1
|
Roşian ŞH, Boarescu I, Boarescu PM. Antioxidant and Anti-Inflammatory Effects of Bioactive Compounds in Atherosclerosis. Int J Mol Sci 2025; 26:1379. [PMID: 39941147 PMCID: PMC11818840 DOI: 10.3390/ijms26031379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Atherosclerosis, a chronic inflammatory disease characterized by the accumulation of lipids and immune cells within arterial walls, remains a leading cause of cardiovascular morbidity and mortality worldwide. Oxidative stress and inflammation are central to its pathogenesis, driving endothelial dysfunction, foam cell formation, and plaque instability. Emerging evidence highlights the potential of bioactive compounds with antioxidant and anti-inflammatory properties to mitigate these processes and promote vascular health. This review explores the mechanisms through which bioactive compounds-such as polyphenols, carotenoids, flavonoids, omega-3 fatty acids, coenzyme Q10, and other natural compounds-modulate oxidative stress and inflammation in atherosclerosis. It examines their effects on key molecular pathways, including the inhibition of reactive oxygen species (ROS) production, suppression of nuclear factor-κB (NF-κB), and modulation of inflammatory cytokines. By integrating current knowledge, this review underscores the therapeutic potential of dietary and supplemental bioactive compounds as complementary strategies for managing atherosclerosis, paving the way for future research and clinical applications.
Collapse
Affiliation(s)
- Ştefan Horia Roşian
- “Niculae Stăncioiu” Heart Institute Cluj-Napoca, 400001 Cluj-Napoca, Romania;
- Cardiology Department of Heart Institute, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400001 Cluj-Napoca, Romania
| | - Ioana Boarescu
- Neurology Department of Clinical Emergency County Hospital Saint John the New in Suceava, 720229 Suceava, Romania
- Department of Medical-Surgical and Complementary Sciences, Faculty of Medicine and Biological Sciences, “Ștefan cel Mare” University of Suceava, 720229 Suceava, Romania;
| | - Paul-Mihai Boarescu
- Department of Medical-Surgical and Complementary Sciences, Faculty of Medicine and Biological Sciences, “Ștefan cel Mare” University of Suceava, 720229 Suceava, Romania;
- Cardiology Department of Clinical Emergency County Hospital Saint John the New in Suceava, 720229 Suceava, Romania
| |
Collapse
|
2
|
Szewczyk K, Bryś J, Brzezińska R, Górnicka M. Nutritional Status of Vitamin E and Its Association with Metabolic Health in Adults. Nutrients 2025; 17:408. [PMID: 39940266 PMCID: PMC11821082 DOI: 10.3390/nu17030408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Vitamin E is one of the key dietary antioxidants. However, current evidence remains insufficient to establish a definitive relationship between circulating vitamin E levels, body fat content, and their influence on metabolic health. This study aimed to assess and compare the vitamin E nutritional status in adults with normal and excess body fat and its determinants. METHODS Concentrations of vitamin E isoforms (α- and γ-tocopherols, α- and γ-tocotrienols) were assessed in 127 individuals. Body fat content and other anthropometric indices, as well as biochemical markers such as lipid profile, plasma fatty acid concentration and C-reactive protein, were identified as markers of metabolic health. Participants were divided into two groups: with normal and excess body fat (defined as more than 30% in women and more than 25% in men). RESULTS The determinants of higher α-tocopherol concentrations were lower body fat content and higher levels of circulating lipids as HDL and LDL (R2 = 0.221, p < 0.001 in a model of multivariate linear regression). The level of circulating vitamin E isoforms correlated with the concentration of CRP (r = -0.464 for α-T, r = -0.453 for αT3, r = -0.270 for γ-T, r = -0.355 for γ-T3). Similarly, elevated concentrations of vitamin E isoforms are linked to lower adipose tissue content, which may contribute to lower inflammation and improved metabolic health (r = -0.359 for α-T, r = -0.333 for αT3, r = -0.276 for γ-T3, no significant correlation for γ-T). CONCLUSIONS These results reveal that the vitamin E status of adults with excess body fat may be inadequate and linked to poorer metabolic health. We found that the determinants of lower plasma vitamin E were higher BF and lower TC and its fraction, with the strongest correlations being found for HDL.
Collapse
Affiliation(s)
- Kacper Szewczyk
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 166, 02-787 Warsaw, Poland;
| | - Joanna Bryś
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 159c, 02-787 Warsaw, Poland; (J.B.); (R.B.)
| | - Rita Brzezińska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 159c, 02-787 Warsaw, Poland; (J.B.); (R.B.)
| | - Magdalena Górnicka
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 166, 02-787 Warsaw, Poland;
| |
Collapse
|
3
|
Grzelczyk J, Gałązka‐Czarnecka I, Drożdżyński P, Oracz J. Evaluation of the Nutritional Properties and Biodegradation of Novel Disposable Edible Tableware Made of Olive Pomace. Food Sci Nutr 2025; 13:e4665. [PMID: 39803291 PMCID: PMC11717016 DOI: 10.1002/fsn3.4665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Olive pomace is a valuable source of bioactive compounds. Olive pomace is not fully utilized, so the goal was to create edible disposable tableware from the by-products of the olive pressing process. For this purpose, a mixture was created from olive pomace, teff flour, sorghum, and lecithin (75.5/12/12/0.5), from which the vessels had various shapes were obtained. The edible dishes were analyzed for their antioxidant potential, aroma, and nutritional value, and the biodegradability of the dishes was tested. Studies have shown that the dining tableware is nutritious, protein content of 3.25 g/100 g, fiber content of 11.84 g/100 g, 2.45 mg/100 g of vitamin E, and high content of omega fatty acids. Edible dishes made of bran, corn, or leaves do not contain vitamin E and omega acids. Additionally, due to the frequent use of flour mixtures, the packages available on the market contain up to 7 g/100 g of fiber, while the protein content is similar when using flour mixtures. The edible disposable tableware was also characterized by good biodegradability. Olive pomace is a valuable source for creating edible dishes, while maintaining the principles of sustainable envelopment and sustainability.
Collapse
Affiliation(s)
- Joanna Grzelczyk
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food SciencesLodz University of TechnologyLodzPoland
| | - Ilona Gałązka‐Czarnecka
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food SciencesLodz University of TechnologyLodzPoland
| | - Piotr Drożdżyński
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food SciencesLodz University of TechnologyLodzPoland
| | - Joanna Oracz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food SciencesLodz University of TechnologyLodzPoland
| |
Collapse
|
4
|
Mirshafa A, Shokrzadeh M, Amiri FT, Mohammadi H, Mohammadi E, Zamani E, Alinia M, Shaki F. Tropisetron attenuates D-galactose-induced heart aging in male mice: activation of sirtuin1. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03711-6. [PMID: 39704804 DOI: 10.1007/s00210-024-03711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
This study pursued to evaluate the tropisetron effects in attenuating D-galactose induced heart aging in mice. The study aimed to ascertain whether tropisetron affects apoptotic processes, mitochondrial oxidative stress, or inflammatory variables in cardiac tissue, presumably through the modulation of the SIRT1 signaling pathway or sirtuin 1. Aging was induced via administration of D-galactose (200 mg/kg, s.c.). Then, mice were treated with tropisetron (1, 3, and 5 mg/kg/day, i.p.). After 8 weeks, the key indicators of oxidative mitochondrial dysfunction, oxidative stress, pro-inflammatory cytokines, interleukin-6, tumor necrosis factor-α, and nitric oxide concentrations were evaluated. Additionally, the gene expressions of apoptotic regulators Bax and Bcl2, as well as SIRT1, were assessed using real-time PCR. Histological alterations and serum lactate dehydrogenase levels were also assessed. Tropisetron alleviated mitochondrial oxidative stress and inflammatory mediators while decreasing immune cell infiltration into cardiac tissue generated by D-galactose. The simultaneous injection of tropisetron effectively inhibited D-galactose-induced apoptosis by modulating the Bax/Bcl2 ratio and activating the SIRT1 pathway. The administration of tropisetron resulted in reduced serum lactate dehydrogenase levels compared to the group treated just with D-galactose. Moreover, tropisetron successfully reinstated mitochondrial activity and diminished D-galactose-induced aberrant nitric oxide generation. The research concludes that tropisetron may provide protection against cardiac aging by activating multiple mechanisms associated with the SIRT1 pathway.
Collapse
Affiliation(s)
- Atefeh Mirshafa
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Mohammad Shokrzadeh
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamidreza Mohammadi
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ebrahim Mohammadi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ehsan Zamani
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Mona Alinia
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Shaki
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
5
|
Tappia PS, Shah AK, Dhalla NS. The Efficacy of Vitamins in the Prevention and Treatment of Cardiovascular Disease. Int J Mol Sci 2024; 25:9761. [PMID: 39337248 PMCID: PMC11432297 DOI: 10.3390/ijms25189761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Vitamins are known to affect the regulation of several biochemical and metabolic pathways that influence cellular function. Adequate amounts of both hydrophilic and lipophilic vitamins are required for maintaining normal cardiac and vascular function, but their deficiencies can contribute to cardiovascular abnormalities. In this regard, a deficiency in the lipophilic vitamins, such as vitamins A, D, and E, as well as in the hydrophilic vitamins, such as vitamin C and B, has been associated with suboptimal cardiovascular function, whereas additional intakes have been suggested to reduce the risk of atherosclerosis, hypertension, ischemic heart disease, arrhythmias, and heart failure. Here, we have attempted to describe the association between low vitamin status and cardiovascular disease, and to offer a discussion on the efficacy of vitamins. While there are inconsistencies in the impact of a deficiency in vitamins on the development of cardiovascular disease and the benefits associated with supplementation, this review proposes that specific vitamins may contribute to the prevention of cardiovascular disease in individuals at risk rather than serve as an adjunct therapy.
Collapse
Affiliation(s)
- Paramjit S Tappia
- Asper Clinical Research Institute, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Anureet K Shah
- Department of Nutrition and Food Science, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2E 0J9, Canada
| |
Collapse
|
6
|
Główka AK, Kowalówka M, Burchardt P, Komosa A, Kruszyna Ł, Andrusiewicz M, Przysławski J, Karaźniewicz-Łada M. Selected Psychosocial Factors, Nutritional Behavior, and the Analysis of Concentrations of Selected Vitamins in Patients with Cardiovascular Diseases. Nutrients 2024; 16:1866. [PMID: 38931221 PMCID: PMC11206887 DOI: 10.3390/nu16121866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, influenced by the interaction of factors, including age, sex, genetic conditions, overweight/obesity, hypertension, an abnormal lipid profile, vitamin deficiencies, diabetes, and psychological factors. This study aimed to assess the relationships between psychosocial and nutritional factors in a group of 61 patients with CVD (i.e., atherosclerosis, hypertension, ischemic heart disease, and myocardial infarction) and their possible impact on the course of the disease. The plasma concentrations of vitamins A, E, D, and β-carotene were determined using validated HPLC-MS/MS, while the lipid profile was analyzed enzymatically. Psychosocial factors and nutritional behaviors were assessed using author-designed questionnaires. Over 50% of patients had 25-OH-D3 and retinol deficiencies, while >85% of patients exhibited significant deficiencies in α-tocopherol and β-carotene. The lipid profile showed no specific relationship with any particular CVD. Dietary behavior minimally impacted biochemical parameters except for higher β-carotene concentrations in the group with higher fruit and vegetable intake. The negative impact of the CVD on selected parameters of quality of life was noticed. To increase the effectiveness of the prevention and treatment of CVD, the need for interdisciplinary cooperation observed between doctors, psychologists, and specialists in human nutrition seems to be justified.
Collapse
Affiliation(s)
- Anna Krystyna Główka
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznań, Poland; (M.K.); (J.P.)
| | - Magdalena Kowalówka
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznań, Poland; (M.K.); (J.P.)
| | - Paweł Burchardt
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, 61-848 Poznań, Poland; (P.B.); (A.K.)
- Department of Cardiology, Józef Struś Hospital, 61-285 Poznań, Poland
| | - Anna Komosa
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, 61-848 Poznań, Poland; (P.B.); (A.K.)
| | - Łukasz Kruszyna
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, 61-848 Poznań, Poland;
| | - Mirosław Andrusiewicz
- Department of Cell Biology, Poznan University of Medical Sciences, 60-806 Poznań, Poland;
| | - Juliusz Przysławski
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznań, Poland; (M.K.); (J.P.)
| | - Marta Karaźniewicz-Łada
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 60-806 Poznań, Poland;
| |
Collapse
|
7
|
Costa Lemos da Silva AG, da Silva Ribeiro KD, Alves de Araújo GE, da Silva Oliveira L, de Oliveira Lyra C. Vitamin E and cardiovascular diseases: an interest to public health? Nutr Res Rev 2024; 37:131-140. [PMID: 37382196 DOI: 10.1017/s0954422423000112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide. From this perspective, the role of vitamin E and its metabolites in preventing CVD has been studied, being supported by the findings that low vitamin E concentrations are associated with an increased risk of cardiovascular events. Despite this, no studies have analysed the co-existence of vitamin E deficiency (VED) and CVD on the basis of population studies. Facing that, this study summarises information on the relationship between vitamin E status and CVD, providing a basis for understanding the determining and protective factors for its development. VED may be a public health problem since it has been observed to vary from 0·6% to 55·5% worldwide, with higher percentages in Asia and Europe, where CVD mortality rates stand out. Intervention studies with α-tocopherol supplementation do not confirm cardioprotective action of vitamin E, which may reflect that α-tocopherol alone does not provide cardiovascular protection to individuals, but the consumption of all isomers found in food. Considering that low concentrations of α-tocopherol can lead to a higher susceptibility to diseases involving oxidative stress in the population, in addition to the high and growing prevalence of CVD and VED, it is essential to investigate or reinterpret the mechanisms of action of vitamin E and its metabolites in the cardiovascular process to better understand the co-existence of CVD and VED. It is also important to implement public health policies and programmes aimed at promoting the consumption of natural food sources of vitamin E and healthy fats.
Collapse
Affiliation(s)
| | | | | | - Letícia da Silva Oliveira
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Clélia de Oliveira Lyra
- Graduate Program in Public Health, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
8
|
Wang XY, Liu X, Zhen C, Tian N, Ma H, Wang M, Wang L. Correction of plasma fat-soluble vitamin levels by blood lipids in elderly patients with coronary heart disease. Pract Lab Med 2024; 40:e00404. [PMID: 38883563 PMCID: PMC11177194 DOI: 10.1016/j.plabm.2024.e00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 06/18/2024] Open
Abstract
This study aims to investigate the correlation between plasma fat-soluble vitamin levels and blood lipid in elderly patients with coronary heart disease (CHD). A total of 120 participants were enrolled, including 60 CHD patients and 60 controls without CHD. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to quantify plasma levels of vitamins A, D3, E, and K. Data analysis was conducted using the statistical analysis system module of MetaboAnalyst 5.0. The CHD group showed significantly higher levels of plasma total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) but not high-density lipoprotein cholesterol (HDL-C) compared to controls. The CHD group exhibited significantly higher plasma levels of VA and VE, positively correlating with TC, TG, and LDL-C. After adjusted by TG levels, the CHD group had significantly lower plasma levels of VA and VE, negatively correlating with TC, TG, and LDL-C. The CHD group also had significantly lower concentrations of VD3, independent of TG modification, compared to controls. VD3 negatively correlated with TC, TG, and LDL-C. Elderly individuals with CHD display abnormal blood lipid metabolism, and fat-soluble vitamins adjusted by TG levels can more accurately and timely response to implicit fat-soluble vitamins deficiency in CHD patients.
Collapse
Affiliation(s)
- Xin-Yu Wang
- Clinical Laboratory, Hebei Yanda Hospital, Langfang, Hebei, 065201, China
| | - Xiangzhi Liu
- Clinical Laboratory, Hebei Yanda Hospital, Langfang, Hebei, 065201, China
| | - Chengliang Zhen
- Central Test Laboratory, Hebei Yanda Hospital, Langfang, Hebei, 065201, China
| | - Nannan Tian
- Clinical Laboratory, Hebei Yanda Hospital, Langfang, Hebei, 065201, China
| | - Haina Ma
- Clinical Laboratory, Hebei Yanda Hospital, Langfang, Hebei, 065201, China
| | - Menghan Wang
- Clinical Laboratory, Hebei Yanda Hospital, Langfang, Hebei, 065201, China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, Hebei Yanda Hospital, Langfang, Hebei, 065201, China
| |
Collapse
|
9
|
Liu WN, Hsu YC, Lu CW, Lin SC, Wu TJ, Lin GM. Serum Malondialdehyde-Modified Low-Density Lipoprotein as a Risk Marker for Peripheral Arterial Stiffness in Maintenance Hemodialysis Patients. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:697. [PMID: 38792880 PMCID: PMC11123168 DOI: 10.3390/medicina60050697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024]
Abstract
Background and Objectives: Peripheral arterial stiffness (PAS), assessed by brachial-ankle pulse wave velocity (baPWV), is an independent biomarker of cardiovascular diseases (CVD) in patients on maintenance hemodialysis (HD). Malondialdehyde-modified low-density lipoprotein (MDA-LDL), an oxidative stress marker, has been linked to atherosclerosis and CVD. However, the association between serum MDA-LDL and PAS among HD patients has not been fully elucidated. This study aimed to examine the association of serum MDA-LDL with PAS in HD patients and to identify the optimal cutoff value of serum MDA-LDL for predicting PAS. Materials and Methods: A cross-sectional study was conducted in 100 HD patients. Serum MDA-LDL was quantified using an enzyme-linked immunosorbent assay (ELISA), and baPWV was measured using a volume plethysmographic device. Patients were divided into the PAS group (baPWV > 18.0 m/s) and the non-PAS group (baPWV ≤ 18.0 m/s). The associations of baPWV and other clinical and biochemical parameters with serum MDA-LDL were assessed by multivariable logistic regression analyses. A receiver operating characteristic (ROC) curve analysis was performed to determine the optimal cutoff value of serum MDA-LDL for predicting PAS. Results: In multivariable logistic regression analysis, higher serum MDA-LDL, older age, and higher serum C-reactive protein [odds ratios (ORs) and 95% confidence intervals: 1.014 (1.004-1.025), 1.044 (1.004-1.085) and 3.697 (1.149-11.893)] were significantly associated with PAS. In the ROC curve analysis, the optimal cutoff value of MDA-LDL for predicting PAS was 80.91 mg/dL, with a sensitivity of 79.25% and a specificity of 59.57%. Conclusions: Greater serum MDA-LDL levels, particularly ≥80.91 mg/dL, were independently associated with PAS in HD patients. The findings suggest that oxidative stress plays a crucial role in the pathogenesis of PAS, and targeting MDA-LDL may be a potential therapeutic strategy for reducing cardiovascular risk in HD patients.
Collapse
Affiliation(s)
- Wei-Nung Liu
- Department of Medicine, Hualien Armed Forces General Hospital, Hualien 97144, Taiwan; (W.-N.L.); (C.-W.L.)
- Department of Biomedical Sciences & Engineering, National Central University, Taoyuan 320317, Taiwan;
- Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences & Engineering, National Central University, Taoyuan 320317, Taiwan;
| | - Chia-Wen Lu
- Department of Medicine, Hualien Armed Forces General Hospital, Hualien 97144, Taiwan; (W.-N.L.); (C.-W.L.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan;
| | - Ssu-Chin Lin
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan;
- Department of Nursing, Hualien Armed Forces General Hospital, Hualien 97144, Taiwan
| | - Tsung-Jui Wu
- Department of Medicine, Hualien Armed Forces General Hospital, Hualien 97144, Taiwan; (W.-N.L.); (C.-W.L.)
- Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan;
| | - Gen-Min Lin
- Department of Medicine, Hualien Armed Forces General Hospital, Hualien 97144, Taiwan; (W.-N.L.); (C.-W.L.)
- Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
10
|
Dama A, Shpati K, Daliu P, Dumur S, Gorica E, Santini A. Targeting Metabolic Diseases: The Role of Nutraceuticals in Modulating Oxidative Stress and Inflammation. Nutrients 2024; 16:507. [PMID: 38398830 PMCID: PMC10891887 DOI: 10.3390/nu16040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The escalating prevalence of metabolic and cardiometabolic disorders, often characterized by oxidative stress and chronic inflammation, poses significant health challenges globally. As the traditional therapeutic approaches may sometimes fall short in managing these health conditions, attention is growing toward nutraceuticals worldwide; with compounds being obtained from natural sources with potential therapeutic beneficial effects being shown to potentially support and, in some cases, replace pharmacological treatments, especially for individuals who do not qualify for conventional pharmacological treatments. This review delves into the burgeoning field of nutraceutical-based pharmacological modulation as a promising strategy for attenuating oxidative stress and inflammation in metabolic and cardiometabolic disorders. Drawing from an extensive body of research, the review showcases various nutraceutical agents, such as polyphenols, omega-3 fatty acids, and antioxidants, which exhibit antioxidative and anti-inflammatory properties. All these can be classified as novel nutraceutical-based drugs that are capable of regulating pathways to mitigate oxidative-stress- and inflammation-associated metabolic diseases. By exploring the mechanisms through which nutraceuticals interact with oxidative stress pathways and immune responses, this review highlights their potential to restore redox balance and temper chronic inflammation. Additionally, the challenges and prospects of nutraceutical-based interventions are discussed, encompassing bioavailability enhancement, personalized treatment approaches, and clinical translation. Through a comprehensive analysis of the latest scientific reports, this article underscores the potential of nutraceutical-based pharmacological treatment modulation as a novel avenue to fight oxidative stress and inflammation in the complex landscape of metabolic disorders, particularly accentuating their impact on cardiovascular health.
Collapse
Affiliation(s)
- Aida Dama
- Department of Pharmacy, Faculty of Medical Sciences, Albanian University, 1017 Tirana, Albania; (A.D.); (K.S.); (P.D.)
| | - Kleva Shpati
- Department of Pharmacy, Faculty of Medical Sciences, Albanian University, 1017 Tirana, Albania; (A.D.); (K.S.); (P.D.)
| | - Patricia Daliu
- Department of Pharmacy, Faculty of Medical Sciences, Albanian University, 1017 Tirana, Albania; (A.D.); (K.S.); (P.D.)
| | - Seyma Dumur
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Atlas University, 34408 Istanbul, Türkiye;
| | - Era Gorica
- Department of Pharmacy, Faculty of Medical Sciences, Albanian University, 1017 Tirana, Albania; (A.D.); (K.S.); (P.D.)
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, 8952 Zurich, Switzerland
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
11
|
Kawanishi H, Koremoto M, Franssen CFM, van Londen M. Clotting Propensity of Surface-Treated Membranes in a Hemodialysis Set-up That Avoids Systemic Anticoagulation. Semin Nephrol 2023; 43:151482. [PMID: 38262850 DOI: 10.1016/j.semnephrol.2023.151482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The development of biocompatible membranes, aiming to limit the inflammatory response, oxidative stress, and coagulability during hemodialysis, has been an important step in reducing dialysis-related adverse outcomes. This includes a reduction in the risk of clotting of the extracorporeal circuit, thus enabling hemodialysis with a reduced dose or even without systemic anticoagulant drugs in patients with an increased bleeding risk. In this article, we summarize the in vitro research and clinical evidence on the antithrombotic properties of vitamin E- and heparin-coated membranes.
Collapse
Affiliation(s)
| | | | - Casper F M Franssen
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | - Marco van Londen
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
12
|
Kolar L, Šušnjara P, Stupin M, Stupin A, Jukić I, Mihaljević Z, Kolobarić N, Bebek I, Nejašmić D, Lovrić M, Drenjančević I. Enhanced Microvascular Adaptation to Acute Physical Stress and Reduced Oxidative Stress in Male Athletes Who Consumed Chicken Eggs Enriched with n-3 Polyunsaturated Fatty Acids and Antioxidants-Randomized Clinical Trial. Life (Basel) 2023; 13:2140. [PMID: 38004280 PMCID: PMC10671927 DOI: 10.3390/life13112140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
This randomized interventional study aimed to determine the effects of n-3 polyunsaturated fatty acids, selenium, vitamin E, and lutein supplementation in the form of enriched chicken egg consumption on microvascular endothelium-dependent vasodilation, oxidative stress, and microvascular response to an acute strenuous training session (ASTS) in competitive athletes. Thirty-one male athletes were assigned to a control (n = 17) or a Nutri4 group (n = 14) who consumed three regular or enriched chicken eggs per day, respectively, for 3 weeks. Significantly enhanced endothelium-dependent responses to vascular occlusion (PORH) and iontophoresis of acetylcholine (AChID) were observed in the Nutri4 group but not in the control group after egg consumption. Formation of peroxynitrite and hydrogen peroxide in peripheral blood mononuclear cells, as well as serum concentration of 8-iso prostaglandin F2α, decreased in the Nutri4 group while remaining unchanged in controls. PORH and AChID were reduced post-ASTS compared with pre-ASTS, both before and after the diets, in both groups. However, the range of PORH responsiveness to ASTS (ΔPORH) increased after consumption of enriched eggs. These results suggest that consumption of enriched chicken eggs has a beneficial effect on microvascular endothelium-dependent vasodilation and the reduction of oxidative stress levels in competitive athletes. Also, microvascular adaptation to the ASTS was improved after consumption of Nutri4 eggs.
Collapse
Affiliation(s)
- Luka Kolar
- Department of Internal Medicine, National Memorial Hospital Vukovar, 32000 Vukovar, Croatia;
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (P.Š.); (A.S.); (I.J.); (Z.M.); (N.K.)
| | - Petar Šušnjara
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (P.Š.); (A.S.); (I.J.); (Z.M.); (N.K.)
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marko Stupin
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (P.Š.); (A.S.); (I.J.); (Z.M.); (N.K.)
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department for Cardiovascular Disease, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Ana Stupin
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (P.Š.); (A.S.); (I.J.); (Z.M.); (N.K.)
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivana Jukić
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (P.Š.); (A.S.); (I.J.); (Z.M.); (N.K.)
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Zrinka Mihaljević
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (P.Š.); (A.S.); (I.J.); (Z.M.); (N.K.)
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Nikolina Kolobarić
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (P.Š.); (A.S.); (I.J.); (Z.M.); (N.K.)
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Iva Bebek
- BICRO BIOCENTAR d.o.o., 10000 Zagreb, Croatia; (I.B.); (D.N.); (M.L.)
| | - Diana Nejašmić
- BICRO BIOCENTAR d.o.o., 10000 Zagreb, Croatia; (I.B.); (D.N.); (M.L.)
| | - Marija Lovrić
- BICRO BIOCENTAR d.o.o., 10000 Zagreb, Croatia; (I.B.); (D.N.); (M.L.)
| | - Ines Drenjančević
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (P.Š.); (A.S.); (I.J.); (Z.M.); (N.K.)
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
13
|
Jabeen K, Rehman K, Akash MSH, Nadeem A, Mir TM. Neuroprotective and Cardiometabolic Role of Vitamin E: Alleviating Neuroinflammation and Metabolic Disturbance Induced by AlCl 3 in Rat Models. Biomedicines 2023; 11:2453. [PMID: 37760893 PMCID: PMC10525157 DOI: 10.3390/biomedicines11092453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiovascular diseases (CVDs) and neurodegenerative disorders, such as diabetes mellitus and Alzheimer's disease, share a common pathophysiological link involving insulin resistance (IR), inflammation, and hypertension. Aluminium chloride (AlCl3), a known neurotoxicant, has been associated with neurodegeneration, cognitive impairment, and various organ dysfunctions due to the production of reactive oxygen species (ROS) and oxidative stress. In this study, we aimed to investigate the potential protective effects of metformin and vitamin E against AlCl3-induced neuroinflammation and cardiometabolic disturbances in rat models. Rats were divided into five groups: a normal control group, an AlCl3-treated diseased group without any treatment, and three groups exposed to AlCl3 and subsequently administered with metformin (100 mg/kg/day) alone, vitamin E (150 mg/kg/day) orally alone, or a combination of metformin (100 mg/kg/day) and vitamin E (150 mg/kg/day) for 45 days. We analyzed serum biomarkers and histopathological changes in brain, heart, and pancreatic tissues using H&E and Masson's trichrome staining and immunohistochemistry (IHC). Electrocardiogram (ECG) patterns were observed for all groups. The AlCl3-treated group showed elevated levels of inflammatory biomarkers, MDA, and disturbances in glycemic and lipid profiles, along with reduced insulin levels. However, treatment with the combination of metformin and vitamin E resulted in significantly reduced glucose, cholesterol, LDL, and TG levels, accompanied by increased insulin and HDL levels compared to the individual treatment groups. Histopathological analyses revealed that combination therapy preserved neuronal structures, muscle cell nuclei, and normal morphology in the brain, heart, and pancreatic tissues. IHC demonstrated reduced amyloid plaques and neurofibrillary tangles in the combination-treated group compared to the AlCl3-treated group. Moreover, the combination group showed a normal ECG pattern, contrasting the altered pattern observed in the AlCl3-treated group. Overall, our findings suggest that metformin and vitamin E, in combination, possess neuroprotective and cardiometabolic effects, alleviating AlCl3-induced neuroinflammation and metabolic disturbances.
Collapse
Affiliation(s)
- Komal Jabeen
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad 38000, Pakistan
- Department of Pharmacy, Niazi Medical and Dental College, Sargodha 40100, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan 66000, Pakistan
| | | | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tahir Maqbool Mir
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
14
|
Kacemi R, Campos MG. Translational Research on Bee Pollen as a Source of Nutrients: A Scoping Review from Bench to Real World. Nutrients 2023; 15:2413. [PMID: 37242296 PMCID: PMC10221365 DOI: 10.3390/nu15102413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The emphasis on healthy nutrition is gaining a forefront place in current biomedical sciences. Nutritional deficiencies and imbalances have been widely demonstrated to be involved in the genesis and development of many world-scale public health burdens, such as metabolic and cardiovascular diseases. In recent years, bee pollen is emerging as a scientifically validated candidate, which can help diminish conditions through nutritional interventions. This matrix is being extensively studied, and has proven to be a very rich and well-balanced nutrient pool. In this work, we reviewed the available evidence on the interest in bee pollen as a nutrient source. We mainly focused on bee pollen richness in nutrients and its possible roles in the main pathophysiological processes that are directly linked to nutritional imbalances. This scoping review analyzed scientific works published in the last four years, focusing on the clearest inferences and perspectives to translate cumulated experimental and preclinical evidence into clinically relevant insights. The promising uses of bee pollen for malnutrition, digestive health, metabolic disorders, and other bioactivities which could be helpful to readjust homeostasis (as it is also true in the case of anti-inflammatory or anti-oxidant needs), as well as the benefits on cardiovascular diseases, were identified. The current knowledge gaps were identified, along with the practical challenges that hinder the establishment and fructification of these uses. A complete data collection made with a major range of botanical species allows more robust clinical information.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Coimbra Chemistry Centre (CQC, FCT Unit 313), Faculty of Science and Technology, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| |
Collapse
|
15
|
Argaev-Frenkel L, Rosenzweig T. Redox Balance in Type 2 Diabetes: Therapeutic Potential and the Challenge of Antioxidant-Based Therapy. Antioxidants (Basel) 2023; 12:antiox12050994. [PMID: 37237860 DOI: 10.3390/antiox12050994] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Oxidative stress is an important factor in the development of type 2 diabetes (T2D) and associated complications. Unfortunately, most clinical studies have failed to provide sufficient evidence regarding the benefits of antioxidants (AOXs) in treating this disease. Based on the known complexity of reactive oxygen species (ROS) functions in both the physiology and pathophysiology of glucose homeostasis, it is suggested that inappropriate dosing leads to the failure of AOXs in T2D treatment. To support this hypothesis, the role of oxidative stress in the pathophysiology of T2D is described, together with a summary of the evidence for the failure of AOXs in the management of diabetes. A comparison of preclinical and clinical studies indicates that suboptimal dosing of AOXs might explain the lack of benefits of AOXs. Conversely, the possibility that glycemic control might be adversely affected by excess AOXs is also considered, based on the role of ROS in insulin signaling. We suggest that AOX therapy should be given in a personalized manner according to the need, which is the presence and severity of oxidative stress. With the development of gold-standard biomarkers for oxidative stress, optimization of AOX therapy may be achieved to maximize the therapeutic potential of these agents.
Collapse
Affiliation(s)
| | - Tovit Rosenzweig
- Department of Molecular Biology, Ariel University, Ariel 4070000, Israel
- Adison School of Medicine, Ariel University, Ariel 4070000, Israel
| |
Collapse
|
16
|
Mathew AM, Bhuvanendran S, Nair RS, K Radhakrishnan A. Exploring the anti-inflammatory activities, mechanism of action and prospective drug delivery systems of tocotrienol to target neurodegenerative diseases. F1000Res 2023; 12:338. [PMID: 39291146 PMCID: PMC11406131 DOI: 10.12688/f1000research.131863.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 09/19/2024] Open
Abstract
A major cause of death in the elderly worldwide is attributed to neurodegenerative diseases, such as AD (Alzheimer's disease), PD (Parkinson's disease), ALS (Amyotrophic lateral sclerosis), FRDA (Friedreich's ataxia), VaD (Vascular dementia) etc. These can be caused due to multiple factors such as genetic, physiological problems like stroke or tumor, or even external causes like viruses, toxins, or chemicals. T3s (tocotrienols) exhibit various bioactive properties where it acts as an antioxidant, anti-inflammatory, anti-tumorigenic, and cholesterol lowering agent. Since T3 interferes with and influences several anti-inflammatory mechanisms, it aids in combating inflammatory responses that lead to disease progression. T3s are found to have a profound neuroprotective ability, however, due to their poor oral bioavailability, their full potential could not be exploited. Hence there is a need to explore other drug delivery techniques, especially focusing on aspects of nanotechnology. In this review paper we explore the anti-inflammatory mechanisms of T3 to apply it in the treatment of neurodegenerative diseases and also discusses the possibilities of nano methods of administering tocotrienols to target neurodegenerative diseases.
Collapse
Affiliation(s)
- Angela Maria Mathew
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, 560029, India
| | - Saatheeyavaane Bhuvanendran
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| | - Rajesh Sreedharan Nair
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| | - Ammu K Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| |
Collapse
|
17
|
Mahdavi A, Leclercq M, Bodein A, Gotti C, Greffard K, Bilodeau JF, Droit A, Lebel M, Rudkowska I. High dairy products intake modifies the correlation between α-tocopherol levels and serum proteins related to lipid metabolism in subjects at risk of type 2 diabetes. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
18
|
Manolis AA, Manolis TA, Melita H, Manolis AS. Role of Vitamins in Cardiovascular Health: Know Your Facts-Part 2. Curr Vasc Pharmacol 2023; 21:399-423. [PMID: 37694779 DOI: 10.2174/1570161121666230911115725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023]
Abstract
Cardiovascular disease (CVD) is a major cause of morbidity/mortality world-wide, hence preventive interventions are crucial. Observational data showing beneficial CV effects of vitamin supplements, promoted by self-proclaimed experts, have led to ~50% of Americans using multivitamins; this practice has culminated into a multi-billion-dollar business. However, robust evidence is lacking, and certain vitamins might incur harm. This two-part review focuses on the attributes or concerns about specific vitamin consumption on CVD. The evidence for indiscriminate use of multivitamins indicates no consistent CVD benefit. Specific vitamins and/or combinations are suggested, but further supportive evidence is needed. Data presented in Part 1 indicated that folic acid and certain B-vitamins may decrease stroke, whereas niacin might raise mortality; beta-carotene mediates pro-oxidant effects, which may abate the benefits from other vitamins. In Part 2, data favor the anti-oxidant effects of vitamin C and the anti-atherogenic effects of vitamins C and E, but clinical evidence is inconsistent. Vitamin D may provide CV protection, but data are conflicting. Vitamin K appears neutral. Thus, there are favorable CV effects of individual vitamins (C/D), but randomized/controlled data are lacking. An important caveat regards the potential toxicity of increased doses of fat-soluble vitamins (A/D/E/K). As emphasized in Part 1, vitamins might benefit subjects who are antioxidant-deficient or exposed to high levels of oxidative-stress (e.g., diabetics, smokers, and elderly), stressing the importance of targeting certain subgroups for optimal results. Finally, by promoting CV-healthy balanced-diets, we could acquire essential vitamins and nutrients and use supplements only for specific indications.
Collapse
|
19
|
ABD MUID SUHAILA, RUTH FROEMMING GABRIELEANISAH, ALI ABDMANAF, ABDUL RAHMAN THUHAIRAHHASRAH, HAMID ZALINA, NAWAWI HAPIZAH. EFFECTS OF PALM OIL DERIVED TOCOTRIENOL RICH FRACTION AND VITAMIN E ISOMERS ON BIOMARKERS OF EARLY ATHEROGENESIS IN STIMULATED HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS. MALAYSIAN APPLIED BIOLOGY 2022; 51:145-152. [DOI: 10.55230/mabjournal.v51i4.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This study was conducted to investigate the effects of tocotrienol rich fraction (TRF), α-TOC, and pure TCT isomers (α-. γ- & δ-TCT) on inflammation, endothelial activation, nuclear factor kappa B (NFκB), endothelial nitric oxide synthase (eNOS) and monocyte binding activity (MBA) in vitro. Human umbilical vein endothelial cells (HUVECs) were incubated with various concentrations of α-TOC, pure TCT isomers and TRF (0.3-10 µM) together with lipopolysaccharides (LPS) for 16 h. Culture medium and cells were collected and measured for the protein and gene expression of IL-6, TNF-α, NFκB, ICAM-1, VCAM-1, e-selectin, and eNOS. Monocyte binding activity (MBA) was measured by Rose Bengal staining. Area under the curve (AUC) analysis revealed that TRF and pure TCT particularly γ- and δ- isomers, showed better inhibition of inflammation and endothelial activation, MBA and greater eNOS increment than α-TOC. These suggest that TRF and pure TCT isomers have potential as preventive anti-atherogenic agents by attenuating the release of early biomarkers of atherogenesis which is better than α-TOC in LPS-stimulated human endothelial cells.
Collapse
|
20
|
Liao S, Omage SO, Börmel L, Kluge S, Schubert M, Wallert M, Lorkowski S. Vitamin E and Metabolic Health: Relevance of Interactions with Other Micronutrients. Antioxidants (Basel) 2022; 11:antiox11091785. [PMID: 36139859 PMCID: PMC9495493 DOI: 10.3390/antiox11091785] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
A hundred years have passed since vitamin E was identified as an essential micronutrient for mammals. Since then, many biological functions of vitamin E have been unraveled in both cell and animal models, including antioxidant and anti-inflammatory properties, as well as regulatory activities on cell signaling and gene expression. However, the bioavailability and physiological functions of vitamin E have been considerably shown to depend on lifestyle, genetic factors, and individual health conditions. Another important facet that has been considered less so far is the endogenous interaction with other nutrients. Accumulating evidence indicates that the interaction between vitamin E and other nutrients, especially those that are enriched by supplementation in humans, may explain at least some of the discrepancies observed in clinical trials. Meanwhile, increasing evidence suggests that the different forms of vitamin E metabolites and derivates also exhibit physiological activities, which are more potent and mediated via different pathways compared to the respective vitamin E precursors. In this review, possible molecular mechanisms between vitamin E and other nutritional factors are discussed and their potential impact on physiological and pathophysiological processes is evaluated using published co-supplementation studies.
Collapse
Affiliation(s)
- Sijia Liao
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Sylvia Oghogho Omage
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Lisa Börmel
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Stefan Kluge
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Martin Schubert
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Maria Wallert
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
- Correspondence:
| |
Collapse
|
21
|
Edwards G, Olson CG, Euritt CP, Koulen P. Molecular Mechanisms Underlying the Therapeutic Role of Vitamin E in Age-Related Macular Degeneration. Front Neurosci 2022; 16:890021. [PMID: 35600628 PMCID: PMC9114494 DOI: 10.3389/fnins.2022.890021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/21/2022] [Indexed: 12/31/2022] Open
Abstract
The eye is particularly susceptible to oxidative stress and disruption of the delicate balance between oxygen-derived free radicals and antioxidants leading to many degenerative diseases. Attention has been called to all isoforms of vitamin E, with α-tocopherol being the most common form. Though similar in structure, each is diverse in antioxidant activity. Preclinical reports highlight vitamin E’s influence on cell physiology and survival through several signaling pathways by activating kinases and transcription factors relevant for uptake, transport, metabolism, and cellular action to promote neuroprotective effects. In the clinical setting, population-based studies on vitamin E supplementation have been inconsistent at times and follow-up studies are needed. Nonetheless, vitamin E’s health benefits outweigh the controversies. The goal of this review is to recognize the importance of vitamin E’s role in guarding against gradual central vision loss observed in age-related macular degeneration (AMD). The therapeutic role and molecular mechanisms of vitamin E’s function in the retina, clinical implications, and possible toxicity are collectively described in the present review.
Collapse
|
22
|
Tabaei BS, Mousavi SN, Rahimian A, Rostamkhani H, Mellati AA, Jameshorani M. Co-Administration of Vitamin E and Atorvastatin Improves Insulin Sensitivity and Peroxisome Proliferator-Activated Receptor-γ Expression in Type 2 Diabetic Patients: A Randomized Double-Blind Clinical Trial. IRANIAN JOURNAL OF MEDICAL SCIENCES 2022; 47:114-122. [PMID: 35291435 PMCID: PMC8919307 DOI: 10.30476/ijms.2021.89102.1981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/20/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022]
Abstract
Background Negative effects of statins on glucose metabolism have been reported. The present study aimed to investigate the effects of co-administration of vitamin E and atorvastatin on glycemic control in hyperlipidemic patients with type 2 diabetes mellitus (T2DM). Methods A randomized double-blind clinical trial was conducted at Vali-e-Asr Teaching Hospital (Zanjan, Iran) from July 2017 to March 2018. A total of 30 T2DM female patients were allocated to two groups, namely atorvastatin with placebo (n=15) and atorvastatin with vitamin E (n=15). The patients received daily 20 mg atorvastatin and 400 IU vitamin E or placebo for 12 weeks. Anthropometric and biochemical measures were recorded pre- and post-intervention. Peroxisome proliferator-activated receptor-γ (PPAR-γ) expression was measured in peripheral blood mononuclear cells (PBMCs). Independent sample t test and paired t test were used to analyze between- and within-group variables, respectively. The analysis of covariance (ANCOVA) was used to adjust the effect of baseline variables on the outcomes. P<0.05 was considered statistically significant. Results After baseline adjustment, there was a significant improvement in homeostatic model assessment for insulin resistance (HOMA-IR) (P=0.04) and serum insulin (P<0.001) in the atorvastatin with vitamin E group compared to the atorvastatin with the placebo group. In addition, co-administration of vitamin E with atorvastatin significantly upregulated PPAR-γ expression (OR=5.4, P=0.04) in the PBMCs of T2DM patients. Conclusion Co-administration of vitamin E and atorvastatin reduced insulin resistance and improved PPAR-γ mRNA expression. Further studies are required to substantiate our findings. Trial registration number IRCT 20170918036256N.
Collapse
Affiliation(s)
- Banafsheh Sadat Tabaei
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran,
Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyedeh Neda Mousavi
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran,
Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Aliasghar Rahimian
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Rostamkhani
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Awsat Mellati
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran,
Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Jameshorani
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
23
|
Microbiome and metabolome features of the cardiometabolic disease spectrum. Nat Med 2022; 28:303-314. [PMID: 35177860 PMCID: PMC8863577 DOI: 10.1038/s41591-022-01688-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 01/07/2022] [Indexed: 02/08/2023]
Abstract
Previous microbiome and metabolome analyses exploring non-communicable diseases have paid scant attention to major confounders of study outcomes, such as common, pre-morbid and co-morbid conditions, or polypharmacy. Here, in the context of ischemic heart disease (IHD), we used a study design that recapitulates disease initiation, escalation and response to treatment over time, mirroring a longitudinal study that would otherwise be difficult to perform given the protracted nature of IHD pathogenesis. We recruited 1,241 middle-aged Europeans, including healthy individuals, individuals with dysmetabolic morbidities (obesity and type 2 diabetes) but lacking overt IHD diagnosis and individuals with IHD at three distinct clinical stages—acute coronary syndrome, chronic IHD and IHD with heart failure—and characterized their phenome, gut metagenome and serum and urine metabolome. We found that about 75% of microbiome and metabolome features that distinguish individuals with IHD from healthy individuals after adjustment for effects of medication and lifestyle are present in individuals exhibiting dysmetabolism, suggesting that major alterations of the gut microbiome and metabolome might begin long before clinical onset of IHD. We further categorized microbiome and metabolome signatures related to prodromal dysmetabolism, specific to IHD in general or to each of its three subtypes or related to escalation or de-escalation of IHD. Discriminant analysis based on specific IHD microbiome and metabolome features could better differentiate individuals with IHD from healthy individuals or metabolically matched individuals as compared to the conventional risk markers, pointing to a pathophysiological relevance of these features. By studying individuals along a spectrum of cardiometabolic disease and adjusting for effects of lifestyle and medication, this investigation identifies alterations of the metabolome and microbiome from dysmetabolic conditions, such as obesity and type 2 diabetes, to ischemic heart disease.
Collapse
|
24
|
Lands B. Lipid nutrition: "In silico" studies and undeveloped experiments. Prog Lipid Res 2021; 85:101142. [PMID: 34818526 DOI: 10.1016/j.plipres.2021.101142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022]
Abstract
This review examines lipids and lipid-binding sites on proteins in relation to cardiovascular disease. Lipid nutrition involves food energy from ingested fatty acids plus fatty acids formed from excess ingested carbohydrate and protein. Non-esterified fatty acids (NEFA) and lipoproteins have many detailed attributes not evident in their names. Recognizing attributes of lipid-protein interactions decreases unexpected outcomes. Details of double bond position and configuration interacting with protein binding sites have unexpected consequences in acyltransferase and cell replication events. Highly unsaturated fatty acids (HUFA) have n-3 and n-6 motifs with documented differences in intensity of destabilizing positive feedback loops amplifying pathophysiology. However, actions of NEFA have been neglected relative to cholesterol, which is co-produced from excess food. Native low-density lipoproteins (LDL) bind to a high-affinity cell surface receptor which poorly recognizes biologically modified LDLs. NEFA increase negative charge of LDL and decrease its processing by "normal" receptors while increasing processing by "scavenger" receptors. A positive feedback loop in the recruitment of monocytes and macrophages amplifies chronic inflammatory pathophysiology. Computer tools combine multiple components in lipid nutrition and predict balance of energy and n-3:n-6 HUFA. The tools help design and execute precise clinical nutrition monitoring that either supports or disproves expectations.
Collapse
Affiliation(s)
- Bill Lands
- Fellow ASN, AAAS, SFRBM, ISSFAL, College Park, MD, USA.
| |
Collapse
|
25
|
Shah AK, Dhalla NS. Effectiveness of Some Vitamins in the Prevention of Cardiovascular Disease: A Narrative Review. Front Physiol 2021; 12:729255. [PMID: 34690803 PMCID: PMC8531219 DOI: 10.3389/fphys.2021.729255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/17/2021] [Indexed: 01/01/2023] Open
Abstract
By virtue of their regulatory role in various metabolic and biosynthetic pathways for energy status and cellular integrity, both hydro-soluble and lipo-soluble vitamins are considered to be involved in maintaining cardiovascular function in health and disease. Deficiency of some vitamins such as vitamin A, B6, folic acid, C, D, and E has been shown to be associated with cardiovascular abnormalities whereas supplementation with these vitamins has been claimed to reduce cardiovascular risk for hypertension, atherosclerosis, myocardial ischemia, arrhythmias, and heart failure. However, the data from several experimental and clinical studies for the pathogenesis of cardiovascular disease due to vitamin deficiency as well as therapy due to different vitamins are conflicting. In this article, we have attempted to review the existing literature on the role of different vitamins in cardiovascular disease with respect to their deficiency and supplementation in addition to examining some issues regarding their involvement in heart disease. Although both epidemiological and observational studies have shown some merit in the use of different antioxidant vitamins for the treatment of cardiovascular disorders, the results are not conclusive. Furthermore, in view of the complexities in the mechanisms of different cardiovascular disorders, no apparent involvement of any particular vitamin was seen in any specific cardiovascular disease. On the other hand, we have reviewed the evidence that deficiency of vitamin B6 promoted KCl-induced Ca2+ entry and reduced ATP-induced Ca2+-entry in cardiomyocytes in addition to decreasing sarcolemmal (SL) ATP binding. The active metabolite of vitamin B6, pyridoxal 5′-phosphate, attenuated arrhythmias due to myocardial infarction (MI) as well as cardiac dysfunction and defects in the sarcoplasmic reticulum (SR) Ca2+-transport in the ischemic-reperfused hearts. These observations indicate that both deficiency of some vitamins as well as pretreatments with different vitamins showing antioxidant activity affect cardiac function, metabolism and cation transport, and support the view that antioxidant vitamins or their metabolites may be involved in the prevention rather than the therapy of cardiovascular disease.
Collapse
Affiliation(s)
- Anureet K Shah
- School of Kinesiology, Nutrition and Food Science, California State University, Los Angeles, Los Angeles, CA, United States
| | - Naranjan S Dhalla
- Department of Physiology and Pathophysiology, St. Boniface Hospital Albrechtsen Research Centre, Max Rady College of Medicine, Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
26
|
Ji H, Peng R, Jin L, Ma J, Yang Q, Sun D, Wu W. Recent Advances in ROS-Sensitive Nano-Formulations for Atherosclerosis Applications. Pharmaceutics 2021; 13:1452. [PMID: 34575528 PMCID: PMC8468237 DOI: 10.3390/pharmaceutics13091452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 12/31/2022] Open
Abstract
Over the past decade, ROS-sensitive formulations have been widely used in atherosclerosis applications such as ROS scavenging, drug delivery, gene delivery, and imaging. The intensified interest in ROS-sensitive formulations is attributed to their unique self-adaptive properties, involving the main molecular mechanisms of solubility switch and degradation under the pathological ROS differences in atherosclerosis. This review outlines the advances in the use of ROS-sensitive formulations in atherosclerosis applications during the past decade, especially highlighting the general design requirements in relation to biomedical functional performance.
Collapse
Affiliation(s)
- Hao Ji
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Renyi Peng
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Libo Jin
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Jiahui Ma
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China;
| | - Da Sun
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Wei Wu
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| |
Collapse
|
27
|
Nutraceutical Combinations in Hypercholesterolemia: Evidence from Randomized, Placebo-Controlled Clinical Trials. Nutrients 2021; 13:nu13093128. [PMID: 34579005 PMCID: PMC8470433 DOI: 10.3390/nu13093128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/27/2022] Open
Abstract
There is an increasing number of nutraceutical combinations (NCs) on the market for hypercholesterolemia, although clinical trials to verify their safety and efficacy are scarce. We selected fourteen randomized, placebo-controlled clinical trials (RCTs) on different lipid-lowering NCs in hypercholesterolemic subjects. We described each compound's mechanism of action and efficacy in the mixtures and summarized the clinical trials settings and NCs safety and efficacy results. Almost all NCs resulted efficient against hypercholesterolemia; only one reported no changes. Interestingly, red yeast rice (RYR) was present in eleven mixtures. It is not clear whether the lipid-lowering efficacy of these combinations derives mainly from the RYR component monacolin K "natural statin" single effect. Up to now, few RCTs have verified the efficacy of every single compound vs. NCs to evaluate possible additive or synergistic effects, probably due to the complexity and the high resources request. In conclusion, to manage the arising nutraceutical tide against hypercholesterolemia, it could be helpful to increase the number and robustness of clinical studies to verify the efficacy and safety of the new NCs.
Collapse
|
28
|
Papotti B, Escolà-Gil JC, Julve J, Potì F, Zanotti I. Impact of Dietary Lipids on the Reverse Cholesterol Transport: What We Learned from Animal Studies. Nutrients 2021; 13:nu13082643. [PMID: 34444804 PMCID: PMC8401548 DOI: 10.3390/nu13082643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Reverse cholesterol transport (RCT) is a physiological mechanism protecting cells from an excessive accumulation of cholesterol. When this process begins in vascular macrophages, it acquires antiatherogenic properties, as has been widely demonstrated in animal models. Dietary lipids, despite representing a fundamental source of energy and exerting multiple biological functions, may induce detrimental effects on cardiovascular health. In the present review we summarize the current knowledge on the mechanisms of action of the most relevant classes of dietary lipids, such as fatty acids, sterols and liposoluble vitamins, with effects on different steps of RCT. We also provide a critical analysis of data obtained from experimental models which can serve as a valuable tool to clarify the effects of dietary lipids on cardiovascular disease.
Collapse
Affiliation(s)
- Bianca Papotti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy;
| | - Joan Carles Escolà-Gil
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau & Institut d’Investigació Biomèdica (IIB) Sant Pau, 08041 Barcelona, Spain; (J.C.E.-G.); (J.J.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Josep Julve
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau & Institut d’Investigació Biomèdica (IIB) Sant Pau, 08041 Barcelona, Spain; (J.C.E.-G.); (J.J.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Francesco Potì
- Unità di Neuroscienze, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Volturno 39/F, 43125 Parma, Italy;
| | - Ilaria Zanotti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy;
- Correspondence: ; Tel.: +39-0521905040
| |
Collapse
|
29
|
Karunakaran U, Elumalai S, Moon JS, Won KC. CD36 Signal Transduction in Metabolic Diseases: Novel Insights and Therapeutic Targeting. Cells 2021; 10:cells10071833. [PMID: 34360006 PMCID: PMC8305429 DOI: 10.3390/cells10071833] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/14/2021] [Accepted: 07/17/2021] [Indexed: 12/24/2022] Open
Abstract
The cluster of differentiation 36 (CD36) is a scavenger receptor present on various types of cells and has multiple biological functions that may be important in inflammation and in the pathogenesis of metabolic diseases, including diabetes. Here, we consider recent insights into how the CD36 response becomes deregulated under metabolic conditions, as well as the therapeutic benefits of CD36 inhibition, which may provide clues for developing strategies aimed at the treatment or prevention of diabetes associated with metabolic diseases. To facilitate this process further, it is important to pinpoint regulatory mechanisms that are relevant under physiological and pathological conditions. In particular, understanding the mechanisms involved in dictating specific CD36 downstream cellular outcomes will aid in the discovery of potent compounds that target specific CD36 downstream signaling cascades.
Collapse
Affiliation(s)
- Udayakumar Karunakaran
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (U.K.); (S.E.)
| | - Suma Elumalai
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (U.K.); (S.E.)
| | - Jun-Sung Moon
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (U.K.); (S.E.)
- Yeungnam University College of Medicine, Daegu 42415, Korea
- Correspondence: (J.-S.M.); (K.-C.W.); Tel.: +82-53-620-3825 (J.-S.M.); +82-53-620-3846 (K.-C.W.)
| | - Kyu-Chang Won
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (U.K.); (S.E.)
- Yeungnam University College of Medicine, Daegu 42415, Korea
- Correspondence: (J.-S.M.); (K.-C.W.); Tel.: +82-53-620-3825 (J.-S.M.); +82-53-620-3846 (K.-C.W.)
| |
Collapse
|
30
|
Szewczyk K, Chojnacka A, Górnicka M. Tocopherols and Tocotrienols-Bioactive Dietary Compounds; What Is Certain, What Is Doubt? Int J Mol Sci 2021; 22:6222. [PMID: 34207571 PMCID: PMC8227182 DOI: 10.3390/ijms22126222] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/13/2022] Open
Abstract
Tocopherols and tocotrienols are natural compounds of plant origin, available in the nature. They are supplied in various amounts in a diet, mainly from vegetable oils, some oilseeds, and nuts. The main forms in the diet are α- and γ-tocopherol, due to the highest content in food products. Nevertheless, α-tocopherol is the main form of vitamin E with the highest tissue concentration. The α- forms of both tocopherols and tocotrienols are considered as the most metabolically active. Currently, research results indicate also a greater antioxidant potential of tocotrienols than tocopherols. Moreover, the biological role of vitamin E metabolites have received increasing interest. The aim of this review is to update the knowledge of tocopherol and tocotrienol bioactivity, with a particular focus on their bioavailability, distribution, and metabolism determinants in humans. Almost one hundred years after the start of research on α-tocopherol, its biological properties are still under investigation. For several decades, researchers' interest in the biological importance of other forms of vitamin E has also been growing. Some of the functions, for instance the antioxidant functions of α- and γ-tocopherols, have been confirmed in humans, while others, such as the relationship with metabolic disorders, are still under investigation. Some studies, which analyzed the biological role and mechanisms of tocopherols and tocotrienols over the past few years described new and even unexpected cellular and molecular properties that will be the subject of future research.
Collapse
Affiliation(s)
- Kacper Szewczyk
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159C Nowoursynowska Street, 02-787 Warsaw, Poland
| | - Aleksandra Chojnacka
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159C Nowoursynowska Street, 02-787 Warsaw, Poland
| | - Magdalena Górnicka
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159C Nowoursynowska Street, 02-787 Warsaw, Poland
| |
Collapse
|
31
|
Bonnet S, Prévot G, Mornet S, Jacobin-Valat MJ, Mousli Y, Hemadou A, Duttine M, Trotier A, Sanchez S, Duonor-Cérutti M, Crauste-Manciet S, Clofent-Sanchez G. A Nano-Emulsion Platform Functionalized with a Fully Human scFv-Fc Antibody for Atheroma Targeting: Towards a Theranostic Approach to Atherosclerosis. Int J Mol Sci 2021; 22:ijms22105188. [PMID: 34068875 PMCID: PMC8153629 DOI: 10.3390/ijms22105188] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is at the onset of the cardiovascular diseases that are among the leading causes of death worldwide. Currently, high-risk plaques, also called vulnerable atheromatous plaques, remain often undiagnosed until the occurrence of severe complications, such as stroke or myocardial infarction. Molecular imaging agents that target high-risk atheromatous lesions could greatly improve the diagnosis of atherosclerosis by identifying sites of high disease activity. Moreover, a "theranostic approach" that combines molecular imaging agents (for diagnosis) and therapeutic molecules would be of great value for the local management of atheromatous plaques. The aim of this study was to develop and characterize an innovative theranostic tool for atherosclerosis. We engineered oil-in-water nano-emulsions (NEs) loaded with superparamagnetic iron oxide (SPIO) nanoparticles for magnetic resonance imaging (MRI) purposes. Dynamic MRI showed that NE-SPIO nanoparticles decorated with a polyethylene glycol (PEG) layer reduced their liver uptake and extended their half-life. Next, the NE-SPIO-PEG formulation was functionalized with a fully human scFv-Fc antibody (P3) recognizing galectin 3, an atherosclerosis biomarker. The P3-functionalized formulation targeted atheromatous plaques, as demonstrated in an immunohistochemistry analyses of mouse aorta and human artery sections and in an Apoe-/- mouse model of atherosclerosis. Moreover, the formulation was loaded with SPIO nanoparticles and/or alpha-tocopherol to be used as a theranostic tool for atherosclerosis imaging (SPIO) and for delivery of drugs that reduce oxidation (here, alpha-tocopherol) in atheromatous plaques. This study paves the way to non-invasive targeted imaging of atherosclerosis and synergistic therapeutic applications.
Collapse
Affiliation(s)
- Samuel Bonnet
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS UMR 5536, Université de Bordeaux, CRMSB, 33076 Bordeaux, France; (M.-J.J.-V.); (A.H.); (A.T.); (S.S.); (G.C.-S.)
- Institut de Chimie de la Matière Condensée, CNRS UMR 5026, Université de Bordeaux, Bordeaux INP, ICMCB, 33600 Pessac, France; (S.M.); (M.D.)
- Correspondence:
| | - Geoffrey Prévot
- ARNA, ARN, Régulations Naturelle et Artificielle, ChemBioPharm, INSERM U1212, CNRS UMR 5320, Université de Bordeaux, 33076 Bordeaux, France; (G.P.); (Y.M.); (S.C.-M.)
| | - Stéphane Mornet
- Institut de Chimie de la Matière Condensée, CNRS UMR 5026, Université de Bordeaux, Bordeaux INP, ICMCB, 33600 Pessac, France; (S.M.); (M.D.)
| | - Marie-Josée Jacobin-Valat
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS UMR 5536, Université de Bordeaux, CRMSB, 33076 Bordeaux, France; (M.-J.J.-V.); (A.H.); (A.T.); (S.S.); (G.C.-S.)
| | - Yannick Mousli
- ARNA, ARN, Régulations Naturelle et Artificielle, ChemBioPharm, INSERM U1212, CNRS UMR 5320, Université de Bordeaux, 33076 Bordeaux, France; (G.P.); (Y.M.); (S.C.-M.)
| | - Audrey Hemadou
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS UMR 5536, Université de Bordeaux, CRMSB, 33076 Bordeaux, France; (M.-J.J.-V.); (A.H.); (A.T.); (S.S.); (G.C.-S.)
| | - Mathieu Duttine
- Institut de Chimie de la Matière Condensée, CNRS UMR 5026, Université de Bordeaux, Bordeaux INP, ICMCB, 33600 Pessac, France; (S.M.); (M.D.)
| | - Aurélien Trotier
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS UMR 5536, Université de Bordeaux, CRMSB, 33076 Bordeaux, France; (M.-J.J.-V.); (A.H.); (A.T.); (S.S.); (G.C.-S.)
| | - Stéphane Sanchez
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS UMR 5536, Université de Bordeaux, CRMSB, 33076 Bordeaux, France; (M.-J.J.-V.); (A.H.); (A.T.); (S.S.); (G.C.-S.)
| | | | - Sylvie Crauste-Manciet
- ARNA, ARN, Régulations Naturelle et Artificielle, ChemBioPharm, INSERM U1212, CNRS UMR 5320, Université de Bordeaux, 33076 Bordeaux, France; (G.P.); (Y.M.); (S.C.-M.)
| | - Gisèle Clofent-Sanchez
- Centre de Résonance Magnétique des Systèmes Biologiques, CNRS UMR 5536, Université de Bordeaux, CRMSB, 33076 Bordeaux, France; (M.-J.J.-V.); (A.H.); (A.T.); (S.S.); (G.C.-S.)
| |
Collapse
|
32
|
Ogawa S, Shinkawa M, Hirase R, Tsubomura T, Iuchi K, Hara S. Development of Water-Insoluble Vehicle Comprising Natural Cyclodextrin-Vitamin E Complex. Antioxidants (Basel) 2021; 10:490. [PMID: 33804761 PMCID: PMC8003986 DOI: 10.3390/antiox10030490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Development of a novel antioxidant-delivery vehicle exerting biosafety has been attracting a great deal of interest. In this study, a vehicle comprising a natural composite consisting of vitamin E (α-tocopherol; Toc) and cyclodextrin (CD) additives was developed, directed toward aqua-related biological applications. Not only β-CD, but also γ-CD, tended to form a water-insoluble aggregate with Toc in aqueous media. The aggregated vehicle, in particular the γ-CD-added system, showed a remarkable sustained effect because of slow dynamics. Furthermore, a prominent cytoprotective effect by the γ-CD-Toc vehicle under the oxidative stress condition was confirmed. Thus, the novel vitamin E vehicle motif using γ-CD as a stabilizer was proposed, widening the usability of Toc for biological applications.
Collapse
Affiliation(s)
- Shigesaburo Ogawa
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, Tokyo 180-8633, Japan; (M.S.); (T.T.); (S.H.)
| | - Mai Shinkawa
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, Tokyo 180-8633, Japan; (M.S.); (T.T.); (S.H.)
| | - Ryuji Hirase
- Hyogo Prefectural Institute of Technology, 3-1-12 Yukihira-cho, Suma, Kobe 654-0037, Japan;
| | - Taro Tsubomura
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, Tokyo 180-8633, Japan; (M.S.); (T.T.); (S.H.)
| | - Katsuya Iuchi
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, Tokyo 180-8633, Japan; (M.S.); (T.T.); (S.H.)
| | - Setsuko Hara
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, Tokyo 180-8633, Japan; (M.S.); (T.T.); (S.H.)
| |
Collapse
|