1
|
El-Taweel SH. Synergistic effect of TiO 2 nanoparticles and poly (ethylene-co-vinyl acetate) on the morphology and crystallization behavior of polylactic acid. Sci Rep 2024; 14:18142. [PMID: 39103411 PMCID: PMC11300595 DOI: 10.1038/s41598-024-68023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
The impact of adding ethylene vinyl acetate copolymer (EVA 80) and 1 wt% TiO2 nanoparticles on the morphology and crystallization behavior of poly(lactic acid) blends was investigated using DSC, SEM, and POM. Thermal analysis revealed the enhancement of crystallinity of PLA in the presence of TiO2 and higher EVA 80 content in the blend. The PLA and EVA 80 components showed compatibility, as evidenced by the shift of the glass transition temperatures of the PLA phase in the blend to lower values compared to neat PLA. The lower temperature shift of the cold crystallization of the PLA and the formation of the small spherulites of the PLA in the blends indicated that the EVA 80 and TiO2 act as a nucleating agent for crystallization. The non-isothermal crystallization parameters of the composites were evaluated using Avrami's modified model, the MO approach, and Friedman's isoconversional method. The Avrami's modified rate constant (K) and the effective activation energy values significantly increased with the incorporation of EVA 80 and TiO2 nanoparticles. Furthermore, the thermogravimetric analysis (TGA) showed improved thermal stability of PLA by adding EVA 80 and TiO2.
Collapse
Affiliation(s)
- Safaa H El-Taweel
- Chemistry Department, Faculty of Science, Cairo University, Orman-Giza, 12613, Egypt.
- Engineering and Materials Science Department, German University in Cairo, New Cairo City, Egypt.
| |
Collapse
|
2
|
Črešnar KP, Plohl O, Zemljič LF. Functionalised Fibres as a Coupling Reinforcement Agent in Recycled Polymer Composites. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2739. [PMID: 38894002 PMCID: PMC11174083 DOI: 10.3390/ma17112739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
This study addresses the structure-property relationship within the green concept of wood fibres with cellulose nanofibre functionalised composites (nW-PPr) containing recycled plastic polyolefins, in particular, polypropylene (PP-r). It focuses especially on the challenges posed by nanoscience in relation to wood fibres (WF) and explores possible changes in the thermal properties, crystallinity, morphology, and mechanical properties. In a two-step methodology, wood fibres (50% wt%) were first functionalised with nanocellulose (nC; 1-9 wt%) and then, secondly, processed into composites using an extrusion process. The surface modification of nC improves its compatibility with the polymer matrix, resulting in improved adhesion, mechanical properties, and inherent biodegradability. The effects of the functionalised WF on the recycled polymer composites were investigated systematically and included analyses of the structure, crystallisation, morphology, and surface properties, as well as thermal and mechanical properties. Using a comprehensive range of techniques, including X-ray diffraction (XRD), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), zeta potential measurements, and dynamic mechanical analysis (DMA), this study aims to unravel the intricate interplay of factors affecting the performance and properties of the developed nanocellulose-functionalised wood fibre-polymer composites. The interfacial adhesion of the nW-PPr polymer composites, crystallisation process, and surface properties was improved due to the formation of an H-bond between the nW coupling agent and neat PP-r. In addition, the role of nW (1.0 wt%) as a nucleating agent resulted in increased crystallinity, or, on the other hand, promoted the interfacial interaction with the highest amount (3.0% wt%, 9.0% wt%) of nW in the PP-r preferentially between the nW and neat PP-r, and also postponed the crystallisation temperature. The changes in the isoelectric point of the nW-PPr polymer composites compared to the neat PP-r polymer indicate the acid content of the polymer composite and, consequently, the final surface morphology. Finally, the higher storage modulus of the composites compared to neat r-PP shows a dependence on improved crystallinity, morphology, and adhesion. It was clear that the results of this study contribute to a better understanding of sustainable materials and can drive the development of environmentally friendly composites applied in packaging.
Collapse
Affiliation(s)
- Klementina Pušnik Črešnar
- Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia; (O.P.); (L.F.Z.)
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia
| | - Olivija Plohl
- Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia; (O.P.); (L.F.Z.)
| | - Lidija Fras Zemljič
- Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia; (O.P.); (L.F.Z.)
| |
Collapse
|
3
|
El-Taweel SH, Hassan SS, Ismail KM. Eco-friendly zinc-metal-organic framework as a nucleating agent for poly (lactic acid). Int J Biol Macromol 2024; 271:132691. [PMID: 38810857 DOI: 10.1016/j.ijbiomac.2024.132691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Eco-friendly poly(L-lactic acid) (PLA) can be made more versatile, and its crystallization rate is accelerated by adding Zinc-based metal-organic framework (Zn-MOF) particles. Using differential scanning calorimetry (DSC), the non-isothermal melt crystallization behavior of biodegradable PLA nucleated by 0.3 to 3 wt% of Zn-MOF was examined. The non-isothermal melt crystallization kinetics parameters were determined using a modified Avrami model and Mo approach. Zn-MOF dramatically accelerated the crystallization process, as evidenced by several non-isothermal crystallization metrics, including the crystallization half-time and crystallization rate constant. The melt crystallization temperatures of the PLA-Zn-MOF composites, with contents of 0.7 and 1 wt%, were increased by 21 °C compared to the neat PLA. Using the Friedman isoconversional kinetic method, the neat PLA and PLA-Zn-MOF composites' effective activation energy values, ∆E, were determined. The ∆E values of PLA-Zn-MOF from 0.3 to 1 wt% Zn-MOF composites were lower than that of neat PLA. Moreover, polarized optical microscopy revealed the formation of numerous small-sized PLA spherulites upon Zn-MOF addition. The results indicate that the Zn-MOF (at concentrations of 0.7 to 1.0 wt%) can be used as an efficient nucleating agent for PLA, where it increases the melt crystallization temperature, nucleation density, and crystallinity without changing the crystalline structure, while also significantly reduces the effective activation energy and the size of spherulites. Additionally, scanning electron microscopy confirms good dispersion of Zn-MOF (0.3 to 1 wt%) within the PLA matrix.
Collapse
Affiliation(s)
- Safaa H El-Taweel
- Chemistry Department, Faculty of Science, Cairo University, Orman, Giza 12613, Egypt; Engineering and Materials Science Department, German University in Cairo, New Cairo City, Egypt.
| | - Safaa S Hassan
- Chemistry Department, Faculty of Science, Cairo University, Orman, Giza 12613, Egypt
| | - Khaled M Ismail
- Chemistry Department, Faculty of Science, Cairo University, Orman, Giza 12613, Egypt
| |
Collapse
|
4
|
Portoacă AI, Diniță A, Tănase M, Săvulescu A, Sirbu EE, Călin C, Brănoiu G. Analyzing Sustainable 3D Printing Processes: Mechanical, Thermal, and Crystallographic Insights. Polymers (Basel) 2024; 16:1364. [PMID: 38794556 PMCID: PMC11125246 DOI: 10.3390/polym16101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, the objective was to optimize energy consumption in the fused deposition modeling (FDM) 3D printing process via a detailed analysis of printing parameters. By utilizing thermal analysis techniques, this research aimed to identify lower printing temperatures that could lead to reduced energy usage. Experimental analysis was conducted using a three-level L9 Taguchi orthogonal array, which involved a systematic combination of different extruder temperatures and cooling fan capacities. Furthermore, the research incorporated differential scanning calorimetry (DSC) and X-ray diffraction (XRD) methods to analyze the thermal properties and crystallinity of the 3D-printed specimens. The results indicated that temperature was a key factor affecting crystallinity, with samples printed at 190 °C and 60% fan capacity showing the highest mean values. By conducting a multi-objective desirability analysis, the optimal conditions for maximizing ultimate tensile strength (UTS), tensile modulus, and elongation at break while minimizing energy consumption for PLA 3D-printed samples were determined to be a temperature of 180 °C and a fan speed of 80%.
Collapse
Affiliation(s)
| | - Alin Diniță
- Mechanical Engineering Department, Petroleum-Gas University of Ploiești, 100680 Ploiesti, Romania;
| | - Maria Tănase
- Mechanical Engineering Department, Petroleum-Gas University of Ploiești, 100680 Ploiesti, Romania;
| | - Alexandru Săvulescu
- Automation, Computers and Electronics Department, Petroleum-Gas University of Ploiești, 100680 Ploiesti, Romania;
| | - Elena-Emilia Sirbu
- Chemistry Department, Petroleum-Gas University of Ploiești, 100680 Ploiesti, Romania; (E.-E.S.); (C.C.)
| | - Catălina Călin
- Chemistry Department, Petroleum-Gas University of Ploiești, 100680 Ploiesti, Romania; (E.-E.S.); (C.C.)
| | - Gheorghe Brănoiu
- Petroleum Geology and Reservoir Engineering Department, Petroleum-Gas University of Ploiești, 100680 Ploiesti, Romania;
| |
Collapse
|
5
|
Song L, Chi W, Hao Y, Ren J, Yang B, Cong F, Li Y, Yu L, Li X, Wang Y. Improving the properties of polylactic acid/polypropylene carbonate blends through cardanol-induced compatibility enhancement. Int J Biol Macromol 2024; 258:128886. [PMID: 38141698 DOI: 10.1016/j.ijbiomac.2023.128886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Cardanol (CD) is used as a reactive compatibilizer, and blended with polylactic acid (PLA) and polypropylene carbonate (PPC) resin (70/30(w/w)) to obtain a series of PLA/PPC/CD blends. The systematic study was conducted on the thermal properties, optical properties, rheological properties, mechanical properties, and microscopic morphology of the blend, by varying amounts of CD added to the blends. A detailed explanation and comprehensive analysis of the reaction mechanism between CD and PLA/PPC have been made. The study found that CD acts as a "bridge" between the PLA and PPC, forming the structure of a block copolymer (PLA-b-CD-b-PPC), and the copolymer can greatly improve the compatibility of PLA and PPC. When the amount of CD reaches 8 wt%, only one Tg is observed in the blend, simultaneously, PLA/PPC has already transitioned from a partially compatible system to a completely compatible system. At the same time, the addition of CD does not have any negative impact on the thermal stability of the PLA/PPC blend under processing temperature conditions, and the thermal stability of the PLA/PPC/CD blends can even be improved under extreme conditions. In addition, the addition of CD allows the PLA/PPC/CD blends to maintain a high light transmittance while reducing the opacity of the blend (the light transmittance remains above 92 %, and the opacity is reduced from 37 % to about 24 %), demonstrating excellent optical properties. Moreover, the elongation at break and impact strength of the PLA/PPC/CD blend both show a trend of first increasing and then decreasing with the increase of CD amount. When the CD amount varies within the range of 6- 8 wt%, the blends undergoes a brittle-ductile transition, and its toughness is greatly improved while the rigidity can also meet practical needs. When the amount of CD in the system increases to 12 wt%, the toughness of the blend reaches its peak, and its elongation at break and impact strength reach 513.24 % and 9211.5 J/m2 respectively (increased to 2442.84 % and 270.73 % of the PLA/PPC blend). Concurrently, the fracture surface of the blend exhibits large-scale plastic flow in the direction of the applied force, with marked shear yield phenomena, showing obvious characteristics of tough fracture.
Collapse
Affiliation(s)
- Lixin Song
- Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Weihan Chi
- Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yongsheng Hao
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Jiannan Ren
- AVIC Shenyang Aircraft Corporation, Shenyang 110850, China
| | - Bing Yang
- Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Fei Cong
- Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yongchao Li
- Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Lingxiao Yu
- Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xianliang Li
- Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yuanxia Wang
- Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China.
| |
Collapse
|
6
|
Yan YF, Liang XB, Feng YL, Shi LF, Chen RP, Guo JZ, Guan Y. Manipulation of crystallization nucleation and thermal degradation of PLA films by multi-morphologies CNC-ZnO nanoparticles. Carbohydr Polym 2023; 320:121251. [PMID: 37659828 DOI: 10.1016/j.carbpol.2023.121251] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 09/04/2023]
Abstract
Currently, the quest for more renewable and biodegradable materials is a scientific priority to address the problems of petroleum-based plastics are difficult to degrade. In this work, cellulose nanocrystals (CNC) have been used as a template and four morphologies of CNC-ZnO nanocomposites were prepared via a hydrothermal method, and CNC-ZnO/polylactic acid (PLA) composite films were obtained by solution casting. We find that CNC-ZnO nanocomposites as heterogeneous nucleating agents improved the crystallinity and the film with flower-like CNC-ZnO was improved by 2.4 %. Ea required for thermal degradation of the PLA films decreased to 66-81 % of that of neat PLA, calculated by the Kissinger method, the Friedman method, and the Flynn-Wall-Ozawa (FWO) method. The R2 model was the solid degradation mechanism of the PLA films, analyzed through the Coats-Redfern method and the Criado method. The H-bond content of the composite films was significantly reduced after thermal aging at 150 °C. We found that three-dimensional CNC-ZnO (ZnO-3) made more prominent contributions to the crystallization, thermal degradation, and thermal aging of PLA films than other dimensional. The thermal properties can be regulated by the dimension, size, and apparent morphology of CNC-ZnO nanoparticles.
Collapse
Affiliation(s)
- Ya-Fang Yan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiao-Bo Liang
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou 311300, China
| | - Yan-Long Feng
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou 311300, China
| | - Lin-Fang Shi
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou 311300, China
| | - Rui-Pin Chen
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jian-Zhong Guo
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou 311300, China.
| | - Ying Guan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
7
|
Xu J, Li Y, Cheng X. Investigating the Phase Transition Kinetics of 1-Octadecanol/Sorbitol Derivative/Expanded Graphite Composite Phase Change Material with Isoconversional and Multivariate Non-Linear Regression Methods. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7024. [PMID: 37959621 PMCID: PMC10647629 DOI: 10.3390/ma16217024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Organic composite phase change materials (PCMs) have been extensively studied, and it is important to investigate the effect of added components on the phase change process of the organic matrix. Herein, the phase transition process of the composite PCM with 1-octadecanol (OD) as the matrix adsorbed by a network framework composed of 1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol (DMDBS) and expanded graphite (EG) was measured using differential scanning calorimetry (DSC) at several linear heating rates. Using isoconversional and multivariate non-linear regression methods, a two-step consecutive reaction model for the composite PCM was established, while the apparent activation energies and pre-exponential factors were determined. The reaction mechanism of the first step was altered compared to pure OD, while the activation energies significantly decreased at the initial stage of the phase transition process and increased at the later stage. Combined with microscopic morphology analysis, the main reasons were the size and nanoconfinement effect. The predictions of the composite PCM under various conditions suggested that the composite PCM had a wider available temperature range compared to pure OD. This research provided a new idea for the in-depth study of the phase transition process of organic composite PCMs, which was helpful for the evaluation of organic composite PCMs.
Collapse
Affiliation(s)
- Jun Xu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 470070, China; (J.X.); (Y.L.)
| | - Yuanyuan Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 470070, China; (J.X.); (Y.L.)
| | - Xiaomin Cheng
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 470070, China; (J.X.); (Y.L.)
- School of Electromechanical and Intelligent Manufacturing, Huanggang Normal University, Huanggang 438000, China
| |
Collapse
|
8
|
Salaris V, San Félix García-Obregón I, López D, Peponi L. Fabrication of PLA-Based Electrospun Nanofibers Reinforced with ZnO Nanoparticles and In Vitro Degradation Study. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2236. [PMID: 37570553 PMCID: PMC10420940 DOI: 10.3390/nano13152236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
In this work, electrospun nanofibers based on polylactic acid, PLA, reinforced with ZnO nanoparticles have been studied, considering the growing importance of electrospun mats based on biopolymers for their applications in different fields. Specifically, electrospun nanofibers based on PLA have been prepared by adding ZnO nanoparticles at different concentrations, such as 0.5, 1, 3, 5, 10 and 20 wt%, with respect to the polymer matrix. The materials have been characterized in terms of their morphological, mechanical, and thermal properties, finding 3 wt% as the best concentration to produce PLA nanofibers reinforced with ZnO nanoparticles. In addition, hydrolytic degradation in phosphate buffer solution (PBS) was carried out to study the effect of ZnO nanoparticles on the degradation behavior of PLA-based electrospun nanofiber mats, obtaining an acceleration in the degradation of the PLA electrospun mat.
Collapse
Affiliation(s)
| | | | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (V.S.); (I.S.F.G.-O.)
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (V.S.); (I.S.F.G.-O.)
| |
Collapse
|
9
|
Kuété MA, Van Velthem P, Ballout W, Klavzer N, Nysten B, Ndikontar MK, Pardoen T, Bailly C. Eco-Friendly Blends of Recycled PET Copolymers with PLLA and Their Composites with Chopped Flax Fibres. Polymers (Basel) 2023; 15:3004. [PMID: 37514394 PMCID: PMC10384891 DOI: 10.3390/polym15143004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The structure and properties of blends of a novel polyethylene terephthalate copolymer (COPET) obtained by chemical recycling of commercial PET with high-molar-mass poly-L-lactide (PLLA) are investigated and compared to corresponding composites with chopped flax fibres. The focus is on the morphology at nano- and micro-scales, on the thermal characteristics and on the mechanical behaviour. The blends are immiscible, as evidenced by virtually unchanged glass transition temperatures of the blend components compared to the neat polymers (49 °C for COPET and 63 °C for PLLA by DSC). At low PLLA content, the blends display a sea-island morphology with sub-micron to micron droplet sizes. As the composition approaches 50/50, the morphology transitions to a coarser co-continuous elongated structure. The blends and composites show strongly improved stiffness compared to COPET above its glass transition temperature, e.g., from melt behaviour at 60 °C for COPET alone to almost 600 MPa for the 50/50 blend and 500 MPa for the 20% flax composite of the 80/20 COPET/PLLA blend. The flax fibres increase the crystallisation rate of PLLA in blends with dispersed PLLA morphology. The evidence of cavitation on the fracture surfaces of blends shows that despite the immiscibility of the components, the interfacial adhesion between the phases is excellent. This is attributed to the presence of aliphatic ester spacers in COPET. The tensile strength of the 80/20 blend is around 50 MPa with a Young's modulus of 2250 MPa. The corresponding 20% flax composite has similar tensile strength but a high Young's modulus equal to 6400 MPa, which results from the individual dispersion and strong adhesion of the flax fibres and leads close to the maximum possible reinforcement of the composite, as demonstrated by tensile tests and nano-indentation. The Ashby approach to eco-selection relying on the embodied energy (EE) further clarifies the eco-friendliness of the blends and their composites, which are even better positioned than PLLA in a stiffness versus EE chart.
Collapse
Affiliation(s)
- Martial Aimé Kuété
- Institute of Condensed Matter and Nanosciences-Bio & Soft Matter (IMCN/BSMA), UCLouvain, 1348 Louvain-la-Neuve, Belgium
- Institute of Mechanics, Materials and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium
- Macromolecular Chemistry Unit, Applied Chemistry Laboratory, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon
| | - Pascal Van Velthem
- Institute of Condensed Matter and Nanosciences-Bio & Soft Matter (IMCN/BSMA), UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Wael Ballout
- Institute of Condensed Matter and Nanosciences-Bio & Soft Matter (IMCN/BSMA), UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Nathan Klavzer
- Institute of Mechanics, Materials and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Bernard Nysten
- Institute of Condensed Matter and Nanosciences-Bio & Soft Matter (IMCN/BSMA), UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Maurice Kor Ndikontar
- Macromolecular Chemistry Unit, Applied Chemistry Laboratory, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon
| | - Thomas Pardoen
- Institute of Mechanics, Materials and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Christian Bailly
- Institute of Condensed Matter and Nanosciences-Bio & Soft Matter (IMCN/BSMA), UCLouvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
10
|
Zadehnazari A. Metal oxide/polymer nanocomposites: A review on recent advances in fabrication and applications. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2129387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Amin Zadehnazari
- Department of Science, Petroleum University of Technology, Ahwaz, Iran
| |
Collapse
|
11
|
Fryń P, Lalik S, Bogdanowicz KA, Górska N, Iwan A, Marzec M. Degradation of hybrid material l,d-PLA : 5CB : SWCN under the influence of neutral, acidic, and alkaline environments. RSC Adv 2023; 13:3792-3806. [PMID: 36756553 PMCID: PMC9890945 DOI: 10.1039/d2ra05350k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
The aim of the study was to investigate the influence of the environment's pH on the degradation of the layers of the ternary composite l,d-PLA : 5CB : SWCN (10 : 1 : 0.5, w/w/w), where l,d-PLA (poly(lactic acid)) is a biodegradable polymer, 5CB is a well-known liquid crystal (4'-pentyl-4-biphenylcarbonitrile), and SWCN are single-walled carbon nanotubes. For this purpose, the samples were stored in air, distilled water, and solutions of 0.1 M NaOH and 0.1 M HCl, for up to 62 days. Using differential scanning calorimetry, atomic force microscopy, and infra-red spectroscopy methods it was observed that for both neat l,d-PLA and composite layers there was a poor degradation process after the storage under standard air conditions, distilled water, and 0.1 M HCl solution, while the erosion of the surface layer kept in 0.1 M NaOH solution was revealed just after 6 days. The longer storage in 0.1 M NaOH solution resulted in complete degradation of the l,d-PLA polymer layer, while the composite layer survived for up to 62 days. The solubilization of the polymeric l,d-PLA matrix in the composite after 62 days was so severe that it resulted in the vanishing of thermal effects on the DSC curve except for one that was probably connected with the glass transition of the residual quantity of the polymer that remained in the layer or the isotropisation of 5CB. As a result, we have shown that admixtures of 5CB and SWCN accelerate the degradation of l,d-PLA in the composite layer due to the hydrophilic/hydrophobic interface in the layer and act as plasticizers. The mechanism of the degradation process is also discussed.
Collapse
Affiliation(s)
- Patryk Fryń
- Institute of Physics, Jagiellonian University Łojasiewicza 11 30-348 Kraków Poland
| | - Sebastian Lalik
- Institute of Physics, Jagiellonian University Łojasiewicza 11 30-348 Kraków Poland
| | | | - Natalia Górska
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Agnieszka Iwan
- Faculty of Security and Safety Research, General Tadeusz Kościuszko Military University of Land Forces Czajkowskiego 109 51-147 Wrocław Poland
| | - Monika Marzec
- Institute of Physics, Jagiellonian University Łojasiewicza 11 30-348 Kraków Poland
| |
Collapse
|
12
|
John A, Črešnar KP, Bikiaris DN, Zemljič LF. Colloidal Solutions as Advanced Coatings for Active Packaging Development: Focus on PLA Systems. Polymers (Basel) 2023; 15:273. [PMID: 36679154 PMCID: PMC9865051 DOI: 10.3390/polym15020273] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Due to rising consumer demand the food packaging industry is turning increasingly to packaging materials that offer active functions. This is achieved by incorporating active compounds into the basic packaging materials. However, it is currently believed that adding active compounds as a coating over the base packaging material is more beneficial than adding them in bulk or in pouches, as this helps to maintain the physicochemical properties of the base material along with higher efficiency at the interface with the food. Colloidal systems have the potential to be used as active coatings, while the application of coatings in the form of colloidal dispersions allows for prolonged and controlled release of the active ingredient and uniform distribution, due to their colloidal/nano size and large surface area ratio. The objective of this review is to analyse some of the different colloidal solutions previously used in the literature as coatings for active food packaging and their advantages. The focus is on natural bio-based substances and packaging materials such as PLA, due to consumer awareness and environmental and regulatory issues. The antiviral concept through the surface is also discussed briefly, as it is an important strategy in the context of the current pandemic crisis and cross-infection prevention.
Collapse
Affiliation(s)
- Athira John
- Laboratory for Characterization and Processing of Polymer Materials, Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia
| | - Klementina Pušnik Črešnar
- Laboratory for Characterization and Processing of Polymer Materials, Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Lidija Fras Zemljič
- Laboratory for Characterization and Processing of Polymer Materials, Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
13
|
Makri SP, Xanthopoulou E, Klonos PA, Grigoropoulos A, Kyritsis A, Tsachouridis K, Anastasiou A, Deligkiozi I, Nikolaidis N, Bikiaris DN. Effect of Micro- and Nano-Lignin on the Thermal, Mechanical, and Antioxidant Properties of Biobased PLA-Lignin Composite Films. Polymers (Basel) 2022; 14:polym14235274. [PMID: 36501671 PMCID: PMC9737150 DOI: 10.3390/polym14235274] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022] Open
Abstract
Bio-based poly(lactic acid) (PLA) composite films were produced using unmodified soda micro- or nano-lignin as a green filler at four different contents, between 0.5 wt% and 5 wt%. The PLA-lignin composite polymers were synthesized by solvent casting to prepare a masterbatch, followed by melt mixing. The composites were then converted into films, to evaluate the effect of lignin content and size on their physicochemical and mechanical properties. Differential scanning calorimetry (DSC), supported by polarized light microscopy (PLM), infrared spectroscopy (FTIR-ATR), X-ray diffraction (XRD), and transmission electron microscopy (TEM) were employed to investigate the PLA crystallization and the interactions with Lignin (L) and Nanolignin (NL). The presence of both fillers (L and NL) had a negligible effect on the glass transition temperature (chain diffusion). However, it resulted in suppression of the corresponding change in heat capacity. This was indicative of a partial immobilization of the PLA chains on the lignin entities, due to interfacial interactions, which was slightly stronger in the case of NL. Lignin was also found to facilitate crystallization, in terms of nucleation; whereas, this was not clear in the crystalline fraction. The addition of L and NL led to systematically larger crystallites compared with neat PLA, which, combined with the higher melting temperature, provided indications of a denser crystal structure in the composites. The mechanical, optical, antioxidant, and surface properties of the composite films were also investigated. The tensile strength and Young's modulus were improved by the addition of L and especially NL. The UV-blocking and antioxidant properties of the composite films were also enhanced, especially at higher filler contents. Importantly, the PLA-NL composite films constantly outperformed their PLA-L counterparts, due to the finer dispersion of NL in the PLA matrix, as verified by the TEM micrographs. These results suggest that bio-based and biodegradable PLA films filled with L, and particularly NL, can be employed as competitive and green alternatives in the food packaging industry.
Collapse
Affiliation(s)
- Sofia P. Makri
- Creative Nano PC, 43 Tatoiou, Metamorfosi, 14451 Athens, Greece
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleftheria Xanthopoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Panagiotis A. Klonos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece
| | | | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece
| | - Konstantinos Tsachouridis
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M1 3AL, UK
| | - Antonios Anastasiou
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M1 3AL, UK
| | | | - Nikolaos Nikolaidis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (N.N.); (D.N.B.)
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (N.N.); (D.N.B.)
| |
Collapse
|
14
|
Graphene Nanoplatelets' Effect on the Crystallization, Glass Transition, and Nanomechanical Behavior of Poly(ethylene 2,5-furandicarboxylate) Nanocomposites. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196653. [PMID: 36235190 PMCID: PMC9571983 DOI: 10.3390/molecules27196653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
Poly(ethylene 2,5-furandicarboxylate) (PEF) nanocomposites reinforced with various content of graphene nanoplatelets (GNPs) were synthesized in situ in this work. PEF is a widely known biobased polyester with promising physical properties and is considered as the sustainable counterpart of PET. Despite its exceptional gas barrier and mechanical properties, PEF presents with a low crystallization rate. In this context, a small number of GNPs were incorporated into the material to facilitate the nucleation and overall crystallization of the matrix. Kinetic analysis of both the cold and melt crystallization processes of the prepared materials was achieved by means of differential scanning calorimetry (DSC). The prepared materials’ isothermal crystallization from the glass and melt states was studied using the Avrami and Hoffman–Lauritzen theories. The Dobreva method was applied for the non-isothermal DSC measurements to calculate the nucleation efficiency of the GNPs on the PEF matrix. Furthermore, Vyazovkin’s isoconversional method was employed to estimate the effective activation energy values of the amorphous materials’ glass transition. Finally, the nanomechanical properties of the amorphous and semicrystalline PEF materials were evaluated via nanoindentation measurements. It is shown that the GNPs facilitate the crystallization process through heterogeneous nucleation and, at the same time, improve the nanomechanical behavior of PEF, with the semicrystalline samples presenting with the larger enhancements.
Collapse
|
15
|
Ainali NM, Kalaronis D, Evgenidou E, Kyzas GZ, Bobori DC, Kaloyianni M, Yang X, Bikiaris DN, Lambropoulou DA. Do poly(lactic acid) microplastics instigate a threat? A perception for their dynamic towards environmental pollution and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155014. [PMID: 35381252 DOI: 10.1016/j.scitotenv.2022.155014] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Fears concerning microplastics (MPs) environmental fate and persistence are progressively expanding on a global basis, with the emphasis given to manufacturing bioplastics for substituting petro-derived plastics extensively growing. Among them, poly(lactic acid) (PLA) holds a pioneering role towards the replacement of conventional polymeric materials, owing to its multifunctional properties, enclosing superior mechanical properties, low cost, renewability, great biocompatibility, transparency, and thermoplasticity launching many fields of application. Due to the wide applicability of PLA in several sectors of everyday life, its waste to be released into the environment is expected to follow a growing tendency during the upcoming years. Even though PLA is a biodegradable polyester, it actually degrades under specific composting environments, including a rich oxygen environment with high temperatures (58-80 °C), high humidity (>60% moisture) as well as the presence of micro-organisms (thermophilic bacteria). Additionally, in various studies it has been implied that PLA displays slower degradation performance when found in blends with other conventional polymers, underlining the unspecified effects on PLA degradation profile, keeping thus the information about PLA degradation from a blur standpoint. Therefore, a deepened understanding of the fate and dynamic effects of PLA MPs is of primary importance. Nevertheless, the current examination of the effects of PLA MPs in terms of sorption capacities and toxicity is so far limited and broadly unexplored since the current scientific emphasis has been merely centered on the conventional MPs' behavior. In this light, the present review provides an inclusive overview of the ongoing research of poly(lactic acid) in the framework of microplastics' pollution, while the future trends and missing points in this context are highlighted.
Collapse
Affiliation(s)
- Nina Maria Ainali
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Dimitrios Kalaronis
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Eleni Evgenidou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, GR-570 01 Thessaloniki, Greece
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, GR-654 04 Kavala, Greece
| | - Dimitra C Bobori
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Martha Kaloyianni
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, GR-570 01 Thessaloniki, Greece.
| |
Collapse
|
16
|
Leonés A, Peponi L, Fiori S, Lieblich M. Effect of the Addition of MgO Nanoparticles on the Thermally-Activated Shape Memory Behavior of Plasticized PLA Electrospun Fibers. Polymers (Basel) 2022; 14:polym14132657. [PMID: 35808702 PMCID: PMC9268919 DOI: 10.3390/polym14132657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
In this work, the thermally-activated shape memory behavior of poly(lactic acid)-based electrospun fibers (PLA-based efibers) reinforced with different amounts of magnesium oxide (MgO) nanoparticles (NPs) was studied at different temperatures. In particular, MgO NPs were added at different concentrations, such as 0.1, 0.5, 1 and 3 wt%, with respect to the PLA matrix. The glass-transition temperature of PLA-based efibers was modulated by adding a 20 wt% of oligomer lactic acid as plasticizer. Once the plasticized PLA-based efibers were obtained and basically characterized in term of morphology as well as thermal and mechanical properties, thermo-mechanical cycles were carried out at 60 °C and 45 °C in order to study their thermally-activated shape memory response, demonstrating that their crystalline nature strongly affects their shape memory behavior. Importantly, we found that the plastificant effect in the mechanical response of the reinforced plasticized PLA efibers is balanced with the reinforcing effect of the MgO NPs, obtaining the same mechanical response of neat PLA fibers. Finally, both the strain recovery and strain fixity ratios of each of the plasticized PLA-based efibers were calculated, obtaining excellent thermally-activated shape memory response at 45 °C, demonstrating that 1 wt% MgO nanoparticles was the best concentration for the plasticized system.
Collapse
Affiliation(s)
- Adrián Leonés
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), 28006 Madrid, Spain
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), 28006 Madrid, Spain
- Correspondence:
| | - Stefano Fiori
- Condensia Química SA, R&D Department, C/La Cierva 8, 08184 Barcelona, Spain;
| | - Marcela Lieblich
- Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), 28040 Madrid, Spain;
| |
Collapse
|
17
|
Demchenko V, Mamunya Y, Kobylinskyi S, Riabov S, Naumenko K, Zahorodnia S, Povnitsa O, Rybalchenko N, Iurzhenko M, Adamus G, Kowalczuk M. Structure-Morphology-Antimicrobial and Antiviral Activity Relationship in Silver-Containing Nanocomposites Based on Polylactide. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123769. [PMID: 35744897 PMCID: PMC9227702 DOI: 10.3390/molecules27123769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022]
Abstract
Green synthesis of silver-containing nanocomposites based on polylactide (PLA) was carried out in two ways. With the use of green tea extract, Ag+ ions were reduced to silver nanoparticles with their subsequent introduction into the PLA (mechanical method) and Ag+ ions were reduced in the polymer matrix of PLA-AgPalmitate (PLA-AgPalm) (in situ method). Structure, morphology and thermophysical properties of nanocomposites PLA-Ag were studied by FTIR spectroscopy, wide-angle X-ray scattering (WAXS), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) methods. The antimicrobial, antiviral, and cytotoxic properties were studied as well. It was found that the mechanical method provides the average size of silver nanoparticles in the PLA of about 16 nm, while in the formation of samples by the in situ method their average size was 3.7 nm. The strong influence of smaller silver nanoparticles (3.7 nm) on the properties of nanocomposites was revealed, as with increasing nanosilver concentration the heat resistance and glass transition temperature of the samples decreases, while the influence of larger particles (16 nm) on these parameters was not detected. It was shown that silver-containing nanocomposites formed in situ demonstrate antimicrobial activity against gram-positive bacterium S. aureus, gram-negative bacteria E. coli, P. aeruginosa, and the fungal pathogen of C. albicans, and the activity of the samples increases with increasing nanoparticle concentration. Silver-containing nanocomposites formed by the mechanical method have not shown antimicrobial activity. The relative antiviral activity of nanocomposites obtained by two methods against influenza A virus, and adenovirus serotype 2 was also revealed. The obtained nanocomposites were not-cytotoxic, and they did not inhibit the viability of MDCK or Hep-2 cell cultures.
Collapse
Affiliation(s)
- Valeriy Demchenko
- Department of Polymer Modification, Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine, 48. Kharkivske Shose, 02160 Kyiv, Ukraine; (Y.M.); (S.K.); (S.R.); (M.I.)
- Department of Plastics Welding, Evgeny Oskarovich Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11. Kazymyr Malevych Str., 03680 Kyiv, Ukraine
- International Polish-Ukrainian Research Laboratory Formation and Characterization of Advanced Polymers and Polymer Composites (ADPOLCOM), Department of Plastics Welding, Evgeny Oskarovich Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11. Kazymyr Malevych Str., 03680 Kyiv, Ukraine;
- Correspondence: (V.D.); (M.K.)
| | - Yevgen Mamunya
- Department of Polymer Modification, Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine, 48. Kharkivske Shose, 02160 Kyiv, Ukraine; (Y.M.); (S.K.); (S.R.); (M.I.)
- Department of Plastics Welding, Evgeny Oskarovich Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11. Kazymyr Malevych Str., 03680 Kyiv, Ukraine
- International Polish-Ukrainian Research Laboratory Formation and Characterization of Advanced Polymers and Polymer Composites (ADPOLCOM), Department of Plastics Welding, Evgeny Oskarovich Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11. Kazymyr Malevych Str., 03680 Kyiv, Ukraine;
| | - Serhii Kobylinskyi
- Department of Polymer Modification, Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine, 48. Kharkivske Shose, 02160 Kyiv, Ukraine; (Y.M.); (S.K.); (S.R.); (M.I.)
| | - Sergii Riabov
- Department of Polymer Modification, Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine, 48. Kharkivske Shose, 02160 Kyiv, Ukraine; (Y.M.); (S.K.); (S.R.); (M.I.)
| | - Krystyna Naumenko
- Danylo Kyrylovych Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 154. Academic Zabolotny Str., 03680 Kyiv, Ukraine; (K.N.); (S.Z.); (O.P.); (N.R.)
| | - Svitlana Zahorodnia
- Danylo Kyrylovych Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 154. Academic Zabolotny Str., 03680 Kyiv, Ukraine; (K.N.); (S.Z.); (O.P.); (N.R.)
| | - Olga Povnitsa
- Danylo Kyrylovych Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 154. Academic Zabolotny Str., 03680 Kyiv, Ukraine; (K.N.); (S.Z.); (O.P.); (N.R.)
| | - Nataliya Rybalchenko
- Danylo Kyrylovych Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 154. Academic Zabolotny Str., 03680 Kyiv, Ukraine; (K.N.); (S.Z.); (O.P.); (N.R.)
| | - Maksym Iurzhenko
- Department of Polymer Modification, Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine, 48. Kharkivske Shose, 02160 Kyiv, Ukraine; (Y.M.); (S.K.); (S.R.); (M.I.)
- Department of Plastics Welding, Evgeny Oskarovich Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11. Kazymyr Malevych Str., 03680 Kyiv, Ukraine
- International Polish-Ukrainian Research Laboratory Formation and Characterization of Advanced Polymers and Polymer Composites (ADPOLCOM), Department of Plastics Welding, Evgeny Oskarovich Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11. Kazymyr Malevych Str., 03680 Kyiv, Ukraine;
| | - Grazyna Adamus
- International Polish-Ukrainian Research Laboratory Formation and Characterization of Advanced Polymers and Polymer Composites (ADPOLCOM), Department of Plastics Welding, Evgeny Oskarovich Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11. Kazymyr Malevych Str., 03680 Kyiv, Ukraine;
- Laboratory of Biodegradable Materials, Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. C. Skłodowska St., 41-800 Zabrze, Poland
| | - Marek Kowalczuk
- International Polish-Ukrainian Research Laboratory Formation and Characterization of Advanced Polymers and Polymer Composites (ADPOLCOM), Department of Plastics Welding, Evgeny Oskarovich Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11. Kazymyr Malevych Str., 03680 Kyiv, Ukraine;
- Laboratory of Biodegradable Materials, Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. C. Skłodowska St., 41-800 Zabrze, Poland
- Correspondence: (V.D.); (M.K.)
| |
Collapse
|
18
|
Abstract
With continuous development of biodegradable polymers, new areas of applications are intensively researched. Modifications of these polymers are commonly conducted by an extrusion compounding process. While additives are changing desired properties, biodegradability of such composites can be deteriorated. The aim of the work is to investigate a novel, functional, organic additive, riboflavin (vitamin B-2), in terms of thermal stability, extrusion processability, wettability, surface energy, especially biodegradability, and when compounded with PLA. Additionally, a comparison of unmodified PLA resin, as well as PLA-modified with inorganic talc—which is known for its nucleation promotion in a variety of polymers—to PLA with riboflavin, was presented. Research reveals the outstanding thermal stability of riboflavin and the sufficient extrusion process properties with no significant changes of wettability and, surprisingly, a significant degradation rate as compared to pure PLA or and PLA with talc. The obtained results do not exclude further modifications of PLA depending on the target application, e.g., antimicrobial agents, flame retardants, etc.
Collapse
|
19
|
Terzopoulou Z, Zamboulis A, Bikiaris DN, Valera MA, Mangas A. Synthesis, Properties, and Enzymatic Hydrolysis of Poly(lactic acid)- co-Poly(propylene adipate) Block Copolymers Prepared by Reactive Extrusion. Polymers (Basel) 2021; 13:4121. [PMID: 34883625 PMCID: PMC8659515 DOI: 10.3390/polym13234121] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 01/25/2023] Open
Abstract
Poly(lactic acid) (PLA) is a biobased polyester with ever-growing applications in the fields of packaging and medicine. Despite its popularity, it suffers from inherent brittleness, a very slow degradation rate and a high production cost. To tune the properties of PLA, block copolymers with poly(propylene adipate) (PPAd) prepolymer were prepared by polymerizing L-lactide and PPAd oligomers via reactive extrusion (REX) in a torque rheometer. The effect of reaction temperature and composition on the molecular weight, chemical structure, and physicochemical properties of the copolymers was studied. The introduction of PPAd successfully increased the elongation and the biodegradation rate of PLA. REX is an efficient and economical alternative method for the fast and continuous synthesis of PLA-based copolymers with tunable properties.
Collapse
Affiliation(s)
- Zoi Terzopoulou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.Z.); (D.N.B.)
| | - Alexandra Zamboulis
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.Z.); (D.N.B.)
| | - Dimitrios N. Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (A.Z.); (D.N.B.)
| | - Miguel Angel Valera
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain; (M.A.V.); (A.M.)
| | - Ana Mangas
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain; (M.A.V.); (A.M.)
| |
Collapse
|
20
|
Physical Properties and Non-Isothermal Crystallisation Kinetics of Primary Mechanically Recycled Poly(l-lactic acid) and Poly(3-hydroxybutyrate- co-3-hydroxyvalerate). Polymers (Basel) 2021; 13:polym13193396. [PMID: 34641213 PMCID: PMC8512861 DOI: 10.3390/polym13193396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 01/20/2023] Open
Abstract
The physical properties and non-isothermal melt- and cold-crystallisation kinetics of poly (l-lactic acid) (PLLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biobased polymers reprocessed by mechanical milling of moulded specimens and followed injection moulding with up to seven recycling cycles are investigated. Non-isothermal crystallisation kinetics are evaluated by the half-time of crystallisation and a procedure based on the mathematical treatment of DSC cumulative crystallisation curves at their inflection point (Kratochvil-Kelnar method). Thermomechanical recycling of PLLA raised structural changes that resulted in an increase in melt flow properties by up to six times, a decrease in the thermal stability by up to 80 °C, a reduction in the melt half-time crystallisation by up to about 40%, an increase in the melt crystallisation start temperature, and an increase in the maximum melt crystallisation rate (up to 2.7 times). Furthermore, reprocessing after the first recycling cycle caused the elimination of cold crystallisation when cooling at a slow rate. These structural changes also lowered the cold crystallisation temperature without impacting the maximum cold crystallisation rate. The structural changes of reprocessed PHBV had no significant effect on the non-isothermal crystallisation kinetics of this material. Additionally, the thermomechanical behaviour of reprocessed PHBV indicates that the technological waste of this biopolymer is suitable for recycling as a reusable additive to the virgin polymer matrix. In the case of reprocessed PLLA, on the other hand, a significant decrease in tensile and flexural strength (by 22% and 46%, respectively) was detected, which reflected changes within the biobased polymer structure. Apart from the elastic modulus, all the other thermomechanical properties of PLLA dropped down with an increasing level of recycling.
Collapse
|
21
|
Ainali NM, Tarani E, Zamboulis A, Črešnar KP, Zemljič LF, Chrissafis K, Lambropoulou DA, Bikiaris DN. Thermal Stability and Decomposition Mechanism of PLA Nanocomposites with Kraft Lignin and Tannin. Polymers (Basel) 2021; 13:polym13162818. [PMID: 34451355 PMCID: PMC8398207 DOI: 10.3390/polym13162818] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/22/2022] Open
Abstract
Packaging applications cover approximately 40% of the total plastics production, whereas food packaging possesses a high proportion within this context. Due to several environmental concerns, petroleum-based polymers have been shifted to their biobased counterparts. Poly(lactic acid) (PLA) has been proved the most dynamic biobased candidate as a substitute of the conventional polymers. Despite its numerous merits, PLA exhibits some limitations, and thus reinforcing agents are commonly investigated as fillers to ameliorate several characteristics. In the present study, two series of PLA-based nanocomposites filled with biobased kraft-lignin (KL) and tannin (T) in different contents were prepared. A melt–extrusion method was pursued for nanocomposites preparation. The thermal stability of the prepared nanocomposites was examined by Thermogravimetric Analysis, while thermal degradation kinetics was applied to deepen this process. Pyrolysis–Gas Chromatography/Mass Spectrometry was employed to provide more details of the degradation process of PLA filled with the two polyphenolic fillers. It was found that the PLA/lignin nanocomposites show better thermostability than neat PLA, while tannin filler has a small catalytic effect that can reduce the thermal stability of PLA. The calculated Eα value of PLA-T nanocomposite was lower than that of PLA-KL resulting in a substantially higher decomposition rate constant, which accelerate the thermal degradation.
Collapse
Affiliation(s)
- Nina Maria Ainali
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (N.M.A.); (A.Z.)
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece;
| | - Evangelia Tarani
- Department of Physics, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (E.T.); (K.C.)
| | - Alexandra Zamboulis
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (N.M.A.); (A.Z.)
| | - Klementina Pušnik Črešnar
- Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia; (K.P.Č.); (L.F.Z.)
| | - Lidija Fras Zemljič
- Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia; (K.P.Č.); (L.F.Z.)
| | - Konstantinos Chrissafis
- Department of Physics, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (E.T.); (K.C.)
| | - Dimitra A. Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece;
| | - Dimitrios N. Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (N.M.A.); (A.Z.)
- Correspondence:
| |
Collapse
|
22
|
Incorporation of Metal-Based Nanoadditives into the PLA Matrix: Effect of Surface Properties on Antibacterial Activity and Mechanical Performance of PLA Nanoadditive Films. Molecules 2021; 26:molecules26144161. [PMID: 34299434 PMCID: PMC8305787 DOI: 10.3390/molecules26144161] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/04/2022] Open
Abstract
In this work, the modification process of poly(lactic acid) (PLA) with metal-based nanoparticle (NPs) additives (Ag, ZnO, TiO2) at different loading (0.5, 1.0, and 2.5 wt%) and by melt-mix extrusion method followed by film formation as one of the advantageous techniques for industrial application have been investigated. PLA nanoparticle composite films (PLA-NPs) of PLA-Ag, PLA-ZnO, PLA-TiO2 were fabricated, allowing convenient dispersion of NPs within the PLA matrix to further pursue the challenge of investigating the surface properties of PLA-NPs reinforced plastics (as films) for the final functional properties, such as antimicrobial activity and surface mechanical properties. The main objective was to clarify how the addition of NPs to the PLA during the melt extrusion process affects the chemistry, morphology, and wettability of the surface and its further influence on the antibacterial efficiency and mechanical properties of the PLA-NPs. Therefore, the effect of Ag, ZnO, and TiO2 NPs incorporation on the morphology (SEM), elemental mapping analysis (SEM-EDX), roughness, surface free energy (SFE) of PLA-NPs measured by goniometry and calculated by OWRK (Owens, Wendt, Rabel, and Kaelble) model was evaluated and correlated with the final functional properties such as antimicrobial activity and surface mechanical properties. The developed PLA-metal-based nanocomposites, with improved mechanical and antimicrobial surface properties, could be used as sustainable and biodegradable materials, offering desirable multifunctionalities not only for food packaging but also for cosmetics and hygiene products, as well as for broader plastic products where antimicrobial activity is desirable.
Collapse
|