1
|
Sun T, Guo Y, Su Y, Shan S, Qian W, Zhang F, Li M, Zhang Z. Molecular mechanisms of diabetic nephropathy: A narrative review. Cell Biol Int 2024; 48:1240-1253. [PMID: 38946126 DOI: 10.1002/cbin.12212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/01/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Diabetic nephropathy (DN) is the predominant secondary nephropathy resulting in global end-stage renal disease. It is attracting significant attention in both domestic and international research due to its widespread occurrence, fast advancement, and limited choices for prevention and treatment. The pathophysiology of this condition is intricate and involves multiple molecular and cellular pathways at various levels. This article provides a concise overview of the molecular processes involved in the development of DN. It discusses various factors, such as signaling pathways, cytokines, inflammatory responses, oxidative stress, cellular damage, autophagy, and epigenetics. The aim is to offer clinicians a valuable reference for DN's diagnosis, treatment, and intervention.
Collapse
Affiliation(s)
- Tian Sun
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yina Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanting Su
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Shigang Shan
- School of Public Health and Nursing, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Wenbin Qian
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Feixue Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Mengxi Li
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, China
| | - Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
2
|
Xu Y, Yu J. Allicin Mitigates Diabetic Retinopathy in Rats by Activating Phosphatase and Tensin Homolog-induced Kinase 1/Parkin-mitophagy and Inhibiting Oxidative Stress-mediated NOD-like Receptor Family Pyrin Domain Containing 3 Inflammasome. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:215-224. [PMID: 39206781 DOI: 10.4103/ejpi.ejpi-d-24-00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/25/2024] [Indexed: 09/04/2024]
Abstract
ABSTRACT Diabetic retinopathy (DR) is one of the significant disabling outcomes of diabetes mellitus characterized by retinal microvascular damage, inflammation, and neuronal dysfunction. Allicin (Alc), a natural compound found in garlic, has garnered attention for its antioxidant and anti-inflammatory properties, positioning it as a potential therapeutic agent for DR. The aim of the present study was to investigate the therapeutic efficacy of Alc in DR management and elucidate its underlying mechanisms of action. We established a DR model in male Sprague-Dawley rats (n = 50, 200-250 g, 12 weeks old) using a high-fat diet for 8 weeks plus a low dose of streptozotocin administered at the start of the 4th week. The diabetic (Diab) animals were administered Alc (16 mg/kg/day, orally), either alone or in combination with mitochondrial division inhibitor-1 (Mdivi-1) as a mitophagy inhibitor, starting 28 days before tissue sampling. We evaluated histopathological changes, metabolic abnormalities associated with type 2 diabetes mellitus (T2DM), the expression of proteins regulating pyroptosis (NOD-like receptor family pyrin domain containing 3, cleaved-caspase 1, and gasdermin D-N terminal) and mitophagy (phosphatase and tensin homolog-induced kinase 1 [PINK1] and Parkin), as well as the levels of oxidative stress mediators and proinflammatory cytokines. Alc treatment effectively ameliorated histopathological changes and metabolic abnormalities associated with T2DM. It downregulated pyroptosis-related proteins, upregulated mitophagy-related proteins, reduced proinflammatory cytokine levels, and attenuated oxidative stress. Treatment with Mdivi-1 suppressed the beneficial effects of Alc. Our findings highlight the therapeutic potential of Alc in managing DR by targeting multiple pathophysiological pathways, including pyroptosis, inflammation, and oxidative stress. The observed antipyroptotic effects of Alc were partially mediated by the activation of the PINK1/parkin-mediated mitophagy pathway. Additional studies are necessary to thoroughly understand the therapeutic mechanisms of Alc and its viability as a treatment choice for DR.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Ophthalmology and ENT Teaching & Research Office, Jiangxi Medical College, Shangrao, 334000, China
| | - Jia Yu
- Pediatric Teaching & Research Office, Jiangxi Medical College, Shangrao, 334000, China
| |
Collapse
|
3
|
Ajiboye BO, Famusiwa CD, Nifemi DM, Ayodele BM, Akinlolu OS, Fatoki TH, Ezzat AO, Al-Lohedan HA, Gupta S, Oyinloye BE. Nephroprotective Effect of Hibiscus Sabdariffa Leaf Flavonoid Extracts via KIM-1 and TGF-1β Signaling Pathways in Streptozotocin-Induced Rats. ACS OMEGA 2024; 9:19334-19344. [PMID: 38708257 PMCID: PMC11064007 DOI: 10.1021/acsomega.4c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024]
Abstract
Diabetes-induced kidney damage represents a substantial health hazard, emphasizing the imperative to explore potential therapeutic interventions. This study investigates the nephroprotective activity of flavonoid-rich extracts from Hibiscus sabdariffa leaves in streptozotocin-induced diabetic rats. The flavonoid-rich extracts of H. sabdariffa leaves was obtained using a standard procedure. The animals were induced with streptozotocin and thereafter treated with both low (LDHSFL) and high doses (HDHSFL) of flavonoid-rich extracts from H. sabdariffa leaves and metformin (MET), and other groups are diabetic control (DC) and normal control (NC). The study assesses diverse renal parameters, encompassing kidney redox stress biomarkers, serum electrolyte levels, kidney inflammatory biomarkers, serum concentrations of creatinine, urea, and uric acid, kidney phosphatase activities, renal histopathology, and relative gene expressions of kidney injury molecule-1 (KIM-1) and transforming growth factor beta-1 (TGF-1β), comparing these measurements with normal and diabetic control groups (NC and DC). The findings indicate that the use of extracts from H. sabdariffa leaves markedly (p < 0.05) enhanced renal well-being by mitigating nephropathy, as demonstrated through the adjustment of various biochemical and gene expression biomarkers, indicating a pronounced antioxidative and anti-inflammatory effect, improved kidney morphology, and mitigation of renal dysfunction. These findings suggest that H. sabdariffa leaf flavonoid extracts exhibit nephroprotective properties, presenting a potential natural therapeutic approach for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Basiru Olaitan Ajiboye
- Phytomedicine
and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State 370112, Nigeria
| | - Courage Dele Famusiwa
- Phytomedicine
and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State 370112, Nigeria
| | - Daramola Mercy Nifemi
- Phytomedicine
and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State 370112, Nigeria
| | - Boluwatife Michael Ayodele
- Phytomedicine
and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State 370112, Nigeria
| | - Olapade Samuel Akinlolu
- Department
of Environmental Management and Toxicology, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State 370112, Nigeria
| | - Toluwase Hezekiah Fatoki
- Bioinformatics
and Enzymology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State 370112, Nigeria
| | - Abdelrahman O. Ezzat
- Department
of Chemistry, College of Sciences, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Hamad A. Al-Lohedan
- Department
of Chemistry, College of Sciences, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Sumeet Gupta
- M.M.
College of Pharmacy, Maharishi Markandeshwar
University, Mullana, Haryana 133207, India
| | - Babatunji Emmanuel Oyinloye
- Institute
of Drug Research and Development, SE Bogoro Center, Afe Babalola University, Ado-Ekiti 362103, Nigeria
- Phytomedicine,
Biochemical Toxicology and Biotechnology Research Laboratories, Department
of Biochemistry, College of Sciences, Afe
Babalola University, Ado-Ekiti, Ekiti State 362103, Nigeria
- Biotechnology
and Structural Biology (BSB) Group, Department of Biochemistry and
Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
4
|
Zou B, Yuan Q, Luo H, Wang M, Chen X, Gao Z, Wang J, Peng Y, Yang H, Dai F, Huang X. Combination of Fushengong decoction with Western medicine on patients with chronic renal failure: An observational study. Medicine (Baltimore) 2024; 103:e37473. [PMID: 38608120 PMCID: PMC11018180 DOI: 10.1097/md.0000000000037473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic renal failure (CRF) causes a reduction in glomerular filtration rate and damage to renal parenchyma. Fushengong decoction (FSGD) showed improvement in renal function in CRF rats. This study aims to analyze the differentially expressed proteins in CRF patients treated with Western medicine alone or in combination with FSGD. Sixty patients with CRF recruited from Yongchuan Traditional Chinese Medicine Hospital affiliated to Chongqing Medical University were randomly assigned into control (treated with Western medicine alone) and observation groups (received additional FSGD treatment thrice daily for 8 weeks). The clinical efficacy and changes in serum Bun, serum creatinine, Cystatin C, and transforming growth factor beta 1 (TGF-β1) before and after treatment were observed. We employed isotope relative labeling absolute quantification labeling and liquid chromatography-mass spectrometry to identify differentially expressed proteins and carried out bioinformatics Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Patients in the observation group showed greater clinical improvement and lower levels of serum Bun, serum creatinine, Cyc-c, and TGF-β1 than the control group. We identified 32 differentially up-regulated and 52 down-regulated proteins in the observation group. These proteins are involved in the blood coagulation system, protein serine/threonine kinase activity, and TGF-β, which are closely related to the pathogenesis of CRF. Protein-protein-interaction network analysis indicated that candidate proteins fibronectin 1, fibrinogen alpha chain, vitronectin, and Serpin Family C Member 1 were in the key nodes. This study provided an experimental basis suggesting that FSGD combined with Western medicine could significantly improve renal function and renal fibrosis of CRF patients, which may be through the regulation of fibronectin 1, fibrinogen alpha chain, vitronectin, Serpin Family C Member 1, TGF-β, and the complement coagulation pathway (see Graphical abstract S1, Supplemental Digital Content, http://links.lww.com/MD/L947).
Collapse
Affiliation(s)
- Bo Zou
- Department of Nephrology, Yongchuan Traditional Chinese Medicine Affiliated to Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Qiaoqiao Yuan
- Department of Nephrology, Yongchuan Traditional Chinese Medicine Affiliated to Chongqing Medical University, Chongqing, China
| | - Hongyu Luo
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Munan Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xin Chen
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Zuling Gao
- Department of Nephrology, Yongchuan Traditional Chinese Medicine Affiliated to Chongqing Medical University, Chongqing, China
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Yongbo Peng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Haijun Yang
- Department of Nephrology, Yongchuan Traditional Chinese Medicine Affiliated to Chongqing Medical University, Chongqing, China
| | - Feng Dai
- Department of Nephrology, Yongchuan Traditional Chinese Medicine Affiliated to Chongqing Medical University, Chongqing, China
| | - Xuekuan Huang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Jiang Y, Li Z, Yue R, Liu G, Yang M, Long C, Yan D. Evidential support for garlic supplements against diabetic kidney disease: a preclinical meta-analysis and systematic review. Food Funct 2024; 15:12-36. [PMID: 38051214 DOI: 10.1039/d3fo02407e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Garlic (Allium sativum L.) is a popular spice that is widely used for food and medicinal purposes and has shown potential effects on diabetic kidney disease (DKD). Nevertheless, systematic preclinical studies are still lacking. In this meta-analysis and systematic review, we evaluated the role and potential mechanisms of action of garlic and its derived components in animal models of DKD. We searched eight databases for relevant studies from the establishment of the databases to December 2022 and updated in April 2023 before the completion of this review. A total of 24 trials were included in the meta-analysis. It provided preliminary evidence that supplementing with garlic could improve the indicators of renal function (BUN, Scr, 24 h urine volume, proteinuria, and KI) and metabolic disorders (BG, insulin, and body weight). Meanwhile, the beneficial effects of garlic and its components in DKD could be related to alleviating oxidative stress, suppressing inflammatory reactions, delaying renal fibrosis, and improving glucose metabolism. Furthermore, time-dose interval analysis exhibited relatively greater effectiveness when garlic products were supplied at doses of 500 mg kg-1 with interventions lasting 8-10 weeks, and garlic components were administered at doses of 45-150 mg kg-1 with interventions lasting 4-10 weeks. This meta-analysis and systematic review highlights for the first time the therapeutic potential of garlic supplementation in animal models of DKD and offers a more thorough evaluation of its effects and mechanisms to establish an evidence-based basis for designing future clinical trials.
Collapse
Affiliation(s)
- Yayi Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Zihan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Guojie Liu
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Maoyi Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Caiyi Long
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Dawei Yan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Li XJ, Liu T, Wang Y. Allicin ameliorates sepsis-induced acute kidney injury through Nrf2/HO-1 signaling pathway. J Nat Med 2024; 78:53-67. [PMID: 37668824 PMCID: PMC10764392 DOI: 10.1007/s11418-023-01745-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
Acute kidney injury (AKI) is a complication that can be induced by different factors. Allicin is a class of organic sulfur compounds with anticancer and antibacterial effects, and has not been reported in sepsis-induced AKI (S-AKI). S-AKI was induced in c57BL/6 mice by cecal ligation puncture. In response to the treatment of allicin, the survival rate of mice with S-AKI was increased. Reduced levels of serum creatinine, blood urea nitrogen, UALB, KIM-1 and NGAL indicated an improvement in renal function of S-AKI mice. Allicin inhibited the inflammation and cell apoptosis, which evidenced by decreased levels of inflammatory cytokines and apoptosis-related proteins. Oxidative stress was evaluated by the levels of oxidative stress biomarkers, and suppressed by allicin. In addition, allicin-alleviated mitochondrial dysfunction was characterized by decreased JC-1 green monomer. These effects of allicin were also evidenced in HK2 cells primed with lipopolysaccharide (LPS). Both in vivo and in vitro experiments showed that the nuclear translocation of Nrf2 and the expression of HO-1 increased after allicin treatment, which was confirmed by ML385 and CDDO-Me. In summary, this study revealed the alleviating effect of allicin on S-AKI and demonstrated the promotive effect of allicin on nuclear translocation of Nrf2 for the first time. It was inferred that allicin inhibited the progression of S-AKI through Nrf2/HO-1 signaling pathway. This study makes contributions to the understanding of the roles of allicin in S-AKI.
Collapse
Affiliation(s)
- Xiao-Jun Li
- Department of Nephrology, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China
| | - Ting Liu
- Department of General Practice, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China
| | - Yuan Wang
- Department of Nephrology, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China.
| |
Collapse
|
7
|
Deng Y, Ho CT, Lan Y, Xiao J, Lu M. Bioavailability, Health Benefits, and Delivery Systems of Allicin: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19207-19220. [PMID: 37943254 DOI: 10.1021/acs.jafc.3c05602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Garlic has been used worldwide as a spice due to its pungent taste and flavor-enhancing properties. As a main biologically active component of the freshly crushed garlic extracts, allicin (diallyl thiosulfinate) is converted from alliin by alliinase upon damaging the garlic clove, which has been reported to have many potent beneficial biological functions. In this work, allicin formation, stability, bioavailability, and metabolism process are examined and summarized. The biological functions of allicin and potential underlying mechanisms are reviewed and discussed, including antioxidation, anti-inflammation, antidiabetic, cardioprotective, antineurodegenerative, antitumor, and antiobesity effects. Novel delivery systems of allicin with enhanced stability, encapsulation efficiency, and bioavailability are also evaluated, such as nanoparticles, gels, liposomes, and micelles. This study could provide a comprehensive understanding of the physiochemical properties and health benefits of allicin, with great potential for further applications in the food and nutraceutical industries.
Collapse
Affiliation(s)
- Yupei Deng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, People's Republic of China
| |
Collapse
|
8
|
Ates I, Yılmaz AD, Buttari B, Arese M, Saso L, Suzen S. A Review of the Potential of Nuclear Factor [Erythroid-Derived 2]-like 2 Activation in Autoimmune Diseases. Brain Sci 2023; 13:1532. [PMID: 38002492 PMCID: PMC10669303 DOI: 10.3390/brainsci13111532] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 11/26/2023] Open
Abstract
An autoimmune disease is the consequence of the immune system attacking healthy cells, tissues, and organs by mistake instead of protecting them. Inflammation and oxidative stress (OS) are well-recognized processes occurring in association with acute or chronic impairment of cell homeostasis. The transcription factor Nrf2 (nuclear factor [erythroid-derived 2]-like 2) is of major importance as the defense instrument against OS and alters anti-inflammatory activities related to different pathological states. Researchers have described Nrf2 as a significant regulator of innate immunity. Growing indications suggest that the Nrf2 signaling pathway is deregulated in numerous diseases, including autoimmune disorders. The advantageous outcome of the pharmacological activation of Nrf2 is an essential part of Nrf2-based chemoprevention and intervention in other chronic illnesses, such as neurodegeneration, cardiovascular disease, autoimmune diseases, and chronic kidney and liver disease. Nevertheless, a growing number of investigations have indicated that Nrf2 is already elevated in specific cancer and disease steps, suggesting that the pharmacological agents developed to mitigate the potentially destructive or transformative results associated with the protracted activation of Nrf2 should also be evaluated. The activators of Nrf2 have revealed an improvement in the progress of OS-associated diseases, resulting in immunoregulatory and anti-inflammatory activities; by contrast, the depletion of Nrf2 worsens disease progression. These data strengthen the growing attention to the biological properties of Nrf2 and its possible healing power on diseases. The evidence supporting a correlation between Nrf2 signaling and the most common autoimmune diseases is reviewed here. We focus on the aspects related to the possible effect of Nrf2 activation in ameliorating pathologic conditions based on the role of this regulator of antioxidant genes in the control of inflammation and OS, which are processes related to the progression of autoimmune diseases. Finally, the possibility of Nrf2 activation as a new drug development strategy to target pathogenesis is proposed.
Collapse
Affiliation(s)
- Ilker Ates
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey
| | - Ayşe Didem Yılmaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey; (A.D.Y.); (S.S.)
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Italian National Institute of Health, 00161 Rome, Italy;
| | - Marzia Arese
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzae Aldo Moro 5, 00185 Rome, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology ‘‘Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Degol Str. No. 4, 06560 Ankara, Turkey; (A.D.Y.); (S.S.)
| |
Collapse
|
9
|
Hirano SI, Ichikawa Y, Sato B, Takefuji Y, Satoh F. Clinical Use and Treatment Mechanism of Molecular Hydrogen in the Treatment of Various Kidney Diseases including Diabetic Kidney Disease. Biomedicines 2023; 11:2817. [PMID: 37893190 PMCID: PMC10603947 DOI: 10.3390/biomedicines11102817] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
As diabetes rates surge globally, there is a corresponding rise in the number of patients suffering from diabetic kidney disease (DKD), a common complication of diabetes. DKD is a significant contributor to chronic kidney disease, often leading to end-stage renal failure. However, the effectiveness of current medical treatments for DKD leaves much to be desired. Molecular hydrogen (H2) is an antioxidant that selectively reduces hydroxyl radicals, a reactive oxygen species with a very potent oxidative capacity. Recent studies have demonstrated that H2 not only possesses antioxidant properties but also exhibits anti-inflammatory effects, regulates cell lethality, and modulates signal transduction. Consequently, it is now being utilized in clinical applications. Many factors contribute to the onset and progression of DKD, with mitochondrial dysfunction, oxidative stress, and inflammation being strongly implicated. Recent preclinical and clinical trials reported that substances with antioxidant properties may slow the progression of DKD. Hence, we undertook a comprehensive review of the literature focusing on animal models and human clinical trials where H2 demonstrated effectiveness against a variety of renal diseases. The collective evidence from this literature review, along with our previous findings, suggests that H2 may have therapeutic benefits for patients with DKD by enhancing mitochondrial function. To substantiate these findings, future large-scale clinical studies are needed.
Collapse
Affiliation(s)
- Shin-ichi Hirano
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura 247-0056, Japan; (Y.I.); (B.S.); (F.S.)
| | - Yusuke Ichikawa
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura 247-0056, Japan; (Y.I.); (B.S.); (F.S.)
| | - Bunpei Sato
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura 247-0056, Japan; (Y.I.); (B.S.); (F.S.)
| | - Yoshiyasu Takefuji
- Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan;
- Faculty of Data Science, Musashino University, 3-3-3 Ariake, Koto-ku, Tokyo 135-8181, Japan
| | - Fumitake Satoh
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura 247-0056, Japan; (Y.I.); (B.S.); (F.S.)
| |
Collapse
|
10
|
Arellano Buendia AS, Juárez Rojas JG, García-Arroyo F, Aparicio Trejo OE, Sánchez-Muñoz F, Argüello-García R, Sánchez-Lozada LG, Bojalil R, Osorio-Alonso H. Antioxidant and anti-inflammatory effects of allicin in the kidney of an experimental model of metabolic syndrome. PeerJ 2023; 11:e16132. [PMID: 37786577 PMCID: PMC10541809 DOI: 10.7717/peerj.16132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/28/2023] [Indexed: 10/04/2023] Open
Abstract
Background Recent studies have suggested that metabolic syndrome (MS) encompasses a group of risk factors for developing chronic kidney disease (CKD). This work aimed to evaluate the antioxidant and anti-inflammatory effects of allicin in the kidney from an experimental model of MS. Methods Male Wistar rats (220-250 g) were used, and three experimental groups (n = 6) were formed: control (C), metabolic syndrome (MS), and MS treated with allicin (16 mg/Kg/day, gastric gavage) (MS+A). MS was considered when an increase of 20% in at least three parameters (body weight, systolic blood pressure (SBP), fasting blood glucose (FBG), or dyslipidemia) was observed compared to the C group. After the MS diagnosis, allicin was administered for 30 days. Results Before the treatment with allicin, the MS group showed more significant body weight gain, increased SBP, and FBG, glucose intolerance, and dyslipidemia. In addition, increased markers of kidney damage in urine and blood. Moreover, the MS increased oxidative stress and inflammation in the kidney compared to group C. The allicin treatment prevented further weight gain, reduced SBP, FBG, glucose intolerance, and dyslipidemia. Also, markers of kidney damage in urine and blood were decreased. Further, the oxidative stress and inflammation were decreased in the renal cortex of the MS+A compared to the MS group. Conclusion Allicin exerts its beneficial effects on the metabolic syndrome by considerably reducing systemic and renal inflammation as well as the oxidative stress. These effects were mediated through the Nrf2 pathway. The results suggest allicin may be a therapeutic alternative for treating kidney injury induced by the metabolic syndrome risk factors.
Collapse
Affiliation(s)
- Abraham Said Arellano Buendia
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico, Xochimilco, Mexico
- Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico, Tlalpan, México
| | | | - Fernando García-Arroyo
- Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico, Tlalpan, México
| | | | - Fausto Sánchez-Muñoz
- Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico, Tlalpan, México
| | - Raúl Argüello-García
- Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, Gustavo A. Madero, México
| | | | - Rafael Bojalil
- Atención a la Salud, Universidad Autónoma Metropolitana, Mexico, Xochimilco, México
| | - Horacio Osorio-Alonso
- Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico, Tlalpan, México
| |
Collapse
|
11
|
Avendaño-Ortiz J, Redondo-Calvo FJ, Lozano-Rodríguez R, Terrón-Arcos V, Bergón-Gutiérrez M, Rodríguez-Jiménez C, Rodríguez JF, del Campo R, Gómez LA, Bejarano-Ramírez N, Pérez-Ortiz JM, López-Collazo E. Thiosulfinate-Enriched Allium sativum Extract Exhibits Differential Effects between Healthy and Sepsis Patients: The Implication of HIF-1α. Int J Mol Sci 2023; 24:ijms24076234. [PMID: 37047205 PMCID: PMC10094690 DOI: 10.3390/ijms24076234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Garlic (Allium sativum) has historically been associated with antioxidant, immunomodulatory, and microbiocidal properties, mainly due to its richness in thiosulfates and sulfur-containing phytoconstituents. Sepsis patients could benefit from these properties because it involves both inflammatory and refractory processes. We evaluated the effects of thiosulfinate-enriched Allium sativum extract (TASE) on the immune response to bacterial lipopolysaccharide (LPS) by monocytes from healthy volunteers (HVs) and patients with sepsis. We also explored the TASE effects in HIF-1α, described as the key transcription factor leading to endotoxin tolerance in sepsis monocytes through IRAK-M expression. Our results showed TASE reduced the LPS-triggered reactive oxygen species (ROS) production in monocytes from both patients with sepsis and HVs. Moreover, this extract significantly reduced tumor necrosis factor (TNF)-α, interleukin-1β, and interleukin-6 production in LPS-stimulated monocytes from HVs. However, TASE enhanced the inflammatory response in monocytes from patients with sepsis along with increased expression of human leukocyte antigen-DR. Curiously, these dual effects of TASE on immune response were also found when the HV cohort was divided into low- and high-LPS responders. Although TASE enhanced TNFα production in the LPS-low responders, it decreased the inflammatory response in the LPS-high responders. Furthermore, TASE decreased the HIF-1α pathway-associated genes IRAK-M, VEGFA and PD-L1 in sepsis cells, suggesting HIF-1α inhibition by TASE leads to higher cytokine production in these cells as a consequence of IRAK-M downregulation. The suppression of this pathway by TASE was confirmed in vitro with the prolyl hydroxylase inhibitor dimethyloxalylglycine. Our data revealed TASE’s dual effect on monocyte response according to status/phenotype and suggested the HIF-1α suppression as the possible underlying mechanism.
Collapse
Affiliation(s)
- José Avendaño-Ortiz
- Department of Microbiology, University Hospital Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (J.A.-O.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Javier Redondo-Calvo
- Department of Anesthesiology and Critical Care Medicine, University General Hospital, 13004 Ciudad Real, Spain;
- Translational Research Unit, University General Hospital and Research Institute of Castilla-La Mancha (IDISCAM), 13071 Ciudad Real, Spain
- Faculty of Medicine, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Roberto Lozano-Rodríguez
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (R.L.-R.); (V.T.-A.)
- Tumor Immunology Laboratory, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Verónica Terrón-Arcos
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (R.L.-R.); (V.T.-A.)
| | - Marta Bergón-Gutiérrez
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (R.L.-R.); (V.T.-A.)
| | - Concepción Rodríguez-Jiménez
- Department of Microbiology, University Hospital Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (J.A.-O.)
| | - Juan Francisco Rodríguez
- Department of Chemical Engineering, Institute of Chemical and Environmental Technology, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain; (J.F.R.)
| | - Rosa del Campo
- Department of Microbiology, University Hospital Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (J.A.-O.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luis Antonio Gómez
- Department of Chemical Engineering, Institute of Chemical and Environmental Technology, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain; (J.F.R.)
| | - Natalia Bejarano-Ramírez
- Translational Research Unit, University General Hospital and Research Institute of Castilla-La Mancha (IDISCAM), 13071 Ciudad Real, Spain
- Faculty of Medicine, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
- Department of Pediatrics, University General Hospital, 13004 Ciudad Real, Spain
| | - José Manuel Pérez-Ortiz
- Translational Research Unit, University General Hospital and Research Institute of Castilla-La Mancha (IDISCAM), 13071 Ciudad Real, Spain
- Faculty of Medicine, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
- Correspondence: (J.M.P.-O.); (E.L.-C.)
| | - Eduardo López-Collazo
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (R.L.-R.); (V.T.-A.)
- Tumor Immunology Laboratory, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (J.M.P.-O.); (E.L.-C.)
| |
Collapse
|
12
|
Putra IMWA, Fakhrudin N, Nurrochmad A, Wahyuono S. A Review of Medicinal Plants with Renoprotective Activity in Diabetic Nephropathy Animal Models. Life (Basel) 2023; 13:560. [PMID: 36836916 PMCID: PMC9963806 DOI: 10.3390/life13020560] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Diabetic nephropathy (DN), also recognized as diabetic kidney disease, is a kidney malfunction caused by diabetes mellitus. A possible contributing factor to the onset of DN is hyperglycemia. Poorly regulated hyperglycemia can damage blood vessel clusters in the kidneys, leading to kidney damage. Its treatment is difficult and expensive because its causes are extremely complex and poorly understood. Extracts from medicinal plants can be an alternative treatment for DN. The bioactive content in medicinal plants inhibits the progression of DN. This work explores the renoprotective activity and possible mechanisms of various medicinal plant extracts administered to diabetic animal models. Research articles published from 2011 to 2022 were gathered from several databases including PubMed, Scopus, ProQuest, and ScienceDirect to ensure up-to-date findings. Results showed that medicinal plant extracts ameliorated the progression of DN via the reduction in oxidative stress and suppression of inflammation, advanced glycation end-product formation, cell apoptosis, and tissue injury-related protein expression.
Collapse
Affiliation(s)
- I Made Wisnu Adhi Putra
- Department of Biology, University of Dhyana Pura, Badung 80351, Indonesia
- Doctorate Program of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Nanang Fakhrudin
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Arief Nurrochmad
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Subagus Wahyuono
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
13
|
Metformin suppresses LRG1 and TGFβ1/ALK1-induced angiogenesis and protects against ultrastructural changes in rat diabetic nephropathy. Biomed Pharmacother 2023; 158:114128. [PMID: 36525822 DOI: 10.1016/j.biopha.2022.114128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic nephropathy (DN) has high prevalence and poor prognosis which make it a research priority for scientists. Since metformin, a hypoglycaemic drug, has been found to prolong the survival of mice with DN. This study aims at investigating the molecular mechanisms leading to DN in rats and to explore the role of leucine-rich α-2-glycoprotein-1 (LRG1), activin-like kinase1 (ALK1), and transforming growth factor-β (TGFβ1) in the pathologic alterations seen in DN. The aim was also extended to explore the protective action of metformin against DN in rats and its influence on LRG1and ALK1/TGFβ1 induced renal angiogenesis. 24 male rats were used. Rats were assigned as, the vehicle group, the diabetic control group and diabetic + metformin (100 and 200 mg/kg) groups. Kidney samples were processed for histopathology, immunohistochemistry and biochemical analysis. Bioinformatic analysis of studied proteins was done to determine protein-protein interactions. Metformin reduced serum urea and creatinine significantly, decreased the inflammatory cytokine levels and reduced LRG1, TGFβ1, ALK1 and vascular endothelial growth factor (VEGF) proteins in rat kidneys. Bioinformatic analysis revealed interactions between the studied proteins. Metformin alleviated the histopathological changes observed in the diabetic rats such as the glomerular surface area and increased Bowman's space diameter. Metformin groups showed decreased VEGF immunostaining compared to diabetic group. Metformin shows promising renoprotective effects in diabetic model that was at least partly mediated by downregulation of LRG1 and TGFβ1/ALK1-induced renal angiogenesis. These results further explain the molecular mechanism of metformin in DN management.
Collapse
|
14
|
Jiang Y, Yue R, Liu G, Liu J, Peng B, Yang M, Zhao L, Li Z. Garlic ( Allium sativum L.) in diabetes and its complications: Recent advances in mechanisms of action. Crit Rev Food Sci Nutr 2022; 64:5290-5340. [PMID: 36503329 DOI: 10.1080/10408398.2022.2153793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycemia and impaired islet secretion that places a heavy burden on the global health care system due to its high incidence rate, long disease course and many complications. Fortunately, garlic (Allium sativum L.), a well-known medicinal plant and functional food without the toxicity and side effects of conventional drugs, has shown positive effects in the treatment of diabetes and its complications. With interdisciplinary development and in-depth exploration, we offer a clear and comprehensive summary of the research from the past ten years, focusing on the mechanisms and development processes of garlic in the treatment of diabetes and its complications, aiming to provide a new perspective for the treatment of diabetes and promote the efficient development of this field.
Collapse
Affiliation(s)
- Yayi Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guojie Liu
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Jun Liu
- People's Hospital of NanJiang, Bazhong, China
| | - Bo Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoyi Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lianxue Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
Allicin Alleviates Diabetes Mellitus by Inhibiting the Formation of Advanced Glycation End Products. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248793. [PMID: 36557926 PMCID: PMC9787121 DOI: 10.3390/molecules27248793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Advanced glycation end products (AGEs) cause damage to pancreatic β-cells and trigger oxidative stress and inflammation, which promotes the development and progression of diabetes and its complications. Therefore, it is important to inhibit the formation of AGEs as part of the treatment of diabetes. Allicin is a natural antimicrobial agent with abundant pharmacological activities, and recent studies have reported its therapeutic effects in diabetes; however, the mechanism of these therapeutic effects is still unclear. Thus, the purpose of this study was to further investigate the association between allicin treatment of diabetes and AGEs. First, we established a streptozocin (STZ)-induced diabetic rat model and treated the rats with allicin for six weeks. We measured glycolipid metabolism, AGE levels, receptor of advanced glycation end products (RAGE) levels, oxidative stress, and other related indicators. The results showed that allicin improved blood glucose and body weight, reduced lipid accumulation, and inhibited AGE formation in rats. Treatment with allicin also inhibited RAGEs and thereby prevented AGE activity, which, in turn, alleviated oxidative stress and promoted insulin secretion. To further verify the effect of allicin on AGEs, we also performed in vitro nonenzymatic glycation simulation experiments. These results showed that allicin inhibited the production of AGEs by suppressing the production of AGEs intermediates. Thus, our research suggests that allicin may alleviate diabetes by inhibiting the formation of AGEs and reducing RAGE levels to relieve oxidative stress and promote insulin secretion.
Collapse
|
16
|
Yuniartha R, Arfian N, Setyaningsih WAW, Kencana SMS, Sari DCR, Sari DCR. Accelerated Senescence and Apoptosis in the Rat Liver during the Progression of Diabetic Complications. Malays J Med Sci 2022; 29:46-59. [PMID: 36818894 PMCID: PMC9910368 DOI: 10.21315/mjms2022.29.6.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/25/2022] [Indexed: 12/25/2022] Open
Abstract
Background Chronic hyperglycaemia of diabetes causes long-term damage and impaired function of multiple organs. However, the pathological changes in the liver following long-term diabetes remain unclear. This study aimed to determine the pathological complications of long-term diabetes in the rat liver. Methods Intraperitoneal injection of streptozotocin (STZ) was used to induce diabetes in rats at a single dose (60 mg/kg body weight [BW]). Rats were euthanised at 1 month (DM1 group), 2 months (DM2 group) and 4 months (DM4 group) following diabetes induction with six rats in each group. Immunohistochemistry was performed against SOD1, CD68, p53 and p16 antibodies. Messenger RNA (mRNA) expressions of SOD1, SOD2, GPx, CD68, p53, p21 and caspase-3 genes were measured by reverse transcription-polymerase chain reaction. Results Hepatic p53 mRNA expression was significantly higher in DM1, DM2 and DM4 groups compared to the control group. The p21 and caspase-3 mRNA expressions were significantly upregulated in the DM2 and DM4 groups. The p16-positive cells were obviously increased, particularly in the DM4 group. Bivariate correlation analysis showed mRNA expressions of p21 and caspase-3 genes were positively correlated with the p53 gene. Conclusion Diabetic rats exhibited increased apoptosis and senescence in the liver following a longer period of hyperglycaemia.
Collapse
|
17
|
Li M, Yun W, Wang G, Li A, Gao J, He Q. Roles and mechanisms of garlic and its extracts on atherosclerosis: A review. Front Pharmacol 2022; 13:954938. [PMID: 36263122 PMCID: PMC9574545 DOI: 10.3389/fphar.2022.954938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
The prevention and treatment of cardiovascular diseases (CVDs) have achieved initial results, but the number of CVDs patients will increase rapidly in the next 10 years. Atherosclerosis (AS) is a significant risk factor for CVDs. The impact of lifestyle and daily diet varies considerably between different countries and continents and has been shown to affect the development of various diseases such as diabetes and CVDs. Primary and secondary prevention using alternative supplements and methods to avoid or reduce the use of traditional pharmacological drugs have also become popular. One of the reasons for this is that pharmacological drugs with lipid-lowering, and blood pressure-lowering effects cause many side effects that may negatively impact the quality of life. Patients are now emphasizing reliance on lifestyle changes to reduce cardiovascular risks. Garlic is a medicinal and edible plant that has been used for a long time. In order to reveal garlic application in the prevention and treatment of AS, reviewing the latest domestic and international studies through searching databases. The result shows that the antiatherogenic role of garlic is eximious. And the mechanisms are mainly related to hypolipidemic, antioxidant, antithrombotic, inhibiting angiogenesis, protecting endothelial cells, anti-inflammatory, anti-apoptotic, inhibiting vascular smooth muscle proliferation, and regulating gut microbiota. The main signaling pathways involve AMPK/TLRs, Keap1/Nrf2, PI3K/AKT, PPARγ/LXRα, GEF-H1/RhoA/Rac, etc. The antiatherogenic actions and molecular mechanism of garlic were reviewed in this study to obtain a robust evidence basis for the clinical application and mechanistic study and provide a theoretical basis for further utilization of garlic.
Collapse
Affiliation(s)
- Min Li
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wingyan Yun
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Clinical Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guibin Wang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Anqi Li
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Clinical Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Gao
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Clinical Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingyong He
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Qingyong He,
| |
Collapse
|
18
|
Tanase DM, Gosav EM, Anton MI, Floria M, Seritean Isac PN, Hurjui LL, Tarniceriu CC, Costea CF, Ciocoiu M, Rezus C. Oxidative Stress and NRF2/KEAP1/ARE Pathway in Diabetic Kidney Disease (DKD): New Perspectives. Biomolecules 2022; 12:biom12091227. [PMID: 36139066 PMCID: PMC9496369 DOI: 10.3390/biom12091227] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is one of the most debilitating chronic diseases worldwide, with increased prevalence and incidence. In addition to its macrovascular damage, through its microvascular complications, such as Diabetic Kidney Disease (DKD), DM further compounds the quality of life of these patients. Considering DKD is the main cause of end-stage renal disease (ESRD) in developed countries, extensive research is currently investigating the matrix of DKD pathophysiology. Hyperglycemia, inflammation and oxidative stress (OS) are the main mechanisms behind this disease. By generating pro-inflammatory factors (e.g., IL-1,6,18, TNF-α, TGF-β, NF-κB, MCP-1, VCAM-1, ICAM-1) and the activation of diverse pathways (e.g., PKC, ROCK, AGE/RAGE, JAK-STAT), they promote a pro-oxidant state with impairment of the antioxidant system (NRF2/KEAP1/ARE pathway) and, finally, alterations in the renal filtration unit. Hitherto, a wide spectrum of pre-clinical and clinical studies shows the beneficial use of NRF2-inducing strategies, such as NRF2 activators (e.g., Bardoxolone methyl, Curcumin, Sulforaphane and their analogues), and other natural compounds with antioxidant properties in DKD treatment. However, limitations regarding the lack of larger clinical trials, solubility or delivery hamper their implementation for clinical use. Therefore, in this review, we will discuss DKD mechanisms, especially oxidative stress (OS) and NRF2/KEAP1/ARE involvement, while highlighting the potential of therapeutic approaches that target DKD via OS.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Madalina Ioana Anton
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence:
| | - Petronela Nicoleta Seritean Isac
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences II, Physiology Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Hematology Laboratory, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Hematology Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iași, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| |
Collapse
|
19
|
Xu S, Liao Y, Wang Q, Liu L, Yang W. Current studies and potential future research directions on biological effects and related mechanisms of allicin. Crit Rev Food Sci Nutr 2022; 63:7722-7748. [PMID: 35293826 DOI: 10.1080/10408398.2022.2049691] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Allicin, a thiosulfonate extract from freshly minced garlic, has been reported to have various biological effects on different organs and systems of animals and human. It can reduce oxidative stress, inhibit inflammatory response, resist pathogen infection and regulate intestinal flora. In addition, dozens of studies also demonstrated allicin could reduce blood glucose level, protect cardiovascular system and nervous system, and fight against cancers. Allicin was widely used in disease prevention and health care. However, more investigations on human cohort study are needed to verify the biological or clinical effects of allicin in the future. In this review, we summarized the biological effects of allicin from previous outstanding and valuable studies and provided useful information for future studies on the health effects of allicin.
Collapse
Affiliation(s)
- Shiyin Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| | - Qi Wang
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Sánchez-Gloria JL, Martínez-Olivares CE, Rojas-Morales P, Hernández-Pando R, Carbó R, Rubio-Gayosso I, Arellano-Buendía AS, Rada KM, Sánchez-Muñoz F, Osorio-Alonso H. Anti-Inflammatory Effect of Allicin Associated with Fibrosis in Pulmonary Arterial Hypertension. Int J Mol Sci 2021; 22:ijms22168600. [PMID: 34445305 PMCID: PMC8395330 DOI: 10.3390/ijms22168600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/27/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling. Recent evidence supports that inflammation plays a key role in triggering and maintaining pulmonary vascular remodeling. Recent studies have shown that garlic extract has protective effects in PAH, but the precise role of allicin, a compound derived from garlic, is unknown. Thus, we used allicin to evaluate its effects on inflammation and fibrosis in PAH. Male Wistar rats were divided into three groups: control (CON), monocrotaline (60 mg/kg) (MCT), and MCT plus allicin (16 mg/kg/oral gavage) (MCT + A). Right ventricle (RV) hypertrophy and pulmonary arterial medial wall thickness were determined. IL-1β, IL-6, TNF-α, NFκB p65, Iκβ, TGF-β, and α-SMA were determined by Western blot analysis. In addition, TNF-α and TGF-β were determined by immunohistochemistry, and miR-21-5p and mRNA expressions of Cd68, Bmpr2, and Smad5 were determined by RT-qPCR. Results: Allicin prevented increases in vessel wall thickness due to TNF-α, IL-6, IL-1β, and Cd68 in the lung. In addition, TGF-β, α-SMA, and fibrosis were lower in the MCT + A group compared with the MCT group. In the RV, allicin prevented increases in TNF-α, IL-6, and TGF-β. These observations suggest that, through the modulation of proinflammatory and profibrotic markers in the lung and heart, allicin delays the progression of PAH.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/therapeutic use
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Cytokines/genetics
- Cytokines/metabolism
- Disulfides/therapeutic use
- Fibrosis
- Heart Ventricles/drug effects
- Heart Ventricles/metabolism
- Heart Ventricles/pathology
- Hypertension, Pulmonary/drug therapy
- Male
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Rats
- Rats, Wistar
- Smad5 Protein/genetics
- Smad5 Protein/metabolism
- Sulfinic Acids/therapeutic use
Collapse
Affiliation(s)
- José L. Sánchez-Gloria
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Constanza Estefanía Martínez-Olivares
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City 14080, Mexico; (C.E.M.-O.); (R.H.-P.)
| | - Pedro Rojas-Morales
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (P.R.-M.); (A.S.A.-B.)
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City 14080, Mexico; (C.E.M.-O.); (R.H.-P.)
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Ivan Rubio-Gayosso
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (I.R.-G.)
| | - Abraham S. Arellano-Buendía
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (P.R.-M.); (A.S.A.-B.)
| | - Karla M. Rada
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Fausto Sánchez-Muñoz
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
- Correspondence: (F.S.-M.); (H.O.-A.)
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (P.R.-M.); (A.S.A.-B.)
- Correspondence: (F.S.-M.); (H.O.-A.)
| |
Collapse
|
21
|
Yu Y, Ren KM, Chen XL. Expression and role of P-element-induced wimpy testis-interacting RNA in diabetic-retinopathy in mice. World J Diabetes 2021; 12:1116-1130. [PMID: 34326959 PMCID: PMC8311480 DOI: 10.4239/wjd.v12.i7.1116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/11/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND As one of the major microvascular complications of diabetes, diabetic retinopathy (DR) is the leading cause of blindness in the working age population. Because the extremely complex pathogenesis of DR has not been fully clarified, the occurrence and development of DR is closely related to tissue ischemia and hypoxia and neovascularization The formation of retinal neovascularization (RNV) has great harm to the visual acuity of patients.
AIM To investigate the expression of P-element-induced wimpy testis-interacting RNA (piRNA) in proliferative DR mice and select piRNA related to RNV.
METHODS One hundred healthy C57BL/6J mice were randomly divided into a normal group as control group (CG) and proliferative DR (PDR) group as experimental group (EG), with 50 mice in each group. Samples were collected from both groups at the same time, and the lesions of mice were evaluated by hematoxylin and eosin staining and retinal blood vessel staining. The retinal tissues were collected for second-generation high-throughput sequencing, and the differentially expressed piRNA between the CG and EG was detected, and polymerase chain reaction (PCR) was conducted for verification. The differentially obtained piRNA target genes and expression profiles were enrichment analysis based on gene annotation (Gene Ontology) and Kyoto Encyclopedia of Genes and Genomes.
RESULTS In the CG there was no perfusion area, neovascularization and endothelial nucleus broke through the inner boundary membrane of retinap. In the EG, there were a lot of nonperfused areas, new blood vessels and endothelial nuclei breaking through the inner boundary membrane of the retina. There was a statistically significant difference in the number of vascular endothelial nuclei breaking through the inner retinal membrane between the two groups. High-throughput sequencing analysis showed that compared with the CG, a total of 79 piRNAs were differentially expressed in EG, among which 43 piRNAs were up-regulated and 36 piRNAs were down-regulated. Bioinformatics analysis showed that the differentially expressed piRNAs were mainly concentrated in the signaling pathways of angiogenesis and cell proliferation. Ten piRNAs were selected for PCR, and the results showed that the expression of piR-MMU-40373735, piR-MMU-61121420, piR-MMU-55687822, piR-MMU-1373887 were high, and the expression of piR-MMU-7401535, piR-MMU-4773779, piR-MMU-1304999, and piR-MMU-5160126 were low, which were consistent with the sequencing results.
CONCLUSION In the EG, the abnormal expression of piRNA is involved in the pathway of angiogenesis and cell proliferation, suggesting that piRNAs have some regulatory function in proliferative diabetic-retinopathy.
Collapse
Affiliation(s)
- Yong Yu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Kai-Ming Ren
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xiao-Long Chen
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
22
|
Talib WH, Mahmod AI, Abuarab SF, Hasen E, Munaim AA, Haif SK, Ayyash AM, Khater S, AL-Yasari IH, Kury LTA. Diabetes and Cancer: Metabolic Association, Therapeutic Challenges, and the Role of Natural Products. Molecules 2021; 26:2179. [PMID: 33920079 PMCID: PMC8070467 DOI: 10.3390/molecules26082179] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is considered the second leading cause of death worldwide and in 2018 it was responsible for approximately 9.6 million deaths. Globally, about one in six deaths are caused by cancer. A strong correlation was found between diabetes mellitus and carcinogenesis with the most evident correlation was with type 2 diabetes mellitus (T2DM). Research has proven that elevated blood glucose levels take part in cell proliferation and cancer cell progression. However, limited studies were conducted to evaluate the efficiency of conventional therapies in diabetic cancer patients. In this review, the correlation between cancer and diabetes will be discussed and the mechanisms by which the two diseases interact with each other, as well as the therapeutics challenges in treating patients with diabetes and cancer with possible solutions to overcome these challenges. Natural products targeting both diseases were discussed with detailed mechanisms of action. This review will provide a solid base for researchers and physicians to test natural products as adjuvant alternative therapies to treat cancer in diabetic patients.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Sara Feras. Abuarab
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Eliza Hasen
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Amer A. Munaim
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Shatha Khaled Haif
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Amani Marwan Ayyash
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Samar Khater
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Intisar Hadi AL-Yasari
- Department of Genetic Engineering, College of Biotechnology, Al-Qasim Green University, Babylon 00964, Iraq;
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
| |
Collapse
|
23
|
Son SH, Lee SM, Lee MH, Son YK, Kim SE, An WS. Omega-3 Fatty Acids Upregulate SIRT1/3, Activate PGC-1α via Deacetylation, and Induce Nrf1 Production in 5/6 Nephrectomy Rat Model. Mar Drugs 2021; 19:182. [PMID: 33810216 PMCID: PMC8066610 DOI: 10.3390/md19040182] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial dysfunction contributes to the pathogenesis of kidney injury related with cardiovascular disease. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) protects renal tubular cells by upregulating nuclear factor erythroid 2-related factor 2 (Nrf2). AMP-activated protein kinase (pAMPK)-mediated phosphorylation and sirtuin 1/3 (SIRT1/3)-mediated deacetylation are required for PGC-1α activation. In the present study, we aimed to investigate whether omega-3 fatty acids (FAs) regulate the expression of mediators of mitochondrial biogenesis in 5/6 nephrectomy (Nx) rats. Male Sprague-Dawley rats were assigned to the following groups: sham control, Nx, and Nx treated with omega-3 FA. The expression of PGC-1α, phosphorylated PGC-1α (pPGC-1α), acetylated PGC-1α, and factors related to mitochondrial biogenesis was examined through Western blot analysis. Compared to the control group, the expression of PGC-1α, pAMPK, SIRT1/3, Nrf1, mTOR, and Nrf2 was significantly downregulated, and that of Keap 1, acetylated PGC-1α, and FoxO1/3, was significantly upregulated in the Nx group. These changes in protein expression were rescued in the omega-3 FA group. However, the expression of pPGC-1α was similar among the three groups. Omega-3 FAs may involve mitochondrial biogenesis by upregulating Nrf1 and Nrf2. This protective mechanism might be attributed to the increased expression and deacetylation of PGC-1α, which was triggered by SIRT1/3.
Collapse
Affiliation(s)
- Sung Hyun Son
- Department of Internal Medicine, BHS Han Seo Hospital, Busan 48253, Korea;
| | - Su Mi Lee
- Department of Internal Medicine, Dong-A University, Busan 49201, Korea; (S.M.L.); (Y.K.S.); (S.E.K.)
| | - Mi Hwa Lee
- Department of Anatomy and Cell Biology, Dong-A University, Busan 49201, Korea;
| | - Young Ki Son
- Department of Internal Medicine, Dong-A University, Busan 49201, Korea; (S.M.L.); (Y.K.S.); (S.E.K.)
| | - Seong Eun Kim
- Department of Internal Medicine, Dong-A University, Busan 49201, Korea; (S.M.L.); (Y.K.S.); (S.E.K.)
| | - Won Suk An
- Department of Internal Medicine, Dong-A University, Busan 49201, Korea; (S.M.L.); (Y.K.S.); (S.E.K.)
| |
Collapse
|
24
|
Oxidative Stress and Inflammation in Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:antiox10020171. [PMID: 33503818 PMCID: PMC7912407 DOI: 10.3390/antiox10020171] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022] Open
|