1
|
Anum H, Li K, Tabusam J, Saleh SAA, Cheng RF, Tong YX. Regulation of anthocyanin synthesis in red lettuce in plant factory conditions: A review. Food Chem 2024; 458:140111. [PMID: 38968716 DOI: 10.1016/j.foodchem.2024.140111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024]
Abstract
Anthocyanins, natural pigments known for their vibrant hues and beneficial properties, undergo intricate genetic control. However, red vegetables grown in plant factories frequently exhibit reduced anthocyanin synthesis compared to those in open fields due to factors like inadequate light, temperature, humidity, and nutrient availability. Comprehending these factors is essential for optimizing plant factory environments to enhance anthocyanin synthesis. This review insights the impact of physiological and genetic factors on the production of anthocyanins in red lettuce grown under controlled conditions. Further, we aim to gain a better understanding of the mechanisms involved in both synthesis and degradation of anthocyanins. Moreover, this review summarizes the identified regulators of anthocyanin synthesis in lettuce, addressing the gap in knowledge on controlling anthocyanin production in plant factories, with potential implications for various crops beyond red lettuce.
Collapse
Affiliation(s)
- Hadiqa Anum
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China
| | - Kun Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China
| | - Javaria Tabusam
- National Key Laboratory of Cotton Bio-Breeding and Integration Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Said Abdelhalim Abdelaty Saleh
- Horticultural Crops Technology Department, Agricultural & Biological Research Institute, National Research Centre, Giza, Egypt
| | - Rui-Feng Cheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China.
| | - Yu-Xin Tong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China.
| |
Collapse
|
2
|
Bae S, Choi YJ, Park SE, Kim EJ, Lee MJ, Chung YB, Park SH, Min SG, Ku KM, Seo HY, Son HS. Effects of seasonal harvest of kimchi cabbage on microbial and metabolic profiles of kimchi. Food Res Int 2024; 188:114476. [PMID: 38823866 DOI: 10.1016/j.foodres.2024.114476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/28/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Kimchi cabbage, the key ingredient in kimchi, is cultivated year-round to meet high production demands. This study aimed to examine the effects of seasonal harvesting (spring, summer, fall, and winter) on the microbial and metabolic profiles of kimchi during 30 days of fermentation. Lactic acid bacteria distribution is notably influenced by seasonal variations, with Latilactobacillus dominant in fall-harvested kimchi group and Weissella prevailing in spring, summer, and winter. The microbial communities of spring and fall group exhibited similar profiles before fermentation, whereas the microbial communities and metabolic profiles of spring and summer group were similar after 30 days of fermentation. Seasonal disparities in metabolite concentrations, including glutamic acid, serine, and cytosine, persist throughout fermentation. This study provides a comprehensive understanding of the substantial impact of seasonal harvesting of kimchi cabbage on the microbial and metabolic characteristics of kimchi, providing valuable insights into producing kimchi with diverse qualities.
Collapse
Affiliation(s)
- Soobin Bae
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Yun-Jeong Choi
- Kimchi Industry Promotion Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea.
| | - Seong-Eun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Eun-Ju Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Min Jung Lee
- Kimchi Industry Promotion Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea.
| | - Young Bae Chung
- Kimchi Industry Promotion Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea.
| | - Sung Hee Park
- Kimchi Industry Promotion Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea.
| | - Sung Gi Min
- Kimchi Industry Promotion Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea.
| | - Kang-Mo Ku
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Hye-Young Seo
- Kimchi Industry Promotion Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea.
| | - Hong-Seok Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
3
|
Yilmaz‐Ersan L, Ozcan T, Usta‐Gorgun B, Ciniviz M, Keser G, Bengu I, Keser RA. Bioaccessibility and antioxidant capacity of kefir-based smoothies fortified with kale and spinach after in vitro gastrointestinal digestion. Food Sci Nutr 2024; 12:2153-2165. [PMID: 38455206 PMCID: PMC10916544 DOI: 10.1002/fsn3.3917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 03/09/2024] Open
Abstract
The kefir-based smoothies with kale and spinach were designed as a ready-to-drink and innovative functional snack. Microbiological, physicochemical, as well as pre- and postgastrointestinal total antioxidant capacity (TAC; CUPRAC, DPPH, and FRAP) analyses were conducted. It was determined that the kefir-based smoothies with vegetables had higher ash, carbohydrate, and dietary fiber values. Fructose and glucose contents of smoothy with kale were high, while smoothy with spinach included high sucrose and maltose. The microbiology results revealed that kefir-based vegetable smoothies had minimum Lactobacillaceae viability (>log 7 cfu g-1) for the required functional effect after 14-day storage. Moreover, the addition of kale significantly increased (p < .01) the level of initial TAC (CUPRAC, DPPH, and FRAP) and total phenolic content (TPC) values. After in vitro gastric digestion analysis, smoothie with spinach demonstrated higher TAC and TPC values and the control sample had higher TAC and TPC values compared with a predigestion step. It was found that in vitro intestinal DPPH values were higher for the sample with spinach samples, while the sample with kale had the highest FRAP values. It was also found that the bioaccessibility indexes of plain kefir were determined to be the highest in both in vitro gastric and intestinal procedures. The present study provided novel insights into the in vitro digestion properties of kefir fortified with vegetables. Nevertheless, further studies are needed to identify the functional properties of the milk and plant matrices mixture using in vitro and in vivo trials.
Collapse
Affiliation(s)
- Lutfiye Yilmaz‐Ersan
- Faculty of Agriculture, Department of Food EngineeringBursa Uludag UniversityBursaTurkey
| | - Tulay Ozcan
- Faculty of Agriculture, Department of Food EngineeringBursa Uludag UniversityBursaTurkey
| | - Buse Usta‐Gorgun
- Graduate School of Natural and Applied SciencesBursa Uludag UniversityBursaTurkey
| | - Melike Ciniviz
- Graduate School of Natural and Applied SciencesBursa Uludag UniversityBursaTurkey
| | - Gokce Keser
- Graduate School of Natural and Applied SciencesBursa Uludag UniversityBursaTurkey
| | - Ilay Bengu
- Graduate School of Natural and Applied SciencesBursa Uludag UniversityBursaTurkey
| | - Raziye Asli Keser
- Graduate School of Natural and Applied SciencesBursa Uludag UniversityBursaTurkey
| |
Collapse
|
4
|
Bravi E, Falcinelli B, Mallia G, Marconi O, Royo-Esnal A, Benincasa P. Effect of Sprouting on the Phenolic Compounds, Glucosinolates, and Antioxidant Activity of Five Camelina sativa (L.) Crantz Cultivars. Antioxidants (Basel) 2023; 12:1495. [PMID: 37627490 PMCID: PMC10451838 DOI: 10.3390/antiox12081495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Sprouts are increasingly present in the human diet, being tasty and healthy foods high in antioxidant compounds. Although there is a body of literature on the sprouting of many plant species, Camelina sativa (L.) Crantz has not yet been studied for this purpose. This study aimed to characterize the main bioactive compounds and antioxidant potential of seeds and sprouts of five different Camelina cultivars (ALBA, CO46, CCE43, JOELLE, and VERA). In particular, the contents of phenolic compounds (PCs), phenolic acids (PAs), and glucosinolates (GLSs) were investigated. PCs, PAs, GLSs, and the antioxidant activity of seeds differed among cultivars and were greatly increased by sprouting. A PCA analysis underlined both the effect of the cultivar (PC2) and the germination (PC1) on the nutritional properties of Camelina. The best nutritional properties of seeds were observed for ALBA and CCE43, while the best nutritional properties of sprouts were recorded for CCE43 and JOELLE, since the latter cultivar showed a greater enhancement in phytochemical content and antioxidant activity with sprouting. Finally, a UHPLC-UV procedure for the analysis of GLSs in Camelina was developed and validated. The performance criteria of the proposed method demonstrated that it is useful for the analysis of GLSs in Camelina.
Collapse
Affiliation(s)
- Elisabetta Bravi
- Italian Brewing Research Centre, University of Perugia, 06126 Perugia, Italy
| | - Beatrice Falcinelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06125 Perugia, Italy; (B.F.); (G.M.); (P.B.)
| | - Giorgia Mallia
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06125 Perugia, Italy; (B.F.); (G.M.); (P.B.)
| | - Ombretta Marconi
- Italian Brewing Research Centre, University of Perugia, 06126 Perugia, Italy
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06125 Perugia, Italy; (B.F.); (G.M.); (P.B.)
| | - Aritz Royo-Esnal
- Department of Agricultural and Forest Science and Engineering, University of Lleida, 25198 Lleida, Spain;
| | - Paolo Benincasa
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06125 Perugia, Italy; (B.F.); (G.M.); (P.B.)
| |
Collapse
|
5
|
Marcinkowska MA, Jeleń HH. Role of Sulfur Compounds in Vegetable and Mushroom Aroma. Molecules 2022; 27:6116. [PMID: 36144849 PMCID: PMC9502545 DOI: 10.3390/molecules27186116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
At the base of the food pyramid is vegetables, which should be consumed most often of all food products, especially in raw and unprocessed form. Vegetables and mushrooms are rich sources of bioactive compounds that can fulfill various functions in plants, starting from protection against herbivores and being natural insecticides to pro-health functions in human nutrition. Many of these compounds contain sulfur in their structure. From the point of view of food producers, it is extremely important to know that some of them have flavor properties. Volatile sulfur compounds are often potent odorants, and in many vegetables, belonging mainly to Brassicaeae and Allium (Amaryllidaceae), sulfur compounds determine their specific flavor. Interestingly, some of the pathways that form volatile sulfur compounds in vegetables are also found in selected edible mushrooms. The most important odor-active organosulfur compounds can be divided into isothiocyanates, nitriles, epithionitriles, thiols, sulfides, and polysulfides, as well as others, such as sulfur containing carbonyl compounds and esters, R-L-cysteine sulfoxides, and finally heterocyclic sulfur compounds found in shiitake mushrooms or truffles. This review paper summarizes their precursors and biosynthesis, as well as their sensory properties and changes in selected technological processes.
Collapse
Affiliation(s)
| | - Henryk H. Jeleń
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| |
Collapse
|
6
|
Variation of Nutritional Quality Depending on Harvested Plant Portion of Broccoli and Black Cabbage. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Brassicaceae plants are rich with antioxidant compounds that play a key role for human health. This study wants to characterize two Italian broccoli cultivars (Roya and Santee) and black cabbage, evaluating the variation of antioxidants in different portion and at different developmental stage of the plants: for broccoli, heads and stems were sampled, while for black cabbage, leaves and seeds were analyzed. Roja cultivar was also analyzed at the first and second harvest to evaluate the variation of phytochemical compounds over time. Nutritional and sensorial qualities were investigated. Black cabbage seeds showed higher value of total antioxidants, total phenols, and total anthocyanins than leaves. Similarly, phenolics and anthocyanins content in head was higher than in stem in broccoli. In Roja cultivar, the harvest date seemed to influence the antioxidant capacity and the phytochemical compounds content, with broccoli sampled in the second harvest showing better results for all the nutritional parameters. These local vegetables represent a significant source of antioxidants and may contribute to health benefits of the consumers.
Collapse
|
7
|
Abstract
Over the last few years, new nanoparticle preparation methods have emerged by replacing the usual reagents with plant extracts obtained in different conditions. An example of a natural plant extract is those of cruciferous vegetables, to obtain the new bio-nano-coatings. Given the composition of cruciferous extracts and large amounts of wastes produced all over the world, they can be successful substitutes to replace conventional coatings and extend the possibility of “smart coatings“. The present review aims to be a critical discussion regarding the application of cruciferous waste in nanotechnological applications. This review paper can be a starting report for different researchers who intend to use this sustainable approach “from green to nanotechnology” to transpose manufacturing from laboratory to industry. Applying this approach to obtain nanostructures with plant waste highlights the importance of minimizing and re-utilizing residues from primary and secondary processing via chemical and social intervention, in order to contribute to the sustainability needs of the planet and its inhabitants.
Collapse
|
8
|
Zayed A, Sheashea M, Kassem IAA, Farag MA. Red and white cabbages: An updated comparative review of bioactives, extraction methods, processing practices, and health benefits. Crit Rev Food Sci Nutr 2022; 63:7025-7042. [PMID: 35174750 DOI: 10.1080/10408398.2022.2040416] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Red and white cabbages (Brassica oleracea var. capitata f. alba and rubra, respectively) are two of the most commercially valued vegetables in crucifers, well-recognized for their unique sensory and nutritive attributes in addition to a myriad of health-promoting benefits. The current review addressed the differential qualitative/quantitative phytochemical make-ups for the first time for better utilization as nutraceuticals and to identify potential uses based on the chemical makeup of both cultivars (cvs.). In addition, extraction methods are compared highlighting their advantages and/or limitations with regards to improving yield and stability of cabbage bioactives, especially glucosinolates. Besides, the review recapitulated detailed action mechanism and safety of cabbage bioactives, as well as processing technologies to further improve their effects are posed as future perspectives. White and red cabbage cvs. revealed different GLSs profile which affected by food processing, including enzymatic hydrolysis, thermal breakdown, and leaching. In addition, the red cultivar provides high quality pigment for industrial applications. Moreover, non-conventional modern extraction techniques showed promising techniques for the recovery of their bioactive constituents compared to solvent extraction. All these findings pose white and red cabbages as potential candidates for inclusion in nutraceuticals and/or to be commercialized as functional foods prepared in different culinary forms.
Collapse
Affiliation(s)
- Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Tanta, Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mohamed Sheashea
- Aromatic and Medicinal Plants Department, Desert Research Center, Cairo, Egypt
| | - Iman A A Kassem
- Chemistry of Natural Compounds Department, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
Glucosinolates, Ca, Se Contents, and Bioaccessibility in Brassica rapa Vegetables Obtained by Organic and Conventional Cropping Systems. Foods 2022; 11:foods11030350. [PMID: 35159500 PMCID: PMC8834489 DOI: 10.3390/foods11030350] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/09/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
In northwest Spain and Portugal, there is a long tradition of cultivating B. rapa subsp. rapa to obtain turnip greens and turnip tops. Brassica rapa L. subsp. rapa (turnip greens and turnip tops) were grown under conventional and organic conditions in two Farms in southern Spain. Glucosinolatescontents were higher in Brassicas grown under conventional conditions than those grown under organic ones. Average Ca total and bioaccessible contents ranged between 14.6–23.4 mg/g; 8.9–12.0 mg/g for turnip greens and 6.4–8.9 mg/g; 4.3–4.8 mg/g for turnip tops. According to these concentrations, an intake of 100–200 g (fresh weight) of the studied Brassica rapa fulfills Ca dietary reference intakes (DRI) (considering the total content data) and complies with 72–100% Ca DRI percentage (considering the bioaccessible data). Se concentrations ranged between 0.061–0.073 µg/g and 0.039–0.053 µg/g for turnip greens and turnip tops respectively. Se bioaccessibility values were high, with percentages of around 90%. Finally, the total glucosinolate content ranged between 13.23–21.28 µmol/g for turnip greens and 13.36–20.20 µmol/g for turnip tops. In general, the bioaccessibility of the total glucosinolates analyzed in this study was high, with mean values of around 73% and 66% for turnip greens and turnip tops, respectively. Brassica rapa vegetables grown under both organic and conventional conditions in southern Spain are an excellent dietary source of Ca, Se, and glucosinolates with a high bioaccessibility.
Collapse
|
10
|
Merinas-Amo T, Lozano-Baena MD, Obregón-Cano S, Alonso-Moraga Á, de Haro-Bailón A. Role of Glucosinolates in the Nutraceutical Potential of Selected Cultivars of Brassica rapa. Foods 2021; 10:2720. [PMID: 34829001 PMCID: PMC8617875 DOI: 10.3390/foods10112720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
Brassica rapa L. subsp. rapa (turnip greens), a traditionally consumed vegetable, is well-known due to its high content of glucosinolates, which are secondary metabolites with a positive biological activity for human health. Our hypothesis has been based on the relation between B. rapa glucosinolate content and its healthy properties, and our aim is to establish guidelines for safe B. rapa vegetable consumption. Three B. rapa cultivars (143N5, 143N7 and 163N7) have been characterized by HPLC analysis of purified extracts from leaf samples in order to determine their glucosinolate content and to relate this content to beneficial effects on DNA protection, lifespan extension and chemoprevention. In order to ascertain the heath properties in vitro and in vivo, toxicity activities were assayed in the Drosophila melanogaster and leukaemia cell models; genomic safety was also assessed in both models using genotoxicity, fragmentation and comet assay. The Drosophila model has also been used to study the antioxidative activity and the longevity induction. Our results showed a relationship between B. rapa glucosinolate content and its safety and benefices in its consumption. Gluconapin, the main B. rapa glucosinolate, was directly related with these wholesome effects. The relevant conclusion in the present research is focused on B. rapa cultivar 163N7 due to its high gluconapin content and low progoitrin content, which exert anti-cancer and DNA protection properties and could be recommended as being safe and healthy for human consumption.
Collapse
Affiliation(s)
- Tania Merinas-Amo
- Department of Genetics, Gregor Mendel Building, Faculty of Science, Campus Rabanales, University of Córdoba, 14014 Córdoba, Spain; (M.-D.L.-B.); (Á.A.-M.)
| | - María-Dolores Lozano-Baena
- Department of Genetics, Gregor Mendel Building, Faculty of Science, Campus Rabanales, University of Córdoba, 14014 Córdoba, Spain; (M.-D.L.-B.); (Á.A.-M.)
| | - Sara Obregón-Cano
- Department of Plant Breeding, Institute of Sustainable Agriculture, CSIC, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain; (S.O.-C.); (A.d.H.-B.)
| | - Ángeles Alonso-Moraga
- Department of Genetics, Gregor Mendel Building, Faculty of Science, Campus Rabanales, University of Córdoba, 14014 Córdoba, Spain; (M.-D.L.-B.); (Á.A.-M.)
| | - Antonio de Haro-Bailón
- Department of Plant Breeding, Institute of Sustainable Agriculture, CSIC, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain; (S.O.-C.); (A.d.H.-B.)
| |
Collapse
|
11
|
Abstract
In recent decades, the consciousness of consumers regarding the importance of a balanced diet to prevent the occurrence of chronic diseases has significantly increased [...]
Collapse
|
12
|
Poveda J, Velasco P, de Haro A, Johansen TJ, McAlvay AC, Möllers C, Mølmann JA, Ordiales E, Rodríguez VM. Agronomic and Metabolomic Side-Effects of a Divergent Selection for Indol-3-Ylmethylglucosinolate Content in Kale ( Brassica oleracea var. acephala). Metabolites 2021; 11:metabo11060384. [PMID: 34198476 PMCID: PMC8231911 DOI: 10.3390/metabo11060384] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/18/2022] Open
Abstract
Brassica oleracea var. acephala (kale) is a cruciferous vegetable widely cultivated for its leaves and flower buds in Europe and a food of global interest as a “superfood”. Brassica crops accumulate phytochemicals called glucosinolates (GSLs) which play an important role in plant defense against biotic stresses. Studies carried out to date suggest that GSLs may have a role in the adaptation of plants to different environments, but direct evidence is lacking. We grew two kale populations divergently selected for high and low indol-3-ylmethylGSL (IM) content (H-IM and L-IM, respectively) in different environments and analyzed agronomic parameters, GSL profiles and metabolomic profile. We found a significant increase in fresh and dry foliar weight in H-IM kale populations compared to L-IM in addition to a greater accumulation of total GSLs, indole GSLs and, specifically, IM and 1-methoxyindol-3-ylmethylGSL (1MeOIM). Metabolomic analysis revealed a significant different concentration of 44 metabolites in H-IM kale populations compared to L-IM. According to tentative peak identification from MS interpretation, 80% were phenolics, including flavonoids (kaempferol, quercetin and anthocyanin derivates, including acyl flavonoids), chlorogenic acids (esters of hydroxycinnamic acids and quinic acid), hydroxycinnamic acids (ferulic acid and p-coumaric acid) and coumarins. H-IM kale populations could be more tolerant to diverse environmental conditions, possibly due to GSLs and the associated metabolites with predicted antioxidant potential.
Collapse
Affiliation(s)
- Jorge Poveda
- Institute of Agrobiotechnology, Public University of Navarre, 31006 Pamplona, Spain;
| | - Pablo Velasco
- Mision Biologica de Galicia (MBG-CSIC), 36143 Pontevedra, Spain;
| | - Antonio de Haro
- Institute of Sustainable Agriculture (CSIC), 14004 Córdoba, Spain;
| | - Tor J. Johansen
- Norwegian Institute of Bioeconomy Research (NIBIO), P.O. Box 115, NO-1431 Ås, Norway; (T.J.J.); (J.A.B.M.)
| | - Alex C. McAlvay
- Institute of Economic Botany, The New York Botanical Garden, New York, NY 10458, USA;
| | - Christian Möllers
- Department of Crop Science, Georg-August-Universität Göttingen, 37075 Göttingen, Germany;
| | - Jørgen A.B. Mølmann
- Norwegian Institute of Bioeconomy Research (NIBIO), P.O. Box 115, NO-1431 Ås, Norway; (T.J.J.); (J.A.B.M.)
| | - Elena Ordiales
- Centro Tecnológico Nacional Agroalimentario, 06195 Badajoz, Spain;
| | - Víctor M. Rodríguez
- Mision Biologica de Galicia (MBG-CSIC), 36143 Pontevedra, Spain;
- Correspondence: ; Tel.: +34-986-85-4800
| |
Collapse
|
13
|
Shakour ZT, Shehab NG, Gomaa AS, Wessjohann LA, Farag MA. Metabolic and biotransformation effects on dietary glucosinolates, their bioavailability, catabolism and biological effects in different organisms. Biotechnol Adv 2021; 54:107784. [PMID: 34102260 DOI: 10.1016/j.biotechadv.2021.107784] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/17/2021] [Accepted: 06/04/2021] [Indexed: 12/28/2022]
Abstract
Glucosinolate-producing plants have long been recognized for both their distinctive benefits to human nutrition and their resistance traits against pathogens and herbivores. Despite the accumulation of glucosinolates (GLS) in plants is associated with their resistance to various biotic and abiotic stresses, the defensive and biological activities of GLS are commonly conveyed by their metabolic products. In view of this, metabolism is considered the driving factor upon the interactions of GLS-producing plants with other organisms, also influenced by plant and plant attacking or digesting organism characteristics. Several microbial pathogens and insects have evolved the capacity to detoxify GLS-hydrolysis products or inhibit their formation via different means, highlighting the relevance of their metabolic abilities for the plants' defense system activation and target organism detoxification. Strikingly, some bacteria, fungi and insects can likewise produce their own myrosinase (MYR)-like enzymes in one of the most important adaptation strategies against the GLS-MYR plant defense system. Knowledge of GLS metabolic pathways in herbivores and pathogens can impact plant protection efforts and may be harnessed upon for genetically modified plants that are more resistant to predators. In humans, the interest in the implementation of GLS in diets for the prevention of chronic diseases has grown substantially. However, the efficiency of such approaches is dependent on GLS bioavailability and metabolism, which largely involves the human gut microbiome. Among GLS-hydrolytic products, isothiocyanates (ITC) have shown exceptional properties as chemical plant defense agents against herbivores and pathogens, along with their health-promoting benefits in humans, at least if consumed in reasonable amounts. Deciphering GLS metabolic pathways provides critical information for catalyzing all types of GLS towards the generation of ITCs as the biologically most active metabolites. This review provides an overview on contrasting metabolic pathways in plants, bacteria, fungi, insects and humans towards GLS activation or detoxification. Further, suggestions for the preparation of GLS containing plants with improved health benefits are presented.
Collapse
Affiliation(s)
- Zeinab T Shakour
- Laboratory of Phytochemistry, National Organization for Drug Control and Research, Cairo, Egypt
| | - Naglaa G Shehab
- Department of Pharmaceutical Chemistry and Natural Products, Dubai Pharmacy College, Dubai, United Arab Emirates
| | - Ahmed S Gomaa
- Faculty of Graduate Studies for Statistical Research, Cairo University, Cairo, Egypt
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt.
| |
Collapse
|