1
|
My TTA, Dat ND, Hung NQ, Thuy TTT, Hang PTT, Luu ND. Microplastic abundance and characteristics in bivalves from tam Giang-Cau Hai and O Loan Lagoons, coastal regions in Central Vietnam: Implication on human health. MARINE POLLUTION BULLETIN 2025; 216:117937. [PMID: 40209440 DOI: 10.1016/j.marpolbul.2025.117937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/24/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
Four common bivalves, including white clam (Meretrix lusoria), lined clam (Paratapes undulatus), oysters (Crassostrea gigas), and green mussels (Perna viridi), which are commonly consumed in Central Vietnam, were collected from Tam Giang-Cau Hai and O Loan Coastal Lagoons. The samples were investigated for the presence of microplastics (MPs) in their tissues. The average number of MPs determined in white clams, lined clams, oysters, and green mussels in Central Vietnam varies from 0.3 to 0.9 per g-ww and from 0.9 to 5.6 per individual. Fibers, fragments, and pellets were found with various proportions concerning. Fibers were the most common shape, making up 36-74 % of the total microplastics, followed by fragments accounting for 16-47 %. The most prevalent colors were white-transparent and black-grey, comprising 49-81 % of the MPs. Regarding the microplastics found in the bivalve tissues, 78-80 % were <500 μm. Given chemical analysis, rayon accounted for 38 % of the microplastics discovered in bivalve tissues; closely PET (13 %), PA (10 %), and PP (10 %) were followed. This study offers valuable insights into the microplastic contamination concerned by bivalve consumption in Thua Thien Hue and Phu Yen, Central Vietnam; the results estimate the annual intakes are between 5000 and 10,000 particles per person. Unprecedentedly addressed in the literature, these findings contribute to a better understanding of microplastic pollution in Vietnam. The results altogether provide solid shreds of evidence for the MP contamination in Vietnam-based seafood, thus encouraging further attempts for plausible socio-economical regulations and raising public awareness on the issue.
Collapse
Affiliation(s)
- Tran Thi Ai My
- Department of Chemistry, University of Sciences, Hue University, Hue 530000, Viet Nam.
| | - Nguyen Duy Dat
- Faculty of Chemical & Food Technology, Ho Chi Minh City University of Technology and Education, Thu Duc, Ho Chi Minh 700000, Viet Nam
| | - Nguyen Quoc Hung
- CASE Center of Analytical Services and Experimentation HCMc, Ho Chi Minh 700000, Viet Nam
| | - Ton Thi Thanh Thuy
- Department of Chemistry, University of Sciences, Hue University, Hue 530000, Viet Nam
| | - Phan Thi Thuy Hang
- Department of Biology, University of Sciences, Hue University, Hue 530000, Viet Nam
| | - Nguyen Duy Luu
- Department of Chemistry, University of Sciences, Hue University, Hue 530000, Viet Nam; Department of Pharmaceutical, Da Nang University of Medical Technology and Pharmacy, Da Nang 550000, Viet Nam
| |
Collapse
|
2
|
Jurgelėnė Ž, Morkvėnas A, Dzingelevičienė R, Dzingelevičius N, Baranauskis K, Montvydienė D, Kowalkowski T, Raugelė S, Buszewski B, Karabanovas V. Effects of co-treatment with nano/microplastics and hydroxychloroquine on early development stages of Salmo trutta. MARINE ENVIRONMENTAL RESEARCH 2025; 208:107096. [PMID: 40168853 DOI: 10.1016/j.marenvres.2025.107096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/05/2025] [Accepted: 03/20/2025] [Indexed: 04/03/2025]
Abstract
As a potential remedy for COVID-19 treatment, hydroxychloroquine (HCQ) attracted considerable scholarly attention early in the pandemic. However, the ecological consequences of HCQ are not well understood, especially regarding their interactions with plastic waste such as nano-and microplastics (PS). This study aimed to investigate colloidal stability, bioaccumulation, and acute toxicity of carboxylate-modified polystyrene-based PS and HCQ, both alone and in combination, to Salmo trutta embryos and larvae. Spectroscopic properties of PS were found to change over time and to be affected by the presence of HCQ in the incubation water of organisms. Confocal microscopy showed that PS and HCQ, both alone and in combination, caused damage to the chorion of the exposed fish embryos. Particles of PS were detected in external tissues of larvae. The impact of the tested substances on fish was found to be dependent on the PS particle size, exposure duration, and the life stage of fish.
Collapse
Affiliation(s)
- Živilė Jurgelėnė
- Laboratory of Ecotoxicology, State Scientific Research Institute Nature Research Centre, Akademijos Street 2, 08412, Vilnius, Lithuania.
| | - Augustas Morkvėnas
- Biomedical Physics Laboratory, National Cancer Center, Baublio 3b, 08406, Vilnius, Lithuania; Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio Ave. 11, 10223, Vilnius, Lithuania
| | - Reda Dzingelevičienė
- Marine Research Institute of Klaipeda University, Universiteto Ave. 17, 92295, Klaipeda, Lithuania; Faculty of Health Sciences, Klaipeda University, H. Manto Street 84, 92294, Klaipeda, Lithuania
| | - Nerijus Dzingelevičius
- Marine Research Institute of Klaipeda University, Universiteto Ave. 17, 92295, Klaipeda, Lithuania
| | - Kęstutis Baranauskis
- Marine Research Institute of Klaipeda University, Universiteto Ave. 17, 92295, Klaipeda, Lithuania
| | - Danguolė Montvydienė
- Laboratory of Ecotoxicology, State Scientific Research Institute Nature Research Centre, Akademijos Street 2, 08412, Vilnius, Lithuania
| | - Tomasz Kowalkowski
- Marine Research Institute of Klaipeda University, Universiteto Ave. 17, 92295, Klaipeda, Lithuania; Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin Street 7, 87100, Torun, Poland
| | - Saulius Raugelė
- Faculty of Health Sciences, Klaipeda University, H. Manto Street 84, 92294, Klaipeda, Lithuania; Klaipėda University Hospital, Liepojos str. 41, 92288, Klaipeda, Lithuania
| | - Boguslaw Buszewski
- Faculty of Health Sciences, Klaipeda University, H. Manto Street 84, 92294, Klaipeda, Lithuania; Prof. Jan Czochralski Kuyavian-Pomeranium Scientific and Technology Center, 15 Parkowa Street 1, 87134 Przysiek near Toruń, Poland; Interdisciplinary Centre for Ecotechnology, Poznań University of Technology, Berdychowo str. 4, 60-965 Poznań, Poland
| | - Vitalijus Karabanovas
- Biomedical Physics Laboratory, National Cancer Center, Baublio 3b, 08406, Vilnius, Lithuania; Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio Ave. 11, 10223, Vilnius, Lithuania.
| |
Collapse
|
3
|
Habumugisha T, Zhang Z, Yan C, Ren HY, Rehman A, Uwamahoro S, Zhang X. Size-dependent dynamics and tissue-specific distribution of nano-plastics in Danio rerio: Accumulation and depuration. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136775. [PMID: 39642741 DOI: 10.1016/j.jhazmat.2024.136775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Nano-plastics (NPs), defined as particles smaller than 1 µm, have emerged as a significant environmental contaminant due to their potential ecological impacts. This study explores the size-dependent dynamics and tissue-specific distribution of polystyrene nano-plastics (PS-NPs) in Danio rerio exposed to PS-NPs at an environmentally relevant concentration of 1 μg/mL for 28 days, followed by a 17-day depuration period. PS-NPs of 20, 100, 200, and 500 nm were assessed in the intestine, liver, gills, muscle, and brain using transmission electron microscopy (TEM) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Smaller PS-NPs (20 nm) showed the highest accumulation in the intestine, followed by the liver, and gills, due to their greater surface area and cellular penetration. In contrast, larger PS-NPs (500 nm) exhibited lower accumulation and clearance rates, especially in the brain, suggesting restricted passage through biological barriers. The intestine consistently had the highest concentrations in both accumulation and depuration, while the brain maintained the lowest across all nanoparticle sizes. During depuration, smaller particles cleared more quickly, whereas larger particles persisted. This study highlights the tissue-specific distribution and retention patterns of PS-NPs in D. rerio, providing insights into nanoparticle behavior in aquatic organisms and the need for long-term size-specific environmental risk assessments.
Collapse
Affiliation(s)
- Théogène Habumugisha
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Zixing Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Changzhou Yan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Hong-Yun Ren
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Abdul Rehman
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Solange Uwamahoro
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, PR China
| | - Xian Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| |
Collapse
|
4
|
Panneerselvam D, Murugesan A, Raveendran SK, Kumar JS, Venkataraman P. Examining the hidden dangers: Understanding how microplastics affect pregnancy. Eur J Obstet Gynecol Reprod Biol 2025; 304:53-62. [PMID: 39580908 DOI: 10.1016/j.ejogrb.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Microplastics, a fast-growing environmental concern, play a crucial role in developing the major pollution crisis that affects nearly the entire surface of the planet. Microplastics are tiny particles, measuring less than 5 mm which are ubiquitous, in occurrence, and found in a wide array of products including plastic packaging, synthetic textiles, seafood, fruits, vegetables, salt, sugar, bottled water, and even personal care products. The presence of microplastics in our environment and the potential adverse health effects they may cause have made them a significant perturbation in recent years. Pregnancy is a potentially life-changing experience that entails several apprehensions and new responsibilities for women. For expectant mothers, it is imperative to be aware of the implications of microplastics during pregnancy. One threatened concern is the potential transfer of microplastics across the placenta, which could expose the developing fetus to these particles. Although research on the impact of microplastics on pregnancy is still in its early stages, preliminary findings indicate potential risks that expectant mothers should be aware of. The timing of exposure during pregnancy may play a significant role in the potential risks associated with these tiny particles. In this review, we will delve into the topic, exploring how microplastics enter the body and the potential mechanism by which they pose risks to pregnancy outcomes.
Collapse
Affiliation(s)
- Deboral Panneerselvam
- Department of Obstetrics and Gynaecology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Anuradha Murugesan
- Department of Obstetrics and Gynaecology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| | - Sajeetha Kumari Raveendran
- Department of Obstetrics and Gynaecology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Janardanan Subramonia Kumar
- Department of General Medicine, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - P Venkataraman
- Department of Medical Research, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
5
|
Shekhar C, Khosya R, Thakur K, Mahajan D, Kumar R, Kumar S, Sharma AK. A systematic review of pesticide exposure, associated risks, and long-term human health impacts. Toxicol Rep 2024; 13:101840. [PMID: 39717852 PMCID: PMC11664077 DOI: 10.1016/j.toxrep.2024.101840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Pesticides are widely used to control pests, but their widespread use raises concerns regarding potential health risks for humans. There are several routes through which pesticides can be ingested, inhaled, and absorbed, resulting in acute and long-term health consequences. This systematic review synthesizes the available evidence regarding the health risks and long-term effects of pesticide exposure, with a particular focus on epidemiological and toxicological studies. A systematic review was conducted by searching scientific databases i.e. Scopus, and Web of Science for peer-reviewed articles published between 2000 and 2024. Studies were selected based on their focus on pesticide exposure, health risks, and long-term effects. Meta-analysis was conducted where sufficient homogeneity of outcomes allowed. This review identified consistent associations between chronic pesticide exposure and non-communicable diseases, including cancer, neurological disorders, and endocrine disruptions. An increased incidence of respiratory issues and neurodegenerative diseases was often associated with occupational exposure to pesticides. People exposed for a prolonged or high intensity time period, particularly agricultural workers, were more likely to experience long-term health effects. There are a number of factors that influences the ability to draw definitive conclusions, including variations in pesticide types, exposure levels, and health outcomes. Chronic exposure to pesticides presents significant health risks, particularly for individuals in high-exposure environments like agriculture. While evidence indicates strong associations with several long-term health conditions, additional research is necessary to elucidate dose-response relationships and mechanisms of action. This review underscores the necessity for enhanced regulatory measures and improved safety protocols to mitigate pesticide-related health risks.
Collapse
Affiliation(s)
- Chander Shekhar
- Department of Animal Sciences, Central University of Himachal Pradesh Shahpur Campus, Kangra 176206, India
| | - Reetu Khosya
- Department of Animal Sciences, Central University of Himachal Pradesh Shahpur Campus, Kangra 176206, India
| | - Kushal Thakur
- Department of Animal Sciences, Central University of Himachal Pradesh Shahpur Campus, Kangra 176206, India
| | - Danish Mahajan
- Department of Animal Sciences, Central University of Himachal Pradesh Shahpur Campus, Kangra 176206, India
| | - Rakesh Kumar
- Department of Animal Sciences, Central University of Himachal Pradesh Shahpur Campus, Kangra 176206, India
| | - Sunil Kumar
- Department of Animal Sciences, Central University of Himachal Pradesh Shahpur Campus, Kangra 176206, India
| | - Amit Kumar Sharma
- Correspondence to: Department of Animal Sciences, Central University of Himachal Pradesh Shahpur Campus-176206, Kangra, India.
| |
Collapse
|
6
|
Qualhato G, Cirqueira Dias F, Rocha TL. Hazardous effects of plastic microfibres from facial masks to aquatic animal health: Insights from zebrafish model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175555. [PMID: 39168327 DOI: 10.1016/j.scitotenv.2024.175555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Facial masks are a source of plastic microfibres (PMFs) in the aquatic environment, an emerging risk factor for aquatic organisms. However, little is known concerning its impact during the early developmental stages of fish. Thus, the current study aimed to evaluate the potential interaction and developmental toxicity of PMFs derived from leachate of surgical masks (SC-Msk) and N-95 facial masks (N95-Msk) using a multi-biomarker approach in developing zebrafish (Danio rerio). PMFs from both facial masks were obtained and characterized by multiple techniques. Zebrafish embryos were exposed to environmentally relevant concentrations of PMFs from both facial masks (1000, 10,000, and 100,000 particle L-1), and the toxicity was analysed in terms of mortality, hatching rate, neurotoxicity, cardiotoxicity, morphological changes, reactive oxygen species (ROS) levels, cell viability, and behavioural impairments. The results showed that both facial masks can release PMFs, but the N95-Msk produced a higher concentration of PMFs than SC-Msk. Both PMFs can interact with zebrafish chorion and don't cause effects on embryo mortality and hatching; however, zebrafish embryos showed cardiotoxic effects, and larvae showed increased agitation, average speed, and distance travelled, indicating the behavioural impairments induced by PMFs derived from facial masks. Overall, results showed the risk of PMFs to the health of freshwater fish, indicating the need for greater attention to the disposal and ecotoxicological effects of facial masks on aquatic organisms.
Collapse
Affiliation(s)
- Gabriel Qualhato
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil; Department of Morphology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Felipe Cirqueira Dias
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
7
|
Camerano Spelta Rapini C, Di Berardino C, Peserico A, Capacchietti G, Barboni B. Can Mammalian Reproductive Health Withstand Massive Exposure to Polystyrene Micro- and Nanoplastic Derivatives? A Systematic Review. Int J Mol Sci 2024; 25:12166. [PMID: 39596233 PMCID: PMC11595230 DOI: 10.3390/ijms252212166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The widespread use of plastics has increased environmental pollution by micro- and nanoplastics (MNPs), especially polystyrene micro- and nanoplastics (PS-MNPs). These particles are persistent, bioaccumulative, and linked to endocrine-disrupting toxicity, posing risks to reproductive health. This review examines the effects of PS-MNPs on mammalian reproductive systems, focusing on oxidative stress, inflammation, and hormonal imbalances. A comprehensive search in the Web of Science Core Collection, following PRISMA 2020 guidelines, identified studies on the impact of PS-MNPs on mammalian fertility, including oogenesis, spermatogenesis, and folliculogenesis. An analysis of 194 publications revealed significant reproductive harm, such as reduced ovarian size, depleted follicular reserves, increased apoptosis in somatic cells, and disrupted estrous cycles in females, along with impaired sperm quality and hormonal imbalances in males. These effects were linked to endocrine disruption, oxidative stress, and inflammation, leading to cellular and molecular damage. Further research is urgently needed to understand PS-MNPs toxicity mechanisms, develop interventions, and assess long-term reproductive health impacts across generations, highlighting the need to address these challenges given the growing environmental exposure.
Collapse
Affiliation(s)
| | | | - Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.S.R.); (C.D.B.); (G.C.); (B.B.)
| | | | | |
Collapse
|
8
|
Zhang Y, Wang C, Jia R, Long H, Zhou J, Sun G, Wang Y, Zhang Z, Rong X, Jiang Y. Transfer from ciliate to zebrafish: Unveiling mechanisms and combined effects of microplastics and heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135645. [PMID: 39191009 DOI: 10.1016/j.jhazmat.2024.135645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
The impacts and toxicological mechanisms of microplastics (MPs) or heavy metals on aquatic ecosystems have been the subject of extensive research and initial understanding. However, the combined toxicity of co-pollutants on organisms and cumulative toxic effects along the food chain are still underexplored. In this study, the ciliate protozoan Paramecium caudatum and zebrafish Danio rerio were used to represent the microbial loop and the higher trophic level, respectively, to illustrate the progressive exposure of MPs and cadmium (Cd2+). The findings indicate that MPs (ca. 1 ×105 items/L) containing with Cd2+ (below 0.1 µg/L) could permeate the bodies of zebrafish through trophic levels after primary ingestion by ciliates. This could cause adverse effects on zebrafish, including alterations in bioindicators (total sugar, triglycerides, lactate, and glycogen) associated with metabolism, delayed hepatic development, disruption of intestinal microbiota, DNA damage, inflammatory responses, and abnormal cellular apoptosis. In addition, the potential risks associated with the transfer of composite pollutants through the microbial loop into traditional food chain were examined, offering novel insights on the evaluation of the ecological risks associated with MPs. As observed, understanding the bioaccumulation and toxic effects of combined pollutants in zebrafish holds crucial implications for food safety and human health.
Collapse
Affiliation(s)
- Yan Zhang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Caixia Wang
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ruiqi Jia
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Hongan Long
- MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Jianfeng Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Gaojingwen Sun
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - YunLong Wang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Zhaoji Zhang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiaozhi Rong
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Yong Jiang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China; MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
9
|
Cho Y, Seo EU, Hwang KS, Kim H, Choi J, Kim HN. Evaluation of size-dependent uptake, transport and cytotoxicity of polystyrene microplastic in a blood-brain barrier (BBB) model. NANO CONVERGENCE 2024; 11:40. [PMID: 39406944 PMCID: PMC11480280 DOI: 10.1186/s40580-024-00448-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Microplastics, particularly those in the micrometer scale, have been shown to enter the human body through ingestion, inhalation, and dermal contact. Recent research indicates that microplastics can potentially impact the central nervous system (CNS) by crossing the blood-brain barrier (BBB). However, the exact mechanisms of their transport, uptake, and subsequent toxicity at BBB remain unclear. In this study, we evaluated the size-dependent uptake and cytotoxicity of polystyrene microparticles using an engineered BBB model. Our findings demonstrate that 0.2 μm polystyrene microparticles exhibit significantly higher uptake and transendothelial transport compared to 1.0 μm polystyrene microparticles, leading to increased permeability and cellular damage. After 24 h of exposure, permeability increased by 15.6-fold for the 0.2 μm particles and 2-fold for the 1.0 μm particles compared to the control. After 72 h of exposure, permeability further increased by 27.3-fold for the 0.2 μm particles and a 4.5-fold for the 1.0 μm particles compared to the control. Notably, microplastics administration following TNF-α treatment resulted in enhanced absorption and greater BBB damage compared to non-stimulated conditions. Additionally, the size-dependent toxicity observed differently between 2D cultured cells and 3D BBB models, highlighting the importance of testing models in evaluating environmental toxicity.
Collapse
Affiliation(s)
- Yeongseon Cho
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eun U Seo
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Kyeong Seob Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyelim Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
- University of Science and Technology, Seoul, 02792, Republic of Korea.
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
- Yonsei-Korea Institute of Science and Technology Convergence Research Institute, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
10
|
Zhang W, Tian D, Yu Y, Tong D, Zhou W, Yu Y, Lu L, Li W, Liu G, Shi W. Micro/nanoplastics impair the feeding of goldfish by disrupting the complicated peripheral and central regulation of appetite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174112. [PMID: 38908581 DOI: 10.1016/j.scitotenv.2024.174112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
The ubiquitous presence of plastic particles in water bodies poses a potential threat to aquatic species. Although numerous adverse effects of microplastics (MPs) and nanoplastics (NPs) have been documented, their effects on fish feeding, one of the most important behaviors of animals, are far from being fully understood. In this study, the effects of MPs and NPs (at environmentally realistic levels) on fish food consumption and feeding behavior were assessed using goldfish (Carassius auratus) and polystyrene (PS) particles as representatives. In addition, to reveal the potential mechanisms, the effects of MPs and NPs on peripheral and central regulation of appetite were evaluated by examining appetite-regulation related intestinal, serous, and hypothalamic parameters. The results obtained indicated that the 28-day MP- and NP-exposure significantly impaired goldfish feeding by disrupting peripheral and central appetite regulation. Based on differences observed in their effects on the abovementioned behavioral, histological, and physiological parameters, MPs and NPs may interfere with appetite regulation in a size-dependent manner. Blocking the gastrointestinal tract and causing histopathological and functional damage to inner organs may be the main routes through which MPs and NPs disrupt appetite regulation. Our findings suggested that plastic particles exposure may have far-reaching effects on fish species through impaired feeding, which warrants further attention.
Collapse
Affiliation(s)
- Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weifeng Li
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
11
|
Zhu C, Zhou H, Bao M, Tang S, Gu X, Han M, Li P, Jiang Q. Polystyrene microplastics induce molecular toxicity in Simocephalus vetulus: A transcriptome and intestinal microorganism analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107046. [PMID: 39197247 DOI: 10.1016/j.aquatox.2024.107046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024]
Abstract
The global prevalence and accumulation of plastic waste is leading to pollution levels that cause significant damage to ecosystems and ecological security. Exposure to two concentrations (1 and 5 mg/L) of 500 nm polystyrene (PS)-nanoplastics (NPs) for 14 d was evaluated in Simocephalus vetulus using transcriptome and 16 s rRNA sequencing analyses. PS-NP exposure resulted in stress-induced antioxidant defense, disturbed energy metabolism, and affected the FoxO signaling pathway, causing neurotoxicity. The expression of Cyclin D1 (CCND), glucose-6-phosphatase (G6PC) and phosphoenolpyruvate carboxykinase (PCK) genes was decreased compared to the control, whereas the expression of caspase3 (CASP3), caspase7 (CASP7), Superoxide dismutase (SOD), Heat shock protein 70 (HSP70), MPV17, and Glutathione S-transferase (GST) genes was increased, thus, suggesting that NP ingestion triggered oxidative stress and disrupted energy metabolism.. PS-NPs were present in the digestive tract of S. vetulus after 14 days of exposure. In addition, the abundance of the Proteobacteria and opportunistic pathogens was elevated after PS-NPs exposure. The diversity and homeostasis of the S. vetulus gut microbiota were disrupted and the stability of intestinal barrier function was impaired. Multiomic analyses highlighted the molecular toxicity and microbial changes in S. vetulus after exposure to NPs, providing an overview of how plastic pollution affects freshwater organisms and ecosystems.
Collapse
Affiliation(s)
- Chenxi Zhu
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China; Geography, School of Humanities, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Hui Zhou
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China
| | - Mengyu Bao
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China; Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China
| | - Shengkai Tang
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China
| | - Xiankun Gu
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China
| | - Mingming Han
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China
| | - Peng Li
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China.
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China.
| |
Collapse
|
12
|
Kaushik A, Singh A, Kumar Gupta V, Mishra YK. Nano/micro-plastic, an invisible threat getting into the brain. CHEMOSPHERE 2024; 361:142380. [PMID: 38763401 DOI: 10.1016/j.chemosphere.2024.142380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/21/2024]
Abstract
Due to weather and working/operational conditions, plastic degradation produces toxic and non-biodegradable nano and microplastics (N/M-Ps, ranging from 10 nm to 5 mm), and over time these N/M-Ps have integrated with the human cycle through ingestion and inhalation. These N/M-Ps, as serious emerging pollutants, are causing considerable adverse health issues due to up-taken by the cells, tissue, and organs, including the brain. It has been proven that N/M-Ps can cross the blood-brain barrier (via olfactory and blood vessels) and affect the secretion of neuroinflammatory (cytokine and chemokine), transporters, and receptor markers. Neurotoxicity, neuroinflammation, and brain injury, which may result in such scenarios are a serious concern and may cause brain disorders. However, the related pathways and pathogenesis are not well-explored but are the focus of upcoming emerging research. Therefore, as a focus of this editorial, well-organized multidisciplinary research is required to explore associated pathways and pathogenesis, leading to brain mapping and nano-enabled therapeutics in acute and chronic N/M - Ps exposure.
Collapse
Affiliation(s)
- Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, USA.
| | - Avtar Singh
- Research and Development, Molekule Inc., 3802 Spectrum Blvd., Tampa, FL, 33612, USA.
| | - V Kumar Gupta
- School of Biotechnology, Dublin City University, Dublin, Ireland.
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark.
| |
Collapse
|
13
|
Saraceni PR, Miccoli A, Bada A, Taddei AR, Mazzonna M, Fausto AM, Scapigliati G, Picchietti S. Polystyrene nanoplastics as an ecotoxicological hazard: cellular and transcriptomic evidences on marine and freshwater in vitro teleost models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173159. [PMID: 38761939 DOI: 10.1016/j.scitotenv.2024.173159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
The contamination of marine and freshwater environments by nanoplastics is considered a global threat for aquatic biota. Taking into account the most recent concentration range estimates reported globally and recognizing a knowledge gap in polystyrene nanoplastics (PS-NPs) ecotoxicology, the present work investigated the harmful effects of 20 nm and 80 nm PS-NPs, at increasing biological complexity, on the rainbow trout Oncorhynchus mykiss RTG-2 and gilthead seabream Sparus aurata SAF-1 cell lines. Twenty nm PS-NPs exerted a greater cytotoxicity than 80 nm ones and SAF-1 were approximately 4-fold more vulnerable to PS-NPs than RTG-2. The engagement of PS-NPs with plasma membranes was accompanied by discernible uptake patterns and morphological alterations along with a nuclear translocation already within a 30-min exposure. Cells were structurally damaged only by the 20 nm PS-NPs in a time-dependent manner as indicated by distinctive features of the execution phase of the apoptotic cell death mechanism such as cell shrinkage, plasma membrane blebbing, translocation of phosphatidylserine to the outer leaflet of the cell membrane and DNA fragmentation. At last, functional analyses unveiled marked transcriptional impairment at both sublethal and lethal doses of 20 nm PS-NPs, with the latter impacting the "Steroid biosynthesis", "TGF-beta signaling pathway", "ECM-receptor interaction", "Focal adhesion", "Regulation of actin cytoskeleton" and "Protein processing in endoplasmic reticulum" pathways. Overall, a distinct ecotoxicological hazard of PS-NPs at environmentally relevant concentrations was thoroughly characterized on two piscine cell lines. The effects were demonstrated to depend on size, exposure time and model, emphasizing the need for a comparative evaluation of endpoints between freshwater and marine ecosystems.
Collapse
Affiliation(s)
- P R Saraceni
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Department of Sustainability, 00123 Rome, Italy
| | - A Miccoli
- National Research Council, Institute for Marine Biological Resources and Biotechnology (IRBIM), 60125 Ancona, Italy
| | - A Bada
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - A R Taddei
- Center of Large Equipments, Section of Electron Microscopy, University of Tuscia, Largo dell'Università Snc, 01100 Viterbo, Italy
| | - M Mazzonna
- National Research Council, Institute for Biological Systems (ISB), 00015 Monterotondo, Italy
| | - A M Fausto
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - G Scapigliati
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - S Picchietti
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy.
| |
Collapse
|
14
|
Zarantoniello M, Cattaneo N, Conti F, Carrino M, Cardinaletti G, Şener İ, Olivotto I. Mitigating Dietary Microplastic Accumulation and Oxidative Stress Response in European Seabass ( Dicentrarchus labrax) Juveniles Using a Natural Microencapsulated Antioxidant. Antioxidants (Basel) 2024; 13:812. [PMID: 39061881 PMCID: PMC11273845 DOI: 10.3390/antiox13070812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Aquafeed's contamination by microplastics can pose a risk to fish health and quality since they can be absorbed by the gastrointestinal tract and translocate to different tissues. The liver acts as a retaining organ with the consequent triggering of oxidative stress response. The present study aimed to combine the use of natural astaxanthin with natural-based microcapsules to counteract these negative side effects. European seabass juveniles were fed diets containing commercially available fluorescent microplastic microbeads (1-5 μm; 50 mg/kg feed) alone or combined with microencapsulated astaxanthin (AX) (7 g/kg feed; tested for half or whole feeding trial-30 or 60 days, respectively). Fish from the different dietary treatments did not evidence variations in survival and growth performance and did not show pathological alterations at the intestinal level. However, the microplastics were absorbed at the intestinal level with a consequent translocation to the liver, leading, when provided solely, to sod1, sod2, and cat upregulation. Interestingly, the dietary implementation of microencapsulated AX led to a mitigation of oxidative stress. In addition, the microcapsules, due to their composition, promoted microplastic coagulation in the fish gut, limiting their absorption and accumulation in all the tissues analyzed. These results were supported by in vitro tests, which demonstrated that the microcapsules promoted microplastic coagula formation too large to be absorbed at the intestinal level and by the fact that the coagulated microplastics were released through the fish feces.
Collapse
Affiliation(s)
- Matteo Zarantoniello
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (N.C.); (F.C.); (M.C.); (İ.Ş.)
| | - Nico Cattaneo
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (N.C.); (F.C.); (M.C.); (İ.Ş.)
| | - Federico Conti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (N.C.); (F.C.); (M.C.); (İ.Ş.)
| | - Margherita Carrino
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (N.C.); (F.C.); (M.C.); (İ.Ş.)
| | - Gloriana Cardinaletti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy;
| | - İdris Şener
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (N.C.); (F.C.); (M.C.); (İ.Ş.)
| | - Ike Olivotto
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (N.C.); (F.C.); (M.C.); (İ.Ş.)
| |
Collapse
|
15
|
Habumugisha T, Zhang Z, Uwizewe C, Yan C, Ndayishimiye JC, Rehman A, Zhang X. Toxicological review of micro- and nano-plastics in aquatic environments: Risks to ecosystems, food web dynamics and human health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116426. [PMID: 38718727 DOI: 10.1016/j.ecoenv.2024.116426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
The increase of micro- and nano-plastics (MNPs) in aquatic environments has become a significant concern due to their potential toxicological effects on ecosystems, food web dynamics, and human health. These plastic particles emerge from a range of sources, such as the breakdown of larger plastic waste, consumer products, and industrial outputs. This review provides a detailed report of the transmission and dangers of MNPs in aquatic ecosystems, environmental behavior, and interactions within aquatic food webs, emphasizing their toxic impact on marine life. It explores the relationship between particle size and toxicity, their distribution in different tissues, and the process of trophic transfer through the food web. MNPs, once consumed, can be found in various organs, including the digestive system, gills, and liver. Their consumption by lower trophic level organisms facilitates their progression up the food chain, potentially leading to bioaccumulation and biomagnification, thereby posing substantial risks to the health, reproduction, and behavior of aquatic species. This work also explores how MNPs, through their persistence and bioaccumulation, pose risks to aquatic biodiversity and disrupt trophic relationships. The review also addresses the implications of MNPs for human health, particularly through the consumption of contaminated seafood, highlighting the direct and indirect pathways through which humans are exposed to these pollutants. Furthermore, the review highlights the recommendations for future research directions, emphasizing the integration of ecological, toxicological, and human health studies to inform risk assessments and develop mitigation strategies to address the global challenge of plastic pollution in aquatic environments.
Collapse
Affiliation(s)
- Théogène Habumugisha
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Zixing Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Constance Uwizewe
- Key Laboratory of Physical Oceanography, Ocean University of China, Qingdao 266100, PR China
| | - Changzhou Yan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | | | - Abdul Rehman
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xian Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| |
Collapse
|
16
|
Chamanee G, Sewwandi M, Wijesekara H, Vithanage M. Occurrence and abundance of microplastics and plasticizers in landfill leachate from open dumpsites in Sri Lanka. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123944. [PMID: 38608854 DOI: 10.1016/j.envpol.2024.123944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/23/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
This is the first attempt that investigate the abundance of plasticizers in leachate sediment in the scientific literature, alongside the debut effort to explore the abundance of microplastics and plasticizers in landfill leachate and sediment in Sri Lanka. Microplastics in sizes ranging from ≥2.0-5.0, ≥1.0-2.0, and ≥ 0.5-1.0 mm were extracted from the leachate draining from ten municipal solid waste open dump sites and sediment samples covering seven districts. Microplastics were extracted by density separation (Saturated ZnCl2) followed by wet peroxide digestion and the chemical identification was conducted by Fourier Transform Infrared spectroscopy. Plasticizers were extracted to hexane and analyzed by high-performance liquid chromatography. The total mean microplastic abundance in leachate was 2.06 ± 0.62 mg/L whereas it was 363 ± 111 mg/kg for leachate sediments. The most frequently found polymer type was polyethylene (>50%), and white color was dominant. The average concentration of bisphenol A (BPA), benzophenone (BP) and diethyl-hydrogen phthalate (DHEP) in leachate was 158 ± 84.4, 0.75 ± 0.16 and 170 ± 85.8 μg/L respectively. Furthermore, BP and DHEP in leachate sediment was 100 ± 68.3 and 1034 ± 455 μg/kg respectively. As landfill leachate is directly discharged into nearby surface and groundwater bodies that serve as sources of drinking water, the study highlights the potential concerns of microplastic and plasticizer exposure to the surrounding Sri Lankan community through consumption of contaminated drinking water. Therefore, there is a timely need of develop the effective waste management and pollution control measures to minimize the possible threats to both the environment and human health.
Collapse
Affiliation(s)
- Gayathri Chamanee
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, 70140, Sri Lanka
| | - Madushika Sewwandi
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, 70140, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Institute of Agriculture, University of Western Australia, Perth, WA6009, Australia.
| |
Collapse
|
17
|
Zhang Y, Jia R, Wang Y, Wang Y, Zhang Z, Li Z, Jiang Y. Physiological and transcriptomic responses of seawater halobios to micro/nano-scale polystyrene-cadmium exposure in a marine food web. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123843. [PMID: 38552770 DOI: 10.1016/j.envpol.2024.123843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Micro/nano-plastics (MPs/NPs) represent an emerging contaminant, posing a significant threat to oceanic halobios. While the adverse effects of joint pollutants on marine organisms are well-documented, the potential biological impacts on the food chain transmission resulting from combinations of MPs/NPs and heavy metals (HMs) remain largely unexplored. This study exposed the microbial loop to combined contaminants (MPs/NPs + HMs) for 48h, bacteria and contaminants are washed away before feeding to the traditional food chain, employing microscopic observation, biochemical detection, and transcriptome analysis to elucidate the toxicological mechanisms of the top predator. The findings revealed that MPs/NPs combined with Cd2+ could traverse both the microbial loop and classical food chain. Acute exposure significantly affected the carbon biomass of the top predator Tigriopus japonicus (75.8% lower). Elevated antioxidant enzyme activity led to lipid peroxidation, manifesting in increased malondialdehyde levels. Transcriptome sequencing showed substantial differential gene expression levels in T. japonicus under various treatments. The upregulation of genes associated with apoptosis and inflammatory responses, highlighting the impact of co-exposure on oxidative damage and necroptosis within cells. Notably, NPs-Cd exhibited stronger toxicity than MPs-Cd. NPs-Cd led to a greater decrease in the biomass of top predators, accompanied by lower activities of GSH, SOD, CAT, and GSH-PX, resulting in increased production of lipid peroxidation product MDA and higher oxidative stress levels. This investigation provides novel insights into the potential threats of MPs/NPs combined with Cd2+ on the microbial loop across traditional food chain, contributing to a more comprehensive assessment of the ecological risks associated with micro/nano-plastics and heavy metals.
Collapse
Affiliation(s)
- Yan Zhang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Ruiqi Jia
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yaxin Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yunlong Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Zhaoji Zhang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Zuwei Li
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yong Jiang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China; MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
18
|
Minaz M, Kurtoğlu İZ. Long-term exposure of endangered Danube sturgeon (Acipenser gueldenstaedtii) to bisphenol A (BPA): growth, behavioral, histological, genotoxic, and hematological evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30836-30848. [PMID: 38622415 PMCID: PMC11096217 DOI: 10.1007/s11356-024-33168-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/27/2024] [Indexed: 04/17/2024]
Abstract
Danube sturgeon (Acipenser gueldenstaedtii) which is identified as endangered species can be exposed to pollutants such as bisphenol A (BPA) that have a disruptive effect on the endocrine system at any time. Starting from this motivation, the current study focused on BPA toxicity in A. gueldenstaedtii juvenile individuals and its adverse effects in sub-lethal concentration. The median lethal concentration (LC50) of BPA was 5.03 mg/L in 96th hour. In the chronic period, 0.625 mg/L and 1.25 mg/L BPA concentrations were evaluated based on the result of acute study. Accordingly, growth performance was significantly decreased in BPA groups (1.25 mg/L BPA group was significantly lowest) compared to control (p < 0.05). In the acute period, behavioral disorders were standing at the bottom/corner of tank, slowing and stopping of gill movement, decreased response to stimuli, and death, respectively. While vacuolization was severe in the liver tissue of the fish in the acute period, intense necrosis and melanomacrophage centers were observed in the chronic period. In terms of genotoxicity, longer DNA migration was observed in all groups exposed to BPA than in the control group. In addition, lower erythrocyte and hemoglobin were observed in the BPA groups compared to control. As a result, the current study revealed toxic effect of BPA on A. gueldenstaedtii juvenile individuals and its negative results on fish physiology.
Collapse
Affiliation(s)
- Mert Minaz
- Department of Aquaculture, Faculty of Fisheries, Recep Tayyip Erdoğan University, Rize, Turkey.
| | - İlker Zeki Kurtoğlu
- Department of Aquaculture, Faculty of Fisheries, Recep Tayyip Erdoğan University, Rize, Turkey
| |
Collapse
|
19
|
Impellitteri F, Briglia M, Porcino C, Stoliar O, Yunko K, Germanà A, Piccione G, Faggio C, Guerrera MC. The odd couple: Caffeine and microplastics. Morphological and physiological changes in Mytilus galloprovincialis. Microsc Res Tech 2024; 87:1092-1110. [PMID: 38251430 DOI: 10.1002/jemt.24483] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/29/2023] [Accepted: 12/16/2023] [Indexed: 01/23/2024]
Abstract
In recent years, the presence of pharmaceuticals and microplastics (MPs) in aquatic ecosystems has raised concerns about their environmental impact. This study explores the combined effects of caffeine, a common pharmaceutical pollutant, and MPs on the marine mussel Mytilus galloprovincialis. Caffeine, at concentrations of 20.0 μg L-1, and MPs (1 mg L-1, 35-50 μm size range), was used to mimic real-world exposure scenarios. Two hundred M. galloprovincialis specimens were divided into four groups: caffeine, MPs, Mix (caffeine + MPs), and Control. After a two-week acclimation period, the mollusks were subjected to these pollutants in oxygen-aerated aquariums under controlled conditions for 14 days. Histopathological assessments were performed to evaluate gill morphology. Cellular volume regulation and digestive gland cell viability were also analyzed. Exposure to caffeine and MPs induced significant morphological changes in M. galloprovincialis gills, including cilia loss, ciliary disk damage, and cellular alterations. The chitinous rod supporting filaments also suffered damage, potentially due to MP interactions, leading to hemocyte infiltration and filament integrity compromise. Hemocytic aggregation suggested an inflammatory response to caffeine. In addition, viability assessments of digestive gland cells revealed potential damage to cell membranes and function, with impaired cell volume regulation, particularly in the Mix group, raising concerns about nutrient metabolism disruption and organ function compromise. These findings underscore the vulnerability of M. galloprovincialis to environmental pollutants and emphasize the need for monitoring and mitigation efforts. RESEARCH HIGHLIGHTS: The synergy of caffeine and microplastics (MPs) in aquatic ecosystems warrants investigation. MPs and caffeine could affect gill morphology of Mytilus galloprovincialis. Caffeine-exposed cells had lower viability than the control group in the NR retention test. MPs and mix-exposed cells struggled to recover their volume.
Collapse
Affiliation(s)
| | - Marilena Briglia
- Department of Veterinary Sciences, Zebrafish Neuromorphology Lab, University of Messina, Messina, Italy
| | - Caterina Porcino
- Department of Veterinary Sciences, Zebrafish Neuromorphology Lab, University of Messina, Messina, Italy
| | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Katerina Yunko
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Antonino Germanà
- Department of Veterinary Sciences, Zebrafish Neuromorphology Lab, University of Messina, Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Maria Cristina Guerrera
- Department of Veterinary Sciences, Zebrafish Neuromorphology Lab, University of Messina, Messina, Italy
| |
Collapse
|
20
|
Errázuriz León R, Araya Salcedo VA, Novoa San Miguel FJ, Llanquinao Tardio CRA, Tobar Briceño AA, Cherubini Fouilloux SF, de Matos Barbosa M, Saldías Barros CA, Waldman WR, Espinosa-Bustos C, Hornos Carneiro MF. Photoaged polystyrene nanoplastics exposure results in reproductive toxicity due to oxidative damage in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123816. [PMID: 38508369 DOI: 10.1016/j.envpol.2024.123816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
The increase of plastic production together with the incipient reuse/recycling system has resulted in massive discards into the environment. This has facilitated the formation of micro- and nanoplastics (MNPs) which poses major risk for environmental health. Although some studies have investigated the effects of pristine MNPs on reproductive health, the effects of weathered MNPs have been poorly investigated. Here we show in Caenorhabditis elegans that exposure to photoaged polystyrene nanoplastics (PSNP-UV) results in worse reproductive performance than pristine PSNP (i.e., embryonic/larval lethality plus a decrease in the brood size, accompanied by a high number of unfertilized eggs), besides it affects size and locomotion behavior. Those effects were potentially generated by reactive products formed during UV-irradiation, since we found higher levels of reactive oxygen species and increased expression of GST-4 in worms exposed to PSNP-UV. Those results are supported by physical-chemical characterization analyses which indicate significant formation of oxidative degradation products from PSNP under UV-C irradiation. Our study also demonstrates that PSNP accumulate predominantly in the gastrointestinal tract of C. elegans (with no accumulation in the gonads), being completely eliminated at 96 h post-exposure. We complemented the toxicological analysis of PSNP/PSNP-UV by showing that the activation of the stress response via DAF-16 is dependent of the nanoplastics accumulation. Our data suggest that exposure to the wild PSNP, i.e., polystyrene nanoplastics more similar to those actually found in the environment, results in more important reprotoxic effects. This is associated with the presence of degradation products formed during UV-C irradiation and their interaction with biological targets.
Collapse
Affiliation(s)
- Rocío Errázuriz León
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | | | | | | | | | | | - Marcela de Matos Barbosa
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto/SP, 14040-901, Brazil
| | | | | | - Christian Espinosa-Bustos
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | | |
Collapse
|
21
|
Cheng X, Xiao K, Jiang W, Peng G, Chen P, Shu T, Huang H, Shi X, Yang J. Selection, identification and evaluation of optimal reference genes in Chinese sturgeon (Acipenser sinensis) under polypropylene microplastics stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170894. [PMID: 38367736 DOI: 10.1016/j.scitotenv.2024.170894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
Polypropylene microplastics (PP-MPs) are emerging environmental contaminants that have the potential to cause adverse effects on aquatic organisms. Reverse transcriptase quantitative real-time polymerase chain reaction (RT-qPCR) is a valuable tool for assessing the gene expression profiles under PP-MPs stress. To obtain an accurate gene expression profile of tissue inflammation and apoptosis that reflects the molecular mechanisms underlying the impact of PP-MPs on Chinese sturgeon, identifying reliable reference genes is crucial for RT-qPCR analysis. In this study, we constructed an experiment model of Chinese sturgeon exposed to PP-MPs, assessed the pathological injury, metabolic profile responses and oxidative stress in liver, evaluated the reliability of 8 reliable reference genes by 4 commonly used algorithms including GeNorm, NormFinder, BeatKeeper, Delta Ct, and then analyzed the performance of inflammatory response genes in liver, spleen and kidney with the best reference gene. HE staining revealed that the cytoplasm full small vacuoles and nucleus diameter increased were occurred in the liver cell of PP-MPs in treatment groups. Additionally, oxidative and biochemical parameters were significantly changes in the liver of treatment groups. For the reference genes in PP-MPs exposure experiments, this study screening the optimal reference genes including: EF1α and GAPDH for liver and spleen, and GAPDH and RPS18 for kidney. Besides, 2 inflammatory response genes (NLRP3, TNF-α) were chosen to assess the optimal reference genes using the least stable reference gene (TUB) as a control, verified the practicality of the select reference genes in different tissues. We also found that the low concentration of PP-MPs could induce the liver tissue damage and inflammatory response in Chinese sturgeon. Our study initially evaluated the impact of short-time exposure with PP-MPs in Chinese sturgeon and provided 3 sets of validated optimal reference genes in Chinese sturgeon exposure to PP-MPs.
Collapse
Affiliation(s)
- Xu Cheng
- Hubei Key Laboratory of the Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China
| | - Kan Xiao
- Hubei Key Laboratory of the Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China
| | - Wei Jiang
- Hubei Key Laboratory of the Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China
| | - Guangyuan Peng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pei Chen
- Hubei Key Laboratory of the Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China
| | - Tingting Shu
- Hubei Key Laboratory of the Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China
| | - Hongtao Huang
- Hubei Key Laboratory of the Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China
| | - Xuetao Shi
- Hubei Key Laboratory of the Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China
| | - Jing Yang
- Hubei Key Laboratory of the Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China.
| |
Collapse
|
22
|
Curi LM, Barrios CE, Attademo AM, Caramello C, Peltzer PM, Lajmanovich RC, Sánchez S, Hernández DR. A realistic combined exposure scenario: effect of microplastics and atrazine on Piaractus mesopotamicus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29794-29810. [PMID: 38592632 DOI: 10.1007/s11356-024-33177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
Microplastics, considered emerging environmental contaminants resulting from plastic degradation, are discovered in diverse aquatic ecosystems and can be unintentionally ingested by fish. Therefore, it is essential to characterize their interaction with other contaminants, such as agrochemicals, in aquatic environments. This study aimed to assess histological, enzymatic, and genotoxic biomarkers in juvenile pacú (Piaractus mesopotamicus) exposed to polyethylene (PE) microplastic particles and the herbicide atrazine, individually or combined, for 15 days. Four treatments were used: a negative control (CON), PE in the fish diet (0.1% w/w, FPE), atrazine through water (100 μg L-1, ATZ), and the mixture (ATZ+FPE). Results confirmed histological alterations in gills (edema and lamellar fusion) and liver (necrotic areas and congestion) of fish exposed to ATZ and ATZ+FPE. The number of goblet cells increased in the posterior intestine of fish under ATZ+FPE compared to CON and FPE. Enzyme activities (CAT, GST, AChE, and BChE) significantly increased in ATZ+FPE compared to CON. However, no genotoxic effect was demonstrated. These findings provide insights into the complex impacts of simultaneous exposure to atrazine and microplastics, emphasizing the need for continued research to guide effective environmental management strategies against these contaminants that represent a risk to aquatic organisms.
Collapse
Affiliation(s)
- Lucila Marilén Curi
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
- Instituto de Materiales de Misiones (IMAM). Facultad de Ciencias Exactas, Químicas y Naturales (FCEQyN), Universidad Nacional de Misiones (UNAM-CONICET), Félix de Azara, 1552, Posadas, Argentina.
| | - Carlos Eduardo Barrios
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Ictiología del Nordeste (INICNE). Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral, 2139, Corrientes, Argentina
| | - Andrés Maximiliano Attademo
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB -UNL-CONICET), Ciudad Universitaria, Paraje "El Pozo", RNN 168, Km, 472, Santa Fe, Argentina
| | - Cynthia Caramello
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Materiales de Misiones (IMAM). Facultad de Ciencias Exactas, Químicas y Naturales (FCEQyN), Universidad Nacional de Misiones (UNAM-CONICET), Félix de Azara, 1552, Posadas, Argentina
| | - Paola Mariela Peltzer
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB -UNL-CONICET), Ciudad Universitaria, Paraje "El Pozo", RNN 168, Km, 472, Santa Fe, Argentina
| | - Rafael Carlos Lajmanovich
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB -UNL-CONICET), Ciudad Universitaria, Paraje "El Pozo", RNN 168, Km, 472, Santa Fe, Argentina
| | - Sebastián Sánchez
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Ictiología del Nordeste (INICNE). Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral, 2139, Corrientes, Argentina
| | - David Roque Hernández
- Instituto de Ictiología del Nordeste (INICNE). Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral, 2139, Corrientes, Argentina
| |
Collapse
|
23
|
Covello C, Di Vincenzo F, Cammarota G, Pizzoferrato M. Micro(nano)plastics and Their Potential Impact on Human Gut Health: A Narrative Review. Curr Issues Mol Biol 2024; 46:2658-2677. [PMID: 38534784 PMCID: PMC10968954 DOI: 10.3390/cimb46030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Microplastics and nanoplastics (MNPs) are becoming an increasingly severe global problem due to their widespread distribution and complex impact on living organisms. Apart from their environmental impact, the effects of MNPs on living organisms have also continued to attract attention. The harmful impact of MNPs has been extensively documented in marine invertebrates and larger marine vertebrates like fish. However, the research on the toxicity of these particles on mammals is still limited, and their possible effects on humans are poorly understood. Considering that MNPs are commonly found in food or food packaging, humans are primarily exposed to them through ingestion. It would be valuable to investigate the potential harmful effects of these particles on gut health. This review focuses on recent research exploring the toxicological impacts of micro- and nanoplastics on the gut, as observed in human cell lines and mammalian models. Available data from various studies indicate that the accumulation of MNPs in mammalian models and human cells may result in adverse consequences, in terms of epithelial toxicity, immune toxicity, and the disruption of the gut microbiota. The paper also discusses the current research limitations and prospects in this field, aiming to provide a scientific basis and reference for further studies on the toxic mechanisms of micro- and nanoplastics.
Collapse
Affiliation(s)
- Carlo Covello
- Center for Diagnosis and Treatment of Digestive Diseases, Gastroenterology Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (F.D.V.)
| | - Federica Di Vincenzo
- Center for Diagnosis and Treatment of Digestive Diseases, Gastroenterology Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (F.D.V.)
| | - Giovanni Cammarota
- UOC Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Marco Pizzoferrato
- UOC Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|
24
|
Choi J, Kim H, Ahn YR, Kim M, Yu S, Kim N, Lim SY, Park JA, Ha SJ, Lim KS, Kim HO. Recent advances in microbial and enzymatic engineering for the biodegradation of micro- and nanoplastics. RSC Adv 2024; 14:9943-9966. [PMID: 38528920 PMCID: PMC10961967 DOI: 10.1039/d4ra00844h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024] Open
Abstract
This review examines the escalating issue of plastic pollution, specifically highlighting the detrimental effects on the environment and human health caused by microplastics and nanoplastics. The extensive use of synthetic polymers such as polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS) has raised significant environmental concerns because of their long-lasting and non-degradable characteristics. This review delves into the role of enzymatic and microbial strategies in breaking down these polymers, showcasing recent advancements in the field. The intricacies of enzymatic degradation are thoroughly examined, including the effectiveness of enzymes such as PETase and MHETase, as well as the contribution of microbial pathways in breaking down resilient polymers into more benign substances. The paper also discusses the impact of chemical composition on plastic degradation kinetics and emphasizes the need for an approach to managing the environmental impact of synthetic polymers. The review highlights the significance of comprehending the physical characteristics and long-term impacts of micro- and nanoplastics in different ecosystems. Furthermore, it points out the environmental and health consequences of these contaminants, such as their ability to cause cancer and interfere with the endocrine system. The paper emphasizes the need for advanced analytical methods and effective strategies for enzymatic degradation, as well as continued research and development in this area. This review highlights the crucial role of enzymatic and microbial strategies in addressing plastic pollution and proposes methods to create effective and environmentally friendly solutions.
Collapse
Affiliation(s)
- Jaewon Choi
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Hongbin Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Yu-Rim Ahn
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Minse Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Seona Yu
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Nanhyeon Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Su Yeon Lim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Jeong-Ann Park
- Department of Environmental Engineering, Kangwon National University Chuncheon 24341 Republic of Korea
| | - Suk-Jin Ha
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Kwang Suk Lim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| |
Collapse
|
25
|
Liang J, Ji F, Wang H, Zhu T, Rubinstein J, Worthington R, Abdullah ALB, Tay YJ, Zhu C, George A, Li Y, Han M. Unraveling the threat: Microplastics and nano-plastics' impact on reproductive viability across ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169525. [PMID: 38141979 DOI: 10.1016/j.scitotenv.2023.169525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Plastic pollution pervades both marine and terrestrial ecosystems, fragmenting over time into microplastics (MPs) and nano-plastics (NPs). These particles infiltrate organisms via ingestion, inhalation, and dermal absorption, predominantly through the trophic interactions. This review elucidated the impacts of MPs/NPs on the reproductive viability of various species. MPs/NPs lead to reduced reproduction rates, abnormal larval development and increased mortality in aquatic invertebrates. Microplastics cause hormone secretion disorders and gonadal tissue damage in fish. In addition, the fertilization rate of eggs is reduced, and the larval deformity rate and mortality rate are increased. Male mammals exposed to MPs/NPs exhibit testicular anomalies, compromised sperm health, endocrine disturbances, oxidative stress, inflammation, and granulocyte apoptosis. In female mammals, including humans, exposure culminates in ovarian and uterine deformities, endocrine imbalances, oxidative stress, inflammation, granulosa cell apoptosis, and tissue fibrogenesis. Rodent offspring exposed to MPs experience increased mortality rates, while survivors display metabolic perturbations, reproductive anomalies, and weakened immunity. These challenges are intrinsically linked to the transgenerational conveyance of MPs. The ubiquity of MPs/NPs threatens biodiversity and, crucially, jeopardizes human reproductive health. The current findings underscore the exigency for comprehensive research and proactive interventions to ameliorate the implications of these pollutants.
Collapse
Affiliation(s)
- Ji Liang
- Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Feng Ji
- Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| | - Hong Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Tian Zhu
- Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
| | - James Rubinstein
- College of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Richard Worthington
- School of Humanities and Sciences, Stanford university, Stanford, CA 94305, USA
| | | | - Yi Juin Tay
- Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Chenxin Zhu
- Universiti Sains Malaysia, Minden, Penang 11800, Malaysia.
| | - Andrew George
- Department of Biology, University of Oxford, 11a Mansfield Road, OX12JD, UK
| | - Yiming Li
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Mingming Han
- Universiti Sains Malaysia, Minden, Penang 11800, Malaysia.
| |
Collapse
|
26
|
Zhang J, Bai Y, Meng H, Zhu Y, Yue H, Li B, Wang J, Wang J, Zhu L, Du Z. Combined toxic effects of polystyrene microplastics and 3,6-dibromocarbazole on zebrafish (Danio rerio) embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169787. [PMID: 38181941 DOI: 10.1016/j.scitotenv.2023.169787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Microplastics (MPs) and polyhalogenated carbazoles (PHCZs) are widely detected in the aquatic environment, and their ecological risks have become a research focus. Although there is an extensive co-distribution of MPs and PHCZs, their combined toxicity to aquatic organisms is still unclear. This study investigated the toxic effects of polystyrene microplastics (PS-MPs) and 3,6-dibromocarbazole (3,6-DBCZ) on zebrafish embryos by individual/combined exposure. This study showed that individual or combined exposure of PS-MPs (10 mg/L) and 3,6-DBCZ (0.5 mg/L) could significantly increase the rate of zebrafish embryo deformity, whereas no significant effect was observed on mortality and hatching rate. Furthermore, exposure to 3,6-DBCZ or PS-MPs increased reactive oxygen species (ROS) levels in zebrafish embryos, and the resulting oxidative stress induced apoptosis. Comparably, the levels of oxidative stress and apoptosis in zebrafish embryos were significantly reduced with the combined exposure of 3,6-DBCZ and PS-MPs. These observations suggest that the combined exposure of 3,6-DBCZ and PS-MPs has an antagonistic effect on oxidative stress and apoptosis. Fluorescence PS-MPs tracing and 3,6-DBCZ enrichment analysis showed that, with the protection of chorion, the entry of PS-MPs (5 and 50 μm) into the embryonic stage (55 hpf) of zebrafish was prevented. Moreover, after exposure for 96-144 hpf, PS-MPs served as a carrier to promote the 3,6-DBCZ accumulation and its dioxin-like toxicity in zebrafish larvae through ingestion. Compared with 5-μm PS-MPs, 50-μm PS-MPs promoted higher accumulation and dioxin-like toxicity of 3,6-DBCZ in zebrafish larvae. These findings provide that MPs can be used as an important carrier of PHCZs, influencing their toxicity and bioaccumulation in the organisms.
Collapse
Affiliation(s)
- Jie Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Yao Bai
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Haoran Meng
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Yangzhe Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Huizhu Yue
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Bing Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Zhongkun Du
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
27
|
Zaman M, Khan FU, Younas W, Noorullah M, Ullah I, Li L, Zuberi A, Wang Y. Physiological and histopathological effects of polystyrene nanoparticles on the filter-feeding fish Hypophthalmichthys molitrix. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169376. [PMID: 38104827 DOI: 10.1016/j.scitotenv.2023.169376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Excessive use of plastics in daily life is causing plastic pollution in aquatic environment and threatening the aquatic life. Therefore, research on the plastic pollution in aquatic environment is crucial to understand its impact and develop effective solution for safeguarding aquatic life and ecosystem. The current study investigated the effects of water borne polystyrene nanoparticles (PS-NPs) on hemato-immunological indices, serum metabolic enzymes, gills, and liver antioxidant parameters, plasma cortisol level and histopathological changes in liver and gill tissues of the widely distributed fish Hypophthalmichthys molitrix. The fingerlings of H. molitrix were exposed to different concentrations (T1-0.5, T2-1.0, and T3-2.0 mg/L) of PS-NPs respectively for 15 days consecutively. Our results indicated the dose dependent negative effects of PS-NPs on the physiology and histopathology of H. molitrix. Immuno-hematological indices showed significant increase in WBCs count, phagocytic activity, and lysozyme activity, while decreased RBC count, Hct%, Hb level, total proteins, IgM, and respiratory burst activity were observed. The levels of antioxidant enzymes like SOD, CAT and POD showed the decreasing trends while metabolic enzymes (AST, ALT, ALP and LDH), LPO, ROS activities and relative expressions of SOD1, CAT, HIF1-α and HSP-70 genes increased with increased concentrations of PS-NPs. Moreover, blood glucose and cortisol levels also showed significant increasing trends with dose dependent manner. Histopathological examination indicated moderate to severe changes in the gills and liver tissues of the group treated with 2.0 mg/L of PS-NPs. Overall, the results showed the deleterious effects of PS-NPs on physiology, immunity, metabolism, and gene expressions of H. molitrix. It is concluded that particulate plastic pollution has deleterious effects on filter feeding fish, which might affect human health through food chain and particulate chemical toxicity.
Collapse
Affiliation(s)
- Muhib Zaman
- Fisheries & Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fahim Ullah Khan
- Fisheries & Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Waqar Younas
- Fisheries & Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Noorullah
- Fisheries & Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Imdad Ullah
- Fisheries & Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Li'ang Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Amina Zuberi
- Fisheries & Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
28
|
Abdelbaky SA, Zaky ZM, Yahia D, Kotob MH, Ali MA, Aufy M, Sayed AEDH. Impact of Chlorella vulgaris Bioremediation and Selenium on Genotoxicity, Nephrotoxicity and Oxidative/Antioxidant Imbalance Induced by Polystyrene Nanoplastics in African Catfish (Clarias gariepinus). FISHES 2024; 9:76. [DOI: 10.3390/fishes9020076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Contamination of the environment with nano- and microplastic particles exerts a threatening impact on the aquatic ecosystems and sustainable catfish aquaculture. The presence of nanoplastics has been found to have a detrimental impact on both aquatic and terrestrial ecosystems. The present study examines the effect of polystyrene nanoplastics (PS NPs) on the DNA, erythrocytes, oxidative status and renal histology of catfish, in addition to the potential protective effects of Chlorella vulgaris bioremediation and selenium to hinder this effect. Six equal groups of fish were used as follows: Group 1 served as a control group and received water free from PS NPs; Group 2 was exposed to PS NPs at a concentration of 5 mg/L; Group 3 was exposed to PS NPs (5 mg/L) + selenium (1 mg/kg diet); Group 4 was exposed to PS NPs (5 mg/L) + C. vulgaris (25 g/kg diet); Group 5 was supplemented with C. vulgaris (25 g/kg diet); and Group 6 was supplemented with selenium (1 mg/kg diet). The exposure period was 30 days. The results indicated that PS NPs induced oxidative stress by significantly elevating malondialdehyde activities and slightly reducing antioxidant biomarkers, resulting in DNA damage, increased frequency of micronuclei, erythrocyte alterations, and numerous histopathological alterations in kidney tissue. Selenium and C. vulgaris significantly ameliorated the oxidative/antioxidant status, reducing DNA damage, micronucleus frequency, erythrocyte alterations, and improving the morphology of kidney tissue. Nevertheless, further research is needed for a profound understanding of the mechanism behind the toxicity of nano-microplatics in aquatic systems.
Collapse
Affiliation(s)
- Shimaa A. Abdelbaky
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Zakaria M. Zaky
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Doha Yahia
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Mohamed H. Kotob
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Mohammed A. Ali
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Mohammed Aufy
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | | |
Collapse
|
29
|
Afrose S, Tran TKA, O'Connor W, Pannerselvan L, Carbery M, Fielder S, Subhaschandrabose S, Palanisami T. Organ-specific distribution and size-dependent toxicity of polystyrene nanoplastics in Australian bass (Macquaria novemaculeata). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122996. [PMID: 37995956 DOI: 10.1016/j.envpol.2023.122996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Micro- and nano-plastics (MNPs) are emerging contaminants found in air, water, and food. Ageing and weathering processes convert aquatic plastics into MNPs which, due to their small size, can be assimilated by organisms. The accumulation of MNPs in aquatic life (e.g., fish, oysters, and crabs) will, in turn, pose risks to the health of ecosystems and human. This study focuses on the uptake, biodistribution, and size-dependent toxicity of polystyrene nano-plastics (PS-NPs) in a commercially important food web, the Australian Bass (Macquaria novemaculeata). Fish were fed artemia containing PS-NPs of various sizes (ranging from 50 nm to 1 μm) for durations of 5 and 7 days. The findings revealed that smaller NPs (50 nm) accumulated in the brain and muscle tissues at higher concentrations, whereas larger NPs (1 μm) were primarily found in the gills and intestines. In addition, an inverse correlation was observed between the size of NPs and the rate of trophic transfer, with smaller PS-NPs resulting in a higher transfer rate from artemia to fish. Polystyrene NPs caused both activation of the enzyme superoxide dismutase and damage to the DNA of fish tissues. These effects were size dependent. Metabolomic analysis revealed that indirect exposure to different-sized PS-NPs resulted in altered metabolic profiles within fish intestines, potentially impacting lipid and energy metabolism. These results offer novel perspectives on the size-specific toxic impacts of NPs on fish and the transfer of plastics through the food chain.
Collapse
Affiliation(s)
- Sania Afrose
- Environmental Plastics Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Thi Kim Anh Tran
- Environmental Plastics Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), The University of Newcastle, Callaghan, NSW, 2308, Australia; School of Agriculture and Natural Resources, Vinh University, Vinh, 460000, Viet Nam
| | - Wayne O'Connor
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW, 2316, Australia
| | - Logeshwaran Pannerselvan
- Environmental Plastics Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Maddison Carbery
- Environmental Plastics Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Stewart Fielder
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW, 2316, Australia
| | | | - Thava Palanisami
- Environmental Plastics Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
30
|
Zhu C, Li Y, Liu G, Abdullah AL, Jiang Q. Effects of nanoplastics on the gut microbiota of Pacific white shrimp Litopenaeus vannamei. PeerJ 2024; 12:e16743. [PMID: 38188162 PMCID: PMC10771760 DOI: 10.7717/peerj.16743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Nanoplastics (NPs) are an abundant, long-lasting, and widespread type of environmental pollution that is of increasing concern because of the serious threats they might pose to ecosystems and species. Identifying the ecological effects of plastic pollution requires understanding the effects of NPs on aquatic organisms. Here, we used the Pacific white shrimp (Litopenaeus vannamei) as a model species to investigate whether ingestion of polystyrene NPs affects gut microbes and leads to metabolic changes in L. vannamei. The abundance of Proteobacteria increased and that of Bacteroidota decreased after NPs treatment. Specifically, Vibrio spp., photobacterium spp., Xanthomarina spp., and Acinetobacter spp. increased in abundance, whereas Sulfitobacter spp. and Pseudoalteromonas spp. decreased. Histological observations showed that L. vannamei exposed to NP displayed a significantly lower intestinal fold height and damaged intestinal structures compared with the control group. Exposure to NPs also stimulated alkaline phosphatase, lysozyme, and acid phosphatase activity, resulting in an immune response in L. vannamei. In addition, the content of triglycerides, total cholesterol, and glucose were significantly altered after NP exposure. These results provided significant ecotoxicological data that can be used to better understand the biological fate and effects of NPs in L. vannamei.
Collapse
Affiliation(s)
- Chenxi Zhu
- Geography, School of Humanities, Universiti Sains Malaysia, Penang, Malaysia
| | - Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, China
| | - Guoxing Liu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing, China
| | - Anisah Lee Abdullah
- Geography, School of Humanities, Universiti Sains Malaysia, Penang, Malaysia
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing, China
| |
Collapse
|
31
|
Yi J, Ma Y, Ruan J, You S, Ma J, Yu H, Zhao J, Zhang K, Yang Q, Jin L, Zeng G, Sun D. The invisible Threat: Assessing the reproductive and transgenerational impacts of micro- and nanoplastics on fish. ENVIRONMENT INTERNATIONAL 2024; 183:108432. [PMID: 38219542 DOI: 10.1016/j.envint.2024.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Micro- and nanoplastics (MNPs), emerging as pervasive environmental pollutants, present multifaceted threats to diverse ecosystems. This review critically examines the ability of MNPs to traverse biological barriers in fish, leading to their accumulation in gonadal tissues and subsequent reproductive toxicity. A focal concern is the potential transgenerational harm, where offspring not directly exposed to MNPs exhibit toxic effects. Characterized by extensive specific surface areas and marked surface hydrophobicity, MNPs readily adsorb and concentrate other environmental contaminants, potentially intensifying reproductive and transgenerational toxicity. This comprehensive analysis aims to provide profound insights into the repercussions of MNPs on fish reproductive health and progeny, highlighting the intricate interplay between MNPs and other pollutants. We delve into the mechanisms of MNPs-induced reproductive toxicity, including gonadal histopathologic alterations, oxidative stress, and disruptions in the hypothalamic-pituitary-gonadal axis. The review also underscores the urgency for future research to explore the size-specific toxic dynamics of MNPs and the long-term implications of chronic exposure. Understanding these aspects is crucial for assessing the ecological risks posed by MNPs and formulating strategies to safeguard aquatic life.
Collapse
Affiliation(s)
- Jia Yi
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yilei Ma
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Ruan
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Si You
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Zhao
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Kun Zhang
- Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Guoming Zeng
- Intelligent Construction Technology Application Service Center, School of Architecture and Engineering, Chongqing City Vocational College, Chongqing 402160, China
| | - Da Sun
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
32
|
Rajendran D, Chandrasekaran N. Journey of micronanoplastics with blood components. RSC Adv 2023; 13:31435-31459. [PMID: 37901269 PMCID: PMC10603568 DOI: 10.1039/d3ra05620a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023] Open
Abstract
The entry of micro- and nanoplastics (MNPs) into the human body is inevitable. They enter blood circulation through ingestion, inhalation, and dermal contact by crossing the gut-lung-skin barrier (the epithelium of the digestive tract, the respiratory tract, and the cutaneous layer). There are many reports on their toxicities to organs and tissues. This paper presents the first thorough assessment of MNP-driven bloodstream toxicity and the mechanism of toxicity from the viewpoint of both MNP and environmental co-pollutant complexes. Toxic impacts include plasma protein denaturation, hemolysis, reduced immunity, thrombosis, blood coagulation, and vascular endothelial damage, among others, which can lead to life-threatening diseases. Protein corona formation, oxidative stress, cytokine alterations, inflammation, and cyto- and genotoxicity are the key mechanisms involved in toxicity. MNPs change the secondary structure of plasma proteins, thereby preventing their transport functions (for nutrients, drugs, oxygen, etc.). MNPs inhibit erythropoiesis by influencing hematopoietic stem cell proliferation and differentiation. They cause red blood cell and platelet aggregation, as well as increased adherence to endothelial cells, which can lead to thrombosis and cardiovascular disease. White blood cells and immune cells phagocytose MNPs, provoking inflammation. However, research gaps still exist, including gaps regarding the combined toxicity of MNPs and co-pollutants, toxicological studies in human models, advanced methodologies for toxicity analysis, bioaccumulation studies, inflammation and immunological responses, dose-response relationships of MNPs, and the effect of different physiochemical characteristics of MNPs. Furthermore, most studies have analyzed toxicity using prepared MNPs; hence, studies must be undertaken using true-to-life MNPs to determine the real-world scenario. Additionally, nanoplastics may further degrade into monomers, whose toxic effects have not yet been explored. The research gaps highlighted in this review will inspire future studies on the toxicity of MNPs in the vascular/circulatory systems utilizing in vivo models to enable more reliable health risk assessment.
Collapse
Affiliation(s)
- Durgalakshmi Rajendran
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 Tamil Nadu India +91 416 2243092 +91 416 2202624
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 Tamil Nadu India +91 416 2243092 +91 416 2202624
| |
Collapse
|
33
|
Choi JH, Kim JH. Toxic effects of sub-acute microplastic (polyamide) exposure on the accumulation, hematological, and antioxidant responses in crucian carp, Carassius carassius. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104199. [PMID: 37391052 DOI: 10.1016/j.etap.2023.104199] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/26/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
The purpose of this study is to investigate the impact of microplastics (MPs) on fish and to confirm the toxic effects of MPs on fish, as well as to clarify the standard indicators. MPs are present in a large amount in the aquatic environment and can have various adverse effects on aquatic animals. Crucian carp, Carassius carassius (mean weight, 23.7 ± 1.6 g; mean length, 13.9 ± 1.4 cm), were exposed to PA (Polyamide) concentrations of 0, 4, 8, 16, 32 and 64 mg/L for 2 weeks. The PA accumulation profile in C. carassius decreased from the intestine to the gill to the liver. Hematological parameters such as red blood cell (RBC) counts, hemoglobin (Hb), and hematocrit (Ht) notably decreased at high levels of PA exposure. Plasma components such as calcium, magnesium, glucose, cholesterol, total protein, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) were significantly altered by PA exposure. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST) and glutathione (GSH) of liver, gill and intestine significantly increased following PA exposure. The results of this study suggest that MP exposure affects the hematological physiology and antioxidant responses in C. carassius as well as accumulation in specific tissues.
Collapse
Affiliation(s)
- Jae-Ho Choi
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, the Republic of Korea
| | - Jun-Hwan Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
34
|
Dube E, Okuthe GE. Plastics and Micro/Nano-Plastics (MNPs) in the Environment: Occurrence, Impact, and Toxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6667. [PMID: 37681807 PMCID: PMC10488176 DOI: 10.3390/ijerph20176667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
Plastics, due to their varied properties, find use in different sectors such as agriculture, packaging, pharmaceuticals, textiles, and construction, to mention a few. Excessive use of plastics results in a lot of plastic waste buildup. Poorly managed plastic waste (as shown by heaps of plastic waste on dumpsites, in free spaces, along roads, and in marine systems) and the plastic in landfills, are just a fraction of the plastic waste in the environment. A complete picture should include the micro and nano-plastics (MNPs) in the hydrosphere, biosphere, lithosphere, and atmosphere, as the current extreme weather conditions (which are effects of climate change), wear and tear, and other factors promote MNP formation. MNPs pose a threat to the environment more than their pristine counterparts. This review highlights the entry and occurrence of primary and secondary MNPs in the soil, water and air, together with their aging. Furthermore, the uptake and internalization, by plants, animals, and humans are discussed, together with their toxicity effects. Finally, the future perspective and conclusion are given. The material utilized in this work was acquired from published articles and the internet using keywords such as plastic waste, degradation, microplastic, aging, internalization, and toxicity.
Collapse
Affiliation(s)
- Edith Dube
- Department of Biological & Environmental Sciences, Walter Sisulu University, Mthatha 5117, South Africa;
| | | |
Collapse
|
35
|
Kochetkov N, Smorodinskaya S, Vatlin A, Nikiforov-Nikishin D, Nikiforov-Nikishin A, Danilenko V, Anastasia K, Reznikova D, Grishina Y, Antipov S, Marsova M. Ability of Lactobacillus brevis 47f to Alleviate the Toxic Effects of Imidacloprid Low Concentration on the Histological Parameters and Cytokine Profile of Zebrafish ( Danio rerio). Int J Mol Sci 2023; 24:12290. [PMID: 37569666 PMCID: PMC10418720 DOI: 10.3390/ijms241512290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
In the present article, the possible mitigation of the toxic effect of imidacloprid low-concentration chronic exposure on Danio rerio by the probiotic strain Lactobacillus brevis 47f (1 × 108 CFU/g) was examined. It was found that even sublethal concentration (2500 µg/L) could lead to the death of some fish during the 60-day chronic experiment. However, the use of Lactobacillus brevis 47f partially reduced the toxic effects, resulting in an increased survival rate and a significant reduction of morphohistological lesions in the intestines and kidneys of Danio rerio. The kidneys were found to be the most susceptible organ to toxic exposure, showing significant disturbances. Calculation of the histopathological index, measurement of morphometric parameters, and analysis of principal components revealed the most significant parameters affected by the combined action of imidacloprid and Lactobacillus brevis 47f. This effect of imidacloprid and the probiotic strain had a multidirectional influence on various pro/anti-inflammatory cytokines (IL-1β, TNF-α, IL-6, IL-8). Therefore, the results suggest the possibility of further studying the probiotic strain Lactobacillus brevis 47f as a strain that reduces the toxic effects of xenobiotics. Additionally, the study established the possibility of using imidacloprid as a model toxicant to assess the detoxification ability of probiotics on the kidney and gastrointestinal tract of fish.
Collapse
Affiliation(s)
- Nikita Kochetkov
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (S.S.); (A.V.); (D.N.-N.); (V.D.); (K.A.); (D.R.); (Y.G.)
- Faculty of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia;
| | - Svetlana Smorodinskaya
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (S.S.); (A.V.); (D.N.-N.); (V.D.); (K.A.); (D.R.); (Y.G.)
- Faculty of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia;
| | - Aleksey Vatlin
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (S.S.); (A.V.); (D.N.-N.); (V.D.); (K.A.); (D.R.); (Y.G.)
| | - Dmitry Nikiforov-Nikishin
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (S.S.); (A.V.); (D.N.-N.); (V.D.); (K.A.); (D.R.); (Y.G.)
- Faculty of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia;
| | - Alexei Nikiforov-Nikishin
- Faculty of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia;
| | - Valery Danilenko
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (S.S.); (A.V.); (D.N.-N.); (V.D.); (K.A.); (D.R.); (Y.G.)
| | - Klimuk Anastasia
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (S.S.); (A.V.); (D.N.-N.); (V.D.); (K.A.); (D.R.); (Y.G.)
- Faculty of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73, Zemlyanoy Val Str., 109004 Moscow, Russia;
| | - Diana Reznikova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (S.S.); (A.V.); (D.N.-N.); (V.D.); (K.A.); (D.R.); (Y.G.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutsky Lane 9, 141700 Dolgoprudny, Russia
| | - Yelena Grishina
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (S.S.); (A.V.); (D.N.-N.); (V.D.); (K.A.); (D.R.); (Y.G.)
| | - Sergei Antipov
- Department of Biophysics and Biotechnology, Voronezh State University, University Square, 1, 394063 Voronezh, Russia;
| | - Maria Marsova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (S.S.); (A.V.); (D.N.-N.); (V.D.); (K.A.); (D.R.); (Y.G.)
| |
Collapse
|
36
|
Rex M C, Debroy A, Nirmala MJ, Mukherjee A. Ecotoxicological significance of bio-corona formation on micro/nanoplastics in aquatic organisms. RSC Adv 2023; 13:22905-22917. [PMID: 37520083 PMCID: PMC10375451 DOI: 10.1039/d3ra04054b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023] Open
Abstract
The unsustainable manufacturing, utilization and inadequate handling of plastics have led to a surge in global plastic pollution. In recent times, there has been increasing concern about the plausible hazards associated with exposure to micro/nanoplastics (M/NPs). As aquatic systems are considered to be the likely sink for M/NPs, it is crucial to comprehend their environmental behavior. The bioavailability, toxicity and fate of M/NPs in the environment are predominantly dictated by their surface characteristics. In the aquatic environment, M/NPs are prone to be internalized by aquatic organisms. This may facilitate their interaction with a diverse array of biomolecules within the organism, resulting in the formation of a biocorona (BC). The development of BC causes modifications in the physicochemical attributes of the M/NPs including changes to their size, stability, surface charge and other properties. This review details the concept of BC formation and its underlying mechanism. It provides insight on the analytical techniques employed for characterizing BC formation and addresses the associated challenges. Further, the eco-toxicological implications of M/NPs and the role of BC in modifying their potential toxicity on aquatic organisms is specified. The impact of BC formation on the fate and transport of M/NPs is discussed. A concise outlook on the future perspectives is also presented.
Collapse
Affiliation(s)
- Camil Rex M
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 India
| | - Abhrajit Debroy
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 India
| | - M Joyce Nirmala
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600036 India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 India
| |
Collapse
|
37
|
Alqahtani S, Alqahtani S, Saquib Q, Mohiddin F. Toxicological impact of microplastics and nanoplastics on humans: understanding the mechanistic aspect of the interaction. FRONTIERS IN TOXICOLOGY 2023; 5:1193386. [PMID: 37521752 PMCID: PMC10375051 DOI: 10.3389/ftox.2023.1193386] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Plastic is a pervasive material that has become an indispensable part of our daily lives and is used in various commercial products. However, plastic waste has significantly impacted the environment, accumulating in water and land ecosystems and harming all forms of life. When plastic degrades, it breaks down into smaller particles called microplastics (MPs), which can further breakdown into nanoplastics (NPs). Due to their small size and potential toxicity to humans, NPs are of particular concern. During the COVID-19 pandemic, the production of plastic had reached unprecedented levels, including essential medical kits, food bags, and personal protective equipment (PPE), which generate MPs and NPs when burned. MPs and NPs have been detected in various locations, such as air, food, and soil, but our understanding of their potential adverse health effects is limited. This review aims to provide a comprehensive overview of the sources, interactions, ecotoxicity, routes of exposure, toxicity mechanisms, detection methods, and future directions for the safety evaluation of MPs and NPs. This would improve our understanding of the impact of MPs and NPs on our health and environment and identify ways to address this global crisis.
Collapse
Affiliation(s)
- Saeed Alqahtani
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- Comparative Pathobiology Department, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Shaherah Alqahtani
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| | - Quaiser Saquib
- Chair for DNA Research, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fayaz Mohiddin
- Mountain Research Center for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, India
| |
Collapse
|
38
|
Cattaneo N, Zarantoniello M, Conti F, Frontini A, Chemello G, Dimichino B, Marongiu F, Cardinaletti G, Gioacchini G, Olivotto I. Dietary Microplastic Administration during Zebrafish ( Danio rerio) Development: A Comprehensive and Comparative Study between Larval and Juvenile Stages. Animals (Basel) 2023; 13:2256. [PMID: 37508033 PMCID: PMC10376277 DOI: 10.3390/ani13142256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
One of the main sources of MPs contamination in fish farms is aquafeed. The present study investigated, for the first time through a comparative approach, the effects of different-sized fluorescent MPs included in a diet intended for zebrafish (Danio rerio). A comparison based on fish developmental stage (larval vs. juvenile), exposure time, and dietary MPs' size and concentration was performed. Four experimental diets were formulated, starting from the control, by adding fluorescent polymer A (size range 1-5 µm) and B (size range 40-47 µm) at two different concentrations (50 and 500 mg/kg). Zebrafish were sampled at 20 (larval phase) and 60 dpf (juvenile stage). Whole larvae, intestine, liver and muscles of juveniles were collected for the analyses. Polymer A was absorbed at the intestinal level in both larvae and juveniles, while it was evidenced at the hepatic and muscular levels only in juveniles. Hepatic accumulation caused an increase in oxidative stress markers in juveniles, but at the same time significantly reduced the number of MPs able to reach the muscle, representing an efficient barrier against the spread of MPs. Polymer B simply transited through the gut, causing an abrasive effect and an increase in goblet cell abundance in both stages.
Collapse
Affiliation(s)
- Nico Cattaneo
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Matteo Zarantoniello
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Federico Conti
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Andrea Frontini
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Giulia Chemello
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Beniamino Dimichino
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Fabio Marongiu
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Gloriana Cardinaletti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Ike Olivotto
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| |
Collapse
|
39
|
Frank YA, Interesova EA, Solovyev MM, Xu J, Vorobiev DS. Effect of Microplastics on the Activity of Digestive and Oxidative-Stress-Related Enzymes in Peled Whitefish ( Coregonus peled Gmelin) Larvae. Int J Mol Sci 2023; 24:10998. [PMID: 37446176 DOI: 10.3390/ijms241310998] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Microplastics (MPs) are emergent pollutants in freshwater environments and may impact aquatic organisms, including those of nutritional value. The specific activities of digestive and antioxidant enzymes can be used as good bioindicators of the potential effects of MPs on fish in case of waterborne MP contamination. In this study, we used fluorescent polystyrene microplastics (PS-MPs) to analyze the alterations in enzyme activities in larvae of Coregonus peled Gmelin (peled or Northern whitefish), one of the most valuable commercial fish species of Siberia. Our results indicate that peled larvae can ingest 2 µm PS microspheres in a waterborne exposure model. A positive correlation (rs = 0.956; p < 0.01) was found between MP concentration in water and the number of PS microspheres in fish guts, with no significant differences between 24 h and 6-day exposure groups. The ingestion of MPs caused alterations in digestive enzyme activity and antioxidant responses at the whole-body level. The presence of PS-MPs significantly stimulated (p < 0.05) the specific activity of α-Amylase and non-specific esterases in peled larvae after 24 h. However, a pronounced positive effect (p < 0.05) of MPs on the activity of pancreatic trypsine and bile salt-activated lipase was only found after 6 days of exposure compared to after 24 h. Intestinal membrane enzyme aminopeptidase N was also stimulated in the presence of PS-MPs after 6-day exposure. We also observed a significant increase in the specific activity of catalase in peled larvae after 6 days of exposure, which indicates the MP-induced modulation of oxidative stress. Taken together, these results highlight the potential impact of environmental MPs on northern commercial fish, their importance for estimating fish stocks, and the sustainability of freshwater ecosystems.
Collapse
Affiliation(s)
- Yulia A Frank
- Biological Institute, Tomsk State University, Tomsk 634050, Russia
| | - Elena A Interesova
- Biological Institute, Tomsk State University, Tomsk 634050, Russia
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk 630091, Russia
| | - Mikhail M Solovyev
- Biological Institute, Tomsk State University, Tomsk 634050, Russia
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk 630091, Russia
| | - Jiayi Xu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Danil S Vorobiev
- Biological Institute, Tomsk State University, Tomsk 634050, Russia
| |
Collapse
|
40
|
Das BC, Ramanan P A, Gorakh SS, Pillai D, Vattiringal Jayadradhan RK. Sub-chronic exposure of Oreochromis niloticus to environmentally relevant concentrations of smaller microplastics: Accumulation and toxico-physiological responses. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131916. [PMID: 37402322 DOI: 10.1016/j.jhazmat.2023.131916] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
This study assesses the accumulation and toxic effects of environmentally relevant concentrations (0.01, 0.1 and 1 mg/L) of polystyrene MPs (1 µm) in Oreochromis niloticus (Nile tilapia) for 14 days. The results showed that 1 µm PS-MPs accumulated in the intestine, gills, liver, spleen, muscle, gonad and brain. RBC, Hb and HCT showed a significant decline, while WBC and PLT showed a significant increase after the exposure. Glucose, total protein, A/G ratio, SGOT, SGPT and ALP showed significant increments in 0.1 and 1 mg/L of PS-MPs treated groups. The increase in cortisol level and upregulation of HSP70 gene expression in response to MPs exposure indicate MPs-mediated stress in tilapia. MPs-induced oxidative stress is evident from reduced SOD activity, increased MDA levels and upregulated P53 gene expression. The immune response was enhanced by inducing respiratory burst activity, MPO activity and serum TNF-α and IgM levels. MPs exposure also led to down-regulation of CYP1A gene and decreased AChE activity, GNRH and vitellogenin levels, indicating the toxicity of MPs on the cellular detoxification mechanism, nervous and reproductive systems. The present study highlights the tissue accumulation of PS-MP and its effects on hematological, biochemical, immunological and physiological responses in tilapia with low environmentally relevant concentrations.
Collapse
Affiliation(s)
- Bini C Das
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Aparna Ramanan P
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Satkar Sagar Gorakh
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | | |
Collapse
|
41
|
Yu F, Jin F, Cong Y, Lou Y, Li Z, Li R, Ding B, Wang Y, Chen J, Wang J. Bisphenol A decreases the developmental toxicity and histopathological alterations caused by polystyrene nanoplastics in developing marine medaka Oryzias melastigma. CHEMOSPHERE 2023:139174. [PMID: 37301517 DOI: 10.1016/j.chemosphere.2023.139174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Nanoplastics (NPs) are emerging pollutants posing risks to marine biota and human health due to their small size and high bioavailability. However, there are still knowledge gaps regarding effects of co-existing pollutants on NPs toxicity to marine organisms at their respective environmentally relevant concentrations. Herein we investigated developmental toxicity and histopathological alterations caused by co-exposure of polystyrene nanoplastics (PS-NPs) and bisphenol A (BPA) to marine medaka, Oryzias melastigma. Embryos at 6 h post-fertilization were exposed to 50-nm PS-NPs (55 μg/L) or BPA (100 μg/L) or co-exposed to a combination of both. Results showed that PS-NPs exhibited decreased embryonic heart rate, larval body length, and embryonic survival as well as larval deformities such as hemorrhaging and craniofacial abnormality. When co-exposed, BPA mitigated all the adverse developmental effects caused by PS-NPs. PS-NPs also led to an increase in histopathological condition index of liver with early inflammatory responses, while co-exposure of BPA with PS-NPs did not. Our data suggest that the toxicity reduction of PS-NPs in the presence of BPA might result from the decreased bioaccumulation of PS-NPs caused by the interaction between BPA and PS-NPs. This study unveiled the impact of BPA on the toxicity of nanoplastics in marine fish during early developmental stages and highlight the need of more research on the long-term effects of complex mixtures in the marine environment by applying omics approaches to better understand the toxicity mechanism.
Collapse
Affiliation(s)
- Fuwei Yu
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China; Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Fei Jin
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Yi Cong
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Yadi Lou
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Zhaochuan Li
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Ruijing Li
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Baojun Ding
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Ying Wang
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian, 116023, China.
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Juying Wang
- Key Laboratory for Ecological Environment in Coastal Areas (Ministry of Ecology and Environment), Marine Debris and Microplastic Research Center, Department of Marine Chemistry, National Marine Environmental Monitoring Center, Dalian, 116023, China
| |
Collapse
|
42
|
Hasan J, Siddik MA, Ghosh AK, Mesbah SB, Sadat MA, Shahjahan M. Increase in temperature increases ingestion and toxicity of polyamide microplastics in Nile tilapia. CHEMOSPHERE 2023; 327:138502. [PMID: 36965532 DOI: 10.1016/j.chemosphere.2023.138502] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MP) pollution and global warming are worldwide concerns, creating various physiological problems for aquatic organisms. This study was carried out to know the effects of different temperature (30, 33 and 36 °C) on ingestion of MP along with the physiological consequences in Nile tilapia (Oreochromis niloticus) exposed to virgin polyamide (PA) (10 mg/L water; 500 μm to 4 mm in size) for 15 days. A significant difference was found in PA ingestion of the fish treated with different temperature. Fish from 36 °C temperature groups ingested highest amount of PA (136 ± 24.40 item/fish) during the exposure period. The hemoglobin (Hb) and red blood cell (RBC) decreased significantly in the highest temperature (36 °C) without PA exposure. At the same time, Hb increased, but RBC significantly reduced in all the temperature conditions with PA exposure. The number of white blood cell (WBC) and glucose level increased significantly in the highest temperature (36 °C) without PA exposure. In contrast, WBC increased and glucose decreased significantly in all the temperature conditions with PA exposure. Frequencies of various nuclear and cellular abnormalities of erythrocytes increased significantly in the fish exposed to all temperature with PA exposure, though severity increased with temperature. Similarly, histological damage of gills (hyperplasia, epithelial necrosis, deformed pillar system, epithelial lifting, telangiectasia) and intestine (epithelium breakage, enterocyte vacuolization and shortening of villi) was found to be mild to severe by the accumulation of PA, increased severity with increase of temperature. This study confirms that global warming as a consequence of climate change might influence MP ingestion hampering physiological state of fish.
Collapse
Affiliation(s)
- Jabed Hasan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Abubakkar Siddik
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Ashik Kumar Ghosh
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Sumaiya Binte Mesbah
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Ashfaq Sadat
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
43
|
Liang W, Li B, Jong MC, Ma C, Zuo C, Chen Q, Shi H. Process-oriented impacts of microplastic fibers on behavior and histology of fish. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130856. [PMID: 36753910 DOI: 10.1016/j.jhazmat.2023.130856] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/27/2022] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Microplastic pollution has raised global concern for its hazards to biota. To determine the direct impact of microplastics during their contact with fish, we exposed goldfish (Carassius auratus) to 100 and 1000 items/L waterborne microplastic fibers in the short- and long-term. In the presence of 1000 items/L of microplastic fibers, the coughing behavior of fish increased significantly after 2 h of exposure. Predatory behaviors decreased significantly by 53.0% after 45 d of exposure, and the reduction in daily food intake was negatively related to exposure duration in the 1000 items/L group. In addition, microplastic fibers stimulated dynamic mucus secretion across different fish tissues during the different processes evaluated in this study, with 30.0% and 62.9% overall increases in the secretory capacity of mucus cells in the 100 and 1000 items/L groups, respectively. These behavioral and histological alterations were derived from the ventilation, feeding, and swimming processes of goldfish. We regarded these changes as process-oriented impacts, suggesting the effects of microplastics on fish and how fish cope with microplastics.
Collapse
Affiliation(s)
- Weiwenhui Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Bowen Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Mui-Choo Jong
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Cuizhu Ma
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Chencheng Zuo
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
44
|
Costa LL, Arueira VF, Silva TN, da Silva Oliveira A, Dos Santos Nascimento L, Sant'Anna MEAS, Viana CF, da Silva KC, Gunner B, Leite V, da Costa ID. Quantifying microplastics in fishes: The first case study contrasting the perspective of untrained and experienced researchers. MARINE POLLUTION BULLETIN 2023; 189:114736. [PMID: 36812717 DOI: 10.1016/j.marpolbul.2023.114736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Microplastic studies hold a low explored potential for citizen science and environmental education, but methodological issues challenge data produced by non-specialists. We compared microplastic abundance and diversity in the red tilapia Oreochromis niloticus recovered by untrained students with those recovered by researchers that have experience of three years studying the incorporation of this pollutant by aquatic organisms. Seven students dissected 80 specimens and performed digestion of digestive tract in hydrogen peroxide. The solution was filtered and inspected under a stereomicroscope by the students and by two expert researchers. A control treatment consisted of 80 samples handled only by experts. The students overestimated the abundance of fibers and fragments. Striking differences in abundance and richness of microplastics were verified between the fish dissected by students and by expert researchers. Therefore, citizen science projects involving the uptake of microplastics by fish should provide training until a satisfactory level of expertise is reached.
Collapse
Affiliation(s)
- Leonardo Lopes Costa
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Ambientais, Campos dos Goytacazes, Rio de Janeiro, Brazil; Instituto Solar Brasil de Pesquisa e Desenvolvimento - ISOBRAS, Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Vitor Figueira Arueira
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Ambientais, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Thayanne Nascimento Silva
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Ambientais, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Ariane da Silva Oliveira
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Ambientais, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Leticia Dos Santos Nascimento
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Reprodução e Melhoramento Genético Animal, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | | | - Camyla Freitas Viana
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Ambientais, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Kaique Carvalho da Silva
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Químicas, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Bruna Gunner
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Ambientais, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Victor Leite
- Instituto Federal Fluminense, Campus Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Igor David da Costa
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Ambientais, Campos dos Goytacazes, Rio de Janeiro, Brazil; Universidade Federal Fluminense, Departamento de Ciências Exatas, Biológicas e da Terra, Santo Antônio de Pádua, Rio de Janeiro, Brazil
| |
Collapse
|
45
|
Fang JKH, Tse TW, Maboloc EA, Leung RKL, Leung MML, Wong MWT, Chui APY, Wang Y, Hu M, Kwan KY, Cheung SG. Adverse impacts of high-density microplastics on juvenile growth and behaviour of the endangered tri-spine horseshoe crab Tachypleus tridentatus. MARINE POLLUTION BULLETIN 2023; 187:114535. [PMID: 36652855 DOI: 10.1016/j.marpolbul.2022.114535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
The impacts of high-density microplastics, namely polyamine 6,6 (nylon), polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET), on growth and behaviour of the endangered tri-spine horseshoe crab Tachypleus tridentatus were investigated for 100 days. Negative changes in wet weight and prosomal width of the juveniles were observed in all treatments of microplastics, but significant difference was only detected in prosomal width between control and PMMA. T. tridentatus became significantly less active upon exposure to nylon and PET. The extent of burrowing by T. tridentatus did not significantly differ among the treatments but was overall significantly reduced towards day 100. T. tridentatus exposed to PET significantly showed the lowest survival probability (30 %), compared to the other treatments (70-90 %). In conclusion, high-density microplastics compromised growth and behaviour of juvenile horseshoe crabs. Among the polymers that were tested, PET was considered more harmful and associated with higher mortality.
Collapse
Affiliation(s)
- James Kar-Hei Fang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China; Research Institute for Land and Space, and Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China.
| | - Tsz Wan Tse
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Elizaldy Acebu Maboloc
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Ryan Kar-Long Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Matthew Ming-Lok Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; Ocean Park Conservation Foundation Hong Kong, Hong Kong SAR, China
| | - Max Wang-Tang Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Apple Pui-Yi Chui
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China; Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Kit Yue Kwan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China
| | - Siu Gin Cheung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China; Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
| |
Collapse
|
46
|
Clark NJ, Khan FR, Crowther C, Mitrano DM, Thompson RC. Uptake, distribution and elimination of palladium-doped polystyrene nanoplastics in rainbow trout (Oncorhynchus mykiss) following dietary exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158765. [PMID: 36113800 DOI: 10.1016/j.scitotenv.2022.158765] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/25/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
The ingestion of nanoplastics (NPs) by fish has led to concerns regarding fish health and food chain transfer, but analytical constraints have hindered quantitative data collection on their uptake and depuration. We used palladium-doped polystyrene nanoplastics (PS-Pd NPs, ~200 nm) to track particle fate in rainbow trout (Oncorhynchus mykiss) during a week-long dietary exposure and subsequent 7-day depuration period on a control diet (no added PS-Pd NPs). At Day 3 and 7 of the exposure, and after depuration, the mid intestine, hind intestine, liver, gallbladder, kidney, gill and carcass were sampled. All organs and the carcass were analysed for total Pd content by inductively couple plasma mass spectrometry. After 3 days of exposure, the mid (32.5 ± 8.3 ng g-1) and hind (42.3 ± 8.2 ng g-1) intestine had significantly higher total Pd concentrations compared to the liver and carcass (1.3 ± 0.4 and 3.4 ± 1.1 ng g-1, respectively). At Day 7, there was no time-related difference in any organ (or the carcass) total Pd concentrations compared to Day 3. When the total Pd content was expressed as a body distribution based on mass of tissue, the carcass contained the highest fraction with 72.5 ± 5.2 % at Day 7, which could raise concerns over transfer to higher trophic levels. The total number of particles that entered the fish over the 7 days was 94.5 ± 13.5 × 106 particles, representing 0.07 ± 0.01 % of the Pd the fish had been fed. Following depuration, there was no detectable Pd in any organ or the carcass, indicating clearance from the fish. These data indicate that these NPs are taken into the internal organs and carcass of fish, yet removal of the exposure results in substantial excretion to below the limit of detection.
Collapse
Affiliation(s)
- Nathaniel J Clark
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK.
| | - Farhan R Khan
- Norwegian Research Centre (NORCE), Nygårdsporten 112, NO-5008 Bergen, Norway
| | - Charlotte Crowther
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Denise M Mitrano
- Department of Environmental Systems Science, ETH Zurich, 8092, Switzerland
| | - Richard C Thompson
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| |
Collapse
|
47
|
Dose-Dependent Cytotoxicity of Polypropylene Microplastics (PP-MPs) in Two Freshwater Fishes. Int J Mol Sci 2022; 23:ijms232213878. [PMID: 36430357 PMCID: PMC9692651 DOI: 10.3390/ijms232213878] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
The massive accumulation of plastics over the decades in the aquatic environment has led to the dispersion of plastic components in aquatic ecosystems, invading the food webs. Plastics fragmented into microplastics can be bioaccumulated by fishes via different exposure routes, causing several adverse effects. In the present study, the dose-dependent cytotoxicity of 8−10 μm polypropylene microplastics (PP-MPs), at concentrations of 1 mg/g (low dose) and 10 mg/g dry food (high dose), was evaluated in the liver and gill tissues of two fish species, the zebrafish (Danio rerio) and the freshwater perch (Perca fluviatilis). According to our results, the inclusion of PP-MPs in the feed of D. rerio and P. fluviatilis hampered the cellular function of the gills and hepatic cells by lipid peroxidation, DNA damage, protein ubiquitination, apoptosis, autophagy, and changes in metabolite concentration, providing evidence that the toxicity of PP-MPs is dose dependent. With regard to the individual assays tested in the present study, the biggest impact was observed in DNA damage, which exhibited a maximum increase of 18.34-fold in the liver of D. rerio. The sensitivity of the two fish species studied differed, while no clear tissue specificity in both fish species was observed. The metabolome of both tissues was altered in both treatments, while tryptophan and nicotinic acid exhibited the greatest decrease among all metabolites in all treatments in comparison to the control. The battery of biomarkers used in the present study as well as metabolomic changes could be suggested as early-warning signals for the assessment of the aquatic environment quality against MPs. In addition, our results contribute to the elucidation of the mechanism induced by nanomaterials on tissues of aquatic organisms, since comprehending the magnitude of their impact on aquatic ecosystems is of great importance.
Collapse
|
48
|
Loayza E, Trigoso Barrientos AC, Janssens GP. Evidence of microplastics in water and commercial fish from a high-altitude mountain lake (Lake Titicaca). PeerJ 2022; 10:e14112. [PMID: 36389423 PMCID: PMC9653051 DOI: 10.7717/peerj.14112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022] Open
Abstract
Microplastic pollution is a widespread environmental concern. Like other anthropogenic pollutants, microplastics can reach aquatic ecosystems through rivers and interact with the aquatic biota. For instance, Lake Titicaca (between Bolivia and Peru), one of the great ancient lakes in South America (3,809 m a.s.l.), shows a pollution problem, particularly in the southern shallow basin (Lago Menor) in Bolivia. Nevertheless, our knowledge of the presence of microplastics and their interaction with the biota of Lake Titicaca is limited. Therefore, this study evaluated the presence of microplastics in the stomach content of the four fish species targeted by local fisheries in Lago Menor of Lake Titicaca (Orestias luteus, Orestias agassizii, Trichomycterus dispar, and Odonthestes bonariensis; N = 1,283), and looked for relationships with trophic guilds or fishing areas. Additionally, surface water was analyzed to evaluate the presence of microplastics in the water. The evaluation of microplastics was carried out by visual observations. We observed that the frequency of microplastic ingestion was low in all species (<5%). Conversely, microplastic was present in the water, with the highest quantity at the southern part of Lago Menor (103 ± 20 particles per L), without differences in the microplastic number between sites. Most microplastics counted in stomach contents were fibers, whereas water samples mainly contained fragments. Our results point to microplastic pollution in Lago Menor of Lake Titicaca. However, we could not determine the pollution rate due to considerable methodological limitations. Further research will be needed to robustly detect microplastics in Lake Titicaca and their impact on the fish species in the lake.
Collapse
Affiliation(s)
- Erick Loayza
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium,Unidad de Ecología Acuática, Instituto de Ecología, Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Amaya C. Trigoso Barrientos
- Unidad de Ecología Acuática, Instituto de Ecología, Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Geert P.J. Janssens
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
49
|
Najahi H, Alessio N, Squillaro T, Conti GO, Ferrante M, Di Bernardo G, Galderisi U, Messaoudi I, Minucci S, Banni M. Environmental microplastics (EMPs) exposure alter the differentiation potential of mesenchymal stromal cells. ENVIRONMENTAL RESEARCH 2022; 214:114088. [PMID: 35973457 DOI: 10.1016/j.envres.2022.114088] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Humans are exposed to environmental microplastic (MPs) that can be frequent in surrounding environment. The mesenchymal stromal cells are a heterogeneous population, which contain fibroblasts and stromal cells, progenitor cells and stem cells. They are part of the stromal component of most tissue and organs in our organisms. Any injury to their functions may impair tissue renewal and homeostasis. We evaluated the effects of different size MPs that could be present in water bottles on human bone marrow mesenchymal stromal cells (BMMSCs) and adipose mesenchymal stromal cells (AMSCs). MPs of polyethylene terephthalate (MPs-PET) (<1 μm and <2.6 μm) were tested in this study. PET treatments induced a reduction in proliferating cells (around 30%) associated either with the onset of senescence or increase in apoptosis. The AMSCs and BMMSCs exposed to PET showed an alteration of differentiation potential. AMSCs remained in an early stage of adipocyte differentiation as shown by high levels of mRNA for Peroxisome Proliferator Activated Receptor Gamma (PPARG) (7.51 vs 1.00) and reduction in Lipoprotein Lipase (LPL) mRNA levels (0.5 vs 1.0). A loss of differentiation capacity was also observed for the osteocyte phenotype in BMMSCs. In particular, we observed a reduction in Bone Gamma-Carboxy glutamate Protein (BGLAP) (0.4 for PET1 and 0.6 for PET2.6 vs 0.1 CTRL) and reduction in Osteopontin (SPP1) (0.3 for PET 1 and 0.64 for PET 2.6 vs 0.1 CTRL). This pioneering mesenchymal cell response study demonstrated that environmental microplastic could be bioavailable for cell uptake and may further lead to irreversible diseases.
Collapse
Affiliation(s)
- Hana Najahi
- Laboratory of Agrobiodiversity and Ecotoxicology LR21AGR02, Sousse University, Chott-Mariem, 4042, Sousse, Tunisia; Higher Institute of Biotechnology, Monastir University, Tunisia
| | - Nicola Alessio
- Department of Experimental Medicine, "Luigi Vanvitelli" Campania University, 81038, Napoli, Italy
| | - Tiziana Squillaro
- Department of Experimental Medicine, "Luigi Vanvitelli" Campania University, 81038, Napoli, Italy
| | - Gea Oliveri Conti
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies G. F. Ingrassia, Catania University, Via Santa Sofia 87, 95123, Catania, Italy
| | - Margherita Ferrante
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies G. F. Ingrassia, Catania University, Via Santa Sofia 87, 95123, Catania, Italy
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, "Luigi Vanvitelli" Campania University, 81038, Napoli, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, "Luigi Vanvitelli" Campania University, 81038, Napoli, Italy
| | - Imed Messaoudi
- Higher Institute of Biotechnology, Monastir University, Tunisia
| | - Sergio Minucci
- Department of Experimental Medicine, "Luigi Vanvitelli" Campania University, 81038, Napoli, Italy
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology LR21AGR02, Sousse University, Chott-Mariem, 4042, Sousse, Tunisia; Higher Institute of Biotechnology, Monastir University, Tunisia.
| |
Collapse
|
50
|
Abstract
Plastic waste pollution is one of the biggest problems in the world today. The amount of plastic in the environment continues to increase, and human exposure to microplastic (MP) has become a reality. This subject has attracted the attention of the whole world. The MP problem has also been noticed by the scientific community. The term microplastic is mostly used to define synthetic material with a high polymer content that can have a size range from 0.1 to 5000 µm. This paper aims to characterize the routes of exposure to MP, define its pollution sources, and identify food types contaminated with plastics. This review addresses the current state of knowledge on this type of particles, with particular emphasis on their influence on human health. Adverse effects of MP depend on routes and sources of exposure. The most common route of exposure is believed to be the gastrointestinal tract. Sources of MP include fish, shellfish, water as well as tea, beer, wine, energy drinks, soft drinks, milk, salt, sugar, honey, poultry meat, fruits, and vegetables. Studies have shown that particles of PET, PE, PP, PS, PVC, PA, and PC are the most frequently found in food.
Collapse
Affiliation(s)
- Kornelia Kadac-Czapska
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Eliza Knez
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Małgorzata Grembecka
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|