1
|
Vidhyalakshmi R, Meera MS. Role of millets in pre-diabetes and diabetes: effect of processing and product formulation. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1848-1861. [PMID: 39285993 PMCID: PMC11401821 DOI: 10.1007/s13197-024-05952-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/23/2024] [Accepted: 02/18/2024] [Indexed: 09/19/2024]
Abstract
The incidence of pre-diabetes and diabetes has been increasing recently worldwide and considered as a major growing non-communicable disease. Millets are eco-friendly crops which could sustain extensive climatic conditions. The productivity of millets had increased in recent years to meet the nutritional needs of the increasing global population. The factors which affect the starch digestibility pattern in millets are protein, fat, resistant starch, dietary fibre, and anti-nutrients. However, the interplay of these components also affects the starch digestibility pattern in millets during various processing methods such as thermal, non-thermal, chemical, and their combination. The incorporation of native and processed millet in food products varies the in-vitro and in-vivo glycaemic index. The current study further discusses the potential applications of millet in food formulations for pre-diabetic and diabetic population. Hence the appropriately processed millets could be a suggested as a suitable dietary option for pre-diabetic and diabetic population.
Collapse
Affiliation(s)
- R Vidhyalakshmi
- Department of Grain Science and Technology, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - M S Meera
- Department of Grain Science and Technology, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
2
|
Li W, Xu R, Qin S, Song Q, Guo B, Li M, Zhang Y, Zhang B. Cereal dietary fiber regulates the quality of whole grain products: Interaction between composition, modification and processing adaptability. Int J Biol Macromol 2024; 274:133223. [PMID: 38897509 DOI: 10.1016/j.ijbiomac.2024.133223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
The coarse texture and difficulty in processing dietary fiber (DF) in cereal bran have become limiting factors for the development of the whole cereal grain (WCG) food industry. To promote the development of the WCG industry, this review comprehensively summarizes the various forms and structures of cereal DF, including key features such as molecular weight, chain structure, and substitution groups. Different modification methods for changing the chemical structure of DF and their effects on the modification methods on physicochemical properties and biological activities of DF are discussed systematically. Furthermore, the review focusses on exploring the interactions between DF and dough components and discusses the effects on the gluten network structure, starch gelatinization and retrogradation, fermentation, glass transition, gelation, and rheological and crystalline characteristics of dough. Additionally, opportunities and challenges regarding the further development of DF for the flour products are also reviewed. The objective of this review is to establish a comprehensive foundation for the precise modification of cereal DF, particularly focusing on its application in dough-related products, and to advance the development and production of WCG products.
Collapse
Affiliation(s)
- Wen Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Rui Xu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Shaoshuang Qin
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Qiaozhi Song
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Boli Guo
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China.
| | - Ming Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China.
| | - Yingquan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| | - Bo Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; Institute of food science technology nutrition and health (Cangzhou) CAAS, Cangzhou, Hebei 061019.China
| |
Collapse
|
3
|
Yang Y, Wang X. Effects of coarse cereals on dough and Chinese steamed bread - a review. Front Nutr 2023; 10:1186860. [PMID: 37599688 PMCID: PMC10434817 DOI: 10.3389/fnut.2023.1186860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Chinese steamed breads (CSBs) are long-established staple foods in China. To enhance the nutritional value, coarse cereals such as oats, buckwheat, and quinoa have been added to the formulation for making CSBs. This review presents the nutritional value of various coarse cereals and analyses the interactions between the functional components of coarse cereals in the dough. The addition of coarse cereals leads to changes in the rheological, fermentation, and pasting aging properties of the dough, which further deteriorates the appearance and texture of CSBs. This review can provide some suggestions and guidelines for the production of staple and nutritious staple foods.
Collapse
Affiliation(s)
| | - Xinwei Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
4
|
Novotni D, Nanjara L, Štrkalj L, Drakula S, Čukelj Mustač N, Voučko B, Ćurić D. Influence of Particle Size and Xylanase Pretreatment of Proso Millet Bran on Physical, Sensory and Nutritive Features of Gluten-Free Bread. Food Technol Biotechnol 2023; 61:73-84. [PMID: 37200793 PMCID: PMC10187571 DOI: 10.17113/ftb.61.01.23.7776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/02/2022] [Indexed: 05/20/2023] Open
Abstract
Research background Millet bran is a by-product rich in dietary fibre, micronutrients and bioactive compounds which are often deficient in a gluten-free diet. Previously, cryogenic grinding has been shown to improve the functionality of bran to some extent, although it offered limited benefits for bread making. This study aims to investigate the effects of adding proso millet bran depending on its particle size and xylanase pretreatment on the physicochemical, sensory and nutritional properties of gluten-free pan bread. Experimental approach Coarse bran (d50=223 μm) was ground to medium size (d50=157 μm) using an ultracentrifugal mill or to superfine particles (d50=8 μm) using a cryomill. Millet bran presoaked in water (for 16 h at 55 °C) with or without the addition of fungal xylanase (10 U/g) replaced 10% of the rice flour in the control bread. Bread specific volume, crumb texture, colour and viscosity were measured instrumentally. Along with proximate composition, the content of soluble and insoluble fibre, total phenolic compounds (TPC) and phenolic acids as well as total and bioaccessible minerals of bread were assessed. Sensory analysis of the bread samples included a descriptive, hedonic and ranking test. Results and conclusions Dietary fibre content (7.3-8.6 g/100 g) and TPC (42-57 mg/100 g) on dry mass basis of the bread loaves depended on bran particle size and xylanase pretreatment. The effect of xylanase pretreatment was most evident in the loaves with medium bran size in terms of higher content of fibre soluble in ethanol (45%) and free ferulic acid content (5%), improved bread volume (6%), crumb softness (16%) and elasticity (7%), but lower chewiness (15%) and viscosity (20-32%). Bread bitterness and dark colour were increased after adding medium-sized bran but its bitter aftertaste, crust crookedness, crumb hardness and graininess were reduced with xylanase pretreatment. Although bran addition impaired protein digestibility, it enriched the bread with iron (341%), magnesium (74%), copper (56%) and zinc (7.5%). Xylanase pretreatment of the bran resulted in the improved bioaccessibility of zinc and copper of the enriched bread compared to the control and bread without xylanase. Novelty and scientific contribution Application of xylanase to medium sized bran obtained by ultracentrifugal grinding was more successful than its application to superfine bran obtained by the multistage cryogrinding as it resulted in more soluble fibre in gluten-free bread. Moreover, xylanase was proven beneficial in maintaining desirable bread sensory properties and mineral bioaccessibility.
Collapse
Affiliation(s)
- Dubravka Novotni
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Ljiljana Nanjara
- University of Applied Sciences ‘Marko Marulić’, Petra Krešimira IV 30, 22300 Knin, Croatia
| | - Lucija Štrkalj
- Division of Food Sciences, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Saša Drakula
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Nikolina Čukelj Mustač
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Bojana Voučko
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Duška Ćurić
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Mashau ME, Mukwevho TA, Ramashia SE, Siwela M. The influence of Bambara groundnut ( Vigna subterranean) flour on the nutritional, physical and antioxidant properties of steamed bread. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2130435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mpho Edward Mashau
- Department of Food Science and Technology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | - Thompho Admire Mukwevho
- Department of Food Science and Technology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | - Shonisani Eugenia Ramashia
- Department of Food Science and Technology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | - Muthulisi Siwela
- Department of Dietetics and Human Nutrition, School of Agricultural, Earth and Environmental Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
6
|
Shao S, Yi X, Li C. Main factors affecting the starch digestibility in Chinese steamed bread. Food Chem 2022; 393:133448. [PMID: 35751217 DOI: 10.1016/j.foodchem.2022.133448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/15/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022]
Abstract
Chinese steamed bread (CSB) is one of the staple foods in China, although it has a high glycemic index (GI) value. Development of CSB with a slower starch digestibility is thus of great importance for the improvement of human health. Many factors are related to the starch digestibility in CSB. Most currently available strategies are focusing on the incorporation of other whole flours with high dietary fiber or polyphenols to reduce the starch digestibility. Although successful in reducing starch digestibility, the incorporation of these flours also deteriorated textural attributes and sensory characteristics of CSB. Much more strategies have been applied for the reduction of starch digestibility in breads, which should be further explored to confirm if they are applicable for CSB. This review contains important information, that could potentially turn CSB into a much healthier food product with slower starch digestibility.
Collapse
Affiliation(s)
- Shuaibo Shao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xueer Yi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
7
|
Tomar M, Bhardwaj R, Verma R, Singh SP, Dahuja A, Krishnan V, Kansal R, Yadav VK, Praveen S, Sachdev A. Interactome of millet-based food matrices: A review. Food Chem 2022; 385:132636. [PMID: 35339804 DOI: 10.1016/j.foodchem.2022.132636] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/28/2022]
Abstract
Millets are recently being recognized as emerging food ingredients with multifaceted applications. Whole grain flours made from millets, exhibit diverse chemical compositions, starch digestibility and physicochemical properties. A food matrix can be viewed as a section of food microstructure, commonly coinciding with a physical spatial domain that interacts or imparts specific functionalities to a particular food constituent. The complex millet-based food matrices can help individuals to attain nutritional benefits due to the intricate and unique digestive properties of these foods. This review helps to fundamentally understand the binary and ternary interactions of millet-based foods. Nutritional bioavailability and bioaccessibility are also discussed based on additive, synergistic, masking, the antagonistic or neutralizing effect of different food matrix components on each other and the surrounding medium. The molecular basis of these interactions and their effect on important functional attributes like starch retrogradation, gelling, pasting, water, and oil holding capacity is also discussed.
Collapse
Affiliation(s)
- Maharishi Tomar
- Division of Seed Technology, ICAR - Indian Grassland and Fodder Research Institute, Jhansi 284003, India; Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Rakesh Bhardwaj
- Germplasm Evaluation Division, National Bureau of Plant Genetic Resources, New Delhi 110012, India.
| | - Reetu Verma
- Division of Crop Improvement, ICAR -Indian Grassland and Fodder Research Institute, Jhansi 284003, India
| | - Sumer Pal Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 284003, India
| | - Anil Dahuja
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Veda Krishnan
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Rekha Kansal
- ICAR-National Institute for Plant Biotechnology, Pusa, New Delhi 110012, India
| | - Vijay Kumar Yadav
- Division of Seed Technology, ICAR - Indian Grassland and Fodder Research Institute, Jhansi 284003, India
| | - Shelly Praveen
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Archana Sachdev
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
8
|
Li YX, Wang NN, Yan QJ, Hua XH, Liu Y, Jiang ZQ. A novel neutral thermophilic β-mannanase from Malbranchea cinnamomea for controllable production of partially hydrolyzed konjac powder. Appl Microbiol Biotechnol 2022; 106:1919-1932. [PMID: 35179629 DOI: 10.1007/s00253-022-11832-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022]
Abstract
Partially hydrolyzed konjac powder (PHKP) can be used to increase the daily intake of dietary fibers of consumers. To produce PHKP by enzymatic hydrolysis, a novel β-mannanase gene (McMan5B) from Malbranchea cinnamomea was expressed in Pichia pastoris. It showed a low identity of less than 52% with other GH family 5 β-mannanases. Through high cell density fermentation, the highest β-mannanase activity of 42200 U mL-1 was obtained. McMan5B showed the maximal activity at pH 7.5 and 75 °C, respectively. It exhibited excellent pH stability and thermostability. Due to the different residues (Phe214, Pro253, and His328) in catalytic groove and the change of β2-α2 loop, McMan5B showed unique hydrolysis property as compared to other β-mannanases. The enzyme was employed to hydrolyze konjac powder for controllable production of PHKP with a weight-average molecular weight of 22000 Da (average degree of polymerization 136). Furthermore, the influence of PHKP (1.0%-4.0%) on the qualities of steamed bread was evaluated. The steamed bread adding 3.0% PHKP had the maximum specific volume and the minimum hardness, which showed 11.0% increment and 25.4% decrement as compared to the control, respectively. Thus, a suitable β-mannanase for PHKP controllable production and a fiber supplement for steamed bread preparation were provided in this study. KEY POINTS: • A novel β-mannanase gene (McMan5B) was cloned from Malbranchea cinnamomea and expressed in Pichia pastoris at high level. • McMan5B hydrolyzed konjac powder to yield partially hydrolyzed konjac powder (PHKP) instead of manno-oligosaccharides. • PHKP showed more positive effect on the quality of steamed bread than many other dietary fibers including konjac powder.
Collapse
Affiliation(s)
- Yan-Xiao Li
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing, 100083, China
| | - Nan-Nan Wang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing, 100083, China
| | - Qiao-Juan Yan
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing, 100083, China
| | - Xiao-Han Hua
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing, 100083, China
| | - Yu Liu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing, 100083, China
| | - Zheng-Qiang Jiang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing, 100083, China.
| |
Collapse
|
9
|
Kaimal AM, Mujumdar AS, Thorat BN. Resistant starch from millets: Recent developments and applications in food industries. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|