1
|
Gul JZ, Fatima N, Mohy Ud Din Z, Khan M, Kim WY, Rehman MM. Advanced Sensing System for Sleep Bruxism across Multiple Postures via EMG and Machine Learning. SENSORS (BASEL, SWITZERLAND) 2024; 24:5426. [PMID: 39205120 PMCID: PMC11358964 DOI: 10.3390/s24165426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Diagnosis of bruxism is challenging because not all contractions of the masticatory muscles can be classified as bruxism. Conventional methods for sleep bruxism detection vary in effectiveness. Some provide objective data through EMG, ECG, or EEG; others, such as dental implants, are less accessible for daily practice. These methods have targeted the masseter as the key muscle for bruxism detection. However, it is important to consider that the temporalis muscle is also active during bruxism among masticatory muscles. Moreover, studies have predominantly examined sleep bruxism in the supine position, but other anatomical positions are also associated with sleep. In this research, we have collected EMG data to detect the maximum voluntary contraction of the temporalis and masseter muscles in three primary anatomical positions associated with sleep, i.e., supine and left and right lateral recumbent positions. A total of 10 time domain features were extracted, and six machine learning classifiers were compared, with random forest outperforming others. The models achieved better accuracies in the detection of sleep bruxism with the temporalis muscle. An accuracy of 93.33% was specifically found for the left lateral recumbent position among the specified anatomical positions. These results indicate a promising direction of machine learning in clinical applications, facilitating enhanced diagnosis and management of sleep bruxism.
Collapse
Affiliation(s)
- Jahan Zeb Gul
- Department of Electronic Engineering, Maynooth University, W23A3HY Maynooth, Ireland
| | - Noor Fatima
- Department of Biomedical Engineering, AIR University, Islamabad 44000, Pakistan; (N.F.); (Z.M.U.D.)
| | - Zia Mohy Ud Din
- Department of Biomedical Engineering, AIR University, Islamabad 44000, Pakistan; (N.F.); (Z.M.U.D.)
| | - Maryam Khan
- Department of Electronic Engineering, Faculty of Applied Energy System, Jeju National University, Jeju 63243, Republic of Korea;
| | - Woo Young Kim
- Department of Electronic Engineering, Faculty of Applied Energy System, Jeju National University, Jeju 63243, Republic of Korea;
| | - Muhammad Muqeet Rehman
- Department of Electronic Engineering, Faculty of Applied Energy System, Jeju National University, Jeju 63243, Republic of Korea;
| |
Collapse
|
2
|
Wang C, Verma AK, Guragain B, Xiong X, Liu C. Classification of bruxism based on time-frequency and nonlinear features of single channel EEG. BMC Oral Health 2024; 24:81. [PMID: 38221633 PMCID: PMC10787956 DOI: 10.1186/s12903-024-03865-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND In the classification of bruxism patients based on electroencephalogram (EEG), feature extraction is essential. The method of using multi-channel EEG fusing electrocardiogram (ECG) and Electromyography (EMG) signal features has been proved to have good performance in bruxism classification, but the classification performance based on single channel EEG signal is still understudied. We investigate the efficacy of single EEG channel in bruxism classification. METHODS We have extracted time-domain, frequency-domain, and nonlinear features from single EEG channel to classify bruxism. Five common bipolar EEG recordings from 2 bruxism patients and 4 healthy controls during REM sleep were analyzed. The time domain (mean, standard deviation, root mean squared value), frequency domain (absolute, relative and ratios power spectral density (PSD)), and non-linear features (sample entropy) of different EEG frequency bands were analyzed from five EEG channels of each participant. Fine tree algorithm was trained and tested for classifying sleep bruxism with healthy controls using five-fold cross-validation. RESULTS Our results demonstrate that the C4P4 EEG channel was most effective for classification of sleep bruxism that yielded 95.59% sensitivity, 98.44% specificity, 97.84% accuracy, and 94.20% positive predictive value (PPV). CONCLUSIONS Our results illustrate the feasibility of sleep bruxism classification using single EEG channel and provides an experimental foundation for the development of a future portable automatic sleep bruxism detection system.
Collapse
Affiliation(s)
- Chunwu Wang
- School of Physics and Electronic Engineering, Hanshan Normal University, Chaozhou, Guangdong, 521041, China
| | - Ajay K Verma
- School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Bijay Guragain
- School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Xin Xiong
- School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650504, China
| | - Chunling Liu
- School of Physics and Electronic Engineering, Hanshan Normal University, Chaozhou, Guangdong, 521041, China.
| |
Collapse
|
3
|
Mukherjee P, Halder Roy A. A deep learning-based approach for distinguishing different stress levels of human brain using EEG and pulse rate. Comput Methods Biomech Biomed Engin 2023:1-22. [PMID: 37929717 DOI: 10.1080/10255842.2023.2275547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
In today's world, people suffer from many fatal maladies, and stress is one of them. Excessive stress can have deleterious effects on the health, brain, mind, and nervous system of humans. The goal of this paper is to design a deep learningbased human stress level measurement technique using electroencephalogram (EEG), and pulse rate. In this research, EEG signals and pulse rate of healthy subjects are recorded while they solve four different question sets of increasing complexity. It is assumed that the subjects undergo through four different stress levels, i.e., 'no stress', 'low stress', 'medium stress', and 'high stress', while solving these question sets. An attention mechanism-based CNN-TLSTM (convolutional neural network-tanh long short-term memory) model is proposed to detect the mental stress level of a person. An attention layer is incorporated into the designed TLSTM network to increase the classification accuracy of the CNN-TLSTM model. The CNN network is used for the automated extraction of intricate features from the EEG signals and pulse rate. Then TLSTM is used to classify the stress level of a person into four different categories using the CNNextracted features. The obtained average accuracy of the proposed CNN-TLSTM model is 97.86%. Experimentally, it is found that the designed stress level measurement technique is highly effective and outperforms most existing state-of-the-art techniques. In the future, functional Near-Infrared Spectroscopy (fNIRS), ECG, and Galvanic Skin Response (GSR) can be employed with EEG and pulse rate to increase the effectiveness of the designed stress level measurement technique.
Collapse
Affiliation(s)
- Prithwijit Mukherjee
- Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, India
| | - Anisha Halder Roy
- Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, India
| |
Collapse
|
4
|
Benifa JVB, Chola C, Muaad AY, Hayat MAB, Bin Heyat MB, Mehrotra R, Akhtar F, Hussein HS, Vargas DLR, Castilla ÁK, Díez IDLT, Khan S. FMDNet: An Efficient System for Face Mask Detection Based on Lightweight Model during COVID-19 Pandemic in Public Areas. SENSORS (BASEL, SWITZERLAND) 2023; 23:6090. [PMID: 37447939 DOI: 10.3390/s23136090] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
A new artificial intelligence-based approach is proposed by developing a deep learning (DL) model for identifying the people who violate the face mask protocol in public places. To achieve this goal, a private dataset was created, including different face images with and without masks. The proposed model was trained to detect face masks from real-time surveillance videos. The proposed face mask detection (FMDNet) model achieved a promising detection of 99.0% in terms of accuracy for identifying violations (no face mask) in public places. The model presented a better detection capability compared to other recent DL models such as FSA-Net, MobileNet V2, and ResNet by 24.03%, 5.0%, and 24.10%, respectively. Meanwhile, the model is lightweight and had a confidence score of 99.0% in a resource-constrained environment. The model can perform the detection task in real-time environments at 41.72 frames per second (FPS). Thus, the developed model can be applicable and useful for governments to maintain the rules of the SOP protocol.
Collapse
Affiliation(s)
- J V Bibal Benifa
- Department of Computer Science and Engineering, Indian Institute of Information Technology Kottayam, Kottayam 686635, India
| | - Channabasava Chola
- Department of Computer Science and Engineering, Indian Institute of Information Technology Kottayam, Kottayam 686635, India
| | - Abdullah Y Muaad
- Department of Studies in Computer Science, Mysore University, Manasagangothri, Mysore 570006, India
| | | | - Md Belal Bin Heyat
- IoT Research Center, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
| | - Rajat Mehrotra
- Department of Examination and Analysis, Amity University, Noida 201303, India
| | - Faijan Akhtar
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hany S Hussein
- Electrical Engineering Department, Faculty of Engineering, King Khalid University, Abha 61411, Saudi Arabia
- Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan 81528, Egypt
| | - Debora Libertad Ramírez Vargas
- Higher Polytechnic School, Universidad Europea del Atlántico, Isabel Torres, 39011 Santander, Spain
- Department of Engineering and Projects, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
- Facultade de Engenharias, Universidade Internacional do Cuanza, Cuito EN250, Angola
| | - Ángel Kuc Castilla
- Department of Engineering and Projects, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
- School of Engineering, Fundación Universitaria Internacional de Colombia, Bogotá 11001, Colombia
- Higher Polytechnic School, Universidad de La Romana, La Romana 22000, Dominican Republic
| | - Isabel de la Torre Díez
- Department of Signal Theory and Communications, University of Valladolid, 47011 Valladolid, Spain
| | - Salabat Khan
- IoT Research Center, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
5
|
Pal R, Adhikari D, Heyat MBB, Ullah I, You Z. Yoga Meets Intelligent Internet of Things: Recent Challenges and Future Directions. Bioengineering (Basel) 2023; 10:459. [PMID: 37106646 PMCID: PMC10135646 DOI: 10.3390/bioengineering10040459] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The physical and mental health of people can be enhanced through yoga, an excellent form of exercise. As part of the breathing procedure, yoga involves stretching the body organs. The guidance and monitoring of yoga are crucial to ripe the full benefits of it, as wrong postures possess multiple antagonistic effects, including physical hazards and stroke. The detection and monitoring of the yoga postures are possible with the Intelligent Internet of Things (IIoT), which is the integration of intelligent approaches (machine learning) and the Internet of Things (IoT). Considering the increment in yoga practitioners in recent years, the integration of IIoT and yoga has led to the successful implementation of IIoT-based yoga training systems. This paper provides a comprehensive survey on integrating yoga with IIoT. The paper also discusses the multiple types of yoga and the procedure for the detection of yoga using IIoT. Additionally, this paper highlights various applications of yoga, safety measures, various challenges, and future directions. This survey provides the latest developments and findings on yoga and its integration with IIoT.
Collapse
Affiliation(s)
- Rishi Pal
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Deepak Adhikari
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Md Belal Bin Heyat
- IoT Research Center, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
| | - Inam Ullah
- Department of Computer Engineering, Gachon University, Sujeong-gu, Seongnam 13120, Republic of Korea
| | - Zili You
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
6
|
Choi J, Kwon S, Park S, Han S. Validation of the influence of biosignals on performance of machine learning algorithms for sleep stage classification. Digit Health 2023; 9:20552076231163783. [PMID: 36937698 PMCID: PMC10017951 DOI: 10.1177/20552076231163783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/24/2023] [Indexed: 03/15/2023] Open
Abstract
Background Sleep stage identification is critical in multiple areas (e.g. medicine or psychology) to diagnose sleep-related disorders. Previous studies have reported that the performance of machine learning algorithms can be changed depending on the biosignals and feature-extraction processes in sleep stage classification. Methods To compare as many conditions as possible, 414 experimental conditions were applied, considering the combination of different biosignals, biosignal length, and window length. Five biosignals in polysomnography (i.e. electrocardiogram (ECG), electroencephalogram (EEG), electromyogram (EMG), electrooculogram left, and electrooculogram right) were used to identify optimal signal combinations for classification. In addition, three different signal-length conditions and six different window-length conditions were applied. The validity of each condition was examined via classification performance from the XGBoost classifiers trained using 10-fold cross-validation. Furthermore, results considering feature importance were examined to validate the experimental results in terms of model explanation. Results The combination of EEG + EMG + ECG with a 40 s window and 120 s signal length resulted in the best classification performance (precision: 0.853, recall: 0.855, F1-score: 0.853, and accuracy: 0.853). Compared to other conditions and feature importance results, EEG signals showed a relatively higher importance for classification in the present study. Conclusion We determined the optimal biosignal and window conditions for the feature-extraction process in machine learning algorithm-based sleep stage classification. Our experimental results inform researchers in the future conduct of related studies. To generalize our results, more diverse methodologies and conditions should be applied in future studies.
Collapse
Affiliation(s)
- Junggu Choi
- Yonsei Graduate Program in Cognitive Science, Yonsei University, Seoul, Republic of Korea
| | | | - Sohyun Park
- Economics, Underwood International College, Yonsei University, Seoul, Republic of Korea
| | - Sanghoon Han
- Yonsei Graduate Program in Cognitive Science, Yonsei University, Seoul, Republic of Korea
- Department of Psychology, Yonsei University, Seoul, Republic of Korea
- Sanghoon Han, Department of Psychology and Yonsei Graduate Program in Cognitive Science, Yonsei University, Seoul 03722, South Korea.
| |
Collapse
|
7
|
Ullah H, Heyat MBB, Akhtar F, Muaad AY, Ukwuoma CC, Bilal M, Miraz MH, Bhuiyan MAS, Wu K, Damaševičius R, Pan T, Gao M, Lin Y, Lai D. An Automatic Premature Ventricular Contraction Recognition System Based on Imbalanced Dataset and Pre-Trained Residual Network Using Transfer Learning on ECG Signal. Diagnostics (Basel) 2022; 13:diagnostics13010087. [PMID: 36611379 PMCID: PMC9818233 DOI: 10.3390/diagnostics13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The development of automatic monitoring and diagnosis systems for cardiac patients over the internet has been facilitated by recent advancements in wearable sensor devices from electrocardiographs (ECGs), which need the use of patient-specific approaches. Premature ventricular contraction (PVC) is a common chronic cardiovascular disease that can cause conditions that are potentially fatal. Therefore, for the diagnosis of likely heart failure, precise PVC detection from ECGs is crucial. In the clinical settings, cardiologists typically employ long-term ECGs as a tool to identify PVCs, where a cardiologist must put in a lot of time and effort to appropriately assess the long-term ECGs which is time consuming and cumbersome. By addressing these issues, we have investigated a deep learning method with a pre-trained deep residual network, ResNet-18, to identify PVCs automatically using transfer learning mechanism. Herein, features are extracted by the inner layers of the network automatically compared to hand-crafted feature extraction methods. Transfer learning mechanism handles the difficulties of required large volume of training data for a deep model. The pre-trained model is evaluated on the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) Arrhythmia and Institute of Cardiological Technics (INCART) datasets. First, we used the Pan-Tompkins algorithm to segment 44,103 normal and 6423 PVC beats, as well as 106,239 normal and 9987 PVC beats from the MIT-BIH Arrhythmia and IN-CART datasets, respectively. The pre-trained model employed the segmented beats as input after being converted into 2D (two-dimensional) images. The method is optimized with the using of weighted random samples, on-the-fly augmentation, Adam optimizer, and call back feature. The results from the proposed method demonstrate the satisfactory findings without the using of any complex pre-processing and feature extraction technique as well as design complexity of model. Using LOSOCV (leave one subject out cross-validation), the received accuracies on MIT-BIH and INCART are 99.93% and 99.77%, respectively, suppressing the state-of-the-art methods for PVC recognition on unseen data. This demonstrates the efficacy and generalizability of the proposed method on the imbalanced datasets. Due to the absence of device-specific (patient-specific) information at the evaluating stage on the target datasets in this study, the method might be used as a general approach to handle the situations in which ECG signals are obtained from different patients utilizing a variety of smart sensor devices.
Collapse
Affiliation(s)
- Hadaate Ullah
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Md Belal Bin Heyat
- IoT Research Center, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
- Correspondence: (M.B.B.H.); (R.D.); (Y.L.); (D.L.)
| | - Faijan Akhtar
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | | | - Chiagoziem C. Ukwuoma
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Muhammad Bilal
- College of Pharmacy, Liaquat University of Medical and Health Sciences, Jamshoro 76090, Pakistan
| | - Mahdi H. Miraz
- School of Computing and Data Science, Xiamen University Malaysia, Bandar Sunsuria, Sepang 43900, Malaysia
- School of Computing, Glyndŵr University, Wrexham LL11 2AW, UK
| | | | - Kaishun Wu
- IoT Research Center, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
| | - Robertas Damaševičius
- Department of Software Engineering, Kaunas University of Technology, 44249 Kaunas, Lithuania
- Correspondence: (M.B.B.H.); (R.D.); (Y.L.); (D.L.)
| | - Taisong Pan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Min Gao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuan Lin
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Medico-Engineering Corporation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China
- Correspondence: (M.B.B.H.); (R.D.); (Y.L.); (D.L.)
| | - Dakun Lai
- Biomedical Imaging and Electrophysiology Laboratory, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- Correspondence: (M.B.B.H.); (R.D.); (Y.L.); (D.L.)
| |
Collapse
|
8
|
Pal R, Adhikari D, Heyat MBB, Guragai B, Lipari V, Brito Ballester J, De la Torre Díez I, Abbas Z, Lai D. A Novel Smart Belt for Anxiety Detection, Classification, and Reduction Using IIoMT on Students' Cardiac Signal and MSY. Bioengineering (Basel) 2022; 9:bioengineering9120793. [PMID: 36550999 PMCID: PMC9774730 DOI: 10.3390/bioengineering9120793] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
The prevalence of anxiety among university students is increasing, resulting in the negative impact on their academic and social (behavioral and emotional) development. In order for students to have competitive academic performance, the cognitive function should be strengthened by detecting and handling anxiety. Over a period of 6 weeks, this study examined how to detect anxiety and how Mano Shakti Yoga (MSY) helps reduce anxiety. Relying on cardiac signals, this study follows an integrated detection-estimation-reduction framework for anxiety using the Intelligent Internet of Medical Things (IIoMT) and MSY. IIoMT is the integration of Internet of Medical Things (wearable smart belt) and machine learning algorithms (Decision Tree (DT), Random Forest (RF), and AdaBoost (AB)). Sixty-six eligible students were selected as experiencing anxiety detected based on the results of self-rating anxiety scale (SAS) questionnaire and a smart belt. Then, the students were divided randomly into two groups: experimental and control. The experimental group followed an MSY intervention for one hour twice a week, while the control group followed their own daily routine. Machine learning algorithms are used to analyze the data obtained from the smart belt. MSY is an alternative improvement for the immune system that helps reduce anxiety. All the results illustrate that the experimental group reduced anxiety with a significant (p < 0.05) difference in group × time interaction compared to the control group. The intelligent techniques achieved maximum accuracy of 80% on using RF algorithm. Thus, students can practice MSY and concentrate on their objectives by improving their intelligence, attention, and memory.
Collapse
Affiliation(s)
- Rishi Pal
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Deepak Adhikari
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Md Belal Bin Heyat
- IoT Research Center, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
- Centre for VLSI and Embedded System Technologies, International Institute of Information Technology, Hyderabad 500032, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
- Correspondence: (M.B.B.H.); (D.L.)
| | - Bishal Guragai
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Vivian Lipari
- Research Group on Foods, Nutritional Biochemistry and Health Universidad Europea Del Atlántico, Isabel Torres, 39011 Santander, Spain
- Research Group on Foods, Nutritional Biochemistry and Health Universidade Internacional do Cuanza, Cuito EN250, Angola
- Research Group on Foods, Nutritional Biochemistry and Health Universidad Internacional Iberoamericana, Arecibo, PR 00613, USA
| | - Julien Brito Ballester
- Research Group on Foods, Nutritional Biochemistry and Health Universidad Europea Del Atlántico, Isabel Torres, 39011 Santander, Spain
- Research Group on Foods, Nutritional Biochemistry and Health Universidade Internacional do Cuanza, Cuito EN250, Angola
- Research Group on Foods, Nutritional Biochemistry and Health Universidad Internacional Iberoamericana, Arecibo, PR 00613, USA
| | - Isabel De la Torre Díez
- Department of Signal Theory and Communications and Telematic Engineering, University of Valladolid, Paseo de Belén 15, 47011 Valladolid, Spain
| | - Zia Abbas
- Centre for VLSI and Embedded System Technologies, International Institute of Information Technology, Hyderabad 500032, India
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
- Correspondence: (M.B.B.H.); (D.L.)
| |
Collapse
|
9
|
Said RR, Heyat MBB, Song K, Tian C, Wu Z. A Systematic Review of Virtual Reality and Robot Therapy as Recent Rehabilitation Technologies Using EEG-Brain-Computer Interface Based on Movement-Related Cortical Potentials. BIOSENSORS 2022; 12:bios12121134. [PMID: 36551100 PMCID: PMC9776155 DOI: 10.3390/bios12121134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 06/01/2023]
Abstract
To enhance the treatment of motor function impairment, patients' brain signals for self-control as an external tool may be an extraordinarily hopeful option. For the past 10 years, researchers and clinicians in the brain-computer interface (BCI) field have been using movement-related cortical potential (MRCP) as a control signal in neurorehabilitation applications to induce plasticity by monitoring the intention of action and feedback. Here, we reviewed the research on robot therapy (RT) and virtual reality (VR)-MRCP-based BCI rehabilitation technologies as recent advancements in human healthcare. A list of 18 full-text studies suitable for qualitative review out of 322 articles published between 2000 and 2022 was identified based on inclusion and exclusion criteria. We used PRISMA guidelines for the systematic review, while the PEDro scale was used for quality evaluation. Bibliometric analysis was conducted using the VOSviewer software to identify the relationship and trends of key items. In this review, 4 studies used VR-MRCP, while 14 used RT-MRCP-based BCI neurorehabilitation approaches. The total number of subjects in all identified studies was 107, whereby 4.375 ± 6.3627 were patient subjects and 6.5455 ± 3.0855 were healthy subjects. The type of electrodes, the epoch, classifiers, and the performance information that are being used in the RT- and VR-MRCP-based BCI rehabilitation application are provided in this review. Furthermore, this review also describes the challenges facing this field, solutions, and future directions of these smart human health rehabilitation technologies. By key items relationship and trends analysis, we found that motor control, rehabilitation, and upper limb are important key items in the MRCP-based BCI field. Despite the potential of these rehabilitation technologies, there is a great scarcity of literature related to RT and VR-MRCP-based BCI. However, the information on these rehabilitation methods can be beneficial in developing RT and VR-MRCP-based BCI rehabilitation devices to induce brain plasticity and restore motor impairment. Therefore, this review will provide the basis and references of the MRCP-based BCI used in rehabilitation applications for further clinical and research development.
Collapse
Affiliation(s)
- Ramadhan Rashid Said
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Md Belal Bin Heyat
- IoT Research Center, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
| | - Keer Song
- Franklin College of Arts and Science, University of Georgia, Athens, GA 30602, USA
| | - Chao Tian
- Department of Women’s Health, Sichuan Cancer Hospital, Chengdu 610044, China
| | - Zhe Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
10
|
Bin Heyat MB, Akhtar F, Sultana A, Tumrani S, Teelhawod BN, Abbasi R, Amjad Kamal M, Muaad AY, Lai D, Wu K. Role of Oxidative Stress and Inflammation in Insomnia Sleep Disorder and Cardiovascular Diseases: Herbal Antioxidants and Anti-inflammatory Coupled with Insomnia Detection using Machine Learning. Curr Pharm Des 2022; 28:3618-3636. [PMID: 36464881 DOI: 10.2174/1381612829666221201161636] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/20/2022] [Accepted: 10/27/2022] [Indexed: 12/07/2022]
Abstract
Insomnia is well-known as trouble in sleeping and enormously influences human life due to the shortage of sleep. Reactive Oxygen Species (ROS) accrue in neurons during the waking state, and sleep has a defensive role against oxidative damage and dissipates ROS in the brain. In contrast, insomnia is the source of inequity between ROS generation and removal by an endogenous antioxidant defense system. The relationship between insomnia, depression, and anxiety disorders damages the cardiovascular systems' immune mechanisms and functions. Traditionally, polysomnography is used in the diagnosis of insomnia. This technique is complex, with a long time overhead. In this work, we have proposed a novel machine learning-based automatic detection system using the R-R intervals extracted from a single-lead electrocardiograph (ECG). Additionally, we aimed to explore the role of oxidative stress and inflammation in sleeping disorders and cardiovascular diseases, antioxidants' effects, and the psychopharmacological effect of herbal medicine. This work has been carried out in steps, which include collecting the ECG signal for normal and insomnia subjects, analyzing the signal, and finally, automatic classification. We used two approaches, including subjects (normal and insomnia), two sleep stages, i.e., wake and rapid eye movement, and three Machine Learning (ML)-based classifiers to complete the classification. A total number of 3000 ECG segments were collected from 18 subjects. Furthermore, using the theranostics approach, the role of mitochondrial dysfunction causing oxidative stress and inflammatory response in insomnia and cardiovascular diseases was explored. The data from various databases on the mechanism of action of different herbal medicines in insomnia and cardiovascular diseases with antioxidant and antidepressant activities were also retrieved. Random Forest (RF) classifier has shown the highest accuracy (subjects: 87.10% and sleep stage: 88.30%) compared to the Decision Tree (DT) and Support Vector Machine (SVM). The results revealed that the suggested method could perform well in classifying the subjects and sleep stages. Additionally, a random forest machine learning-based classifier could be helpful in the clinical discovery of sleep complications, including insomnia. The evidence retrieved from the databases showed that herbal medicine contains numerous phytochemical bioactives and has multimodal cellular mechanisms of action, viz., antioxidant, anti-inflammatory, vasorelaxant, detoxifier, antidepressant, anxiolytic, and cell-rejuvenator properties. Other herbal medicines have a GABA-A receptor agonist effect. Hence, we recommend that the theranostics approach has potential and can be adopted for future research to improve the quality of life of humans.
Collapse
Affiliation(s)
- Md Belal Bin Heyat
- IoT Research Center, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Faijan Akhtar
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Arshiya Sultana
- Department of Ilmul Qabalat wa Amraze Niswan, National Institute of Unani Medicine, Ministry of AYUSH, Bengaluru, Karnataka, India
| | - Saifullah Tumrani
- Department of Computer Science, Bahria University, Karachi 75260, Pakistan
| | - Bibi Nushrina Teelhawod
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Rashid Abbasi
- Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment of Ministry of Education, School of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh.,Enzymoics, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Abdullah Y Muaad
- Department of Studies in Computer Science, University of Mysore, Manasagangothri, Mysore 570006, India.,Sana'a Community College, Sana'a 5695, Yemen
| | - Dakun Lai
- BMI-EP Laboratory, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Kaishun Wu
- IoT Research Center, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
11
|
Ukwuoma CC, Qin Z, Heyat MBB, Akhtar F, Smahi A, Jackson JK, Furqan Qadri S, Muaad AY, Monday HN, Nneji GU. Automated Lung-Related Pneumonia and COVID-19 Detection Based on Novel Feature Extraction Framework and Vision Transformer Approaches Using Chest X-ray Images. Bioengineering (Basel) 2022; 9:709. [PMID: 36421110 PMCID: PMC9687434 DOI: 10.3390/bioengineering9110709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
According to research, classifiers and detectors are less accurate when images are blurry, have low contrast, or have other flaws which raise questions about the machine learning model's ability to recognize items effectively. The chest X-ray image has proven to be the preferred image modality for medical imaging as it contains more information about a patient. Its interpretation is quite difficult, nevertheless. The goal of this research is to construct a reliable deep-learning model capable of producing high classification accuracy on chest x-ray images for lung diseases. To enable a thorough study of the chest X-ray image, the suggested framework first derived richer features using an ensemble technique, then a global second-order pooling is applied to further derive higher global features of the images. Furthermore, the images are then separated into patches and position embedding before analyzing the patches individually via a vision transformer approach. The proposed model yielded 96.01% sensitivity, 96.20% precision, and 98.00% accuracy for the COVID-19 Radiography Dataset while achieving 97.84% accuracy, 96.76% sensitivity and 96.80% precision, for the Covid-ChestX-ray-15k dataset. The experimental findings reveal that the presented models outperform traditional deep learning models and other state-of-the-art approaches provided in the literature.
Collapse
Affiliation(s)
- Chiagoziem C. Ukwuoma
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhiguang Qin
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Md Belal Bin Heyat
- IoT Research Center, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
- Centre for VLSI and Embedded System Technologies, International Institute of Information Technology, Hyderabad 500032, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Faijan Akhtar
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Abla Smahi
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518060, China
| | - Jehoiada K. Jackson
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Syed Furqan Qadri
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou 311121, China
| | | | - Happy N. Monday
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Grace U. Nneji
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
12
|
Chola C, Muaad AY, Bin Heyat MB, Benifa JVB, Naji WR, Hemachandran K, Mahmoud NF, Samee NA, Al-Antari MA, Kadah YM, Kim TS. BCNet: A Deep Learning Computer-Aided Diagnosis Framework for Human Peripheral Blood Cell Identification. Diagnostics (Basel) 2022; 12:diagnostics12112815. [PMID: 36428875 PMCID: PMC9689932 DOI: 10.3390/diagnostics12112815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
Blood cells carry important information that can be used to represent a person's current state of health. The identification of different types of blood cells in a timely and precise manner is essential to cutting the infection risks that people face on a daily basis. The BCNet is an artificial intelligence (AI)-based deep learning (DL) framework that was proposed based on the capability of transfer learning with a convolutional neural network to rapidly and automatically identify the blood cells in an eight-class identification scenario: Basophil, Eosinophil, Erythroblast, Immature Granulocytes, Lymphocyte, Monocyte, Neutrophil, and Platelet. For the purpose of establishing the dependability and viability of BCNet, exhaustive experiments consisting of five-fold cross-validation tests are carried out. Using the transfer learning strategy, we conducted in-depth comprehensive experiments on the proposed BCNet's architecture and test it with three optimizers of ADAM, RMSprop (RMSP), and stochastic gradient descent (SGD). Meanwhile, the performance of the proposed BCNet is directly compared using the same dataset with the state-of-the-art deep learning models of DensNet, ResNet, Inception, and MobileNet. When employing the different optimizers, the BCNet framework demonstrated better classification performance with ADAM and RMSP optimizers. The best evaluation performance was achieved using the RMSP optimizer in terms of 98.51% accuracy and 96.24% F1-score. Compared with the baseline model, the BCNet clearly improved the prediction accuracy performance 1.94%, 3.33%, and 1.65% using the optimizers of ADAM, RMSP, and SGD, respectively. The proposed BCNet model outperformed the AI models of DenseNet, ResNet, Inception, and MobileNet in terms of the testing time of a single blood cell image by 10.98, 4.26, 2.03, and 0.21 msec. In comparison to the most recent deep learning models, the BCNet model could be able to generate encouraging outcomes. It is essential for the advancement of healthcare facilities to have such a recognition rate improving the detection performance of the blood cells.
Collapse
Affiliation(s)
- Channabasava Chola
- Department of Electronics and Information Convergence Engineering, College of Electronics and Information, Kyung Hee University, Suwon-si 17104, Republic of Korea
| | - Abdullah Y. Muaad
- Department of Studies in Computer Science, University of Mysore, Manasagangothri, Mysore 570006, India
| | - Md Belal Bin Heyat
- IoT Research Center, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
- Centre for VLSI and Embedded System Technologies, International Institute of Information Technology, Hyderabad 500032, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - J. V. Bibal Benifa
- Department of Computer Science and Engineering, Indian Institute of Information Technology Kottayam, Kerala 686635, India
| | - Wadeea R. Naji
- Department of Studies in Computer Science, University of Mysore, Manasagangothri, Mysore 570006, India
| | - K. Hemachandran
- Department of Artificial Intelligence, Woxsen University, Hyderabad 502345, India
| | - Noha F. Mahmoud
- Rehabilitation Sciences Department, Health and Rehabilitation Sciences College, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Nagwan Abdel Samee
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Correspondence: (N.A.S.); (M.A.A.-A.); (Y.M.K.); (T.-S.K.)
| | - Mugahed A. Al-Antari
- Department of Artificial Intelligence, College of Software and Convergence Technology, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea
- Correspondence: (N.A.S.); (M.A.A.-A.); (Y.M.K.); (T.-S.K.)
| | - Yasser M. Kadah
- Electrical and Computer Engineering Department, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Biomedical Engineering Department, Cairo University, Giza 12613, Egypt
- Correspondence: (N.A.S.); (M.A.A.-A.); (Y.M.K.); (T.-S.K.)
| | - Tae-Seong Kim
- Department of Electronics and Information Convergence Engineering, College of Electronics and Information, Kyung Hee University, Suwon-si 17104, Republic of Korea
- Correspondence: (N.A.S.); (M.A.A.-A.); (Y.M.K.); (T.-S.K.)
| |
Collapse
|
13
|
Xu S, Faust O, Seoni S, Chakraborty S, Barua PD, Loh HW, Elphick H, Molinari F, Acharya UR. A review of automated sleep disorder detection. Comput Biol Med 2022; 150:106100. [PMID: 36182761 DOI: 10.1016/j.compbiomed.2022.106100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 12/22/2022]
Abstract
Automated sleep disorder detection is challenging because physiological symptoms can vary widely. These variations make it difficult to create effective sleep disorder detection models which support hu-man experts during diagnosis and treatment monitoring. From 2010 to 2021, authors of 95 scientific papers have taken up the challenge of automating sleep disorder detection. This paper provides an expert review of this work. We investigated whether digital technology and Artificial Intelligence (AI) can provide automated diagnosis support for sleep disorders. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines during the content discovery phase. We compared the performance of proposed sleep disorder detection methods, involving differ-ent datasets or signals. During the review, we found eight sleep disorders, of which sleep apnea and insomnia were the most studied. These disorders can be diagnosed using several kinds of biomedical signals, such as Electrocardiogram (ECG), Polysomnography (PSG), Electroencephalogram (EEG), Electromyogram (EMG), and snore sound. Subsequently, we established areas of commonality and distinctiveness. Common to all reviewed papers was that AI models were trained and tested with labelled physiological signals. Looking deeper, we discovered that 24 distinct algorithms were used for the detection task. The nature of these algorithms evolved, before 2017 only traditional Machine Learning (ML) was used. From 2018 onward, both ML and Deep Learning (DL) methods were used for sleep disorder detection. The strong emergence of DL algorithms has considerable implications for future detection systems because these algorithms demand significantly more data for training and testing when compared with ML. Based on our review results, we suggest that both type and amount of labelled data is crucial for the design of future sleep disorder detection systems because this will steer the choice of AI algorithm which establishes the desired decision support. As a guiding principle, more labelled data will help to represent the variations in symptoms. DL algorithms can extract information from these larger data quantities more effectively, therefore; we predict that the role of these algorithms will continue to expand.
Collapse
Affiliation(s)
- Shuting Xu
- Cogninet Brain Team, Sydney, NSW, 2010, Australia
| | - Oliver Faust
- Anglia Ruskin University, East Rd, Cambridge CB1 1PT, UK.
| | - Silvia Seoni
- Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy
| | - Subrata Chakraborty
- School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, 2351, Australia; Centre for Advanced Modelling and Geospatial Lnformation Systems (CAMGIS), Faculty of Engineer and Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Prabal Datta Barua
- Cogninet Brain Team, Sydney, NSW, 2010, Australia; Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia; School of Business (Information System), University of Southern Queensland, Australia
| | - Hui Wen Loh
- School of Science and Technology, Singapore University of Social Sciences, 463 Clementi Road, 599494, Singapore
| | | | - Filippo Molinari
- Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy
| | - U Rajendra Acharya
- School of Business (Information System), University of Southern Queensland, Australia; School of Science and Technology, Singapore University of Social Sciences, 463 Clementi Road, 599494, Singapore; Department of Computer Engineering, Ngee Ann Polytechnic, Singapore, Singapore; Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|
14
|
An End-to-End Cardiac Arrhythmia Recognition Method with an Effective DenseNet Model on Imbalanced Datasets Using ECG Signal. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:9475162. [PMID: 36210977 PMCID: PMC9536938 DOI: 10.1155/2022/9475162] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/25/2022] [Accepted: 08/17/2022] [Indexed: 01/10/2023]
Abstract
Electrocardiography (ECG) is a well-known noninvasive technique in medical science that provides information about the heart's rhythm and current conditions. Automatic ECG arrhythmia diagnosis relieves doctors' workload and improves diagnosis effectiveness and efficiency. This study proposes an automatic end-to-end 2D CNN (two-dimensional convolution neural networks) deep learning method with an effective DenseNet model for addressing arrhythmias recognition. To begin, the proposed model is trained and evaluated on the 97720 and 141404 beat images extracted from the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia and St. Petersburg Institute of Cardiological Technics (INCART) datasets (both are imbalanced class datasets) using a stratified 5-fold evaluation strategy. The data is classified into four groups: N (normal), V (ventricular ectopic), S (supraventricular ectopic), and F (fusion), based on the Association for the Advancement of Medical Instrumentation® (AAMI). The experimental results show that the proposed model outperforms state-of-the-art models for recognizing arrhythmias, with the accuracy of 99.80% and 99.63%, precision of 98.34% and 98.94%, and F1-score of 98.91% and 98.91% on the MIT-BIH arrhythmia and INCART datasets, respectively. Using a transfer learning mechanism, the proposed model is also evaluated with only five individuals of supraventricular MIT-BIH arrhythmia and five individuals of European ST-T datasets (both of which are also class imbalanced) and achieved satisfactory results. So, the proposed model is more generalized and could be a prosperous solution for arrhythmias recognition from class imbalance datasets in real-life applications.
Collapse
|
15
|
Sleep Disorder and Cocaine Abuse Impact Purine and Pyrimidine Nucleotide Metabolic Signatures. Metabolites 2022; 12:metabo12090869. [PMID: 36144274 PMCID: PMC9502494 DOI: 10.3390/metabo12090869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Disturbances in the circadian rhythm alter the normal sleep-wake cycle, which increases vulnerability to drug abuse. Drug abuse can disrupt several homeostatic processes regulated by the circadian rhythm and influence addiction paradigms, including cravings for cocaine. The relationship between circadian rhythm and cocaine abuse is complex and bidirectional, and disruption impacts both brain function and metabolic profiles. Therefore, elucidating the impact of circadian rhythm changes and cocaine abuse on the human metabolome may provide new insights into identifying potential biomarkers. We examine the effect of cocaine administration with and without circadian rhythm sleep disruption (CRSD) on metabolite levels and compare these to healthy controls in an in vivo study. A metabolomics analysis is performed on the control, CRSD, cocaine, and CRSD with cocaine groups. Plasma metabolite concentrations are analyzed using a liquid chromatography electrochemical array platform. We identify 242 known metabolites compared to the control; 26 in the CRSD with cocaine group, 4 in the CRSD group, and 22 in the cocaine group are significantly differentially expressed. Intriguingly, in the CRSD with cocaine treatment group, the expression levels of uridine monophosphate (p < 0.008), adenosine 5′-diphosphate (p < 0.044), and inosine (p < 0.019) are significantly altered compared with those in the cocaine group. In summary, alterations in purine and pyrimidine metabolism provide clues regarding changes in the energy profile and metabolic pathways associated with chronic exposure to cocaine and CRSD.
Collapse
|
16
|
Ukwuoma CC, Qin Z, Belal Bin Heyat M, Akhtar F, Bamisile O, Muad AY, Addo D, Al-Antari MA. A Hybrid Explainable Ensemble Transformer Encoder for Pneumonia Identification from Chest X-ray Images. J Adv Res 2022:S2090-1232(22)00202-8. [PMID: 36084812 DOI: 10.1016/j.jare.2022.08.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022] Open
Abstract
INTRODUCTION Pneumonia is a microorganism infection that causes chronic inflammation of the human lung cells. Chest X-ray imaging is the most well-known screening approach used for detecting pneumonia in the early stages. While chest-Xray images are mostly blurry with low illumination, a strong feature extraction approach is required for promising identification performance. OBJECTIVES A new hybrid explainable deep learning framework is proposed for accurate pneumonia disease identification using chest X-ray images. METHODS The proposed hybrid workflow is developed by fusing the capabilities of both ensemble convolutional networks and the Transformer Encoder mechanism. The ensemble learning backbone is used to extract strong features from the raw input X-ray images in two different scenarios: ensemble A (i.e., DenseNet201, VGG16, and GoogleNet) and ensemble B (i.e., DenseNet201, InceptionResNetV2, and Xception). Whereas, the Transformer Encoder is built based on the self-attention mechanism with multilayer perceptron (MLP) for accurate disease identification. The visual explainable saliency maps are derived to emphasize the crucial predicted regions on the input X-ray images. The end-to-end training process of the proposed deep learning models over all scenarios is performed for binary and multi-class classification tasks. RESULTS The proposed hybrid deep learning model recorded 99.21% classification performance in terms of overall accuracy and F1-score for the binary classification task, while it achieved 98.19% accuracy and 97.29% F1-score for multi-classification task. For the ensemble binary identification scenario, ensemble A recorded 97.22% accuracy and 97.14% F1-score, while ensemble B achieved 96.44% for both accuracy and F1-score. For the ensemble, multiclass identification scenario, ensemble A recorded 97.2% accuracy and 95.8% F1-score, while ensemble B recorded 96.4% accuracy and 94.9% F1-score. CONCLUSION The proposed hybrid deep learning framework could provide promising and encouraging explainable identification performance comparing with individual, ensemble models, or even the latest models in the literature. The code is available here: https://github.com/chiagoziemchima/Pneumonia_Identificaton.
Collapse
Affiliation(s)
- Chiagoziem C Ukwuoma
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zhiguang Qin
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Md Belal Bin Heyat
- IoT Research Center, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China; International Institute of Information Technology, Hyderabad, Telangana 500032, India; Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Faijan Akhtar
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Olusola Bamisile
- Sichuan Industrial Internet Intelligent Monitoring and Application Engineering Technology Research Center, Chengdu University of Technology, China
| | - Abdullah Y Muad
- Department of Studies in Computer Science, University of Mysore, Manasagangothri, Mysore, India
| | - Daniel Addo
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Mugahed A Al-Antari
- Department of Artificial Intelligence, College of Software & Convergence Technology, Daeyang AI Center, Sejong University, Seoul 05006, Korea.
| |
Collapse
|
17
|
A Detection-Service-Mobile Three-Terminal Software Platform for Point-of-Care Infectious Disease Detection System. BIOSENSORS 2022; 12:bios12090684. [PMID: 36140069 PMCID: PMC9496057 DOI: 10.3390/bios12090684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/07/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022]
Abstract
The traditional infectious disease detection process is cumbersome, and there is only a single application scenario. In recent years, with the development of the medical industry and the impact of the epidemic situation, the number of infectious disease detection instruments based on nursing point detection has been increasing. Due to this trend, many detection instruments and massive detection data urgently need to be managed. In addition, the experiment failed due to the abnormal fluorescence curve generated by a human operator or sample impurities. Finally, the geographic information system has also played an active role in spreading and preventing infectious diseases; this paper designs a “detection-service-mobile” three-terminal system to realize the control of diagnostic instruments and the comprehensive management of data. Machine learning is used to classify the enlarged curve and calculate the cycle threshold of the positive curve; combined with a geographic information system, the detection results are marked on the mobile terminal map to realize the visual display of the positive results of nucleic acid amplification detection and the early warning of infectious diseases. In the research, applying this system to portable field pathogen detection is feasible and practical.
Collapse
|
18
|
Role of Inflammation, Oxidative Stress, and Mitochondrial Changes in Premenstrual Psychosomatic Behavioral Symptoms with Anti-Inflammatory, Antioxidant Herbs, and Nutritional Supplements. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3599246. [PMID: 35873799 PMCID: PMC9300296 DOI: 10.1155/2022/3599246] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/01/2022] [Indexed: 12/19/2022]
Abstract
Premenstrual syndrome (PMS) significantly lowers the quality of life and impairs personal and social relationships in reproductive-age women. Some recommendations are that inappropriate oxidative stress and inflammatory response are involved in PMS. Various nutritional supplements and herbs showed neuro-psycho-pharmacological activity with antioxidant and anti-inflammatory properties. This study aims to determine the systematic review of randomized controlled trials (RCTs) of herbal medicine and nutritional supplements in PMS. We also comprehensively highlighted the role of oxidative stress, inflammation, and mitochondrial changes on PMS with the application of computational intelligence. We used PRISMA and research question-based techniques to collect the data for evaluation of our study on different databases such as Scopus, PubMed, and PROSPERO from 1990 to 2022. The methodological quality of the published study was assessed by the modified Jadad scale. In addition, we used network visualization and word cloud techniques to find the closest terms of the study based on previous publications. While we also used computational intelligence techniques to give the idea for the classification of experimental data from PMS. We found 25 randomized controlled studies with 1949 participants (mean ± SD: 77.96 ± 22.753) using the PRISMA technique, and all were high-quality studies. We also extracted the closest terms related to our study using network visualization techniques. This work has revealed the future direction and research gap on the role of oxidative stress and inflammation in PMS. In vitro and in vivo studies showed that bioactive molecules such as curcumin, allicin, anethole, thymoquinone, cyanidin 3-glucoside, gamma-linoleic acid, and various molecules not only have antioxidant and anti-inflammatory properties but also other various activities such as GABA-A receptor agonist, serotonergic, antidepressant, sedative, and analgesic. Traditional Unani Herbal medicine and nutritional supplements can effectively relieve PMS symptoms as they possess many bioactive molecules that are pharmacologically proven for the aforementioned properties. Hence, these biomolecules might influence a complex physical and psychological disease process like PMS. However, more rigorous research studies are recommended for in-depth knowledge of the efficacy of bioactive molecules on premenstrual syndrome in clinical trials.
Collapse
|
19
|
Bin Heyat MB, Akhtar F, Abbas SJ, Al-Sarem M, Alqarafi A, Stalin A, Abbasi R, Muaad AY, Lai D, Wu K. Wearable Flexible Electronics Based Cardiac Electrode for Researcher Mental Stress Detection System Using Machine Learning Models on Single Lead Electrocardiogram Signal. BIOSENSORS 2022; 12:427. [PMID: 35735574 PMCID: PMC9221208 DOI: 10.3390/bios12060427] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 05/02/2023]
Abstract
In the modern world, wearable smart devices are continuously used to monitor people's health. This study aims to develop an automatic mental stress detection system for researchers based on Electrocardiogram (ECG) signals from smart T-shirts using machine learning classifiers. We used 20 subjects, including 10 from mental stress (after twelve hours of continuous work in the laboratory) and 10 from normal (after completing the sleep or without any work). We also applied three scoring techniques: Chalder Fatigue Scale (CFS), Specific Fatigue Scale (SFS), Depression, Anxiety, and Stress Scale (DASS), to confirm the mental stress. The total duration of ECG recording was 1800 min, including 1200 min during mental stress and 600 min during normal. We calculated two types of features, such as demographic and extracted by ECG signal. In addition, we used Decision Tree (DT), Naive Bayes (NB), Random Forest (RF), and Logistic Regression (LR) to classify the intra-subject (mental stress and normal) and inter-subject classification. The DT leave-one-out model has better performance in terms of recall (93.30%), specificity (96.70%), precision (94.40%), accuracy (93.30%), and F1 (93.50%) in the intra-subject classification. Additionally, The classification accuracy of the system in classifying inter-subjects is 94.10% when using a DT classifier. However, our findings suggest that the wearable smart T-shirt based on the DT classifier may be used in big data applications and health monitoring. Mental stress can lead to mitochondrial dysfunction, oxidative stress, blood pressure, cardiovascular disease, and various health problems. Therefore, real-time ECG signals help assess cardiovascular and related risk factors in the initial stage based on machine learning techniques.
Collapse
Affiliation(s)
- Md Belal Bin Heyat
- IoT Research Center, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Faijan Akhtar
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China;
| | - Syed Jafar Abbas
- Faculty of Management, Vancouver Island University, Nanaimo, BC V9R5S5, Canada;
| | - Mohammed Al-Sarem
- College of Computer Science and Engineering, Taibah University, Medina 42353, Saudi Arabia;
- Department of Computer Science, University of Sheba Province, Marib, Yemen
| | - Abdulrahman Alqarafi
- College of Computer Science and Engineering, Taibah University, Medina 42353, Saudi Arabia;
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Rashid Abbasi
- School of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, China;
| | - Abdullah Y. Muaad
- Department of Studies in Computer Science, University of Mysore, Mysore 570005, Karnataka, India;
- IT Department, Sana’a Community College, Sana’a 5695, Yemen
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Kaishun Wu
- IoT Research Center, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
20
|
Segmentation of Drug-Treated Cell Image and Mitochondrial-Oxidative Stress Using Deep Convolutional Neural Network. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5641727. [PMID: 35663204 PMCID: PMC9162846 DOI: 10.1155/2022/5641727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/27/2022] [Indexed: 12/27/2022]
Abstract
Most multicellular organisms require apoptosis, or programmed cell death, to function properly and survive. On the other hand, morphological and biochemical characteristics of apoptosis have remained remarkably consistent throughout evolution. Apoptosis is thought to have at least three functionally distinct phases: induction, effector, and execution. Recent studies have revealed that reactive oxygen species (ROS) and the oxidative stress could play an essential role in apoptosis. Advanced microscopic imaging techniques allow biologists to acquire an extensive amount of cell images within a matter of minutes which rule out the manual analysis of image data acquisition. The segmentation of cell images is often considered the cornerstone and central problem for image analysis. Currently, the issue of segmentation of mitochondrial cell images via deep learning receives increasing attention. The manual labeling of cell images is time-consuming and challenging to train a pro. As a courtesy method, mitochondrial cell imaging (MCI) is proposed to identify the normal, drug-treated, and diseased cells. Furthermore, cell movement (fission and fusion) is measured to evaluate disease risk. The newly proposed drug-treated, normal, and diseased image segmentation (DNDIS) algorithm can quickly segment mitochondrial cell images without supervision and further segment the highly drug-treated cells in the picture, i.e., normal, diseased, and drug-treated cells. The proposed method is based on the ResNet-50 deep learning algorithm. The dataset consists of 414 images mainly categorised into different sets (drug, diseased, and normal) used microscopically. The proposed automated segmentation method has outperformed and secured high precision (90%, 92%, and 94%); moreover, it also achieves proper training. This study will benefit medicines and diseased cell measurements in medical tests and clinical practices.
Collapse
|
21
|
An Effective and Lightweight Deep Electrocardiography Arrhythmia Recognition Model Using Novel Special and Native Structural Regularization Techniques on Cardiac Signal. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:3408501. [PMID: 35449862 PMCID: PMC9018174 DOI: 10.1155/2022/3408501] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/19/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023]
Abstract
Recently, cardiac arrhythmia recognition from electrocardiography (ECG) with deep learning approaches is becoming popular in clinical diagnosis systems due to its good prognosis findings, where expert data preprocessing and feature engineering are not usually required. But a lightweight and effective deep model is highly demanded to face the challenges of deploying the model in real-life applications and diagnosis accurately. In this work, two effective and lightweight deep learning models named Deep-SR and Deep-NSR are proposed to recognize ECG beats, which are based on two-dimensional convolution neural networks (2D CNNs) while using different structural regularizations. First, 97720 ECG beats extracted from all records of a benchmark MIT-BIH arrhythmia dataset have been transformed into 2D RGB (red, green, and blue) images that act as the inputs to the proposed 2D CNN models. Then, the optimization of the proposed models is performed through the proper initialization of model layers, on-the-fly augmentation, regularization techniques, Adam optimizer, and weighted random sampler. Finally, the performance of the proposed models is evaluated by a stratified 5-fold cross-validation strategy along with callback features. The obtained overall accuracy of recognizing normal beat and three arrhythmias (V-ventricular ectopic, S-supraventricular ectopic, and F-fusion) based on the Association for the Advancement of Medical Instrumentation (AAMI) is 99.93%, and 99.96% for the proposed Deep-SR model and Deep-NSR model, which demonstrate that the effectiveness of the proposed models has surpassed the state-of-the-art models and also expresses the higher model generalization. The received results with model size suggest that the proposed CNN models especially Deep-NSR could be more useful in wearable devices such as medical vests, bracelets for long-term monitoring of cardiac conditions, and in telemedicine to accurate diagnose the arrhythmia from ECG automatically. As a result, medical costs of patients and work pressure on physicians in medicals and clinics would be reduced effectively.
Collapse
|
22
|
Wierciński T, Rock M, Zwierzycki R, Zawadzka T, Zawadzki M. Emotion Recognition from Physiological Channels Using Graph Neural Network. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22082980. [PMID: 35458965 PMCID: PMC9025566 DOI: 10.3390/s22082980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 05/08/2023]
Abstract
In recent years, a number of new research papers have emerged on the application of neural networks in affective computing. One of the newest trends observed is the utilization of graph neural networks (GNNs) to recognize emotions. The study presented in the paper follows this trend. Within the work, GraphSleepNet (a GNN for classifying the stages of sleep) was adjusted for emotion recognition and validated for this purpose. The key assumption of the validation was to analyze its correctness for the Circumplex model to further analyze the solution for emotion recognition in the Ekman modal. The novelty of this research is not only the utilization of a GNN network with GraphSleepNet architecture for emotion recognition, but also the analysis of the potential of emotion recognition based on differential entropy features in the Ekman model with a neutral state and a special focus on continuous emotion recognition during the performance of an activity The GNN was validated against the AMIGOS dataset. The research shows how the use of various modalities influences the correctness of the recognition of basic emotions and the neutral state. Moreover, the correctness of the recognition of basic emotions is validated for two configurations of the GNN. The results show numerous interesting observations for Ekman's model while the accuracy of the Circumplex model is similar to the baseline methods.
Collapse
Affiliation(s)
- Tomasz Wierciński
- Faculty of Electronics, Telecommunications and Informatics and Digital Technologies Center, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
- Correspondence:
| | - Mateusz Rock
- Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (M.R.); (R.Z.)
| | - Robert Zwierzycki
- Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (M.R.); (R.Z.)
| | - Teresa Zawadzka
- Faculty of Electronics, Telecommunications and Informatics and Digital Technologies Center, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| | | |
Collapse
|
23
|
Ukwuoma CC, Zhiguang Q, Bin Heyat MB, Mohammed Khan H, Akhtar F, Masadeh MS, Bamisile O, AlShorman O, Nneji GU. Detection of Oral Cavity Squamous Cell Carcinoma from Normal Epithelium of the Oral Cavity using Microscopic Images. 2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA) 2022. [DOI: 10.1109/dasa54658.2022.9765023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chiagoziem C. Ukwuoma
- University of Electronic Science and Technology of China,School of Information and Software Engineering,Chengdu,China
| | - Qin Zhiguang
- University of Electronic Science and Technology of China,School of Information and Software Engineering,Chengdu,China
| | - Md Belal Bin Heyat
- Shenzhen University,IoT Research Center, College of Computer Science and Software Engineering,Shenzhen,China
| | - Haider Mohammed Khan
- Sichuan University,Department of Orthopedics Surgery West China Hospital,Chengdu,China
| | - Faijan Akhtar
- University of Electronic Science and Technology of China,School of Computer Science and Engineering,Chengdu,China
| | - Mahmoud S. Masadeh
- Yarmouk University,Hijjawi Faculty for Engineering,Computer Engineering Department,Irbid,Jordan
| | - Olusola Bamisile
- Chengdu University of Technology,Sichuan Industrial Internet Intelligent Monitoring and Application Engineering Technology Research Center,Chengdu,China
| | - Omar AlShorman
- Najran University,Faculty of Engineering and AlShrouk Traiding Company,Najran,KSA
| | - Grace. U. Nneji
- University of Electronic Science and Technology of China,School of Information and Software Engineering,Chengdu,China
| |
Collapse
|
24
|
Ukwuoma CC, Urama GC, Qin Z, Bin Heyat MB, Mohammed Khan H, Akhtar F, Masadeh MS, Ibegbulam CS, Delali FL, AlShorman O. Boosting Breast Cancer Classification from Microscopic Images Using Attention Mechanism. 2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA) 2022. [DOI: 10.1109/dasa54658.2022.9765013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chiagoziem C. Ukwuoma
- University of Electronic Science and Technology of China,School of Information and Software Engineering,Chengdu,Sichuan,China
| | - Gilbert C. Urama
- University of Electronic Science and Technology of China,School of Computer Science and Engineering,Chengdu,Sichuan,China
| | - Zhiguang Qin
- University of Electronic Science and Technology of China,School of Information and Software Engineering,Chengdu,Sichuan,China
| | - Md Belal Bin Heyat
- Sichuan University,West China Hospital,Department of Orthopedics Surgery,Chengdu,Sichuan,China
| | - Haider Mohammed Khan
- University of Electronic Science and Technology of China,School of Computer Science and Engineering,Chengdu,Sichuan,China
| | - Faijan Akhtar
- University of Electronic Science and Technology of China,School of Computer Science and Engineering,Chengdu,Sichuan,China
| | - Mahmoud S. Masadeh
- Yarmouk University,Hijjawi Faculty for Engineering,Computer Engineering Department,Irbid,Jordan
| | - Chukwuemeka S. Ibegbulam
- Federal University of Technology,Department of Polymer and Textile Engineering,Owerri,Imo State,Nigeria
| | - Fiasam Linda Delali
- University of Electronic Science and Technology of China,School of Information and Software Engineering,Chengdu,Sichuan,China
| | - Omar AlShorman
- Najran University,Faculty of Engineering and AlShrouk Traiding Company,Najran,KSA
| |
Collapse
|
25
|
Recognition of mRNA N4 Acetylcytidine (ac4C) by Using Non-Deep vs. Deep Learning. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031344] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Deep learning models have been successfully applied in a wide range of fields. The creation of a deep learning framework for analyzing high-performance sequence data have piqued the research community’s interest. N4 acetylcytidine (ac4C) is a post-transcriptional modification in mRNA, is an mRNA component that plays an important role in mRNA stability control and translation. The ac4C method of mRNA changes is still not simple, time consuming, or cost effective for conventional laboratory experiments. As a result, we developed DL-ac4C, a CNN-based deep learning model for ac4C recognition. In the alternative scenario, the model families are well-suited to working in large datasets with a large number of available samples, especially in biological domains. In this study, the DL-ac4C method (deep learning) is compared to non-deep learning (machine learning) methods, regression, and support vector machine. The results show that DL-ac4C is more advanced than previously used approaches. The proposed model improves the accuracy recall area by 9.6 percent and 9.8 percent, respectively, for cross-validation and independent tests. More nuanced methods of incorporating prior bio-logical knowledge into the estimation procedure of deep learning models are required to achieve better results in terms of predictive efficiency and cost-effectiveness. Based on an experiment’s acetylated dataset, the DL-ac4C sequence-based predictor for acetylation sites in mRNA can predict whether query sequences have potential acetylation motifs.
Collapse
|
26
|
SILVA SED, LIMA LCMD, LEAL TR, FIRMINO RT, GRANVILLE-GARCIA AF. Use of electronic devices, practice of sports, and awake bruxism in schoolchildren aged eight to ten years. Braz Oral Res 2022; 36:e137. [DOI: 10.1590/1807-3107bor-2022.vol36.0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/07/2022] [Indexed: 12/23/2022] Open
|
27
|
Modarres MH, Elliott JE, Weymann KB, Pleshakov D, Bliwise DL, Lim MM. Validation of Visually Identified Muscle Potentials during Human Sleep Using High Frequency/Low Frequency Spectral Power Ratios. SENSORS (BASEL, SWITZERLAND) 2021; 22:55. [PMID: 35009594 PMCID: PMC8747095 DOI: 10.3390/s22010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Surface electromyography (EMG), typically recorded from muscle groups such as the mentalis (chin/mentum) and anterior tibialis (lower leg/crus), is often performed in human subjects undergoing overnight polysomnography. Such signals have great importance, not only in aiding in the definitions of normal sleep stages, but also in defining certain disease states with abnormal EMG activity during rapid eye movement (REM) sleep, e.g., REM sleep behavior disorder and parkinsonism. Gold standard approaches to evaluation of such EMG signals in the clinical realm are typically qualitative, and therefore burdensome and subject to individual interpretation. We originally developed a digitized, signal processing method using the ratio of high frequency to low frequency spectral power and validated this method against expert human scorer interpretation of transient muscle activation of the EMG signal. Herein, we further refine and validate our initial approach, applying this to EMG activity across 1,618,842 s of polysomnography recorded REM sleep acquired from 461 human participants. These data demonstrate a significant association between visual interpretation and the spectrally processed signals, indicating a highly accurate approach to detecting and quantifying abnormally high levels of EMG activity during REM sleep. Accordingly, our automated approach to EMG quantification during human sleep recording is practical, feasible, and may provide a much-needed clinical tool for the screening of REM sleep behavior disorder and parkinsonism.
Collapse
Affiliation(s)
- Mo H. Modarres
- Mental Illness Research, Education and Clinical Center (MIRECC-VISN1), VA Bedford Health Care System, Bedford, MA 01730, USA;
| | - Jonathan E. Elliott
- VA Portland Health Care System, Portland, OR 97239, USA;
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Dennis Pleshakov
- School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA;
| | | | - Miranda M. Lim
- VA Portland Health Care System, Portland, OR 97239, USA;
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
- National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, OR 97239, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
28
|
Anatomical Characteristics of the Lateral Pterygoid Muscle in Mandibular Prognathism. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mandibular prognathism is one of the most concerning subjects in the oral and maxillofacial fields. In our previous studies, we attempted to clarify the etiology of mandibular prognathism. They revealed that one of the major characteristics of mandibular prognathism was the lower volume/length ratio of the mandibular condyle and body compared to normal, and the masseter muscle showed parallelism with this. This study aimed to evaluate the relationship between mandibular prognathism and the lateral pterygoid muscle by measuring the orientation and volume/length ratio of the lateral pterygoid muscle. Computed tomography was used to calculate the volume/length ratio of the lateral pterygoid muscle in 60 Korean individuals. Mimics 10.0 and Maya version 2018 were used to reconstruct the surface area and surface planes. The results showed that the prognathic group showed smaller lateral pterygoid volume/length ratios compared to the normal group (p < 0.05). In addition, the normal group displayed a larger horizontal angle (p < 0.05) to the mandibular and palatal planes than the prognathic group. This demonstrated that the mechanical drawback of the lateral pterygoid in the prognathic group is associated with mandibular prognathism.
Collapse
|