mycotoxins on the gut microbiota. Numerous researchers have sought to illustrate novel toxicological mechanisms of mycotoxins by examining alterations in the gut microbiota caused by mycotoxins. However, few efficient techniques have been found to ameliorate the toxicity of mycotoxins via microbial pathways in terms of animal husbandry, human health management, and the prognosis of mycotoxin poisoning. This review seeks to examine the crosstalk between five typical mycotoxins and gut microbes, summarize the functions of mycotoxins-induced alterations in gut microbes in toxicological processes and investigate the application prospects of microbes in mycotoxins prevention and therapy from a variety of perspectives. The work is intended to provide support for future research on the interaction between mycotoxins and gut microbes, and to advance the technology for preventing and controlling mycotoxins.
Collapse
Affiliation(s)
- Daiyang Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qianyuan Mo
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-020-85283756
| |
Collapse
|
9
|
Geleta GS. A colorimetric aptasensor based on gold nanoparticles for detection of microbial toxins: an alternative approach to conventional methods. Anal Bioanal Chem 2022; 414:7103-7122. [PMID: 35902394 DOI: 10.1007/s00216-022-04227-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/01/2022]
Abstract
Frequent contamination of foods with microbial toxins produced by microorganisms such as bacteria, fungi, and algae represents an increasing public health problem that requires the development of quick and easy tools to detect them at trace levels. Recently, it has been found that colorimetric detection methods may replace traditional methods in the field because of their ease of use, quick response, ease of manufacture, low cost, and naked-eye visibility. Therefore, it is suitable for fieldwork, especially for work in remote areas of the world. However, the development of colorimetric detection methods with low detection limits is a challenge that limits their wide applicability in the detection of food contaminants. To address these challenges, nanomaterial-based transduction systems are used to construct colorimetric biosensors. For example, gold nanoparticles (AuNPs) provide an excellent platform for the development of colorimetric biosensors because they offer the advantages of easy synthesis, biocompatibility, advanced surface functionality, and adjustable physicochemical properties. The selectivity of the colorimetric biosensor can be achieved by the combination of aptamers and gold nanoparticles, which provides an unprecedented opportunity to detect microbial toxins. Compared to antibodies, aptamers have significant advantages in the analysis of microbial toxins due to their smaller size, higher binding affinity, reproducible chemical synthesis and modification, stability, and specificity. Two colorimetric mechanisms for the detection of microbial toxins based on AuNPs have been described. First, sensors that use the localized surface plasmon resonance (LSPR) phenomenon of gold nanoparticles can exhibit very strong colors in the visible range because of changes caused by aggregation or disaggregation. Second, the detection mechanism of AuNPs is based on their enzyme mimetic properties and it is possible to construct a colorimetric biosensor based on the 3,3',5,5'-tetramethylbenzidine/Hydrogen peroxide, TMB/H2O2 reaction to detect microbial toxins. Therefore, this review summarizes the recent applications of AuNP-based colorimetric aptasensors for detecting microbial toxins, including bacterial toxins, fungal toxins, and algal toxins focusing on selectivity, sensitivity, and practicality. Finally, the most important current challenges in this field and future research opportunities are discussed.
Collapse
Affiliation(s)
- Girma Salale Geleta
- Department of Chemistry, College of Natural Sciences, Salale University, P.O. Box 245, Oromia, Fiche, Ethiopia.
| |
Collapse
|
10
|
T-2 Toxin Induces Apoptotic Cell Death and Protective Autophagy in Mouse Microglia BV2 Cells. J Fungi (Basel) 2022; 8:jof8080761. [PMID: 35893129 PMCID: PMC9330824 DOI: 10.3390/jof8080761] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/21/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022] Open
Abstract
T-2 toxin exposure could cause neurotoxicity; however, the precise molecular mechanisms remain unclear. In the present study, we investigated T-2 toxin-induced cytotoxicity and underlying molecular mechanisms using a mouse microglia BV2 cell line. The results show that T-2 toxin treatment-induced cytotoxicity of BV2 cells was dose- and time-dependent. Compared to the control, T-2 toxin treatment at 1.25–5 ng/mL significantly increased reactive oxygen species (ROS) production and triggered oxidative stress. T-2 toxin treatment also caused mitochondrial dysfunction in BV2 cells, which was evidenced by decreased mitochondrial transmembrane potential, upregulated expression of Bax protein, and decreased expression of Bcl-2 protein. Meanwhile, T-2 toxin treatment upregulated the expression of cleaved-caspase-3, cleaved-PARP-1 proteins, and downregulated the expression of HO-1 and nuclear Nrf2 proteins, finally inducing cell apoptosis in BV2 cells. N-acetylcysteine (NAC) supplementation significantly attenuated T-2 toxin-induced cytotoxicity. Moreover, T-2 toxin treatment activated autophagy and upregulated autophagy flux, and the inhibition of autophagy significantly promoted T-2 toxin-induced cell apoptosis. Taken together, our results reveal that T-2 toxin-induced cytotoxicity in BV2 cells involves the production of ROS, the activation of the mitochondrial apoptotic pathway, and the inhibition of the Nrf2/HO-1 pathway. Our study offers new insight into the underlying molecular mechanisms in T-2 toxin-mediated neurotoxicity.
Collapse
|
11
|
Toolbox for the Extraction and Quantification of Ochratoxin A and Ochratoxin Alpha Applicable for Different Pig and Poultry Matrices. Toxins (Basel) 2022; 14:toxins14070432. [PMID: 35878170 PMCID: PMC9323111 DOI: 10.3390/toxins14070432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Ochratoxin A (OTA) is one of the major mycotoxins causing severe effects on the health of humans and animals. Ochratoxin alpha (OTα) is a metabolite of OTA, which is produced through microbial or enzymatic hydrolysis, and one of the preferred routes of OTA detoxification. The methods described here are applicable for the extraction and quantification of OTA and OTα in several pig and poultry matrices such as feed, feces/excreta, urine, plasma, dried blood spots, and tissue samples such as liver, kidney, muscle, skin, and fat. The samples are homogenized and extracted. Extraction is either based on a stepwise extraction using ethyl acetate/sodium hydrogencarbonate/ethyl acetate or an acetonitrile/water mixture. Quantitative analysis is based on reversed-phase liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Method validation was successfully performed and the linearity, limit of quantification, accuracy, precision as well as the stability of the samples, were evaluated. The analyte recovery of the spiked samples was between 80 and 120% (80–150% for spiked concentrations ≤ 1 ng/g or ng/mL) and the relative standard deviation was ≤ 15%. Therefore, we provide a toolbox for the extraction and quantification of OTA and OTα in all relevant pig and poultry matrices.
Collapse
|
12
|
Longobardi C, Ferrara G, Andretta E, Montagnaro S, Damiano S, Ciarcia R. Ochratoxin A and Kidney Oxidative Stress: The Role of Nutraceuticals in Veterinary Medicine-A Review. Toxins (Basel) 2022; 14:398. [PMID: 35737059 PMCID: PMC9231272 DOI: 10.3390/toxins14060398] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
The problem of residues of toxic contaminants in food products has assumed considerable importance in terms of food safety. Naturally occurring contaminants, such as mycotoxins, are monitored routinely in the agricultural and food industries. Unfortunately, the consequences of the presence of mycotoxins in foodstuffs are evident in livestock farms, where both subacute and chronic effects on animal health are observed and could have non-negligible effects on human health. Ochratoxin A (OTA) is a common mycotoxin that contaminates food and feeds. Due to its thermal stability, the eradication of OTA from the food chain is very difficult. Consequently, humans and animals are frequently exposed to OTA in daily life. In this review article, we will devote time to highlighting the redox-based nephrotoxicity that occurs during OTA intoxication. In the past few decades, the literature has improved on the main molecules and enzymes involved in the redox signaling pathway as well as on some new antioxidant compounds as therapeutic strategies to counteract oxidative stress. The knowledge shown in this work will address the use of nutraceutical substances as dietary supplements, which would in turn improve the prophylactic and pharmacological treatment of redox-associated kidney diseases during OTA exposure, and will attempt to promote animal feed supplementation.
Collapse
Affiliation(s)
- Consiglia Longobardi
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Largo Madonna delle Grazie n.1, 80138 Naples, Italy;
| | - Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy; (G.F.); (E.A.); (S.M.); (R.C.)
| | - Emanuela Andretta
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy; (G.F.); (E.A.); (S.M.); (R.C.)
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy; (G.F.); (E.A.); (S.M.); (R.C.)
| | - Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy; (G.F.); (E.A.); (S.M.); (R.C.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy; (G.F.); (E.A.); (S.M.); (R.C.)
| |
Collapse
|
13
|
Liu WC, Pushparaj K, Meyyazhagan A, Arumugam VA, Pappusamy M, Bhotla HK, Baskaran R, Issara U, Balasubramanian B, Khaneghah AM. Ochratoxin A as alarming health in livestock and human: A review on molecular interactions, mechanism of toxicity, detection, detoxification, and dietary prophylaxis. Toxicon 2022; 213:59-75. [PMID: 35452686 DOI: 10.1016/j.toxicon.2022.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/22/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
Ochratoxin A (OTA) is a toxic metabolite produced by Aspergillus and Penicillium fungi commonly found in raw plant sources and other feeds. This review comprises an extensive evaluation of the origin and proprieties of OTA, toxicokinetics, biotransformation, and toxicodynamics of ochratoxins. In in vitro and in vivo studies, the compatibility of OTA with oxidative stress is observed through the production of free radicals, resulting in genotoxicity and carcinogenicity. The OTA leads to nephrotoxicity as the chief target organ is the kidney. Other OTA excretion and absorption rates are observed, and the routes of elimination include faeces, urine, and breast milk. The alternations in the Phe moiety of OTA are the precursor for the amino acid alternation, bringing about Phe-hydroxylase and Phe-tRNA synthase, resulting in the complete dysfunction of cellular metabolism. Biodetoxification using specific microorganisms decreased the DNA damage, lipid peroxidation, and cytotoxicity. This review addressed the ability of antioxidants and the dietary components as prophylactic measures to encounter toxicity and demonstrated their capability to counteract the chronic exposure through supplementation as feed additives.
Collapse
Affiliation(s)
- Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641 043, Tamil Nadu, India
| | - Arun Meyyazhagan
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru, Karnataka, 560076, India.
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Manikantan Pappusamy
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru, Karnataka, 560076, India
| | - Haripriya Kuchi Bhotla
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Rathinasamy Baskaran
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Utthapon Issara
- Division of Food Science and Technology Management, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, 12110, Thailand
| | | | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
14
|
Corrêa JAF, Nazareth TDM, Meca G, Luciano FB. A small-scale ochratoxin A production method for rapid and affordable assay for screening microorganisms for their ability to degrade the mycotoxin. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Damiano S, Jarriyawattanachaikul W, Girolami F, Longobardi C, Nebbia C, Andretta E, Lauritano C, Dabbou S, Avantaggiato G, Schiavone A, Badino P, Ciarcia R. Curcumin Supplementation Protects Broiler Chickens Against the Renal Oxidative Stress Induced by the Dietary Exposure to Low Levels of Aflatoxin B1. Front Vet Sci 2022; 8:822227. [PMID: 35141309 PMCID: PMC8818882 DOI: 10.3389/fvets.2021.822227] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022] Open
Abstract
Aflatoxin B1 (AFB1) causes hepatotoxicity, immunotoxicity, and kidney damage, and it is included in group I of human carcinogens. The European Commission has established maximum limits of AFB1 in feed, ranging from 5 to 20 μg/kg. Chicken is moderately sensitive to AFB1, which results in reduced growth performance and economic losses. Oxidative stress triggered by AFB1 plays a crucial role in kidney damage and the antioxidant activity of Curcumin (CURC) could help in preventing such adverse effect. Twenty-days-old broilers were treated for 10 days with AFB1 (0.02 mg/kg feed), alone or in combination with CURC (400 mg/kg feed), to explore the effects on the renal tissue. Animals exposed to AFB1 alone displayed alterations of the oxidative stress parameters compared with controls: serum antioxidant capacity, and enzymatic activity of kidney superoxide dismutase, catalase and glutathione peroxidase were decreased, while renal malondialdehyde levels and NADPH oxidase complex expression were increased. The administration of CURC attenuates all the oxidative stress parameters modified by AFB1 in the chicken kidney, opening new perspectives in the management of aflatoxicosis.
Collapse
Affiliation(s)
- Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | | | - Flavia Girolami
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
- *Correspondence: Flavia Girolami
| | - Consiglia Longobardi
- Department of Mental, Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Carlo Nebbia
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Emanuela Andretta
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Chiara Lauritano
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Sihem Dabbou
- Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
| | | | - Achille Schiavone
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Paola Badino
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| |
Collapse
|
16
|
Qing H, Huo X, Huang S, Zhao L, Zhang J, Ji C, Ma Q. Bacillus subtilis ANSB168 Producing d-alanyl-d-alanine Carboxypeptidase Could Alleviate the Immune Injury and Inflammation Induced by Ochratoxin A. Int J Mol Sci 2021; 22:ijms222112059. [PMID: 34769489 PMCID: PMC8584730 DOI: 10.3390/ijms222112059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
Ochratoxin A (OTA) is toxic to animals and threatens food safety through residues in animal tissues. A novel degrading strain Bacillus subtilis ANSB168 was isolated and further investigated. We cloned d-alanyl-d-alanine carboxypeptidase DacA and DacB from ANSB168 and over-expressed them in Escherichia coli Rosetta (DE3). Then, we characterized the OTA degradation mechanism of DacA and DacB, which was degrading OTA into OTα. A total of 45 laying hens were divided into three equal groups. The control group was fed basal feed, and other groups were administered with OTA (250 μg/kg of feed). A freeze-dried culture powder of ANSB168 (3 × 107 CFU/g, 2 kg/T of feed) was added to one of the OTA-fed groups for 28 days from day one of the experiment. We found that OTA significantly damaged the kidney and liver, inducing inflammation and activating the humoral immune system, causing oxidative stress in the layers. The ANSB168 bioproduct was able to alleviate OTA-induced kidney and liver damage, relieving OTA-induced inflammation and oxidative stress. Overall, DacA and DacB derived from ANSB168 degraded OTA into OTα, while the ANSB168 bioproduct was able to alleviate damages induced by OTA in laying hens.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiugang Ma
- Correspondence: ; Tel.: +86-10-6273-2774
| |
Collapse
|
17
|
Ochratoxin A-Induced Nephrotoxicity: Up-to-Date Evidence. Int J Mol Sci 2021; 22:ijms222011237. [PMID: 34681895 PMCID: PMC8539333 DOI: 10.3390/ijms222011237] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin widely found in various foods and feeds that have a deleterious effect on humans and animals. It has been shown that OTA causes multiorgan toxicity, and the kidney is the main target of OTA among them. This present article aims to review recent and latest intracellular molecular interactions and signaling pathways of OTA-induced nephrotoxicity. Pyroptosis, lipotoxicity, organic anionic membrane transporter, autophagy, the ubiquitin-proteasome system, and histone acetyltransferase have been involved in the renal toxicity caused by OTA. Meanwhile, the literature reviewed the alternative or method against OTA toxicity by reducing ROS production, oxidative stress, activating the Nrf2 pathway, through using nanoparticles, a natural flavonoid, and metal supplement. The present review discloses the molecular mechanism of OTA-induced nephrotoxicity, providing opinions and strategies against OTA toxicity.
Collapse
|
18
|
Selective Activation of Endoplasmic Reticulum Stress by Reactive-Oxygen-Species-Mediated Ochratoxin A-Induced Apoptosis in Tubular Epithelial Cells. Int J Mol Sci 2021; 22:ijms222010951. [PMID: 34681610 PMCID: PMC8535626 DOI: 10.3390/ijms222010951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
Ochratoxin A (OTA), one of the major food-borne mycotoxins, impacts the health of humans and livestock by contaminating food and feed. However, the underlying mechanism of OTA nephrotoxicity remains unknown. This study demonstrated that OTA induced apoptosis through selective endoplasmic reticulum (ER) stress activation in human renal proximal tubular cells (HK-2). OTA increased ER-stress-related JNK and precursor caspase-4 cleavage apoptotic pathways. Further study revealed that OTA increased reactive oxygen species (ROS) levels, and N-acetyl cysteine (NAC) could reduce OTA-induced JNK-related apoptosis and ROS levels in HK-2 cells. Our results demonstrate that OTA induced ER stress-related apoptosis through an ROS-mediated pathway. This study provides new evidence to clarify the mechanism of OTA-induced nephrotoxicity.
Collapse
|
19
|
Longobardi C, Damiano S, Andretta E, Prisco F, Russo V, Pagnini F, Florio S, Ciarcia R. Curcumin Modulates Nitrosative Stress, Inflammation, and DNA Damage and Protects against Ochratoxin A-Induced Hepatotoxicity and Nephrotoxicity in Rats. Antioxidants (Basel) 2021; 10:antiox10081239. [PMID: 34439487 PMCID: PMC8389288 DOI: 10.3390/antiox10081239] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 02/04/2023] Open
Abstract
Ochratoxin A (OTA) is a fungal toxin of critical concern for food safety both for human health and several animal species, also representing a cancer threat to humans. Curcumin (CURC) is a natural polyphenol that has anti-apoptotic, anti-inflammatory, and antioxidant effects. The aim of this study was to investigate the cytoprotective effect of CURC against OTA-induced nephrotoxicity and hepatotoxicity through the study of the nitrosative stress, pro-inflammatory cytokines, and deoxyribonucleic acid (DNA) damage. Sprague Dawley rats were daily treated with CURC (100 mg/kg b.w.), OTA (0.5 mg/kg b.w), or CURC with OTA by oral gavage for 14 days. Our results demonstrated that OTA exposure was associated with significant increase of pro-inflammatory and DNA oxidative-damage biomarkers. Moreover, OTA induced the inducible nitric oxide synthase, (iNOS) resulting in increased nitric oxide (NO) levels both in kidney and liver. The co-treatment OTA + CURC counteracted the harmful effects of chronic OTA treatment by regulating inflammation, reducing NO levels and oxidative DNA damage in kidney and liver tissues. Histology revealed that OTA + CURC treatment determinates mainly an Iba1+ macrophagic infiltration with fewer CD3+ T-lymphocytes in the tissues. In conclusion, we evidenced that CURC exerted cytoprotective and antioxidant activities against OTA-induced toxicity in rats.
Collapse
Affiliation(s)
- Consiglia Longobardi
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Largo Madonna delle Grazie 1, 80138 Napoli, Italy;
| | - Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino 1, 80137 Napoli, Italy; (E.A.); (F.P.); (V.R.); (S.F.)
- Correspondence: (S.D.); (R.C.); Tel.: +39-081-253-6027 (S.D.); +39-081-253-6051 (R.C.)
| | - Emanuela Andretta
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino 1, 80137 Napoli, Italy; (E.A.); (F.P.); (V.R.); (S.F.)
| | - Francesco Prisco
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino 1, 80137 Napoli, Italy; (E.A.); (F.P.); (V.R.); (S.F.)
| | - Valeria Russo
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino 1, 80137 Napoli, Italy; (E.A.); (F.P.); (V.R.); (S.F.)
| | - Francesco Pagnini
- Unit of Radiology, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy;
| | - Salvatore Florio
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino 1, 80137 Napoli, Italy; (E.A.); (F.P.); (V.R.); (S.F.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino 1, 80137 Napoli, Italy; (E.A.); (F.P.); (V.R.); (S.F.)
- Correspondence: (S.D.); (R.C.); Tel.: +39-081-253-6027 (S.D.); +39-081-253-6051 (R.C.)
| |
Collapse
|
20
|
Schwerdt G, Kopf M, Gekle M. The Impact of the Nephrotoxin Ochratoxin A on Human Renal Cells Studied by a Novel Co-Culture Model Is Influenced by the Presence of Fibroblasts. Toxins (Basel) 2021; 13:toxins13030219. [PMID: 33803529 PMCID: PMC8003035 DOI: 10.3390/toxins13030219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/04/2022] Open
Abstract
The kidney is threatened by a lot of potentially toxic substances. To study the influence of the nephrotoxin ochratoxin A (OTA) we established a cell co-culture model consisting of human renal proximal tubule cells and fibroblasts. We studied the effect of OTA on cell survival, the expression of genes and/or proteins related to cell death, extracellular matrix and energy homeostasis. OTA-induced necrosis was enhanced in both cell types in the presence of the respective other cell type, whereas OTA-induced apoptosis was independent therefrom. In fibroblasts, but not in tubule cells, a co-culture effect was visible concerning the expression of the cell-cycle-related protein p21. The expression of the epithelial-to-mesenchymal transition-indicating protein vimentin was independent from the culture-condition. The expression of the OTA-induced lncRNA WISP1-AS1 was enhanced in co-culture. OTA exposure led to alterations in the expression of genes related to energy metabolism with a glucose-mobilizing effect and a reduced expression of mitochondrial proteins. Together we demonstrate that the reaction of cells can be different in the presence of cells which naturally are close-by, thus enabling a cellular cross-talk. Therefore, to evaluate the toxicity of a substance, it would be an advantage to consider the use of co-cultures instead of mono-cultures.
Collapse
|
21
|
Pastor L, Vettorazzi A, Guruceaga E, López de Cerain A. Time Course of Renal Transcriptomics after Subchronic Exposure to Ochratoxin A in Fisher Rats. Toxins (Basel) 2021; 13:177. [PMID: 33652839 PMCID: PMC7996782 DOI: 10.3390/toxins13030177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/21/2022] Open
Abstract
The mycotoxin ochratoxin A (OTA) is a potent nephrocarcinogen, mainly in male rats. The aim of this study was to determine the time course of gene expression (GeneChip® Rat Gene 2.0 ST Array, Affymetrix) in kidney samples from male and female F344 rats, treated daily (p.o) with 0.50 mg/kg b.w. (body weight) of OTA for 7 or 21 days, and evaluate if there were differences between both sexes. After OTA treatment, there was an evolution of gene expression in the kidney over time, with more differentially expressed genes (DEG) at 21 days. The gene expression time course was different between sexes with respect to the number of DEG and the direction of expression (up or down): the female response was progressive and consistent over time, whereas males had a different early response with more DEG, most of them up-regulated. The statistically most significant DEG corresponded to metabolism enzymes (Akr1b7, Akr1c2, Adh6 down-regulated in females; Cyp2c11, Dhrs7, Cyp2d1, Cyp2d5 down-regulated in males) or transporters (Slc17a9 down-regulated in females; Slco1a1 (OATP-1) and Slc51b and Slc22a22 (OAT) down-regulated in males). Some of these genes had also a basal sex difference and were over-expressed in males or females with respect to the other sex.
Collapse
Affiliation(s)
- Laura Pastor
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, CIFA Building, c/Irunlarrea 1, E-31008 Pamplona, Spain; (L.P.); (A.L.d.C.)
- IdiSNA, Navarra Institute for Health Research, E-31008 Pamplona, Spain;
| | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, CIFA Building, c/Irunlarrea 1, E-31008 Pamplona, Spain; (L.P.); (A.L.d.C.)
- IdiSNA, Navarra Institute for Health Research, E-31008 Pamplona, Spain;
| | - Elizabeth Guruceaga
- IdiSNA, Navarra Institute for Health Research, E-31008 Pamplona, Spain;
- Bioinformatics Platform, Center for Applied Medical Research (CIMA), University of Navarra, E-31008 Pamplona, Spain
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, CIFA Building, c/Irunlarrea 1, E-31008 Pamplona, Spain; (L.P.); (A.L.d.C.)
- IdiSNA, Navarra Institute for Health Research, E-31008 Pamplona, Spain;
| |
Collapse
|
22
|
Damiano S, Longobardi C, Andretta E, Prisco F, Piegari G, Squillacioti C, Montagnaro S, Pagnini F, Badino P, Florio S, Ciarcia R. Antioxidative Effects of Curcumin on the Hepatotoxicity Induced by Ochratoxin A in Rats. Antioxidants (Basel) 2021; 10:125. [PMID: 33477286 PMCID: PMC7830919 DOI: 10.3390/antiox10010125] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/05/2023] Open
Abstract
Ochratoxin A (OTA) is a powerful mycotoxin found in various foods and feedstuff, responsible for subchronic and chronic toxicity, such as nephrotoxicity, hepatotoxicity, teratogenicity, and immunotoxicity to both humans and several animal species. The severity of the liver damage caused depends on both dose and duration of exposure. Several studies have suggested that oxidative stress might contribute to increasing the hepatotoxicity of OTA, and several antioxidants, including curcumin (CURC), have been tested to counteract the toxic hepatic action of OTA in various classes of animals. Therefore, the present study was designed to evaluate the protective effect of CURC, a bioactive compound with different therapeutic properties on hepatic injuries caused by OTA in rat animal models. CURC effects were examined in Sprague Dawley rats treated with CURC (100 mg/kg), alone or in combination with OTA (0.5 mg/kg), by gavage daily for 14 days. At the end of the experiment, rats treated with OTA showed alterations in biochemical parameters and oxidative stress in the liver. CURC dosing significantly attenuated oxidative stress and lipid peroxidation versus the OTA group. Furthermore, liver histological tests showed that CURC reduced the multifocal lymphoplasmacellular hepatitis, the periportal fibrosis, and the necrosis observed in the OTA group. This study provides evidence that CURC can preserve OTA-induced oxidative damage in the liver of rats.
Collapse
Affiliation(s)
- Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| | - Consiglia Longobardi
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Largo Madonna delle Grazie n.1, 80138 Naples, Italy;
| | - Emanuela Andretta
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| | - Francesco Prisco
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| | - Giuseppe Piegari
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| | - Caterina Squillacioti
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| | - Francesco Pagnini
- Unit of Radiology, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy;
| | - Paola Badino
- Department of Veterinary Science, University of Turin, L. go P. Braccini 2-5, 10095 Grugliasco, Italy;
| | - Salvatore Florio
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| |
Collapse
|
23
|
Bagherniya M, Soleimani D, Rouhani MH, Askari G, Sathyapalan T, Sahebkar A. The Use of Curcumin for the Treatment of Renal Disorders: A Systematic Review of Randomized Controlled Trials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1291:327-343. [PMID: 34331699 DOI: 10.1007/978-3-030-56153-6_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic kidney disease (CKD) is one of the significant causes of morbidity and mortality worldwide, which could develop and progress to end-stage renal disease. Increased inflammation and reduced antioxidant capacity commonly occur in CKD and hemodialysis patients. Curcumin is a natural bioactive compound with antioxidant and anti-inflammatory properties. This systematic review was undertaken with the main aim of assessing the effects of curcumin/turmeric supplementation on renal diseases based on clinical trials. A comprehensive search was performed in PubMed/MEDLINE, Scopus, ISI Web of Science, and Google Scholar from inception up to April 6, 2020 to identify clinical trials assessing the effects of curcumin or turmeric alone, or in combination with other herbs or nutrients on renal diseases. Twelve studies met the eligibility criteria. These randomized controlled trials (RCTs) comprised 631 patients with either chronic kidney diseases (CKD), hemodialysis, diabetic proteinuria and nephropathy, and lupus nephritis. Curcumin/turmeric supplementation had favorable effects on renal diseases, particularly in terms of inflammation and oxidative stress. However, with the exception for proteinuria, their impact on clinical parameters, such as blood urea nitrogen, creatinine, glomerular filtration rate (GFR), and serum albumin, was weak and not significant. No serious adverse effects were reported following curcumin/turmeric supplementation. Within the limitations of this review, it can be concluded that curcumin/turmeric supplementation might have some beneficial effects on inflammatory and oxidative stress parameters of patients but no considerable positive impact on clinical outcomes of kidney diseases, apart from proteinuria.
Collapse
Affiliation(s)
- Mohammad Bagherniya
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Soleimani
- School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hossein Rouhani
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Halal Research Center of IRI, FDA, Tehran, Iran.
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
24
|
Anethole Dithiolethione Increases Glutathione in Kidney by Inhibiting γ-Glutamyltranspeptidase: Biochemical Interpretation and Pharmacological Consequences. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3562972. [PMID: 33062138 PMCID: PMC7539083 DOI: 10.1155/2020/3562972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/28/2020] [Accepted: 09/10/2020] [Indexed: 01/10/2023]
Abstract
Aims Anethole dithiolethione (ADT) is a marketed drug to treat xerostomia. Its mechanism of action is still unknown, but several preclinical studies indicate that it is able to increase intracellular glutathione (GSH) and protect against oxidative stress. Here, we investigated the molecular mechanisms behind these effects. Results Oral treatment of rats confirmed the GSH enhancing properties of ADT; among the different organs examined in this study, only the kidney showed a significant GSH increase that was already observed at low-dose treatments. The increase in GSH correlated with a decrease in γ-glutamyltranspeptidase (γ-GT) activity of the different tissues. In vitro and ex vivo experiments with tubular renal cells and isolated perfused rat kidney showed that the cellular uptake of intact GSH was correlated with the extracellular concentrations of GSH. Conclusion s. The prominent in vivopharmacological effect of ADT was a marked increase of GSH concentration in the kidney and a decrease of some systemic and renal biomarkers of oxidative stress. In particular, by inhibition of γ-GT activity, it decreased the production cysteinylglycine, a thiol that has prooxidant effects as the consequence of its autooxidation. The activity of ADT as GSH enhancer in both the circulation and the kidney was long-lasting. All these characteristics make ADT a promising drug to protect the kidney, and in particular proximal tubule cells, from xenobiotic-induced damage.
Collapse
|