1
|
Juranić P, Cirelli C, Mamyrbayev T, Uemura Y, Vila-Comamala J, Lima FA, Bacellar C, Johnson PJM, Prat E, Reiche S, Wach A, Bykova I, Kahraman A, Kabanova V, Milne C, David C. Transient X-Ray Absorption Near Edge Structure Spectroscopy Using Broadband Free-Electron Laser Pulses. SMALL METHODS 2024; 8:e2301328. [PMID: 38441281 DOI: 10.1002/smtd.202301328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/02/2024] [Indexed: 08/18/2024]
Abstract
A new method for time-resolved X-ray absorption near edge structure (XANES) spectroscopy that enables faster data acquisition and requires smaller sample quantities for high-quality data, thus allowing the analysis of more samples in a shorter time is introduced. The method uses large bandwidth free electron laser pulses to measure laser-excited XANES spectra in transmission mode. A beam-splitting grating configuration allows simultaneous measurements of the spectra of the incoming X-ray Free Electron Laser (XFEL) pulses and transmission XANES, which is crucial for compensating the pulse-dependent intensity and spectrum fluctuations due to the self-amplified spontaneous emission operation. The implementation of this new methodology is applied on a liquid solution of ammonium iron(III) oxalate jet and is compared to previous results, showing great improvements in the speed of acquisition and spectral resolution, and the ability to measure a large 2-D spectral-time map quickly.
Collapse
Affiliation(s)
- Pavle Juranić
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Claudio Cirelli
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Talgat Mamyrbayev
- XRnanotech GmbH, PSI, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Yohei Uemura
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Joan Vila-Comamala
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | | | - Camila Bacellar
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Philip J M Johnson
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Eduard Prat
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Sven Reiche
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Anna Wach
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Iuliia Bykova
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Abdullah Kahraman
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Victoria Kabanova
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | | | - Christian David
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| |
Collapse
|
2
|
Chen J, Yang X, Ning Y, Yang X, Huang Y, Zhang Z, Tang J, Zheng P, Yan J, Zhao J, Li Q. Preparation and Application of Nanostructured ZnO in Radiation Detection. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3549. [PMID: 39063841 PMCID: PMC11278741 DOI: 10.3390/ma17143549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
In order to adapt to the rapid development of high-speed imaging technology in recent years, it is very important to develop scintillators with an ultrafast time response. Because of its radiation-induced ultrafast decay time, ZnO has become an important material for radiation detection and dosimetry. According to different detection sources and application scenarios, ZnO is used in various radiation detectors in different structures, including nanoarrays and nanocomposites. In this paper, the synthesis methods and research status of various nanostructured ZnO-based materials and their applications in the detection of high-energy rays (X-rays, γ-rays) and high-energy particles (α, β and neutron) are reviewed. The performance discussion mainly includes spatial resolution, decay time and detection efficiency.
Collapse
Affiliation(s)
- Jingkun Chen
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Xuechun Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yuandong Ning
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Xue Yang
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Yifei Huang
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Zeqing Zhang
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Jian Tang
- Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang 621022, China
| | - Pu Zheng
- Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang 621022, China
| | - Jie Yan
- Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang 621022, China
| | - Jingtai Zhao
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Qianli Li
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Solov’yov AV, Verkhovtsev AV, Mason NJ, Amos RA, Bald I, Baldacchino G, Dromey B, Falk M, Fedor J, Gerhards L, Hausmann M, Hildenbrand G, Hrabovský M, Kadlec S, Kočišek J, Lépine F, Ming S, Nisbet A, Ricketts K, Sala L, Schlathölter T, Wheatley AEH, Solov’yov IA. Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment. Chem Rev 2024; 124:8014-8129. [PMID: 38842266 PMCID: PMC11240271 DOI: 10.1021/acs.chemrev.3c00902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
This roadmap reviews the new, highly interdisciplinary research field studying the behavior of condensed matter systems exposed to radiation. The Review highlights several recent advances in the field and provides a roadmap for the development of the field over the next decade. Condensed matter systems exposed to radiation can be inorganic, organic, or biological, finite or infinite, composed of different molecular species or materials, exist in different phases, and operate under different thermodynamic conditions. Many of the key phenomena related to the behavior of irradiated systems are very similar and can be understood based on the same fundamental theoretical principles and computational approaches. The multiscale nature of such phenomena requires the quantitative description of the radiation-induced effects occurring at different spatial and temporal scales, ranging from the atomic to the macroscopic, and the interlinks between such descriptions. The multiscale nature of the effects and the similarity of their manifestation in systems of different origins necessarily bring together different disciplines, such as physics, chemistry, biology, materials science, nanoscience, and biomedical research, demonstrating the numerous interlinks and commonalities between them. This research field is highly relevant to many novel and emerging technologies and medical applications.
Collapse
Affiliation(s)
| | | | - Nigel J. Mason
- School
of Physics and Astronomy, University of
Kent, Canterbury CT2 7NH, United
Kingdom
| | - Richard A. Amos
- Department
of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, U.K.
| | - Ilko Bald
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Gérard Baldacchino
- Université
Paris-Saclay, CEA, LIDYL, 91191 Gif-sur-Yvette, France
- CY Cergy Paris Université,
CEA, LIDYL, 91191 Gif-sur-Yvette, France
| | - Brendan Dromey
- Centre
for Light Matter Interactions, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| | - Martin Falk
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
- Kirchhoff-Institute
for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Juraj Fedor
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Luca Gerhards
- Institute
of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Michael Hausmann
- Kirchhoff-Institute
for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Georg Hildenbrand
- Kirchhoff-Institute
for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
- Faculty
of Engineering, University of Applied Sciences
Aschaffenburg, Würzburger
Str. 45, 63743 Aschaffenburg, Germany
| | | | - Stanislav Kadlec
- Eaton European
Innovation Center, Bořivojova
2380, 25263 Roztoky, Czech Republic
| | - Jaroslav Kočišek
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Franck Lépine
- Université
Claude Bernard Lyon 1, CNRS, Institut Lumière
Matière, F-69622, Villeurbanne, France
| | - Siyi Ming
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Andrew Nisbet
- Department
of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, U.K.
| | - Kate Ricketts
- Department
of Targeted Intervention, University College
London, Gower Street, London WC1E 6BT, United Kingdom
| | - Leo Sala
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Thomas Schlathölter
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
- University
College Groningen, University of Groningen, Hoendiepskade 23/24, 9718 BG Groningen, The Netherlands
| | - Andrew E. H. Wheatley
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Ilia A. Solov’yov
- Institute
of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
4
|
Leon C, Scheinker A. Physics-constrained machine learning for electrodynamics without gauge ambiguity based on Fourier transformed Maxwell's equations. Sci Rep 2024; 14:14809. [PMID: 38926466 PMCID: PMC11208491 DOI: 10.1038/s41598-024-65650-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
We utilize a Fourier transformation-based representation of Maxwell's equations to develop physics-constrained neural networks for electrodynamics without gauge ambiguity, which we label the Fourier-Helmholtz-Maxwell neural operator method. In this approach, both of Gauss's laws and Faraday's law are built in as hard constraints, as well as the longitudinal component of Ampère-Maxwell in Fourier space, assuming the continuity equation. An encoder-decoder network acts as a solution operator for the transverse components of the Fourier transformed vector potential,A ^ ⊥ ( k , t ) , whose two degrees of freedom are used to predict the electromagnetic fields. This method was tested on two electron beam simulations. Among the models investigated, it was found that a U-Net architecture exhibited the best performance as it trained quicker, was more accurate and generalized better than the other architectures examined. We demonstrate that our approach is useful for solving Maxwell's equations for the electromagnetic fields generated by intense relativistic charged particle beams and that it generalizes well to unseen test data, while being orders of magnitude quicker than conventional simulations. We show that the model can be re-trained to make highly accurate predictions in as few as 20 epochs on a previously unseen data set.
Collapse
|
5
|
Orlandi GL. Absolute and non-invasive determination of the electron bunch length in a free electron laser using a bunch compressor monitor. Sci Rep 2024; 14:6319. [PMID: 38491040 PMCID: PMC10943132 DOI: 10.1038/s41598-024-56586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
In a linac driven Free Electron Laser (FEL), the shot-to-shot and non-invasive monitoring of the electron bunch length is normally ensured by Bunch Compressor Monitors (BCMs). The bunch-length dependent signal of a BCM results from the detection and integration-over a given frequency band-of the temporal coherent enhancement of the radiation spectral energy emitted by the electron beam while experiencing a longitudinal compression. In this work, we present a method that permits to express the relative variation of the bunch length as a function of the relative statistical fluctuations of the BCM and charge signals. Furthermore, in the case of a BCM equipped with two detectors simultaneously operating in two distinct wavelength bands, the method permits an absolute determination of the electron bunch length. The proposed method is beneficial to a FEL. Thanks to it, the machine compression feedback can be tuned against the absolute measurement of the bunch length rather than a bunch-length dependent signal. In a CW-superconducting-linac driven FEL, it can offer the precious opportunity to implement a fully non-invasive and absolute diagnostics of the bunch length.
Collapse
Affiliation(s)
- Gian Luca Orlandi
- Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland.
| |
Collapse
|
6
|
Perrett S, Chatrchyan V, Buckup T, van Thor JJ. Application of density matrix Wigner transforms for ultrafast macromolecular and chemical x-ray crystallography. J Chem Phys 2024; 160:100901. [PMID: 38456527 DOI: 10.1063/5.0188888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Time-Resolved Serial Femtosecond Crystallography (TR-SFX) conducted at X-ray Free Electron Lasers (XFELs) has become a powerful tool for capturing macromolecular structural movies of light-initiated processes. As the capabilities of XFELs advance, we anticipate that a new range of coherent control and structural Raman measurements will become achievable. Shorter optical and x-ray pulse durations and increasingly more exotic pulse regimes are becoming available at free electron lasers. Moreover, with high repetition enabled by the superconducting technology of European XFEL (EuXFEL) and Linac Coherent Light Source (LCLS-II) , it will be possible to improve the signal-to-noise ratio of the light-induced differences, allowing for the observation of vibronic motion on the sub-Angstrom level. To predict and assign this coherent motion, which is measurable with a structural technique, new theoretical approaches must be developed. In this paper, we present a theoretical density matrix approach to model the various population and coherent dynamics of a system, which considers molecular system parameters and excitation conditions. We emphasize the use of the Wigner transform of the time-dependent density matrix, which provides a phase space representation that can be directly compared to the experimental positional displacements measured in a TR-SFX experiment. Here, we extend the results from simple models to include more realistic schemes that include large relaxation terms. We explore a variety of pulse schemes using multiple model systems using realistic parameters. An open-source software package is provided to perform the density matrix simulation and Wigner transformations. The open-source software allows us to define any arbitrary level schemes as well as any arbitrary electric field in the interaction Hamiltonian.
Collapse
Affiliation(s)
- Samuel Perrett
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Viktoria Chatrchyan
- Physikalisch Chemisches Institut, Ruprecht-Karls Universität, D-69120 Heidelberg, Germany
| | - Tiago Buckup
- Physikalisch Chemisches Institut, Ruprecht-Karls Universität, D-69120 Heidelberg, Germany
| | - Jasper J van Thor
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Wang T, Xu H, Liu Z, Zhang X, Liu J, Xu J, Feng L, Li J, Liu K, Huang S. Advanced drive laser system for a high-brightness continuous-wave photocathode electron gun. OPTICS EXPRESS 2024; 32:9699-9709. [PMID: 38571198 DOI: 10.1364/oe.515063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024]
Abstract
In order to enhance the performance of a continuous-wave photocathode electron gun at Peking University, and to achieve electron beams with higher current and brightness, a multifunctional drive laser system named PULSE (Peking University drive Laser System for high-brightness Electron source) has been developed. This innovative system is capable of delivering an average output power of 120 W infrared laser pulse at 81.25 MHz, as well as approximately 13.8 W of green power with reliable stability. The utilization of two stages of photonic crystal fibers plays a crucial role in achieving this output. Additionally, the incorporation of two acousto-optic modulators enables the selection of macro-pulses with varying repetition frequencies and duty cycles, which is essential for effective electron beam diagnosis. Furthermore, the system employs a series of birefringent crystals for temporal pulse shaping, allowing for stacking Gaussian pulses into multiple types of distribution. Overall, the optical schematic and operating performance of PULSE are detailed in this paper.
Collapse
|
8
|
Błachucki W, Johnson PJM, Usov I, Divall E, Cirelli C, Knopp G, Juranić P, Patthey L, Szlachetko J, Lemke H, Milne C, Arrell C. Correlation of refractive index based and THz streaking arrival time tools for a hard X-ray free-electron laser. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:233-242. [PMID: 38252522 PMCID: PMC10914176 DOI: 10.1107/s1600577523010500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/07/2023] [Indexed: 01/24/2024]
Abstract
To fully exploit ultra-short X-ray pulse durations routinely available at X-ray free-electron lasers to follow out-of-equilibrium dynamics, inherent arrival time fluctuations of the X-ray pulse with an external perturbing laser pulse need to be measured. In this work, two methods of arrival time measurement were compared to measure the arrival time jitter of hard X-ray pulses. The methods were photoelectron streaking by a THz field and a transient refractive index change of a semiconductor. The methods were validated by shot-to-shot correction of a pump-probe transient reflectivity measurement. An ultimate shot-to-shot full width at half-maximum error between the devices of 19.2 ± 0.1 fs was measured.
Collapse
Affiliation(s)
- Wojciech Błachucki
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Kraków, Poland
| | | | - Ivan Usov
- SwissFEL, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Edwin Divall
- SwissFEL, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Claudio Cirelli
- SwissFEL, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Gregor Knopp
- SwissFEL, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Pavle Juranić
- SwissFEL, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Luc Patthey
- SwissFEL, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Jakub Szlachetko
- National Synchrotron Radiation Centre Solaris, Jagiellonian University, 30-387 Kraków, Poland
| | - Henrik Lemke
- SwissFEL, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Christopher Milne
- SwissFEL, Paul Scherrer Institute, 5232 Villigen, Switzerland
- European XFEL GmbH, 22869 Schenefeld, Germany
| | | |
Collapse
|
9
|
Zhu Y, Yang C, Hu K, Wu C, Luo J, Hao Z, Xing Z, Li Q, Xu Z, Zhang W. FURION: modeling of FEL pulses propagation in dispersive soft X-ray beamline systems. OPTICS EXPRESS 2024; 32:5031-5042. [PMID: 38439240 DOI: 10.1364/oe.515133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 03/06/2024]
Abstract
Modern X-ray free-electron lasers (XFELs) can generate pulses with durations ranging from femtoseconds to attoseconds. The numerical evaluation of ultra-short XFEL pulses through beamline systems is a critical process of beamline system design. However, the bandwidth of such ultra-short XFEL pulses is often non-negligible, and the propagation cannot be simply approximated using the central wavelength, especially in dispersive beamline systems. We developed a numerical model which is called Fourier optics based Ultrashort x-Ray pulse propagatION tool (FURION). This model can not only be used to simulate dispersive beamline systems but also to evaluate non-dispersive beamline systems. The FURION model utilizes Fresnel integral and angular spectrum integral to perform ultra-short XFEL pulse propagation in free space. We also present the method for XFEL pulse propagation through different types of dispersive gratings, which are commonly used in soft X-ray beamline systems. By using FURION, a start-to-end simulation of the FEL-1 beamline system at Shenzhen superconducting soft X-ray free electron laser (S3FEL) is carried out. This model can also be used to evaluate gratings-based spectrometers, beam splitters, pulse compressors, and pulse stretchers. This work provides valuable insights into the start-to-end simulation of X-ray beamline systems.
Collapse
|
10
|
Caprini L, Löwen H, Geilhufe RM. Ultrafast entropy production in pump-probe experiments. Nat Commun 2024; 15:94. [PMID: 38169471 PMCID: PMC10761836 DOI: 10.1038/s41467-023-44277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
The ultrafast control of materials has opened the possibility to investigate non-equilibrium states of matter with striking properties, such as transient superconductivity and ferroelectricity, ultrafast magnetization and demagnetization, as well as Floquet engineering. The characterization of the ultrafast thermodynamic properties within the material is key for their control and design. Here, we develop the ultrafast stochastic thermodynamics for laser-excited phonons. We calculate the entropy production and heat absorbed from experimental data for single phonon modes of driven materials from time-resolved X-ray scattering experiments where the crystal is excited by a laser pulse. The spectral entropy production is calculated for SrTiO3 and KTaO3 for different temperatures and reveals a striking relation with the power spectrum of the displacement-displacement correlation function by inducing a broad peak beside the eigenmode-resonance.
Collapse
Affiliation(s)
- Lorenzo Caprini
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - R Matthias Geilhufe
- Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden.
| |
Collapse
|
11
|
Mendez D, Holton JM, Lyubimov AY, Hollatz S, Mathews II, Cichosz A, Martirosyan V, Zeng T, Stofer R, Liu R, Song J, McPhillips S, Soltis M, Cohen AE. Deep residual networks for crystallography trained on synthetic data. Acta Crystallogr D Struct Biol 2024; 80:26-43. [PMID: 38164955 PMCID: PMC10833344 DOI: 10.1107/s2059798323010586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
The use of artificial intelligence to process diffraction images is challenged by the need to assemble large and precisely designed training data sets. To address this, a codebase called Resonet was developed for synthesizing diffraction data and training residual neural networks on these data. Here, two per-pattern capabilities of Resonet are demonstrated: (i) interpretation of crystal resolution and (ii) identification of overlapping lattices. Resonet was tested across a compilation of diffraction images from synchrotron experiments and X-ray free-electron laser experiments. Crucially, these models readily execute on graphics processing units and can thus significantly outperform conventional algorithms. While Resonet is currently utilized to provide real-time feedback for macromolecular crystallography users at the Stanford Synchrotron Radiation Lightsource, its simple Python-based interface makes it easy to embed in other processing frameworks. This work highlights the utility of physics-based simulation for training deep neural networks and lays the groundwork for the development of additional models to enhance diffraction collection and analysis.
Collapse
Affiliation(s)
- Derek Mendez
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - James M. Holton
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Biophysics, UC San Francisco, San Francisco, CA 94158, USA
| | - Artem Y. Lyubimov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Sabine Hollatz
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Irimpan I. Mathews
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Aleksander Cichosz
- Department of Statistics and Applied Probability, UC Santa Barbara, Santa Barbara, CA 93106, USA
| | - Vardan Martirosyan
- Department of Mathematics, UC Santa Barbara, Santa Barbara, CA 93106, USA
| | - Teo Zeng
- Department of Statistics and Applied Probability, UC Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ryan Stofer
- Department of Statistics and Applied Probability, UC Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ruobin Liu
- Department of Statistics and Applied Probability, UC Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jinhu Song
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Scott McPhillips
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Mike Soltis
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
12
|
Matsumura S, Ogasahara I, Osaka T, Yabashi M, Yamauchi K, Sano Y. High-precision finishing method for narrow-groove channel-cut crystal x-ray monochromator using plasma chemical vaporization machining with wire electrode. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:015101. [PMID: 38175942 DOI: 10.1063/5.0180747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024]
Abstract
A channel-cut crystal monochromator (CCM) is a popular and powerful device for producing monochromatic x-ray beams with extreme angular stability at a nano-radian level. Narrowing the groove width of CCMs has various benefits; for example, it is made possible to design more compact CCMs with an equivalent working energy range and to reduce the optical delay and the amount of beam shift, enhancing compatibility with various experimental techniques. An obstacle to the use of narrow-groove CCMs is the lack of a high-precision finishing method for the inner-wall reflecting surfaces, which imposes the distortion of x-ray wavefronts and spectral purity. We propose a new, damage-free surface-finishing method for silicon CCMs with a narrow groove of 1 mm or less with a localized etching technique using plasma generated with a wire electrode of 50 µm diameter under atmospheric pressure. Repeating plasma-on and plasma-off periods with a pulsed power supply, we reduce the concentration of reaction products through self-diffusion during the plasma-off periods and minimize the redeposition of the products on the processed surface that deteriorates the surface roughness. Under optimized conditions, we processed a CCM with a groove width of 1.2 mm, which has uniform reflection profiles and a nearly ideal reflectivity behavior for coherent monochromatic x rays.
Collapse
Affiliation(s)
- Shotaro Matsumura
- Division of Precision Engineering and Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Iori Ogasahara
- Division of Precision Engineering and Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Taito Osaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kazuto Yamauchi
- Division of Precision Engineering and Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- Research Center for Precision Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yasuhisa Sano
- Division of Precision Engineering and Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Li K, Zhou G, Liu Y, Wu J, Lin MF, Cheng X, Lutman AA, Seaberg M, Smith H, Kakhandiki PA, Sakdinawat A. Prediction on X-ray output of free electron laser based on artificial neural networks. Nat Commun 2023; 14:7183. [PMID: 37935675 PMCID: PMC10630459 DOI: 10.1038/s41467-023-42573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023] Open
Abstract
Knowledge of x-ray free electron lasers' (XFELs) pulse characteristics delivered to a sample is crucial for ensuring high-quality x-rays for scientific experiments. XFELs' self-amplified spontaneous emission process causes spatial and spectral variations in x-ray pulses entering a sample, which leads to measurement uncertainties for experiments relying on multiple XFEL pulses. Accurate in-situ measurements of x-ray wavefront and energy spectrum incident upon a sample poses challenges. Here we address this by developing a virtual diagnostics framework using an artificial neural network (ANN) to predict x-ray photon beam properties from electron beam properties. We recorded XFEL electron parameters while adjusting the accelerator's configurations and measured the resulting x-ray wavefront and energy spectrum shot-to-shot. Training the ANN with this data enables effective prediction of single-shot or average x-ray beam output based on XFEL undulator and electron parameters. This demonstrates the potential of utilizing ANNs for virtual diagnostics linking XFEL electron and photon beam properties.
Collapse
Affiliation(s)
- Kenan Li
- SLAC National Accelerator Lab, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
| | - Guanqun Zhou
- SLAC National Accelerator Lab, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Yanwei Liu
- SLAC National Accelerator Lab, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Juhao Wu
- SLAC National Accelerator Lab, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Ming-Fu Lin
- SLAC National Accelerator Lab, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Xinxin Cheng
- SLAC National Accelerator Lab, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Alberto A Lutman
- SLAC National Accelerator Lab, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Matthew Seaberg
- SLAC National Accelerator Lab, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Howard Smith
- SLAC National Accelerator Lab, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Pranav A Kakhandiki
- SLAC National Accelerator Lab, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- School of Applied and Engineering Physics, Cornell University, 142 Sciences Dr, Ithaca, NY, 14853, USA
| | - Anne Sakdinawat
- SLAC National Accelerator Lab, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
| |
Collapse
|
14
|
Leonarski F, Nan J, Matej Z, Bertrand Q, Furrer A, Gorgisyan I, Bjelčić M, Kepa M, Glover H, Hinger V, Eriksson T, Cehovin A, Eguiraun M, Gasparotto P, Mozzanica A, Weinert T, Gonzalez A, Standfuss J, Wang M, Ursby T, Dworkowski F. Kilohertz serial crystallography with the JUNGFRAU detector at a fourth-generation synchrotron source. IUCRJ 2023; 10:729-737. [PMID: 37830774 PMCID: PMC10619449 DOI: 10.1107/s2052252523008618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
Serial and time-resolved macromolecular crystallography are on the rise. However, beam time at X-ray free-electron lasers is limited and most third-generation synchrotron-based macromolecular crystallography beamlines do not offer the necessary infrastructure yet. Here, a new setup is demonstrated, based on the JUNGFRAU detector and Jungfraujoch data-acquisition system, that enables collection of kilohertz serial crystallography data at fourth-generation synchrotrons. More importantly, it is shown that this setup is capable of collecting multiple-time-point time-resolved protein dynamics at kilohertz rates, allowing the probing of microsecond to second dynamics at synchrotrons in a fraction of the time needed previously. A high-quality complete X-ray dataset was obtained within 1 min from lysozyme microcrystals, and the dynamics of the light-driven sodium-pump membrane protein KR2 with a time resolution of 1 ms could be demonstrated. To make the setup more accessible for researchers, downstream data handling and analysis will be automated to allow on-the-fly spot finding and indexing, as well as data processing.
Collapse
Affiliation(s)
- Filip Leonarski
- Photon Science Division, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Jie Nan
- MAX IV Laboratory, Lund University, POB. 118, SE-22100 Lund, Sweden
| | - Zdenek Matej
- MAX IV Laboratory, Lund University, POB. 118, SE-22100 Lund, Sweden
| | - Quentin Bertrand
- Division of Biology and Chemistry, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Antonia Furrer
- Division of Biology and Chemistry, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | | | - Monika Bjelčić
- MAX IV Laboratory, Lund University, POB. 118, SE-22100 Lund, Sweden
| | - Michal Kepa
- Division of Biology and Chemistry, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Hannah Glover
- Division of Biology and Chemistry, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Viktoria Hinger
- Photon Science Division, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Thomas Eriksson
- MAX IV Laboratory, Lund University, POB. 118, SE-22100 Lund, Sweden
| | | | - Mikel Eguiraun
- MAX IV Laboratory, Lund University, POB. 118, SE-22100 Lund, Sweden
| | - Piero Gasparotto
- Scientific Computing, Theory and Data, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Aldo Mozzanica
- Photon Science Division, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Tobias Weinert
- Division of Biology and Chemistry, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Ana Gonzalez
- MAX IV Laboratory, Lund University, POB. 118, SE-22100 Lund, Sweden
| | - Jörg Standfuss
- Division of Biology and Chemistry, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Meitian Wang
- Photon Science Division, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| | - Thomas Ursby
- MAX IV Laboratory, Lund University, POB. 118, SE-22100 Lund, Sweden
| | - Florian Dworkowski
- Photon Science Division, Paul Scherrer Institut, CH-5303 Villigen PSI, Switzerland
| |
Collapse
|
15
|
Nango E, Iwata S. Recent progress in membrane protein dynamics revealed by X-ray free electron lasers: Molecular movies of microbial rhodopsins. Curr Opin Struct Biol 2023; 81:102629. [PMID: 37354789 DOI: 10.1016/j.sbi.2023.102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 06/26/2023]
Abstract
Microbial rhodopsin is a membrane protein with a domain of seven-transmembrane helices and a retinal chromophore. The main function of this protein is to perform light-induced ion transport, either actively or passively, by acting as pumps, channels, and light sensors. It is widely used for optogenetic application to control the activity of specific cells in living tissues by light. Time-resolved serial femtosecond crystallography (TR-SFX) with the use of X-ray free electron lasers is an effective technique for capturing dynamic ion transport and efflux structures across membranes with high spatial and temporal resolutions. Here, we outline recent TR-SFX studies of microbial rhodopsins, including a pump and a channel. We also discuss differences and similarities observed in the structural dynamics derived from the TR-SFX structures.
Collapse
Affiliation(s)
- Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan. https://twitter.com/@enango_5
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
16
|
Ivanov R, Bidhendi MM, Bermúdez Macias IJ, Brachmanski M, Kreis S, Bonfigt S, Degenhardt M, Czwalinna MK, Pergament M, Kellert M, Kärtner FX, Düsterer S. Free-electron laser temporal diagnostic beamline FL21 at FLASH. OPTICS EXPRESS 2023; 31:19146-19158. [PMID: 37381338 DOI: 10.1364/oe.492228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/09/2023] [Indexed: 06/30/2023]
Abstract
A beamline for temporal diagnostics of extreme ultraviolet (XUV) femtosecond pulses at the free-electron laser in Hamburg (FLASH) at DESY was designed, built and put into operation. The intense ultra-short XUV pulses of FLASH fluctuate from pulse to pulse due to the underlying FEL operating principle and demand single-shot diagnostics. To cope with this, the new beamline is equipped with a terahertz field-driven streaking setup that enables the determination of single pulse duration and arrival time. The parameters of the beamline and the diagnostic setup as well as some first experimental results will be presented. In addition, concepts for parasitic operation are investigated.
Collapse
|
17
|
Keefer D, Cavaletto SM, Rouxel JR, Garavelli M, Yong H, Mukamel S. Ultrafast X-Ray Probes of Elementary Molecular Events. Annu Rev Phys Chem 2023; 74:73-97. [PMID: 37093660 DOI: 10.1146/annurev-physchem-062322-051532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Elementary events that determine photochemical outcomes and molecular functionalities happen on the femtosecond and subfemtosecond timescales. Among the most ubiquitous events are the nonadiabatic dynamics taking place at conical intersections. These facilitate ultrafast, nonradiative transitions between electronic states in molecules that can outcompete slower relaxation mechanisms such as fluorescence. The rise of ultrafast X-ray sources, which provide intense light pulses with ever-shorter durations and larger observation bandwidths, has fundamentally revolutionized our spectroscopic capabilities to detect conical intersections. Recent theoretical studies have demonstrated an entirely new signature emerging once a molecule traverses a conical intersection, giving detailed insights into the coupled nuclear and electronic motions that underlie, facilitate, and ultimately determine the ultrafast molecular dynamics. Following a summary of current sources and experiments, we survey these techniques and provide a unified overview of their capabilities. We discuss their potential to dramatically increase our understanding of ultrafast photochemistry.
Collapse
Affiliation(s)
- Daniel Keefer
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California, USA; ,
| | - Stefano M Cavaletto
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California, USA; ,
- Current affiliation: Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Jérémy R Rouxel
- Université de Lyon, UJM-Saint-Etienne, IOGS, Laboratoire Hubert Curien, UMR CNRS 5516, Saint-Etienne, France
| | - Marco Garavelli
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Bologna, Italy
| | - Haiwang Yong
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California, USA; ,
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California, USA; ,
| |
Collapse
|
18
|
Switalski K, Fan J, Li L, Chu M, Sarnello E, Jemian P, Li T, Wang Q, Zhang Q. Direct measurement of Stokes-Einstein diffusion of Cowpea mosaic virus with 19 µs-resolved XPCS. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1429-1435. [PMID: 36345751 PMCID: PMC9641563 DOI: 10.1107/s1600577522008402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Brownian motion of Cowpea mosaic virus (CPMV) in water was measured using small-angle X-ray photon correlation spectroscopy (SA-XPCS) at 19.2 µs time resolution. It was found that the decorrelation time τ(Q) = 1/DQ2 up to Q = 0.091 nm-1. The hydrodynamic radius RH determined from XPCS using Stokes-Einstein diffusion D = kT/(6πηRH) is 43% larger than the geometric radius R0 determined from SAXS in the 0.007 M K3PO4 buffer solution, whereas it is 80% larger for CPMV in 0.5 M NaCl and 104% larger in 0.5 M (NH4)2SO4, a possible effect of aggregation as well as slight variation of the structures of the capsid resulting from the salt-protein interactions.
Collapse
Affiliation(s)
- Kacper Switalski
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60611, USA
| | - Jingyu Fan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Luxi Li
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Miaoqi Chu
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Erik Sarnello
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Pete Jemian
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Qingteng Zhang
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| |
Collapse
|
19
|
Krapivin V, Gu M, Hickox-Young D, Teitelbaum SW, Huang Y, de la Peña G, Zhu D, Sirica N, Lee MC, Prasankumar RP, Maznev AA, Nelson KA, Chollet M, Rondinelli JM, Reis DA, Trigo M. Ultrafast Suppression of the Ferroelectric Instability in KTaO_{3}. PHYSICAL REVIEW LETTERS 2022; 129:127601. [PMID: 36179158 DOI: 10.1103/physrevlett.129.127601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/23/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
We use an x-ray free-electron laser to study the lattice dynamics following photoexcitation with ultrafast near-UV light (wavelength 266 nm, 50 fs pulse duration) of the incipient ferroelectric potassium tantalate, KTaO_{3}. By probing the lattice dynamics corresponding to multiple Brillouin zones through the x-ray diffuse scattering with pulses from the Linac Coherent Light Source (LCLS) (wavelength 1.3 Å and <10 fs pulse duration), we observe changes in the diffuse intensity associated with a hardening of the transverse acoustic phonon branches along Γ to X and Γ to M. Using force constants from density functional theory, we fit the quasiequilibrium intensity and obtain the instantaneous lattice temperature and density of photoexcited charge carriers. The density functional theory calculations demonstrate that photoexcitation transfers charge from oxygen 2p derived π-bonding orbitals to Ta 5d derived antibonding orbitals, further suppressing the ferroelectric instability and increasing the stability of the cubic, paraelectric structure.
Collapse
Affiliation(s)
- Viktor Krapivin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Mingqiang Gu
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - D Hickox-Young
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - S W Teitelbaum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Y Huang
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - G de la Peña
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - D Zhu
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - N Sirica
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - M-C Lee
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - R P Prasankumar
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - A A Maznev
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, 02139 Massachusetts, USA
| | - K A Nelson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, 02139 Massachusetts, USA
| | - M Chollet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - James M Rondinelli
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - D A Reis
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - M Trigo
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
20
|
FEL Pulse Duration Evolution along Undulators at FLASH. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Self-amplified spontaneous-emission (SASE) free-electron lasers (FELs) deliver ultrashort pulses with femtosecond durations. Due to the fluctuating nature of the radiation properties of SASE FELs, characterizing FEL pulses on a single-shot basis is necessary. Therefore, we use terahertz streaking to characterize the temporal properties of ultrashort extreme ultraviolet pulses from the free-electron laser in Hamburg (FLASH). In this study, pulse duration as well as pulse energy are measured in a wavelength range from 8 to 34 nm as functions of undulators contributing to the lasing process. The results are compared to one-dimensional and three-dimensional, time-dependent FEL simulations.
Collapse
|
21
|
Dax A, Sydlo C, Divall E, Hauri CP, Huppert M, Schaedler M, Vicario C, Cavalieri AL, Resan B, Trisorio A. Arrival time fluctuation of the SwissFEL photocathode laser: characterization by a single color balanced cross correlator. OPTICS EXPRESS 2022; 30:15495-15511. [PMID: 35473268 DOI: 10.1364/oe.444679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The arrival time jitter and drift of the photocathode drive laser has an important impact on the performance of a Free-Electron-Laser (FEL). It adversely affects the beam energy jitter, bunch length jitter and bunch arrival time jitter, which becomes especially important for pump-probe experiments with femtosecond time resolution. To measure both parameters background free and stabilize the drift of the Yb:CaF2 based laser we use a well designed balanced optical cross correlator. In this paper we present our results using this device and focus particularly on the performance of the amplifier. We achieve a laser drift of less than 200 fs during 60 h, a 4.5 fs rms jitter of the amplifier relative to its seeding oscillator and 11 fs rms for the whole laser relative to a reference clock integrated from 2 mHz to 100 Hz.
Collapse
|
22
|
Hermann B, Haeusler U, Yadav G, Kirchner A, Feurer T, Welsch C, Hommelhoff P, Ischebeck R. Inverse-Designed Narrowband THz Radiator for Ultrarelativistic Electrons. ACS PHOTONICS 2022; 9:1143-1149. [PMID: 35480494 PMCID: PMC9026277 DOI: 10.1021/acsphotonics.1c01932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 06/14/2023]
Abstract
THz radiation finds various applications in science and technology. Pump-probe experiments at free-electron lasers typically rely on THz radiation generated by optical rectification of ultrafast laser pulses in electro-optic crystals. A compact and cost-efficient alternative is offered by the Smith-Purcell effect: a charged particle beam passes a periodic structure and generates synchronous radiation. Here, we employ the technique of photonic inverse design to optimize a structure for Smith-Purcell radiation at a single wavelength from ultrarelativistic electrons. The resulting design is highly resonant and emits narrowbandly. Experiments with a 3D-printed model for a wavelength of 900 μm show coherent enhancement. The versatility of inverse design offers a simple adaption of the structure to other electron energies or radiation wavelengths. This approach could advance beam-based THz generation for a wide range of applications.
Collapse
Affiliation(s)
- Benedikt Hermann
- Paul
Scherrer Institut, 5232 Villigen, PSI, Switzerland
- Institute
of Applied Physics, University of Bern, 3012 Bern, Switzerland
- Galatea
Laboratory, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 2000 Neuchâtel, Switzerland
| | - Urs Haeusler
- Department
Physik, Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
- Cavendish
Laboratory, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
| | - Gyanendra Yadav
- Department
of Physics, University of Liverpool, Liverpool, L69 7ZE, United Kingdom
- Cockcroft
Institute, Warrington, WA4 4AD, United Kingdom
| | - Adrian Kirchner
- Department
Physik, Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Thomas Feurer
- Institute
of Applied Physics, University of Bern, 3012 Bern, Switzerland
| | - Carsten Welsch
- Department
of Physics, University of Liverpool, Liverpool, L69 7ZE, United Kingdom
- Cockcroft
Institute, Warrington, WA4 4AD, United Kingdom
| | - Peter Hommelhoff
- Department
Physik, Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | | |
Collapse
|
23
|
Approaching the Attosecond Frontier of Dynamics in Matter with the Concept of X-ray Chronoscopy. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
X-ray free electron lasers (XFELs) have provided scientists opportunities to study matter with unprecedented temporal and spatial resolutions. However, access to the attosecond domain (i.e., below 1 femtosecond) remains elusive. Herein, a time-dependent experimental concept is theorized, allowing us to track ultrafast processes in matter with sub-fs resolution. The proposed X-ray chronoscopy approach exploits the state-of-the-art developments in terahertz streaking to measure the time structure of X-ray pulses with ultrahigh temporal resolution. The sub-femtosecond dynamics of the saturable X-ray absorption process is simulated. The employed rate equation model confirms that the X-ray-induced mechanisms leading to X-ray transparency can be probed via measurement of an X-ray pulse time structure.
Collapse
|
24
|
Abstract
Abstract
Methods of coherent X-ray diffraction imaging of the spatial structure of noncrystalline objects and nanocrystals (nanostructures) are considered. Particular attention is paid to the methods of scanning-based coherent diffraction imaging (ptychography), visualization based on coherent surface scattering with application of correlation spectroscopy approaches, and specific features of visualization using X-ray free-electron laser radiation. The corresponding data in the literature are analyzed to demonstrate the state of the art of the methods of coherent diffraction imaging and fields of their application.
Collapse
|
25
|
Esmaeildoost N, Pathak H, Späh A, Lane TJ, Kim KH, Yang C, Amann-Winkel K, Ladd-Parada M, Perakis F, Koliyadu J, Oggenfuss AR, Johnson PJM, Deng Y, Zerdane S, Mankowsky R, Beaud P, Lemke HT, Nilsson A, Sellberg JA. Anomalous temperature dependence of the experimental x-ray structure factor of supercooled water. J Chem Phys 2021; 155:214501. [PMID: 34879659 DOI: 10.1063/5.0075499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The structural changes of water upon deep supercooling were studied through wide-angle x-ray scattering at SwissFEL. The experimental setup had a momentum transfer range of 4.5 Å-1, which covered the principal doublet of the x-ray structure factor of water. The oxygen-oxygen structure factor was obtained for temperatures down to 228.5 ± 0.6 K. Similar to previous studies, the second diffraction peak increased strongly in amplitude as the structural change accelerated toward a local tetrahedral structure upon deep supercooling. We also observed an anomalous trend for the second peak position of the oxygen-oxygen structure factor (q2). We found that q2 exhibits an unprecedented positive partial derivative with respect to temperature for temperatures below 236 K. Based on Fourier inversion of our experimental data combined with reference data, we propose that the anomalous q2 shift originates from that a repeat spacing in the tetrahedral network, associated with all peaks in the oxygen-oxygen pair-correlation function, gives rise to a less dense local ordering that resembles that of low-density amorphous ice. The findings are consistent with that liquid water consists of a pentamer-based hydrogen-bonded network with low density upon deep supercooling.
Collapse
Affiliation(s)
- Niloofar Esmaeildoost
- Biomedical and X-ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Harshad Pathak
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Alexander Späh
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Thomas J Lane
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Kyung Hwan Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Cheolhee Yang
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Katrin Amann-Winkel
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Marjorie Ladd-Parada
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | | - Yunpei Deng
- SwissFEL, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Serhane Zerdane
- SwissFEL, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Roman Mankowsky
- SwissFEL, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Paul Beaud
- SwissFEL, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Henrik T Lemke
- SwissFEL, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Anders Nilsson
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Jonas A Sellberg
- Biomedical and X-ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| |
Collapse
|
26
|
Nass K, Bacellar C, Cirelli C, Dworkowski F, Gevorkov Y, James D, Johnson PJM, Kekilli D, Knopp G, Martiel I, Ozerov D, Tolstikova A, Vera L, Weinert T, Yefanov O, Standfuss J, Reiche S, Milne CJ. Pink-beam serial femtosecond crystallography for accurate structure-factor determination at an X-ray free-electron laser. IUCRJ 2021; 8:905-920. [PMID: 34804544 PMCID: PMC8562661 DOI: 10.1107/s2052252521008046] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 05/25/2023]
Abstract
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables essentially radiation-damage-free macromolecular structure determination using microcrystals that are too small for synchrotron studies. However, SFX experiments often require large amounts of sample in order to collect highly redundant data where some of the many stochastic errors can be averaged out to determine accurate structure-factor amplitudes. In this work, the capability of the Swiss X-ray free-electron laser (SwissFEL) was used to generate large-bandwidth X-ray pulses [Δλ/λ = 2.2% full width at half-maximum (FWHM)], which were applied in SFX with the aim of improving the partiality of Bragg spots and thus decreasing sample consumption while maintaining the data quality. Sensitive data-quality indicators such as anomalous signal from native thaumatin micro-crystals and de novo phasing results were used to quantify the benefits of using pink X-ray pulses to obtain accurate structure-factor amplitudes. Compared with data measured using the same setup but using X-ray pulses with typical quasi-monochromatic XFEL bandwidth (Δλ/λ = 0.17% FWHM), up to fourfold reduction in the number of indexed diffraction patterns required to obtain similar data quality was achieved. This novel approach, pink-beam SFX, facilitates the yet underutilized de novo structure determination of challenging proteins at XFELs, thereby opening the door to more scientific breakthroughs.
Collapse
Affiliation(s)
- Karol Nass
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Camila Bacellar
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Claudio Cirelli
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Florian Dworkowski
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Yaroslav Gevorkov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Daniel James
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | | | - Demet Kekilli
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Gregor Knopp
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Isabelle Martiel
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Dmitry Ozerov
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Alexandra Tolstikova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Laura Vera
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Tobias Weinert
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Jörg Standfuss
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Sven Reiche
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | | |
Collapse
|
27
|
Radio-Frequency Undulators, Cyclotron Auto Resonance Maser and Free Electron Lasers. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We discuss a hybrid Free Electron Laser (FEL) architecture operating with a RF undulator provided by a powerful Cyclotron Auto-Resonance Maser (CARM). We outline the design elements to operate a compact X-ray device. We review the essential aspects of wave undulator FEL theory and of CARM devices.
Collapse
|
28
|
Tsuru S, Sharma B, Nagasaka M, Hättig C. Solvent Effects in the Ultraviolet and X-ray Absorption Spectra of Pyridazine in Aqueous Solution. J Phys Chem A 2021; 125:7198-7206. [PMID: 34379425 DOI: 10.1021/acs.jpca.1c05183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Electrostatic interaction of the solvent with the solute and fluctuations of the solvent configurations may make excitation energies of the solute different from those in the gas phase. These effects may dominate photoinduced or chemical reaction dynamics in solution systems and can be observed as shifts or broadening of peaks in absorption spectra. In this work, the nitrogen K-edge X-ray absorption spectra were measured for pyridazine in the gas phase and in aqueous solution. The ultraviolet and X-ray absorption spectra of pyridazine in aqueous solution, as well as those in the gas phase, were then calculated with models based on the algebraic-diagrammatic construction through second order [ADC(2)] with the resolution-of-identity (RI) approximation and compared with the spectra obtained in experiments. For aqueous solution, explicit local solvation structures were extracted from an ab initio molecular dynamics (AIMD) trajectory of pyridazine in bulk water, and RI-ADC(2) was combined with the conductor-like screening model (COSMO). The experimental absorption spectra of pyridazine in aqueous solution were reproduced with good accuracy by theoretical treatment of an ensemble containing the explicit local solvation structures of pyridazine with relevant water molecules combined with the COSMO solvation model of water for long-range solvation.
Collapse
Affiliation(s)
- Shota Tsuru
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Bikramjit Sharma
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Masanari Nagasaka
- Institute for Molecular Science and SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki 444-8585, Japan
| | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| |
Collapse
|
29
|
Three-Dimensional, Time-Dependent Analysis of High- and Low-Q Free-Electron Laser Oscillators. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Free-electron lasers (FELs) have been designed to operate over virtually the entire electromagnetic spectrum, from microwaves through to X-rays, and in a variety of configurations, including amplifiers and oscillators. Oscillators can operate in both the low and high gain regime and are typically used to improve the spatial and temporal coherence of the light generated. We will discuss various FEL oscillators, ranging from systems with high-quality resonators combined with low-gain undulators, to systems with a low-quality resonator combined with a high-gain undulator line. The FEL gain code MINERVA and wavefront propagation code OPC are used to model the FEL interaction within the undulator and the propagation in the remainder of the oscillator, respectively. We will not only include experimental data for the various systems for comparison when available, but also present, for selected cases, how the two codes can be used to study the effect of mirror aberrations and thermal mirror deformation on FEL performance.
Collapse
|
30
|
Bacellar C, Kinschel D, Cannelli O, Sorokin B, Katayama T, Mancini GF, Rouxel JR, Obara Y, Nishitani J, Ito H, Ito T, Kurahashi N, Higashimura C, Kudo S, Cirelli C, Knopp G, Nass K, Johnson PJM, Wach A, Szlachetko J, Lima FA, Milne CJ, Yabashi M, Suzuki T, Misawa K, Chergui M. Femtosecond X-ray spectroscopy of haem proteins. Faraday Discuss 2021; 228:312-328. [PMID: 33565544 DOI: 10.1039/d0fd00131g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discuss our recently reported femtosecond (fs) X-ray emission spectroscopy results on the ligand dissociation and recombination in nitrosylmyoglobin (MbNO) in the context of previous studies on ferrous haem proteins. We also present a preliminary account of femtosecond X-ray absorption studies on MbNO, pointing to the presence of more than one species formed upon photolysis.
Collapse
Affiliation(s)
- Camila Bacellar
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Dominik Kinschel
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Oliviero Cannelli
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Boris Sorokin
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho Sayo-gun, Hyogo 679-5198, Japan
| | - Giulia F Mancini
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Jeremy R Rouxel
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Yuki Obara
- Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Junichi Nishitani
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Hironori Ito
- Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Terumasa Ito
- Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Naoya Kurahashi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, 7-1, Chiyoda, 102-8554 Tokyo, Japan
| | - Chika Higashimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Shotaro Kudo
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Claudio Cirelli
- SwissFEL, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Gregor Knopp
- SwissFEL, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Karol Nass
- SwissFEL, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | | | - Anna Wach
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
| | - Jakub Szlachetko
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
| | | | | | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho Sayo-gun, Hyogo 679-5198, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Kazuhiko Misawa
- Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
31
|
Kurahashi N, Thürmer S, Liu SY, Yamamoto YI, Karashima S, Bhattacharya A, Ogi Y, Horio T, Suzuki T. Design and characterization of a magnetic bottle electron spectrometer for time-resolved extreme UV and X-ray photoemission spectroscopy of liquid microjets. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:034303. [PMID: 34131579 PMCID: PMC8195612 DOI: 10.1063/4.0000107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
We describe a magnetic bottle time-of-flight electron spectrometer designed for time-resolved photoemission spectroscopy of a liquid microjet using extreme UV and X-ray radiation. The spectrometer can be easily reconfigured depending on experimental requirements and the energy range of interest. To improve the energy resolution at high electron kinetic energy, a retarding potential can be applied either via a stack of electrodes or retarding mesh grids, and a flight-tube extension can be attached to increase the flight time. A gated electron detector was developed to reject intense parasitic signal from light scattered off the surface of the cylindrically shaped liquid microjet. This detector features a two-stage multiplication with a microchannel plate plus a fast-response scintillator followed by an image-intensified photon detector. The performance of the spectrometer was tested at SPring-8 and SACLA, and time-resolved photoelectron spectra were measured for an ultrafast charge transfer to solvent reaction in an aqueous NaI solution with a 200 nm UV pump pulses from a table-top ultrafast laser and the 5.5 keV hard X-ray probe pulses from SACLA.
Collapse
Affiliation(s)
- Naoya Kurahashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8501, Japan
| | - Stephan Thürmer
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8501, Japan
| | - Suet Yi Liu
- Molecular Reaction Dynamics Research Team, RIKEN Center for Advanced Photonics, 2–1 Hirosawa, Wako 351-0198, Japan
| | - Yo-ichi Yamamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8501, Japan
| | - Shutaro Karashima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8501, Japan
| | - Atanu Bhattacharya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8501, Japan
| | - Yoshihiro Ogi
- Molecular Reaction Dynamics Research Team, RIKEN Center for Advanced Photonics, 2–1 Hirosawa, Wako 351-0198, Japan
| | - Takuya Horio
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8501, Japan
| | | |
Collapse
|
32
|
Bermúdez Macias IJ, Düsterer S, Ivanov R, Liu J, Brenner G, Rönsch-Schulenburg J, Czwalinna MK, Yurkov MV. Study of temporal, spectral, arrival time and energy fluctuations of SASE FEL pulses. OPTICS EXPRESS 2021; 29:10491-10508. [PMID: 33820183 DOI: 10.1364/oe.419977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Self-amplified spontaneous emission (SASE) pulses delivered by free electron lasers (FELs) are inherently fluctuating sources; each pulse varies in energy, duration, arrival time and spectral shape. Therefore, there is strong demand for a full characterization of the properties of SASE radiation, which will facilitate more precise interpretation of the experimental data taken at SASE FELs. In this paper, we present an investigation into the fluctuations of pulse duration, spectral distribution, arrival time and pulse energy of SASE XUV pulses at FLASH, both on a shot-to-shot basis and on average over many pulses. With the aid of simulations, we derived scaling laws for these parameters and disentangled the statistical SASE fluctuations from accelerator-based fluctuations and measurement uncertainties.
Collapse
|
33
|
A self-referenced in-situ arrival time monitor for X-ray free-electron lasers. Sci Rep 2021; 11:3562. [PMID: 33574378 PMCID: PMC7878505 DOI: 10.1038/s41598-021-82597-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/21/2021] [Indexed: 11/30/2022] Open
Abstract
We present a novel, highly versatile, and self-referenced arrival time monitor for measuring the femtosecond time delay between a hard X-ray pulse from a free-electron laser and an optical laser pulse, measured directly on the same sample used for pump-probe experiments. Two chirped and picosecond long optical supercontinuum pulses traverse the sample with a mutually fixed time delay of 970 fs, while a femtosecond X-ray pulse arrives at an instant in between both pulses. Behind the sample the supercontinuum pulses are temporally overlapped to yield near-perfect destructive interference in the absence of the X-ray pulse. Stimulation of the sample with an X-ray pulse delivers non-zero contributions at certain optical wavelengths, which serve as a measure of the relative arrival time of the X-ray pulse with an accuracy of better than 25 fs. We find an excellent agreement of our monitor with the existing timing diagnostics at the SACLA XFEL with a Pearson correlation value of 0.98. We demonstrate a high sensitivity to measure X-ray pulses with pulse energies as low as 30 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu $$\end{document}μJ. Using a free-flowing liquid jet as interaction sample ensures the full replacement of the sample volume for each X-ray/optical event, thus enabling its utility even at MHz repetition rate XFEL sources.
Collapse
|
34
|
Femtosecond Optical Laser System with Spatiotemporal Stabilization for Pump-Probe Experiments at SACLA. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We constructed a synchronized femtosecond optical laser system with spatiotemporal stabilization for pump-probe experiments at SPring-8 Angstrom Compact Free Electron Laser (SACLA). Stabilization of output power and pointing has been achieved with a small fluctuation level of a few percent by controlling conditions of temperature and air-flow in the optical paths. A feedback system using a balanced optical-microwave phase detector (BOMPD) has been successfully realized to reduce jitter down to 50 fs. We demonstrated the temporal stability with a time-resolved X-ray diffraction measurement and observed the coherent phonon oscillation of the photo-excited Bi without the post-processing using the timing monitor.
Collapse
|
35
|
Demonstration of Transmission Mode Soft X-ray NEXAFS Using Third- and Fifth-Order Harmonics of FEL Radiation at SACLA BL1. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We demonstrate the applicability of third- and fifth-order harmonics of free-electron laser (FEL) radiation for soft X-ray absorption spectroscopy in the transmission mode at SACLA BL1, which covers a photon energy range of 20 to 150 eV in the fundamental FEL radiation. By using the third- and fifth-order harmonics of the FEL radiation, we successfully recorded near-edge X-ray absorption fine structure (NEXAFS) spectra for Ar 2p core ionization and CO2 C 1s and O 1s core ionizations. Our results show that the utilization of third- and fifth-order harmonics can significantly extend the available photon energies for NEXAFS spectroscopy using an FEL and opens the door to femtosecond pump-probe NEXAFS using a soft X-ray FEL.
Collapse
|
36
|
Chergui M. Launching Structural Dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:060401. [PMID: 33415180 PMCID: PMC7771997 DOI: 10.1063/4.0000063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
|
37
|
Mendez D, Bolotovsky R, Bhowmick A, Brewster AS, Kern J, Yano J, Holton JM, Sauter NK. Beyond integration: modeling every pixel to obtain better structure factors from stills. IUCRJ 2020; 7:1151-1167. [PMID: 33209326 PMCID: PMC7642780 DOI: 10.1107/s2052252520013007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/23/2020] [Indexed: 05/25/2023]
Abstract
Most crystallographic data processing methods use pixel integration. In serial femtosecond crystallography (SFX), the intricate interaction between the reciprocal lattice point and the Ewald sphere is integrated out by averaging symmetrically equivalent observations recorded across a large number (104-106) of exposures. Although sufficient for generating biological insights, this approach converges slowly, and using it to accurately measure anomalous differences has proved difficult. This report presents a novel approach for increasing the accuracy of structure factors obtained from SFX data. A physical model describing all observed pixels is defined to a degree of complexity such that it can decouple the various contributions to the pixel intensities. Model dependencies include lattice orientation, unit-cell dimensions, mosaic structure, incident photon spectra and structure factor amplitudes. Maximum likelihood estimation is used to optimize all model parameters. The application of prior knowledge that structure factor amplitudes are positive quantities is included in the form of a reparameterization. The method is tested using a synthesized SFX dataset of ytterbium(III) lysozyme, where each X-ray laser pulse energy is centered at 9034 eV. This energy is 100 eV above the Yb3+ L-III absorption edge, so the anomalous difference signal is stable at 10 electrons despite the inherent energy jitter of each femtosecond X-ray laser pulse. This work demonstrates that this approach allows the determination of anomalous structure factors with very high accuracy while requiring an order-of-magnitude fewer shots than conventional integration-based methods would require to achieve similar results.
Collapse
Affiliation(s)
- Derek Mendez
- Molecular Biophysics and Integrated Bioimaging Division (MBIB), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Robert Bolotovsky
- Molecular Biophysics and Integrated Bioimaging Division (MBIB), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division (MBIB), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Aaron S. Brewster
- Molecular Biophysics and Integrated Bioimaging Division (MBIB), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division (MBIB), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division (MBIB), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James M. Holton
- Molecular Biophysics and Integrated Bioimaging Division (MBIB), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Department of Biochemistry and Biophysics, UC San Francisco, San Francisco, CA 94158, USA
| | - Nicholas K. Sauter
- Molecular Biophysics and Integrated Bioimaging Division (MBIB), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
38
|
Nass K, Cheng R, Vera L, Mozzanica A, Redford S, Ozerov D, Basu S, James D, Knopp G, Cirelli C, Martiel I, Casadei C, Weinert T, Nogly P, Skopintsev P, Usov I, Leonarski F, Geng T, Rappas M, Doré AS, Cooke R, Nasrollahi Shirazi S, Dworkowski F, Sharpe M, Olieric N, Bacellar C, Bohinc R, Steinmetz MO, Schertler G, Abela R, Patthey L, Schmitt B, Hennig M, Standfuss J, Wang M, Milne CJ. Advances in long-wavelength native phasing at X-ray free-electron lasers. IUCRJ 2020; 7:965-975. [PMID: 33209311 PMCID: PMC7642782 DOI: 10.1107/s2052252520011379] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/19/2020] [Indexed: 05/31/2023]
Abstract
Long-wavelength pulses from the Swiss X-ray free-electron laser (XFEL) have been used for de novo protein structure determination by native single-wavelength anomalous diffraction (native-SAD) phasing of serial femtosecond crystallography (SFX) data. In this work, sensitive anomalous data-quality indicators and model proteins were used to quantify improvements in native-SAD at XFELs such as utilization of longer wavelengths, careful experimental geometry optimization, and better post-refinement and partiality correction. Compared with studies using shorter wavelengths at other XFELs and older software versions, up to one order of magnitude reduction in the required number of indexed images for native-SAD was achieved, hence lowering sample consumption and beam-time requirements significantly. Improved data quality and higher anomalous signal facilitate so-far underutilized de novo structure determination of challenging proteins at XFELs. Improvements presented in this work can be used in other types of SFX experiments that require accurate measurements of weak signals, for example time-resolved studies.
Collapse
Affiliation(s)
- Karol Nass
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Robert Cheng
- LeadXpro AG, Park InnovAARE, Villigen, 5234, Switzerland
| | - Laura Vera
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Aldo Mozzanica
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Sophie Redford
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Dmitry Ozerov
- Science IT, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Shibom Basu
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Daniel James
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Gregor Knopp
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Claudio Cirelli
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Isabelle Martiel
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Cecilia Casadei
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Przemyslaw Nogly
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Wolfgang-Pauli-Strasse 27, Zürich, 8093, Switzerland
| | - Petr Skopintsev
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
- Department of Biology, ETH Zürich, Wolfgang-Pauli-Strasse 27, Zürich, 8093, Switzerland
| | - Ivan Usov
- Science IT, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Filip Leonarski
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Tian Geng
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Mathieu Rappas
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Andrew S. Doré
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Robert Cooke
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | | | - Florian Dworkowski
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - May Sharpe
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Camila Bacellar
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Rok Bohinc
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Michel O. Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
- Biozentrum, University of Basel, Basel, 4056, Switzerland
| | - Gebhard Schertler
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
- Department of Biology, ETH Zürich, Wolfgang-Pauli-Strasse 27, Zürich, 8093, Switzerland
| | - Rafael Abela
- LeadXpro AG, Park InnovAARE, Villigen, 5234, Switzerland
| | - Luc Patthey
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Bernd Schmitt
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Michael Hennig
- LeadXpro AG, Park InnovAARE, Villigen, 5234, Switzerland
| | - Jörg Standfuss
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Meitian Wang
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Christopher J. Milne
- Photon Science Division, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| |
Collapse
|
39
|
Zhukovsky K. Theoretical spectral analysis of FEL radiation from multi-harmonic undulators. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:1648-1661. [PMID: 33147191 DOI: 10.1107/s1600577520012230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
A theoretical study of the spontaneous and stimulated undulator radiation (UR) from electrons in undulators with multiple periods in both transversal directions is presented. Exact expressions are derived for the UR intensities in terms of the generalized Bessel and Airy functions, accounting for undulator field harmonics of arbitrary strength and for real parameters of the beams and installations. Theoretical results are verified with numerical and experimental data for SWISS-XFEL, PAL-XFEL, LEUTL, LCLS etc. The spectrum, UR line shape and width, and the harmonic evolution along the undulators are analyzed and compared with the available data for these experiments. Moreover, the effect of the field harmonics is elucidated. It is demonstrated that the third field harmonic can cause distinct odd UR harmonics. The asymmetric undulator field configuration is identified, which allows intense radiation of these harmonics. The power evolution in a free-electron laser (FEL) with such an undulator is studied by means of an analytical FEL model. The latter is enhanced by a true description of the gradual power saturation of harmonics. A FEL with elliptic undulator and electron-photon phase-shifting is proposed and modeled. It is shown that the resulting harmonic power from the phase-shifted elliptic undulator can be significantly higher than from a planar undulator with the same phase-shifting.
Collapse
Affiliation(s)
- K Zhukovsky
- Department of Theoretical Physics, Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russian Federation
| |
Collapse
|
40
|
Inoue I, Osaka T, Hara T, Yabashi M. Two-color X-ray free-electron laser consisting of broadband and narrowband beams. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:1720-1724. [PMID: 33147199 DOI: 10.1107/s1600577520011716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
A simple scheme is proposed and experimentally confirmed to generate X-ray free-electron lasers (XFELs) consisting of broadband and narrowband beams with a controllable intensity ratio and a large photon-energy separation. This unique two-color XFEL beam will open new opportunities for investigation of nonlinear interactions between intense X-rays and matter.
Collapse
Affiliation(s)
- Ichiro Inoue
- XFEL Research and Development Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Taito Osaka
- XFEL Research and Development Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Toru Hara
- XFEL Research and Development Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Makina Yabashi
- XFEL Research and Development Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| |
Collapse
|
41
|
Abstract
Radiation damage and cryogenic sample environment are an experimental limitation observed in the traditional X-ray crystallography technique. However, the serial crystallography (SX) technique not only helps to determine structures at room temperature with minimal radiation damage, but it is also a useful tool for profound understanding of macromolecules. Moreover, it is a new tool for time-resolved studies. Over the past 10 years, various sample delivery techniques and data collection strategies have been developed in the SX field. It also has a wide range of applications in instruments ranging from the X-ray free electron laser (XFEL) facility to synchrotrons. The importance of the various approaches in terms of the experimental techniques and a brief review of the research carried out in the field of SX has been highlighted in this editorial.
Collapse
|
42
|
Echelmeier A, Cruz Villarreal J, Messerschmidt M, Kim D, Coe JD, Thifault D, Botha S, Egatz-Gomez A, Gandhi S, Brehm G, Conrad CE, Hansen DT, Madsen C, Bajt S, Meza-Aguilar JD, Oberthür D, Wiedorn MO, Fleckenstein H, Mendez D, Knoška J, Martin-Garcia JM, Hu H, Lisova S, Allahgholi A, Gevorkov Y, Ayyer K, Aplin S, Ginn HM, Graafsma H, Morgan AJ, Greiffenberg D, Klujev A, Laurus T, Poehlsen J, Trunk U, Mezza D, Schmidt B, Kuhn M, Fromme R, Sztuk-Dambietz J, Raab N, Hauf S, Silenzi A, Michelat T, Xu C, Danilevski C, Parenti A, Mekinda L, Weinhausen B, Mills G, Vagovic P, Kim Y, Kirkwood H, Bean R, Bielecki J, Stern S, Giewekemeyer K, Round AR, Schulz J, Dörner K, Grant TD, Mariani V, Barty A, Mancuso AP, Weierstall U, Spence JCH, Chapman HN, Zatsepin N, Fromme P, Kirian RA, Ros A. Segmented flow generator for serial crystallography at the European X-ray free electron laser. Nat Commun 2020; 11:4511. [PMID: 32908128 PMCID: PMC7481229 DOI: 10.1038/s41467-020-18156-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) allows structure determination of membrane proteins and time-resolved crystallography. Common liquid sample delivery continuously jets the protein crystal suspension into the path of the XFEL, wasting a vast amount of sample due to the pulsed nature of all current XFEL sources. The European XFEL (EuXFEL) delivers femtosecond (fs) X-ray pulses in trains spaced 100 ms apart whereas pulses within trains are currently separated by 889 ns. Therefore, continuous sample delivery via fast jets wastes >99% of sample. Here, we introduce a microfluidic device delivering crystal laden droplets segmented with an immiscible oil reducing sample waste and demonstrate droplet injection at the EuXFEL compatible with high pressure liquid delivery of an SFX experiment. While achieving ~60% reduction in sample waste, we determine the structure of the enzyme 3-deoxy-D-manno-octulosonate-8-phosphate synthase from microcrystals delivered in droplets revealing distinct structural features not previously reported.
Collapse
Affiliation(s)
- Austin Echelmeier
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Jorvani Cruz Villarreal
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Marc Messerschmidt
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.,European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Daihyun Kim
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Jesse D Coe
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Darren Thifault
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Sabine Botha
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.,Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Ana Egatz-Gomez
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Sahir Gandhi
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Gerrit Brehm
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Chelsie E Conrad
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Debra T Hansen
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Caleb Madsen
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.,Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Saša Bajt
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.,Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | | | - Dominik Oberthür
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Max O Wiedorn
- Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.,Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Holger Fleckenstein
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Derek Mendez
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.,Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Juraj Knoška
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.,Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Jose M Martin-Garcia
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Hao Hu
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.,Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Stella Lisova
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.,Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Aschkan Allahgholi
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Yaroslav Gevorkov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.,Hamburg University of Technology, Vision Systems E-2, Harburger Schloßstraße 20, 21079, Hamburg, Germany
| | - Kartik Ayyer
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Steve Aplin
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Helen Mary Ginn
- Division of Structural Biology, University of Oxford, Oxford, OX1 2JD, United Kingdom.,Diamond Light Source Ltd, Didcot, Oxfordshire, OX11 0DE, United Kingdom
| | - Heinz Graafsma
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Andrew J Morgan
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | | | - Alexander Klujev
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Torsten Laurus
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Jennifer Poehlsen
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Ulrich Trunk
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Davide Mezza
- Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Bernd Schmidt
- Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Manuela Kuhn
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Raimund Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | | | - Natascha Raab
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Steffen Hauf
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | | | - Chen Xu
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | | | | | | | - Grant Mills
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Yoonhee Kim
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Richard Bean
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Stephan Stern
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | | | - Adam R Round
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5AZ, United Kingdom
| | | | | | - Thomas D Grant
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, 955 Main St, Buffalo, NY, 14203, USA
| | - Valerio Mariani
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Anton Barty
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Adrian P Mancuso
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Uwe Weierstall
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.,Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - John C H Spence
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.,Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Henry N Chapman
- Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.,Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.,Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Nadia Zatsepin
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.,Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA.,ARC Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Richard A Kirian
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.,Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA. .,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.
| |
Collapse
|
43
|
Bengtsson ÅUJ, Ekström JC, Wang X, Jurgilaitis A, Pham VT, Kroon D, Larsson J. Repetitive non-thermal melting as a timing monitor for femtosecond pump/probe X-ray experiments. Struct Dyn 2020; 7:054303. [PMID: 32984435 PMCID: PMC7511237 DOI: 10.1063/4.0000020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/26/2020] [Indexed: 01/27/2023] Open
Abstract
Time-resolved optical pump/X-ray probe experiments are often used to study structural dynamics. To ensure high temporal resolution, it is necessary to monitor the timing between the X-ray pulses and the laser pulses. The transition from a crystalline solid material to a disordered state in a non-thermal melting process can be used as a reliable timing monitor. We have performed a study of the non-thermal melting of InSb in single-shot mode, where we varied the sample temperature in order to determine the conditions required for repetitive melting. We show how experimental conditions affect the feasibility of such a timing tool.
Collapse
Affiliation(s)
- Å. U. J. Bengtsson
- Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | - J. C. Ekström
- Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | - Xiaocui Wang
- Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | - A. Jurgilaitis
- MAX IV Laboratory, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | - Van-Thai Pham
- MAX IV Laboratory, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | - D. Kroon
- MAX IV Laboratory, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | - J. Larsson
- Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
- MAX IV Laboratory, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| |
Collapse
|
44
|
Matsumura S, Osaka T, Inoue I, Matsuyama S, Yabashi M, Yamauchi K, Sano Y. High-resolution micro channel-cut crystal monochromator processed by plasma chemical vaporization machining for a reflection self-seeded X-ray free-electron laser. OPTICS EXPRESS 2020; 28:25706-25715. [PMID: 32906855 DOI: 10.1364/oe.398590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
A high-resolution micro channel-cut crystal monochromator (µCCM) composed of an Si(220) crystal is developed for the purpose of narrowing the bandwidth of a reflection self-seeded X-ray free-electron laser. Subsurface damage on the monochromator, which distorts the wavefront and broadens the bandwidth of the monochromatic seed beam, was removed by using a plasma etching technique. High diffraction performance of the monochromator was confirmed through evaluation with coherent X-rays. Reflection self-seeding operation was tested with the Si(220) µCCM at SPring-8 Angstrom Compact free-electron laser. A narrow average bandwidth of 0.6 eV, which is five times narrower than the value previously reported [I. Inoue et al., Nat. Photonics13, 319 (2019)10.1038/s41566-019-0365-y], was successfully obtained at 9 keV. The narrow-band X-ray beams with high intensity realized in this study will further expand the capabilities of X-ray free-electron lasers.
Collapse
|
45
|
Kroll T, Weninger C, Fuller FD, Guetg MW, Benediktovitch A, Zhang Y, Marinelli A, Alonso-Mori R, Aquila A, Liang M, Koglin JE, Koralek J, Sokaras D, Zhu D, Kern J, Yano J, Yachandra VK, Rohringer N, Lutman A, Bergmann U. Observation of Seeded Mn Kβ Stimulated X-Ray Emission Using Two-Color X-Ray Free-Electron Laser Pulses. PHYSICAL REVIEW LETTERS 2020; 125:037404. [PMID: 32745427 PMCID: PMC7808879 DOI: 10.1103/physrevlett.125.037404] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/25/2020] [Accepted: 06/23/2020] [Indexed: 05/03/2023]
Abstract
Kβ x-ray emission spectroscopy is a powerful probe for electronic structure analysis of 3d transition metal systems and their ultrafast dynamics. Selectively enhancing specific spectral regions would increase this sensitivity and provide fundamentally new insights. Recently we reported the observation and analysis of Kα amplified spontaneous x-ray emission from Mn solutions using an x-ray free-electron laser to create the 1s core-hole population inversion [Kroll et al., Phys. Rev. Lett. 120, 133203 (2018)PRLTAO0031-900710.1103/PhysRevLett.120.133203]. To apply this new approach to the chemically more sensitive but much weaker Kβ x-ray emission lines requires a mechanism to outcompete the dominant amplification of the Kα emission. Here we report the observation of seeded amplified Kβ x-ray emission from a NaMnO_{4} solution using two colors of x-ray free-electron laser pulses, one to create the 1s core-hole population inversion and the other to seed the amplified Kβ emission. Comparing the observed seeded amplified Kβ emission signal with that from conventional Kβ emission into the same solid angle, we obtain a signal enhancement of more than 10^{5}. Our findings are the first important step of enhancing and controlling the emission of selected final states of the Kβ spectrum with applications in chemical and materials science.
Collapse
Affiliation(s)
- Thomas Kroll
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Clemens Weninger
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Franklin D. Fuller
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Marc W. Guetg
- Accelerator Directorate, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - Yu Zhang
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Agostino Marinelli
- Accelerator Directorate, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Roberto Alonso-Mori
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Andy Aquila
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Mengning Liang
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Jason E. Koglin
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Jake Koralek
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Dimosthenis Sokaras
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Diling Zhu
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence, Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence, Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence, Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Nina Rohringer
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, 20355 Hamburg, Germany
| | - Alberto Lutman
- Accelerator Directorate, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
46
|
Sun Y, Montana-Lopez J, Fuoss P, Sutton M, Zhu D. Accurate contrast determination for X-ray speckle visibility spectroscopy. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:999-1007. [PMID: 33566009 PMCID: PMC7336177 DOI: 10.1107/s1600577520006773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/20/2020] [Indexed: 05/31/2023]
Abstract
X-ray speckle visibility spectroscopy using X-ray free-electron lasers has long been proposed as a probe of fast dynamics in noncrystalline materials. In this paper, numerical modeling is presented to show how the data interpretation of visibility spectroscopy can be impacted by the nonidealities of real-life X-ray detectors. Using simulated detector data, this work provides a detailed analysis of the systematic errors of several contrast extraction algorithms in the context of low-count-rate X-ray speckle visibility spectroscopy and their origins are discussed. Here, it was found that the finite detector charge cloud and pixel size lead to an unavoidable `degeneracy' in photon position determination, and that the contrasts extracted using different algorithms can all be corrected by a simple linear model. The results suggest that experimental calibration of the correction coefficient at the count rate of interest is possible and essential. This allows computationally lightweight algorithms to be implemented for on-the-fly analysis.
Collapse
Affiliation(s)
- Yanwen Sun
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, USA
- Physics Department, Stanford University, USA
| | | | - Paul Fuoss
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, USA
| | - Mark Sutton
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, USA
- Physics Department, McGill University, USA
| | - Diling Zhu
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, USA
| |
Collapse
|
47
|
Platier B, Limpens R, Lassise AC, Oosterholt TTJ, van Ninhuijs MAW, Daamen KA, Staps TJA, Zangrando M, Luiten OJ, IJzerman WL, Beckers J. Magnetic field-enhanced beam monitor for ionizing radiation. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:063503. [PMID: 32611041 DOI: 10.1063/5.0007092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
For the microwave cavity resonance spectroscopy based non-destructive beam monitor for ionizing radiation, an addition-which adapts the approach to conditions where only little ionization takes place due to, e.g., small ionization cross sections, low gas pressures, and low photon fluxes-is presented and demonstrated. In this experiment, a magnetic field with a strength of 57 ± 1 mT was used to extend the lifetime of the afterglow of an extreme ultraviolet-induced plasma by a factor of ∼5. Magnetic trapping is expected to be most successful in preventing the decay of ephemeral free electrons created by low-energy photons. Good agreement has been found between the experimental results and the decay rates calculated based on the ambipolar and classical collision diffusion models.
Collapse
Affiliation(s)
- B Platier
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - R Limpens
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - A C Lassise
- ASML Netherlands B.V., De Run 6501, 5504DR Veldhoven, The Netherlands
| | - T T J Oosterholt
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - M A W van Ninhuijs
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - K A Daamen
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - T J A Staps
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - M Zangrando
- Elettra-Sincrotrone Trieste, Basovizza I-34149, Italy
| | - O J Luiten
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - W L IJzerman
- Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - J Beckers
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
48
|
Femtosecond-to-millisecond structural changes in a light-driven sodium pump. Nature 2020; 583:314-318. [DOI: 10.1038/s41586-020-2307-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/16/2020] [Indexed: 01/03/2023]
|
49
|
Kim HW, Baek IH, Shin J, Park S, Bark HS, Oang KY, Jang KH, Lee K, Vinokurov N, Jeong YU. Method for developing a sub-10 fs ultrafast electron diffraction technology. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:034301. [PMID: 32566696 PMCID: PMC7286702 DOI: 10.1063/4.0000012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
The experimental observation of femtosecond dynamics in atoms and molecules by stroboscopic technologies utilizing x ray or electron flashes has attracted much attention and has rapidly developed. We propose a feasible ultrafast electron diffraction (UED) technology with high brightness and a sub-10 fs temporal resolution. We previously demonstrated a UED system with an overall temporal resolution of 31 fs by using an RF photoelectron gun and a 90° achromatic bending structure. This UED structure enabled a bunch duration of 25 fs and a low timing jitter of less than 10 fs while maintaining a high bunch charge of 0.6 pC. In this paper, we demonstrate a simple way to further compress the electron bunch duration to sub-10 fs based on installing an energy filter in the dispersion section of the achromatic bend. The energy filter removes the electrons belonging to nonlinear parts of the phase space. Through numerical simulations, we demonstrate that the electron bunches can be compressed, at the sample position, to a 6.2 fs (rms) duration for a 100 fC charge. This result suggests that the energy filtering approach is more viable and effective than complicated beam-shaping techniques that commonly handle the nonlinear distribution of the electron beam. Furthermore, a gas-filled hollow core fiber compressor and a Ti:sapphire amplifier are used to implement pump laser pulses of less than 5 fs (rms). Thus, we could present the full simulation results of a sub-10 fs UED, and we believe that it will be one of the technical prototypes to challenge the sub-fs time resolution.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute, 989-111 Daedeok-Daero, Yuseong-gu, Daejeon, South Korea
| | - In Hyung Baek
- Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute, 989-111 Daedeok-Daero, Yuseong-gu, Daejeon, South Korea
| | - Junho Shin
- Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute, 989-111 Daedeok-Daero, Yuseong-gu, Daejeon, South Korea
| | - Sunjeong Park
- Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute, 989-111 Daedeok-Daero, Yuseong-gu, Daejeon, South Korea
| | - Hyeon Sang Bark
- Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute, 989-111 Daedeok-Daero, Yuseong-gu, Daejeon, South Korea
| | - Key Young Oang
- Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute, 989-111 Daedeok-Daero, Yuseong-gu, Daejeon, South Korea
| | - Kyu-Ha Jang
- Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute, 989-111 Daedeok-Daero, Yuseong-gu, Daejeon, South Korea
| | - Kitae Lee
- Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute, 989-111 Daedeok-Daero, Yuseong-gu, Daejeon, South Korea
| | - Nikolay Vinokurov
- Budker Institute of Nuclear Physics, Lavrent'yeva, 11, 630090 Novosibirsk, Russia
| | - Young Uk Jeong
- Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute, 989-111 Daedeok-Daero, Yuseong-gu, Daejeon, South Korea
| |
Collapse
|
50
|
Smolentsev G, Milne CJ, Guda A, Haldrup K, Szlachetko J, Azzaroli N, Cirelli C, Knopp G, Bohinc R, Menzi S, Pamfilidis G, Gashi D, Beck M, Mozzanica A, James D, Bacellar C, Mancini GF, Tereshchenko A, Shapovalov V, Kwiatek WM, Czapla-Masztafiak J, Cannizzo A, Gazzetto M, Sander M, Levantino M, Kabanova V, Rychagova E, Ketkov S, Olaru M, Beckmann J, Vogt M. Taking a snapshot of the triplet excited state of an OLED organometallic luminophore using X-rays. Nat Commun 2020; 11:2131. [PMID: 32358505 PMCID: PMC7195477 DOI: 10.1038/s41467-020-15998-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
OLED technology beyond small or expensive devices requires light-emitters, luminophores, based on earth-abundant elements. Understanding and experimental verification of charge transfer in luminophores are needed for this development. An organometallic multicore Cu complex comprising Cu–C and Cu–P bonds represents an underexplored type of luminophore. To investigate the charge transfer and structural rearrangements in this material, we apply complementary pump-probe X-ray techniques: absorption, emission, and scattering including pump-probe measurements at the X-ray free-electron laser SwissFEL. We find that the excitation leads to charge movement from C- and P- coordinated Cu sites and from the phosphorus atoms to phenyl rings; the Cu core slightly rearranges with 0.05 Å increase of the shortest Cu–Cu distance. The use of a Cu cluster bonded to the ligands through C and P atoms is an efficient way to keep structural rigidity of luminophores. Obtained data can be used to verify computational methods for the development of luminophores. OLED materials based on thermally activated delayed fluorescence have promising efficiency. Here, the authors investigate an organometallic multicore Cu complex as luminophore, by pump-probe X-ray techniques at three different facilities deriving a complete picture of the charge transfer in the triplet excited state.
Collapse
Affiliation(s)
| | | | - Alexander Guda
- The Smart Materials Research Institute, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Kristoffer Haldrup
- Physics Department, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Jakub Szlachetko
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342, Kraków, Poland
| | | | | | - Gregor Knopp
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Rok Bohinc
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Samuel Menzi
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | | | - Dardan Gashi
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Martin Beck
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | | | - Daniel James
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Camila Bacellar
- Paul Scherrer Institute, 5232, Villigen, Switzerland.,Laboratory for Ultrafast Spectroscopy, Lausanne Center for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Giulia F Mancini
- Paul Scherrer Institute, 5232, Villigen, Switzerland.,Laboratory for Ultrafast Spectroscopy, Lausanne Center for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Andrei Tereshchenko
- The Smart Materials Research Institute, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Victor Shapovalov
- The Smart Materials Research Institute, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Wojciech M Kwiatek
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342, Kraków, Poland
| | | | - Andrea Cannizzo
- Institute of Applied Physics, University of Bern, 3012, Bern, Switzerland
| | - Michela Gazzetto
- Institute of Applied Physics, University of Bern, 3012, Bern, Switzerland
| | - Mathias Sander
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Matteo Levantino
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Victoria Kabanova
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Elena Rychagova
- G. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina, 49, Nizhny Novgorod, 603950, Russia
| | - Sergey Ketkov
- G. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina, 49, Nizhny Novgorod, 603950, Russia
| | - Marian Olaru
- Institute of Inorganic Chemistry and Crystallography, University of Bremen, Leobenerstr. 7, 28359, Bremen, Germany
| | - Jens Beckmann
- Institute of Inorganic Chemistry and Crystallography, University of Bremen, Leobenerstr. 7, 28359, Bremen, Germany
| | - Matthias Vogt
- Institute of Inorganic Chemistry and Crystallography, University of Bremen, Leobenerstr. 7, 28359, Bremen, Germany. .,Martin-Luther-Universität Halle-Wittenberg Naturwissenschaftliche Fakultät II, Institut für Chemie, Anorganische Chemie, D-06120, Halle, Germany.
| |
Collapse
|