1
|
Wu Y, Sun Y, Chen L, Tong X, Liu C, Lu L, Zhang R, Wang S, Chen Z, Zhang J, Han Z, Zeng B, Li M, Jin L. Dynamics of single-nuclei transcriptomic profiling of adipose tissue from diverse anatomical locations during mouse aging process. Sci Rep 2024; 14:16093. [PMID: 38997312 PMCID: PMC11245496 DOI: 10.1038/s41598-024-66918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Adipose tissue plays critical roles in an individual's aging process. In this research, we use single-nucleus RNA sequencing to create highly detailed transcriptional maps of subcutaneous adipose tissue and visceral adipose tissue in young and aged mice. We comprehensively identify the various cell types within the white adipose tissue of mice, our study has elucidated seven distinct cell types within this tissue. Further analyses focus on adipocytes, fibro-adipogenic progenitors, and immune cells, revealing age-related declines in the synthetic metabolic activity of adipocytes, diminished immune regulation, and reduced maturation or proliferation of fibroblasts in undifferentiated adipocytes. We confirm the presence of distinct subpopulations of adipocytes, highlighting decreases in adipogenesis subgroups due to aging. Additionally, we uncover a reduction in immune cell subpopulations, driven by age-associated immune system dysregulation. Furthermore, pseudo-time analyses indicate that Adipocyte1 represents the 'nascent' phase of adipocyte development, while Adipocyte2 represents the 'mature' phase. We use cell-cell interaction to explore the age-dependent complexities of the interactions between FAPs and adipocytes, and observed increased expression of the inflammation-related Retn-Tlr4 interaction in older mice, while the anti-inflammatory Angpt1-Tek interaction was only detected in young mice. These transcriptional profiles serve as a valuable resource for understanding the functional genomics underlying metabolic disorders associated with aging in human adipose tissue.
Collapse
Affiliation(s)
- Yujie Wu
- Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ying Sun
- Department of Geriatics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611130, China
| | - Long Chen
- Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xingyan Tong
- Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Can Liu
- Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lu Lu
- Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rui Zhang
- Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Siyuan Wang
- Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ziyu Chen
- Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiaman Zhang
- Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ziyin Han
- Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Zeng
- Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingzhou Li
- Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Long Jin
- Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
2
|
Ibrahim KG, Hudu SA, Jega AY, Taha A, Yusuf AP, Usman D, Adeshina KA, Umar ZU, Nyakudya TT, Erlwanger KH. Thymoquinone: A comprehensive review of its potential role as a monotherapy for metabolic syndrome. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1214-1227. [PMID: 39229585 PMCID: PMC11366942 DOI: 10.22038/ijbms.2024.77203.16693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/06/2024] [Indexed: 09/05/2024]
Abstract
Metabolic syndrome (MetS) is a widespread global epidemic that affects individuals across all age groups and presents a significant public health challenge. Comprising various cardio-metabolic risk factors, MetS contributes to morbidity and, when inadequately addressed, can lead to mortality. Current therapeutic approaches involve lifestyle changes and the prolonged use of pharmacological agents targeting the individual components of MetS, posing challenges related to cost, compliance with medications, and cumulative side effects. To overcome the challenges associated with these conventional treatments, herbal medicines and phytochemicals have been explored and proven to be holistic complements/alternatives in the management of MetS. Thymoquinone (TQ), a prominent bicyclic aromatic compound derived from Nigella sativa emerges as a promising candidate that has demonstrated beneficial effects in the treatment of the different components of MetS, with a good safety profile. For methodology, literature searches were conducted using PubMed and Google Scholar for relevant studies until December 2023. Using Boolean Operators, TQ and the individual components of MetS were queried against the databases. The retrieved articles were screened for eligibility. As a result, we provide a comprehensive overview of the anti-obesity, anti-dyslipidaemic, anti-hypertensive, and anti-diabetic effects of TQ including some underlying mechanisms of action such as modulating the expression of several metabolic target genes to promote metabolic health. The review advocates for a paradigm shift in MetS management, it contributes valuable insights into the multifaceted aspects of the application of TQ, fostering an understanding of its role in mitigating the global burden of MetS.
Collapse
Affiliation(s)
- Kasimu Ghandi Ibrahim
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, P.O. Box 2000, Zarqa 13110, Jordan
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto P.M.B 2346, Nigeria
| | - Shuaibu Abdullahi Hudu
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, P.O. Box 2000, Zarqa 13110, Jordan
- Department of Medical Microbiology and Immunology, Faculty of Basic Clinical Sciences, College of Health Sciences, Usmanu Danfodiyo
| | | | - Ahmad Taha
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, P.O. Box 2000, Zarqa 13110, Jordan
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P.M.B. 2254
| | | | - Dawoud Usman
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto P.M.B 2346, Nigeria
- Department of Physiology, Faculty of Medicine, Port-said University, Egypt
| | - Kehinde Ahmad Adeshina
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto P.M.B 2346, Nigeria
- Department of Biochemistry, Federal University of Technology, P.M.B. 65, Minna, Niger State, Nigeria
| | - Zayyanu Usman Umar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto P.M.B 2346, Nigeria
| | - Trevor Tapiwa Nyakudya
- Biomedical Science Research and Training Centre (BioRTC), Yobe State University, Damaturu, Nigeria
| | - Kennedy Honey Erlwanger
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| |
Collapse
|
3
|
Antar SA, Ashour NA, Sharaky M, Khattab M, Ashour NA, Zaid RT, Roh EJ, Elkamhawy A, Al-Karmalawy AA. Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomed Pharmacother 2023; 168:115734. [PMID: 37857245 DOI: 10.1016/j.biopha.2023.115734] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023] Open
Abstract
Nowadays, diabetes mellitus has emerged as a significant global public health concern with a remarkable increase in its prevalence. This review article focuses on the definition of diabetes mellitus and its classification into different types, including type 1 diabetes (idiopathic and fulminant), type 2 diabetes, gestational diabetes, hybrid forms, slowly evolving immune-mediated diabetes, ketosis-prone type 2 diabetes, and other special types. Diagnostic criteria for diabetes mellitus are also discussed. The role of inflammation in both type 1 and type 2 diabetes is explored, along with the mediators and potential anti-inflammatory treatments. Furthermore, the involvement of various organs in diabetes mellitus is highlighted, such as the role of adipose tissue and obesity, gut microbiota, and pancreatic β-cells. The manifestation of pancreatic Langerhans β-cell islet inflammation, oxidative stress, and impaired insulin production and secretion are addressed. Additionally, the impact of diabetes mellitus on liver cirrhosis, acute kidney injury, immune system complications, and other diabetic complications like retinopathy and neuropathy is examined. Therefore, further research is required to enhance diagnosis, prevent chronic complications, and identify potential therapeutic targets for the management of diabetes mellitus and its associated dysfunctions.
Collapse
Affiliation(s)
- Samar A Antar
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Nada A Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| | - Muhammad Khattab
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre, Cairo, Egypt
| | - Naira A Ashour
- Department of Neurology, Faculty of Physical Therapy, Horus University, New Damietta 34518, Egypt
| | - Roaa T Zaid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Eun Joo Roh
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ahmed Elkamhawy
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| |
Collapse
|
4
|
Adam SH, Abu IF, Kamal DAM, Febriza A, Kashim MIAM, Mokhtar MH. A Review of the Potential Health Benefits of Nigella sativa on Obesity and Its Associated Complications. PLANTS (BASEL, SWITZERLAND) 2023; 12:3210. [PMID: 37765374 PMCID: PMC10536791 DOI: 10.3390/plants12183210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Obesity has become a worldwide epidemic and its prevalence continues to increase at an alarming rate. It is considered a major risk factor for the development of several comorbidities, including type 2 diabetes, stroke, other cardiovascular diseases and even cancer. Conventional treatments for obesity, such as dietary interventions, exercise and pharmacotherapy, have proven to have limited effectiveness and are often associated with undesirable side effects. Therefore, there is a growing interest in exploring alternative therapeutic approaches. Nigella sativa (NS), a medicinal plant with multiple pharmacological properties, has gained attention due to its potential role in the treatment of obesity and its associated complications. The aim of this review is therefore to assess the effects of NS on obesity and its complications and to provide insights into the underlying mechanisms. From this review, NS appears to play a complementary or supportive role in the treatment of obesity and its complications. However, future studies are needed to verify the efficacy of NS in the treatment of obesity and its complications and to prove its safety so that it can be introduced in patients with obesity.
Collapse
Affiliation(s)
- Siti Hajar Adam
- Preclinical Department, Faculty of Medicine & Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia
| | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Jalan Sultan Ismail, Kuala Lumpur 50250, Malaysia
| | - Datu Agasi Mohd Kamal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Ami Febriza
- Department of Physiology, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Kota Makassar 90221, Indonesia
| | - Mohd Izhar Ariff Mohd Kashim
- Centre of Shariah, Faculty of Islamic Studies, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Insitute of Islam Hadhari, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
5
|
Jun N, Yi‐Ting C, Yu‐Ting G, Cheng‐Fa Z, Li‐Juan L, Rong S, Xiao‐yan Y, Wen X, Xu Y. Antioxidant, anti-inflammatory, and anticancer function of Engleromyces goetzei Henn aqueous extract on human intestinal Caco-2 cells treated with t-BHP. Food Sci Nutr 2023; 11:3450-3463. [PMID: 37324905 PMCID: PMC10261740 DOI: 10.1002/fsn3.3335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 04/08/2023] Open
Abstract
High body mass index (high BMI, obesity) is a serious public health problem, and "obesity-induced oxidative stress, inflammation, and cancer" have become modern epidemic diseases. We carried out this study to explore a functional beverage that may protect against obesity-induced diseases. The Engleromyces goetzei Henn herbal tea is such a candidate. For this study, we carried out LC-MS analysis of E. goetzei Henn aqueous extract (EgH-AE); then used the Caco-2 cell line for the model cells and treated the cells with t-BHP to form an oxidative stress system. An MTT assay was used for testing the biocompatibility and cytoprotective effects; reactive oxygen species and malondialdehyde determination was used for evaluating the antioxidative stress effect; TNF-α and IL-1β were used for observing the anti-inflammatory effect, and 8-OHdG for monitoring anticancer activity. The results of this study demonstrate that the EgH-AE has very good biocompatibility with the Caco-2 cell line and has good cytoprotective, antioxidant, anti-inflammatory, and anticancer properties. It is clear that EgH-AE, a kind of ancient herbal tea, may be used to develop a functional beverage that can be given to people with a high BMI to protect against obesity-induced diseases.
Collapse
Affiliation(s)
- Ni Jun
- Institute of Natural Antioxidants and Antioxidant InflammationDali UniversityDali671003China
- Institute of Eastern‐Himalaya Biodiversity ResearchDali UniversityDaliYunnanChina
| | - Cheng Yi‐Ting
- Institute of Natural Antioxidants and Antioxidant InflammationDali UniversityDali671003China
- Institute of Eastern‐Himalaya Biodiversity ResearchDali UniversityDaliYunnanChina
| | - Gao Yu‐Ting
- Institute of Natural Antioxidants and Antioxidant InflammationDali UniversityDali671003China
- Institute of Eastern‐Himalaya Biodiversity ResearchDali UniversityDaliYunnanChina
| | - Zhao Cheng‐Fa
- Institute of Natural Antioxidants and Antioxidant InflammationDali UniversityDali671003China
- Institute of Eastern‐Himalaya Biodiversity ResearchDali UniversityDaliYunnanChina
| | - Li Li‐Juan
- Institute of Natural Antioxidants and Antioxidant InflammationDali UniversityDali671003China
| | - She Rong
- Institute of Natural Antioxidants and Antioxidant InflammationDali UniversityDali671003China
- Institute of Eastern‐Himalaya Biodiversity ResearchDali UniversityDaliYunnanChina
| | - Yang Xiao‐yan
- Institute of Natural Antioxidants and Antioxidant InflammationDali UniversityDali671003China
- Institute of Eastern‐Himalaya Biodiversity ResearchDali UniversityDaliYunnanChina
| | - Xiao Wen
- Institute of Natural Antioxidants and Antioxidant InflammationDali UniversityDali671003China
- Institute of Eastern‐Himalaya Biodiversity ResearchDali UniversityDaliYunnanChina
- Center for Cultural Ecology in Northwest YunnanDaliYunnan671003China
- Yunling Back‐and‐White Snub‐Nosed Monkey Observation and Research Station of Yunnan ProvinceDaliYunnan671003China
| | - Yang Xu
- Institute of Natural Antioxidants and Antioxidant InflammationDali UniversityDali671003China
- Laboratory of Environmental BiomedicineCentral China Normal University430079WuhanChina
| |
Collapse
|
6
|
Sadeghi E, Imenshahidi M, Hosseinzadeh H. Molecular mechanisms and signaling pathways of black cumin (Nigella sativa) and its active constituent, thymoquinone: a review. Mol Biol Rep 2023; 50:5439-5454. [PMID: 37155017 DOI: 10.1007/s11033-023-08363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/01/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Nigella sativa and its main bioactive ingredient, thymoquinone, exhibit various pharmacological activities, including neuroprotective, nephroprotective, cardioprotective, gastroprotective, hepatoprotective, and anti-cancer effects. Many studies have been conducted trying to elucidate the molecular signaling pathways that mediate these diverse pharmacological properties of N. sativa and thymoquinone. Accordingly, the goal of this review is to show the effects of N. sativa and thymoquinone on different cell signaling pathways. METHODS The online databases Scopus, PubMed and Web of Science were searched to identify relevant articles using a list of related keywords such as Nigella sativa, black cumin, thymoquinone, black seed, signal transduction, cell signaling, antioxidant, Nrf2, NF-κB, PI3K/AKT, apoptosis, JAK/STAT, AMPK, MAPK, etc. Only articles published in the English language until May 2022 were included in the present review article. RESULTS Studies indicate that N. sativa and thymoquinone improve antioxidant enzyme activities, effectively scavenges free radicals, and thus protect cells from oxidative stress. They can also regulate responses to oxidative stress and inflammation via Nrf2 and NF-κB pathways. N. sativa and thymoquinone can inhibit cancer cell proliferation through disruption of the PI3K/AKT pathway by upregulating phosphatase and tensin homolog. Thymoquinone can modulate reactive oxygen species levels in tumor cells, arrest the cell cycle in the G2/M phase as well as affect molecular targets including p53, STAT3 and trigger the mitochondrial apoptosis pathway. Thymoquinone, by adjusting AMPK, can regulate cellular metabolism and energy hemostasis. Finally, N. sativa and thymoquinone can elevate brain GABA content, and thus it may ameliorate epilepsy. CONCLUSIONS Taken together, the improvement of antioxidant status and prevention of inflammatory process by modulating the Nrf2 and NF-κB signaling and inhibition of cancer cell proliferation through disruption of the PI3K/AKT pathway appear to be the main mechanisms involved in different pharmacological properties of N. sativa and thymoquinone.
Collapse
Affiliation(s)
- Ehsan Sadeghi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O.Box: 1365-91775, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O.Box: 1365-91775, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Alyami HH, Al-Hariri MT. Synergistic Effects of Nigella sativa and Exercise on Diabetic Profiles: A Systematic Review. Diabetes Ther 2023; 14:467-478. [PMID: 36645572 PMCID: PMC9841958 DOI: 10.1007/s13300-022-01362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/23/2022] [Indexed: 01/17/2023] Open
Abstract
Individually, Nigella sativa (NS) and physical training interventions have been shown to be effective preventive and therapeutic strategies for diabetes mellitus. However, the effect of these in combination on bioindicators of diabetes has not yet been evaluated; there is little information available in the literature. A systematic review was therefore performed to assess any mutually potentiating impacts of NS and physical training interventions in diabetic subjects. A search was performed on this topic in the PubMed, CINAHL, Google Scholar and Web of Science databases for randomised, quasi-randomised or non-randomised controlled trials, studies with factorial or single-cohort pre-post designs, case series as well as case reports. The search terms encompassed various combinations of the following: "exercise", "training", "physical activity", "NS", "treadmill", "swimming", "Thymoquinone", "Nigellone", "caraway oil" and "black seeds". Two reviewers screened the abstracts of 202 identified publications according to predetermined inclusion criteria-i.e. papers published from 2009 onwards in the English language, studies on human or animal subjects, and the assessment of diabetic bioindicators following the combined administration of NS and exercise regimens in comparison with just one of these interventions or against controls. Despite the rich data available regarding the effect of both interventions separately, two human studies and two animal studies were ultimately included in the review. However, the benefit of combined administration of NS and exercise regimens on glycemic and lipidemic control was much more obvious compared to exercise alone. In conclusion, these findings suggested that combined administration of NS and exercise regimens could be used as an effective adjuvant for oral antidiabetic drugs in diabetes control.
Collapse
Affiliation(s)
- Hiedar H Alyami
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 2114, Dammam, 31541, Saudi Arabia.
| | - Mohammed T Al-Hariri
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 2114, Dammam, 31541, Saudi Arabia
| |
Collapse
|
8
|
AlSheddi M, Rahman I, Mohammed A, Algazlan A, Alwably A, Hebbal M, Omar M. Nigella sativa oil as a treatment for gingivitis: A randomized active–control trial. ASIAN PAC J TROP MED 2023. [DOI: 10.4103/1995-7645.372290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
9
|
Zhang D, Wang W, Li Z, Wang L, Liu D. Deciphering the lncRNA and mRNA profiles of Min pig backfat after acute cold stress. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2123811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, P.R. People’s Republic of China
| | - Wentao Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, P.R. People’s Republic of China
| | - Zhongqiu Li
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, P.R. People’s Republic of China
| | - Liang Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, P.R. People’s Republic of China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, P.R. People’s Republic of China
| |
Collapse
|
10
|
Waldman M, Singh SP, Shen HH, Alex R, Rezzani R, Favero G, Hochhauser E, Kornowski R, Arad M, Peterson SJ. Silencing the Adipocytokine NOV: A Novel Approach to Reversing Oxidative Stress-Induced Cardiometabolic Dysfunction. Cells 2022; 11:cells11193060. [PMID: 36231029 PMCID: PMC9564193 DOI: 10.3390/cells11193060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Objective: NOV/CCN3 is an adipocytokine recently linked to obesity, insulin resistance, and cardiometabolic dysfunction. NOV is manufactured and secreted from adipose tissue, with blood levels highly correlated with BMI. NOV levels are increased in obesity and a myriad of inflammatory diseases. Elevated NOV levels cause oxidative stress by increasing free radicals, decreasing antioxidants, and decreasing heme oxygenase (HO-1) levels, resulting in decreased vascular function. Silencing NOV in NOV knockout mice improved insulin sensitivity. We wanted to study how suppressing NOV expression in an obese animal model affected pathways and processes related to obesity, inflammation, and cardiometabolic function. This is the first study to investigate the interaction of adipose tissue-specific NOV/CCN3 and cardiometabolic function. Methods: We constructed a lentivirus containing the adiponectin-promoter-driven shNOV to examine the effect of NOV inhibition (shNOV) in adipose tissue on the heart of mice fed a high-fat diet. Mice were randomly divided into three groups (five per group): (1) lean (normal diet), (2) high-fat diet (HFD)+ sham virus, and (3) HFD + shNOV lentivirus. Blood pressure, tissue inflammation, and oxygen consumption were measured. Metabolic and mitochondrial markers were studied in fat and heart tissues. Results: Mice fed an HFD developed adipocyte hypertrophy, fibrosis, inflammation, and decreased mitochondrial respiration. Inhibiting NOV expression in the adipose tissue of obese mice by shNOV increased mitochondrial markers for biogenesis (PGC-1α, the nuclear co-activator of HO-1) and functional integrity (FIS1) and insulin signaling (AKT). The upregulation of metabolic and mitochondrial markers was also evident in the hearts of the shNOV mice with the activation of mitophagy. Using RNA arrays, we identified a subgroup of genes that highly correlated with increased adipocyte mitochondrial autophagy in shNOV-treated mice. A heat map analysis in obese mice confirmed that the suppression of NOV overrides the genetic susceptibility of adiposity and the associated detrimental metabolic changes and correlates with the restoration of anti-inflammatory, thermogenic, and mitochondrial genes. Conclusion: Our novel findings demonstrate that inhibiting NOV expression improves adipose tissue function in a positive way in cardiometabolic function by inducing mitophagy and improving mitochondrial function by the upregulation of PGC-1α, the insulin sensitivity signaling protein. Inhibiting NOV expression increases PGC-1, a key component of cardiac bioenergetics, as well as key signaling components of metabolic change, resulting in improved glucose tolerance, improved mitochondrial function, and decreased inflammation. These metabolic changes resulted in increased oxygen consumption, decreased adipocyte size, and improved cardiac metabolism and vascular function at the structural level. The crosstalk of the adipose tissue-specific deletion of NOV/CCN3 improved cardiovascular function, representing a novel therapeutic strategy for obesity-related cardiometabolic dysfunction.
Collapse
Affiliation(s)
- Maayan Waldman
- Cardiac Research Laboratory, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv 699780, Israel
| | - Shailendra P. Singh
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
- Department of Sports Biosciences, Central University of Rajasthan, Kishangarh 305817, India
| | - Hsin-Hsueh Shen
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Ragin Alex
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Edith Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv 699780, Israel
| | - Ran Kornowski
- Department of Cardiology, Rabin Medical Center, Petach Tikva 49100, Israel
| | - Michael Arad
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Tel Aviv 699780, Israel
| | - Stephen J. Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA
- Correspondence: or
| |
Collapse
|
11
|
Shahbodi M, Emami SA, Javadi B, Tayarani-Najaran Z. Effects of Thymoquinone on Adipocyte Differentiation in Human Adipose-Derived Stem Cells. Cell Biochem Biophys 2022; 80:771-779. [PMID: 36074244 DOI: 10.1007/s12013-022-01095-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/28/2022] [Indexed: 11/03/2022]
Abstract
Inhibition of adipocyte differentiation would be a key strategy to control obesity. Human adipose tissue-derived stem cells (ADSCs) are a promising tool for adipocyte differentiation research. Thymoquinone (TQ) as a potent antioxidant molecule may inhibit adipocyte differentiation. Herein, we aim to investigate the inhibitory effect of TQ on lipid differentiation in ADSCs. Quantification of cell surface markers was used by Flow-Cytometry and the effect of TQ on cell viability was assessed using the AlamarBlue test. ADSCs were subjected to induction of differentiation in the presence of non-cytotoxic concentrations of TQ (6.25, 12.5 and 25 μg/mL). Lipid accumulation was assessed using the Oil-Red O staining technique. Moreover, the expression of PPARγ (Peroxisome proliferator-activated receptor-γ) and FAS (Fatty Acid Synthetase) proteins was evaluated using Western blotting. Flow-cytometry demonstrated the expression of CD44, CD90, and CD73 as mesenchymal stem cell markers on the cell surface. At concentrations ≤100 μg/mL of TQ, no significant difference in cell viability was observed compared to the control. Lipid accumulation in ADSCs significantly decreased at 25 μg/mL (P < 0.001) and 12.5 μg/mL (P < 0.01) of TQ. The findings of the qualitative examination of Lipid Droplets also confirmed these results. Western-blot showed that TQ at 12.5 (p < 0.05) and 25 μg/mL (p < 0.01) reduced FAS/β-actin ratio compared to the positive group. TQ also decreased the expression of PPARγ at 6.25 μg/mL but not at higher concentrations. In conclusion, TQ may reduce differentiation of fat stem cells into fat cells through inhibition of the expression of PPARγ and FAS proteins and might be a potential anti-obesity compound.
Collapse
Affiliation(s)
- Monireh Shahbodi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Azadi Square, Pardis University Campus, P.O. Box: 9188617871, Mashhad, Iran
| | - Behjat Javadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Azadi Square, Pardis University Campus, P.O. Box: 9188617871, Mashhad, Iran.
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Adipocyte-Specific Expression of PGC1α Promotes Adipocyte Browning and Alleviates Obesity-Induced Metabolic Dysfunction in an HO-1-Dependent Fashion. Antioxidants (Basel) 2022; 11:antiox11061147. [PMID: 35740043 PMCID: PMC9220759 DOI: 10.3390/antiox11061147] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
Recent studies suggest that PGC1-α plays a crucial role in mitochondrial and vascular function, yet the physiological significance of PGC1α and HO expression in adipose tissues in the context of obesity-linked vascular dysfunction remains unclear. We studied three groups of six-week-old C57BL/6J male mice: (1) mice fed a normal chow diet; (2) mice fed a high-fat diet (H.F.D.) for 28 weeks, and (3) mice fed a high-fat diet (H.F.D.) for 28 weeks, treated with adipose-specific overexpression of PGC-1α (transgenic-adipocyte-PGC-1α) at week 20, and continued on H.F.D. for weeks 20–28. R.N.A. arrays examined 88 genes involved in adipocyte proliferation and maturation. Blood pressure, tissue fibrosis, fasting glucose, and oxygen consumption were measured, as well as liver steatosis, and the expression levels of metabolic and mitochondrial markers. Obese mice exhibited a marked reduction of PGC1α and developed adipocyte hypertrophy, fibrosis, hepatic steatosis, and decreased mitochondrial respiration. Mice with adipose-specific overexpression of PGC1-α exhibited improvement in HO-1, mitochondrial biogenesis and respiration, with a decrease in fasting glucose, reduced blood pressure and fibrosis, and increased oxygen consumption. PGC-1α led to the upregulated expression of processes associated with the browning of fat tissue, including UCP1, FGF21, and pAMPK signaling, with a reduction in inflammatory adipokines, NOV/CCN3 expression, and TGFβ. These changes required HO-1 expression. The R.N.A. array analysis identified subgroups of genes positively correlated with contributions to the browning of adipose tissue, all dependent on HO-1. Our observations reveal a positive impact of adipose-PGC1-α on distal organ systems, with beneficial effects on HO-1 levels, reversing obesity-linked cardiometabolic disturbances.
Collapse
|
13
|
Dai HB, Wang HY, Wang FZ, Qian P, Gao Q, Zhou H, Zhou YB. Adrenomedullin ameliorates palmitic acid-induced insulin resistance through PI3K/Akt pathway in adipocytes. Acta Diabetol 2022; 59:661-673. [PMID: 34978596 DOI: 10.1007/s00592-021-01840-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
AIMS White adipose tissue (WAT) dysfunction has been associated with adipose tissue low-grade inflammation and oxidative stress leading to insulin resistance (IR). Adrenomedullin (ADM), an endogenous active peptide considered as an adipokine, is associated with adipocytes function. METHODS We evaluated the protective effects of ADM against IR in 3T3-L1 adipocytes treated by palmitic acid (PA) and in visceral white adipose tissue (vWAT) of obese rats fed with high-fat diet. RESULTS We found that endogenous protein expressions of ADM and its receptor in PA-treated adipocytes were markedly increased. PA significantly induced impaired insulin signaling by affecting phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) axis and glucose transporter-4 (GLUT-4) levels, whereas ADM pretreatment enhanced insulin signaling PI3K/Akt and GLUT-4 membrane protein levels, decreased pro-inflammatory cytokines tumor necrosis factor α (TNFα), interleukin-1β (IL-1β) and IL-6 levels, and improved oxidative stress accompanied with reduced reactive oxygen species (ROS) levels and increased anti-oxidant enzymes manganese superoxide dismutase 2 (SOD2), glutathione peroxidase (GPx1) and catalase (CAT) protein expressions. Furthermore, ADM treatment not only improved IR in obese rats, but also effectively restored insulin signaling, and reduced inflammation and oxidative stress in vWAT of obese rats. CONCLUSIONS This study demonstrates a prevention potential of ADM against obesity-related metabolic disorders, due to its protective effects against IR, inflammation and oxidative stress in adipocytes.
Collapse
Affiliation(s)
- Hang-Bing Dai
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Hong-Yu Wang
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Fang-Zheng Wang
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Pei Qian
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Qing Gao
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Hong Zhou
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Ye-Bo Zhou
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
14
|
Ren J, Ren A, Deng X, Huang Z, Jiang Z, Li Z, Gong Y. Long-Chain Polyunsaturated Fatty Acids and Their Metabolites Regulate Inflammation in Age-Related Macular Degeneration. J Inflamm Res 2022; 15:865-880. [PMID: 35173457 PMCID: PMC8842733 DOI: 10.2147/jir.s347231] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a blinding eye disease, whose incidence strongly increases with ages. The etiology of AMD is complex, including aging, abnormal lipid metabolism, chronic inflammation and oxidative stress. Long-chain polyunsaturated fatty acids (LCPUFA) are essential for ocular structures and functions. This review summarizes the regulatory effects of LCPUFA on inflammation in AMD. LCPUFA are related to aging, autophagy and chronic inflammation. They are metabolized to pro- and anti-inflammatory metabolites by various enzymes. These metabolites stimulate inflammation in response to oxidative stress, causing innate and acquired immune responses. This review also discusses the possible clinical applications, which provided novel targets for the prevention and treatment of AMD and other age-related diseases.
Collapse
Affiliation(s)
- Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Anli Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhengrong Huang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Ziyu Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan University, Wuhan, Hubei, People’s Republic of China
- Correspondence: Yan Gong; Zhi Li, Tel +86 27 6781 1461; +86 27 6781 2622, Fax +86 27 6781 1471; +86 27 6781 3133, Email ;
| |
Collapse
|
15
|
Therapeutic Potential of Thymoquinone in Triple-Negative Breast Cancer Prevention and Progression through the Modulation of the Tumor Microenvironment. Nutrients 2021; 14:nu14010079. [PMID: 35010954 PMCID: PMC8746460 DOI: 10.3390/nu14010079] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
To date, the tumor microenvironment (TME) has gained considerable attention in various areas of cancer research due to its role in driving a loss of immune surveillance and enabling rapid advanced tumor development and progression. The TME plays an integral role in driving advanced aggressive breast cancers, including triple-negative breast cancer (TNBC), a pivotal mediator for tumor cells to communicate with the surrounding cells via lymphatic and circulatory systems. Furthermore, the TME plays a significant role in all steps and stages of carcinogenesis by promoting and stimulating uncontrolled cell proliferation and protecting tumor cells from the immune system. Various cellular components of the TME work together to drive cancer processes, some of which include tumor-associated adipocytes, fibroblasts, macrophages, and neutrophils which sustain perpetual amplification and release of pro-inflammatory molecules such as cytokines. Thymoquinone (TQ), a natural chemical component from black cumin seed, is widely used traditionally and now in clinical trials for the treatment/prevention of multiple types of cancer, showing a potential to mitigate components of TME at various stages by various pathways. In this review, we focus on the role of TME in TNBC cancer progression and the effect of TQ on the TME, emphasizing their anticipated role in the prevention and treatment of TNBC. It was concluded from this review that the multiple components of the TME serve as a critical part of TNBC tumor promotion and stimulation of uncontrolled cell proliferation. Meanwhile, TQ could be a crucial compound in the prevention and progression of TNBC therapy through the modulation of the TME.
Collapse
|
16
|
The Association of Nephroblastoma Overexpressed (NOV) and Endothelial Progenitor Cells with Oxidative Stress in Obstructive Sleep Apnea. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7138800. [PMID: 34868456 PMCID: PMC8635870 DOI: 10.1155/2021/7138800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/30/2021] [Accepted: 11/13/2021] [Indexed: 12/13/2022]
Abstract
Objective Obstructive sleep apnea (OSA) is a sleep disorder characterized by intermittent hypoxia, chronic inflammation, and oxidative stress and is associated with cardiometabolic disease. Several biological substrates have been associated with OSA such as nephroblastoma overexpressed (NOV), endothelial progenitor cells (EPC), and circulating endothelial cells (CEC). Few studies have looked at the association of NOV with OSA while the EPC/CEC relationships with OSA are unclear. In this study, we hypothesize that (1) NOV is associated with the severity of OSA independent of BMI, identifying a protein that may play a role in the biogenesis of OSA complications, and (2) EPCs and CECs are also associated with the severity of OSA and are biomarkers of endothelial dysfunction in OSA. Methods 61 subjects underwent overnight polysomnography (PSG), clinical evaluation, and blood analysis for NOV, EPC, CEC, interleukin 6 (IL-6), and other potential biomarkers. Results NOV and EPCs were independently associated with the oxygen desaturation index (ODI) after adjusting for potential confounders including body mass index (BMI), age, and sex (NOV p = 0.032; EPC p = 0.001). EPC was also independently associated with AHI after adjusting for BMI, age, and sex (p = 0.017). IL-6 was independently associated with AHI, but not with ODI. Conclusion NOV and EPC levels correlate with the degree of OSA independent of BMI, indicating that these biomarkers could potentially further elucidate the relationship between OSA patients and their risk of the subsequent development of cardiovascular disease.
Collapse
|
17
|
Stec DE, Hinds TD. Natural Product Heme Oxygenase Inducers as Treatment for Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:E9493. [PMID: 33327438 PMCID: PMC7764878 DOI: 10.3390/ijms21249493] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase (HO) is a critical component of the defense mechanism to a wide variety of cellular stressors. HO induction affords cellular protection through the breakdown of toxic heme into metabolites, helping preserve cellular integrity. Nonalcoholic fatty liver disease (NAFLD) is a pathological condition by which the liver accumulates fat. The incidence of NAFLD has reached all-time high levels driven primarily by the obesity epidemic. NALFD can progress to nonalcoholic steatohepatitis (NASH), advancing further to liver cirrhosis or cancer. NAFLD is also a contributing factor to cardiovascular and metabolic diseases. There are currently no drugs to specifically treat NAFLD, with most treatments focused on lifestyle modifications. One emerging area for NAFLD treatment is the use of dietary supplements such as curcumin, pomegranate seed oil, milk thistle oil, cold-pressed Nigella Satvia oil, and resveratrol, among others. Recent studies have demonstrated that several of these natural dietary supplements attenuate hepatic lipid accumulation and fibrosis in NAFLD animal models. The beneficial actions of several of these compounds are associated with the induction of heme oxygenase-1 (HO-1). Thus, targeting HO-1 through dietary-supplements may be a useful therapeutic for NAFLD either alone or with lifestyle modifications.
Collapse
Affiliation(s)
- David E. Stec
- Department of Physiology & Biophysics, Center for Cardiovascular and Metabolic Diseases Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| |
Collapse
|
18
|
Stott NL, Marino JS. High Fat Rodent Models of Type 2 Diabetes: From Rodent to Human. Nutrients 2020; 12:nu12123650. [PMID: 33261000 PMCID: PMC7761287 DOI: 10.3390/nu12123650] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Poor dietary habits contribute to increased incidences of obesity and related co-morbidities, such as type 2 diabetes (T2D). The biological, genetic, and pathological implications of T2D, are commonly investigated using animal models induced by a dietary intervention. In spite of significant research contributions, animal models have limitations regarding the translation to human pathology, which leads to questioning their clinical relevance. Important considerations include diet-specific effects on whole organism energy balance and glucose and insulin homeostasis, as well as tissue-specific changes in insulin and glucose tolerance. This review will examine the T2D-like phenotype in rodents resulting from common diet-induced models and their relevance to the human disease state. Emphasis will be placed on the disparity in percentages and type of dietary fat, the duration of intervention, and whole organism and tissue-specific changes in rodents. An evaluation of these models will help to identify a diet-induced rodent model with the greatest clinical relevance to the human T2D pathology. We propose that a 45% high-fat diet composed of approximately one-third saturated fats and two-thirds unsaturated fats may provide a diet composition that aligns closely to average Western diet macronutrient composition, and induces metabolic alterations mirrored by clinical populations.
Collapse
|
19
|
Peterson SJ, Choudhary A, Kalsi AK, Zhao S, Alex R, Abraham NG. OX-HDL: A Starring Role in Cardiorenal Syndrome and the Effects of Heme Oxygenase-1 Intervention. Diagnostics (Basel) 2020; 10:E976. [PMID: 33233550 PMCID: PMC7699797 DOI: 10.3390/diagnostics10110976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
In this review, we will evaluate how high-density lipoprotein (HDL) and the reverse cholesterol transport (RCT) pathway are critical for proper cardiovascular-renal physiology. We will begin by reviewing the basic concepts of HDL cholesterol synthesis and pathway regulation, followed by cardiorenal syndrome (CRS) pathophysiology. After explaining how the HDL and RCT pathways become dysfunctional through oxidative processes, we will elaborate on the potential role of HDL dysfunction in CRS. We will then present findings on how HDL function and the inducible antioxidant gene heme oxygenase-1 (HO-1) are interconnected and how induction of HO-1 is protective against HDL dysfunction and important for the proper functioning of the cardiovascular-renal system. This will substantiate the proposal of HO-1 as a novel therapeutic target to prevent HDL dysfunction and, consequently, cardiovascular disease, renal dysfunction, and the onset of CRS.
Collapse
Affiliation(s)
- Stephen J. Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Abu Choudhary
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Amardeep K. Kalsi
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Shuyang Zhao
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Ragin Alex
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA;
| | - Nader G. Abraham
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA;
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| |
Collapse
|
20
|
Xie ZJ, Novograd J, Itzkowitz Y, Sher A, Buchen YD, Sodhi K, Abraham NG, Shapiro JI. The Pivotal Role of Adipocyte-Na K peptide in Reversing Systemic Inflammation in Obesity and COVID-19 in the Development of Heart Failure. Antioxidants (Basel) 2020; 9:E1129. [PMID: 33202598 PMCID: PMC7697697 DOI: 10.3390/antiox9111129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 01/10/2023] Open
Abstract
This review summarizes data from several laboratories that have demonstrated a role of the Na/K-ATPase, specifically its α1 subunit, in the generation of reactive oxygen species (ROS) via the negative regulator of Src. Together with Src and other signaling proteins, the Na/K-ATPase forms an oxidant amplification loop (NKAL), amplifies ROS, and participates in cytokines storm in obesity. The development of a peptide fragment of the α1 subunit, NaKtide, has been shown to negatively regulate Src. Several groups showed that the systemic administration of the cell permeable modification of NaKtide (pNaKtide) or its selective delivery to fat tissue-adipocyte specific expression of NaKtide-ameliorate the systemic elevation of inflammatory cytokines seen in chronic obesity. Severe acute respiratory syndrome - coronavirus 2 (SARS-CoV-2), the RNA Coronavirus responsible for the COVID-19 global pandemic, invades cells via the angiotensin converting enzyme 2 (ACE-2) receptor (ACE2R) that is appended in inflamed fat tissue and exacerbates the formation of the cytokines storm. Both obesity and heart and renal failure are well known risks for adverse outcomes in patients infected with COVID-19. White adipocytes express ACE-2 receptors in high concentration, especially in obese patients. Once the virus invades the white adipocyte cell, it creates a COVID19-porphyrin complex which degrades and produces free porphyrin and iron and increases ROS. The increased formation of ROS and activation of the NKAL results in a further potentiated formation of ROS production, and ultimately, adipocyte generation of more inflammatory mediators, leading to systemic cytokines storm and heart failure. Moreover, chronic obesity also results in the reduction of antioxidant genes such as heme oxygenase-1 (HO-1), increasing adipocyte susceptibility to ROS and cytokines. It is the systemic inflammation and cytokine storm which is responsible for many of the adverse outcomes seen with COVID-19 infections in obese subjects, leading to heart failure and death. This review will also describe the potential antioxidant drugs and role of NaKtide and their demonstrated antioxidant effect used as a major strategy for improving obesity and epicardial fat mediated heart failure in the context of the COVID pandemic.
Collapse
Affiliation(s)
- Zi-jian Xie
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
| | - Joel Novograd
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Yaakov Itzkowitz
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Ariel Sher
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Yosef D. Buchen
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Komal Sodhi
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
| | - Nader G. Abraham
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Joseph I. Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
| |
Collapse
|
21
|
Involvement of HO-1 and Autophagy in the Protective Effect of Magnolol in Hepatic Steatosis-Induced NLRP3 Inflammasome Activation In Vivo and In Vitro. Antioxidants (Basel) 2020; 9:antiox9100924. [PMID: 32992548 PMCID: PMC7600324 DOI: 10.3390/antiox9100924] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 02/08/2023] Open
Abstract
Magnolol (MG) is the main active compound of Magnolia officinalis and exerts a wide range of biological activities. In this study, we investigated the effects of MG using tyloxapol (Tylo)-induced (200 mg/kg, i.p.) hyperlipidemia in rats and palmitic acid (PA)-stimulated (0.3 mM) HepG2 cells. Our results showed that Tylo injection significantly increased plasma levels of triglyceride and cholesterol as well as superoxide anion in the livers, whereas MG pretreatment reversed these changes. MG reduced hepatic lipogenesis by attenuating sterol regulatory element-binding protein-1c (SREBP-1c) and fatty acid synthase (FAS) proteins and Srebp-1, Fas, Acc, and Cd36 mRNA expression as well as upregulated the lipolysis-associated genes Hsl, Mgl, and Atgl. Furthermore, MG reduced plasma interleukin-1β (IL-1β) and protein expression of NLR family pyrin domain-containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC), and caspase 1 as well as upregulated nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and induction of heme oxygenase-1 (HO-1) in hepatocytes of Tylo-treated rats. Enhanced autophagic flux by elevation of autophagy related protein 5-12 (ATG5-12), ATG7, Beclin1, and microtubule-associated protein light chain 3 B II (LC3BII)/LC3BI ratio, and reduction of sequestosome-1 (SQSTM1/p62) and phosphorylation of mTOR was observed by MG administration. However, autophagy inhibition with 3-methyladenine (3-MA) in HepG2 cells drastically abrogated the MG-mediated suppression of inflammation and lipid metabolism. In conclusion, MG inhibited hepatic steatosis-induced NLRP3 inflammasome activation through the restoration of autophagy to promote HO-1 signaling capable of ameliorating oxidative stress and inflammatory responses.
Collapse
|
22
|
Suzumura A, Terao R, Kaneko H. Protective Effects and Molecular Signaling of n-3 Fatty Acids on Oxidative Stress and Inflammation in Retinal Diseases. Antioxidants (Basel) 2020; 9:E920. [PMID: 32993153 PMCID: PMC7600094 DOI: 10.3390/antiox9100920] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress and inflammation play crucial roles in the development and progression of retinal diseases. Retinal damage by various etiologies can result in retinopathy of prematurity (ROP), diabetic retinopathy (DR), and age-related macular degeneration (AMD). n-3 fatty acids are essential fatty acids and are necessary for homeostasis. They are important retinal membrane components and are involved in energy storage. n-3 fatty acids also have antioxidant and anti-inflammatory properties, and their suppressive effects against ROP, DR, and AMD have been previously evaluated. α-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and their metabolites have been shown to alleviate retinal oxidative stress and inflammation involving various biological signaling pathways. In this review, we summarize the current understanding of the n-3 fatty acids effects on the mechanisms of these retinal diseases and how they exert their therapeutic effects, focusing on ALA, EPA, DHA, and their metabolites. This knowledge may provide new remedial strategies for n-3 fatty acids in the prevention and treatment of retinal diseases associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
- Ayana Suzumura
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| | - Ryo Terao
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
| | - Hiroki Kaneko
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| |
Collapse
|
23
|
Raffaele M, Licari M, Amin S, Alex R, Shen HH, Singh SP, Vanella L, Rezzani R, Bonomini F, Peterson SJ, Stec DE, Abraham NG. Cold Press Pomegranate Seed Oil Attenuates Dietary-Obesity Induced Hepatic Steatosis and Fibrosis through Antioxidant and Mitochondrial Pathways in Obese Mice. Int J Mol Sci 2020; 21:ijms21155469. [PMID: 32751794 PMCID: PMC7432301 DOI: 10.3390/ijms21155469] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Aim: Obesity is associated with metabolic syndrome, hypertension, dyslipidemia, nonalcoholic fatty liver disease (NAFLD), and type 2 diabetes. In this study, we investigated whether the dietary supplementation of pomegranate seed oil (PSO) exerted a protective effect on liver lipid uptake, fibrosis, and mitochondrial function in a mouse model of obesity and insulin resistance. Method: In this in vivo study, eight-week-old C57BL/6J male mice were fed with a high fat diet (HFD) for 24 weeks and then were divided into three groups as follows: group (1) Lean; group (n = 6) (2) HF diet; group (n = 6) (3) HF diet treated with PSO (40 mL/kg food) (n = 6) for eight additional weeks starting at 24 weeks. Physiological parameters, lipid droplet accumulation, inflammatory biomarkers, antioxidant biomarkers, mitochondrial biogenesis, insulin sensitivity, and hepatic fibrosis were determined to examine whether PSO intervention prevents obesity-associated metabolic syndrome. Results: The PSO group displayed an increase in oxygen consumption, as well as a decrease in fasting glucose and blood pressure (p < 0.05) when compared to the HFD-fed mice group. PSO increased both the activity and expression of hepatic HO-1, downregulated inflammatory adipokines, and decreased hepatic fibrosis. PSO increased the levels of thermogenic genes, mitochondrial signaling, and lipid metabolism through increases in Mfn2, OPA-1, PRDM 16, and PGC1α. Furthermore, PSO upregulated obesity-mediated hepatic insulin receptor phosphorylation Tyr-972, p-IRB tyr1146, and pAMPK, thereby decreasing insulin resistance. Conclusions: These results indicated that PSO decreased obesity-mediated insulin resistance and the progression of hepatic fibrosis through an improved liver signaling, as manifested by increased insulin receptor phosphorylation and thermogenic genes. Furthermore, our findings indicate a potential therapeutic role for PSO in the prevention of obesity-associated NAFLD, NASH, and other metabolic disorders.
Collapse
Affiliation(s)
- Marco Raffaele
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA; (M.R.); (M.L.); (S.A.); (R.A.); (H.-h.S.); (S.P.S.)
- Department of Drug Sciences, University of Catania, 95123 Catania, Italy;
| | - Maria Licari
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA; (M.R.); (M.L.); (S.A.); (R.A.); (H.-h.S.); (S.P.S.)
- Department of Drug Sciences, University of Catania, 95123 Catania, Italy;
| | - Sherif Amin
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA; (M.R.); (M.L.); (S.A.); (R.A.); (H.-h.S.); (S.P.S.)
| | - Ragin Alex
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA; (M.R.); (M.L.); (S.A.); (R.A.); (H.-h.S.); (S.P.S.)
| | - Hsin-hsueh Shen
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA; (M.R.); (M.L.); (S.A.); (R.A.); (H.-h.S.); (S.P.S.)
| | - Shailendra P. Singh
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA; (M.R.); (M.L.); (S.A.); (R.A.); (H.-h.S.); (S.P.S.)
- Departments of Biotechnology and Biomedical Engineering, Central University of Rajasthan, Rajasthan 305817, India
| | - Luca Vanella
- Department of Drug Sciences, University of Catania, 95123 Catania, Italy;
| | - Rita Rezzani
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy; (R.R.); (F.B.)
| | - Francesca Bonomini
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy; (R.R.); (F.B.)
| | - Stephen J. Peterson
- Department of Medicine, New York-Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA;
| | - David E. Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Correspondence: (D.E.S.); (N.G.A.); Tel.: +601-954-3109 (D.E.S.); +914-594-3121 (N.G.A.)
| | - Nader G. Abraham
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA; (M.R.); (M.L.); (S.A.); (R.A.); (H.-h.S.); (S.P.S.)
- Department of Drug Sciences, University of Catania, 95123 Catania, Italy;
- Correspondence: (D.E.S.); (N.G.A.); Tel.: +601-954-3109 (D.E.S.); +914-594-3121 (N.G.A.)
| |
Collapse
|
24
|
Fakhouri EW, Peterson SJ, Kothari J, Alex R, Shapiro JI, Abraham NG. Genetic Polymorphisms Complicate COVID-19 Therapy: Pivotal Role of HO-1 in Cytokine Storm. Antioxidants (Basel) 2020; 9:E636. [PMID: 32708430 PMCID: PMC7402116 DOI: 10.3390/antiox9070636] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Coronaviruses are very large RNA viruses that originate in animal reservoirs and include severe acute respiratory distress syndrome (SARS) and Middle East respiratory syndrome (MERS) and other inconsequential coronaviruses from human reservoirs like the common cold. SARS-CoV-2, the virus that causes COVID-19 and is believed to originate from bat, quickly spread into a global pandemic. This RNA virus has a special affinity for porphyrins. It invades the cell at the angiotensin converting enzyme-2 (ACE-2) receptor and binds to hemoproteins, resulting in a severe systemic inflammatory response, particularly in high ACE-2 organs like the lungs, heart, and kidney, resulting in systemic disease. The inflammatory response manifested by increased cytokine levels and reactive oxygen species results in inhibition of heme oxygenase (HO-1), with a subsequent loss of cytoprotection. This has been seen in other viral illness like human immunodeficiency virus (HIV), Ebola, and SARS/MERS. There are a number of medications that have been tried with some showing early clinical promise. This illness disproportionately affects patients with obesity, a chronic inflammatory disease with a baseline excess of cytokines. The majority of the medications used in the treatment of COVID-19 are metabolized by cytochrome P450 (CYP) enzymes, primarily CYP2D6. This is further complicated by genetic polymorphisms of CYP2D6, HO-1, ACE, and ACE-2. There is a potential role for HO-1 upregulation to treat/prevent cytokine storm. Current therapy must focus on antivirals and heme oxygenase upregulation. Vaccine development will be the only magic bullet.
Collapse
Affiliation(s)
- Eddie W. Fakhouri
- New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (E.W.F.); (J.K.)
| | - Stephen J. Peterson
- New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (E.W.F.); (J.K.)
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Janish Kothari
- New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (E.W.F.); (J.K.)
| | - Ragin Alex
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA;
| | - Joseph I. Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA;
| | - Nader G. Abraham
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA;
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA;
- Department of Medicine, New York Medical College, Valhalla, New York, NY 10595, USA
| |
Collapse
|