1
|
Yang J, Zhou T, Lyu Y, Go BR, Lam JCH, Chan CK, Nah T. Effects of copper on chemical kinetics and brown carbon formation in the aqueous ˙OH oxidation of phenolic compounds. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1526-1542. [PMID: 39041847 DOI: 10.1039/d4em00191e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Many phenolic compounds (PhCs) in biomass burning and fossil fuel combustion emissions can partition into atmospheric aqueous phases (e.g., cloud/fog water and aqueous aerosols) and undergo reactions to form secondary organic aerosols (SOAs) and brown carbon (BrC). Redox-active transition metals, particularly Fe and Cu, are ubiquitous species in atmospheric aqueous phases known to participate in Fenton/Fenton-like chemistry as a source of aqueous ˙OH. However, even though the concentrations of water-soluble Cu are close to those of water-soluble Fe in atmospheric aqueous phases in some areas, unlike Fe, the effects that Cu have on SOA and BrC formation in atmospheric aqueous phases have scarcely been studied and remain poorly understood. We investigated the effects of Cu(II) on PhC reaction rates and BrC formation during the aqueous oxidation of four PhCs (guaiacol, catechol, syringol, and vanillin) by ˙OH generated from Fenton-like chemistry under different pH conditions. While the PhCs reacted when both H2O2 and Cu(II) were present in the absence (i.e., dark oxidation) and presence (i.e., photooxidation) of light, the reaction rates were at least one order of magnitude higher during photooxidation. Higher PhC reaction rates were measured at higher pH during both dark oxidation and photooxidation as a result of higher ˙OH concentrations produced by Fenton-like chemistry. Only water-soluble BrC was formed during dark oxidation and photooxidation when Cu(II) was present. Mass absorption coefficients (103 to 104 cm2 g-1) comparable to those of biomass burning BrC were measured during dark oxidation and photooxidation when Cu(II) was present. Light absorption was enhanced at higher pH during dark oxidation and photooxidation, which indicated that higher quantities and/or more absorbing BrC chromophores were formed at higher pH. The effects that Cu(II) had on the PhC reaction rates and the composition of SOAs and BrC formed depended on the PhC base structure (i.e., benzenediol vs. methoxyphenol). Overall, these results show how aqueous reactions involving Cu(II), H2O2, and PhCs can be an efficient source of daytime and nighttime water-soluble BrC and SOAs, which can have significant implications for how the atmospheric fates of PhCs are modeled for areas with substantial concentrations of water-soluble Cu in highly to moderately acidic cloud/fog water and aqueous aerosols.
Collapse
Affiliation(s)
- Junwei Yang
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Tianye Zhou
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
| | - Yuting Lyu
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Brix Raphael Go
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
| | - Jason Chun-Ho Lam
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Chak K Chan
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Kingdom of Saudi Arabia
| | - Theodora Nah
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Song X, Wu D, Chen X, Ma Z, Li Q, Chen J. Toxic Potencies of Particulate Matter from Typical Industrial Plants Mediated with Acidity via Metal Dissolution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6736-6743. [PMID: 38564367 DOI: 10.1021/acs.est.4c00929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Acidity is an important property of particulate matter (PM) in the atmosphere, but its association with PM toxicity remains unclear. Here, this study quantitively reports the effect of the acidity level on PM toxicity via pH-control experiments and cellular analysis. Oxidative stress and cytotoxicity potencies of acidified PM samples at pH of 1-2 were up to 2.8-5.2 and 2.1-13.2 times higher than those at pH of 8-11, respectively. The toxic potencies of PM samples from real-world smoke plumes at the pH of 2.3 were 9.1-18.2 times greater than those at the pH of 5.6, demonstrating a trend similar to that of acidified PM samples. Furthermore, the impact of acidity on PM toxicity was manifested by promoting metal dissolution. The dramatic increase by 2-3 orders of magnitude in water-soluble metal content dominated the variation in PM toxicity. The significant correlation between sulfate, the pH value, water-soluble Fe, IC20, and EC1.5 (p < 0.05) suggested that acidic sulfate could enhance toxic potencies by dissolving insoluble metals. The findings uncover the superficial association between sulfate and adverse health outcomes in epidemiological research and highlight the control of wet smoke plume emissions to mitigate the toxicity effects of acidity.
Collapse
Affiliation(s)
- Xiwen Song
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Di Wu
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Xiu Chen
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Zizhen Ma
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Qing Li
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
- Shanghai Institute of Eco-Chongming (SIEC), 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai 202162, China
| | - Jianmin Chen
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
- Shanghai Institute of Eco-Chongming (SIEC), 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai 202162, China
| |
Collapse
|
3
|
Gu Z, Han J, Zhang L, Wang H, Luo X, Meng X, Zhang Y, Niu X, Lan Y, Wu S, Cao J, Lichtfouse E. Unanswered questions on the airborne transmission of COVID-19. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:725-739. [PMID: 36628267 PMCID: PMC9816530 DOI: 10.1007/s10311-022-01557-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Policies and measures to control pandemics are often failing. While biological factors controlling transmission are usually well explored, little is known about the environmental drivers of transmission and infection. For instance, respiratory droplets and aerosol particles are crucial vectors for the airborne transmission of the severe acute respiratory syndrome coronavirus 2, the causation agent of the coronavirus 2019 pandemic (COVID-19). Once expectorated, respiratory droplets interact with atmospheric particulates that influence the viability and transmission of the novel coronavirus, yet there is little knowledge on this process or its consequences on virus transmission and infection. Here we review the effects of atmospheric particulate properties, vortex zones, and air pollution on virus survivability and transmission. We found that particle size, chemical constituents, electrostatic charges, and the moisture content of airborne particles can have notable effects on virus transmission, with higher survival generally associated with larger particles, yet some viruses are better preserved on small particles. Some chemical constituents and surface-adsorbed chemical species may damage peptide bonds in viral proteins and impair virus stability. Electrostatic charges and water content of atmospheric particulates may affect the adherence of virion particles and possibly their viability. In addition, vortex zones and human thermal plumes are major environmental factors altering the aerodynamics of buoyant particles in air, which can strongly influence the transport of airborne particles and the transmission of associated viruses. Insights into these factors may provide explanations for the widely observed positive correlations between COVID-19 infection and mortality with air pollution, of which particulate matter is a common constituent that may have a central role in the airborne transmission of the novel coronavirus. Supplementary Information The online version contains supplementary material available at 10.1007/s10311-022-01557-z.
Collapse
Affiliation(s)
- Zhaolin Gu
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Jie Han
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Liyuan Zhang
- School of Water and Environment, Chang’an University, Xi’an, 710064 People’s Republic of China
| | - Hongliang Wang
- Health Science Center, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Xilian Luo
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Xiangzhao Meng
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Yue Zhang
- School of Architecture, Chang’an University, Xi’an, 710064 People’s Republic of China
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Yang Lan
- School of Public Health, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Shaowei Wu
- School of Public Health, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 People’s Republic of China
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
- CNRS, IRD, INRAE, CEREGE, Aix-Marseille University, 13100, Aix-en-Provence, France
| |
Collapse
|
4
|
Fan S, Gao Y, Lai B, Elzinga EJ, Yu S. Aerosol iron speciation and seasonal variation of iron oxidation state over the western Antarctic Peninsula. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153890. [PMID: 35182624 DOI: 10.1016/j.scitotenv.2022.153890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The iron (Fe) speciation and oxidation state have been considered critical factors affecting Fe solubility in the atmosphere and bioavailability in the surface ocean. In this study, elemental composition and Fe speciation in aerosol samples collected at the Palmer Station in the West Antarctic Peninsula were determined using synchrotron-based X-ray fluorescence (XRF) and X-ray Absorption Near-Edge Structure (XANES) spectroscopy. The elemental composition of coarse-mode (>1 μm) Fe-containing particles suggests that the region's crustal emission is the primary source of aerosol Fe. The Fe minerals in these aerosol particles were predominantly hematite and biotite, but minor fractions of pyrite and ilmenite were observed as well. The Fe oxidation state showed an evident seasonal variation. The Fe(II) content accounted for 71% of the total Fe in the austral summer, while this fraction dropped to 60% in the austral winter. Multivariate linear models involving meteorological parameters suggested that the wind speed, relative humidity, and solar irradiance were the factors that significantly controlled the percentage of Fe(II) in the austral summer. On the contrary, no relationship was found between these factors and the Fe(II) percentage in the austral winter, suggesting that atmospheric photoreduction and regional dust emission were limited. Moreover, the snow depth was significantly (p < 0.05) correlated with the aerosol Fe concentration, confirming the limiting effect of snow/ice cover on the regional dust emission. Given that the Antarctic Peninsula has experienced rapid warming during recent decades, the ice-free areas in the Antarctic Peninsula may act as potential dust sources.
Collapse
Affiliation(s)
- Songyun Fan
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Yuan Gao
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ 07102, USA.
| | - Barry Lai
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Evert J Elzinga
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Shun Yu
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
5
|
Ueda S, Mori T, Iwamoto Y, Ushikubo Y, Miura K. Wetting properties of fresh urban soot particles: Evaluation based on critical supersaturation and observation of surface trace materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152274. [PMID: 34902417 DOI: 10.1016/j.scitotenv.2021.152274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Soot particles strongly absorb solar radiation and contribute to global warming. Also, wetting properties of soot at emission can affect its lifetime. We investigated surface conditions related to wetting and hydrophobic properties of fresh soot using data from measurements taken in Tokyo. A cloud condensation nuclei (CCN) counter was used to clarify surface conditions of particles composed mainly of water-insoluble (WI) materials: total and active particles as CCN around critical supersaturation (Sc) of 203-nm-diameter WI particles. Averaged number fractions of inactivated particles as CCN at 1.05% supersaturation (SS), which is Sc of hydrophilic WI particles, were estimated as 1.4%. Number fractions of inactive particles changed less at 1.78%SS during rush hour and increased at 0.89%SS, implying that most of the WI particles included small amounts of water-soluble (WS) materials rather than being completely hydrophobic. Based on transmission electron microscope (TEM) analysis of samples collected during rush hour, 69% of the mostly bare soot particles had Na or K small domains that are regarded as originating in fossil fuels. Based on water dialysis analysis results, some Na and K on soot were WS. Combination results with CCN measurements suggest that these WS materials decrease the Sc of soot. Moreover, the morphological structure of sulfate covering Na and K domains on the soot surface implicates pre-existing sodium and potassium compounds on soot as a trigger of soot aging. However, inactive particles at Sc at poor-hydrophilic particles and soot particles composed solely of WI materials on TEM samples were also found, although they were minor. Such particles, which are unfavorable for obtaining a wettable surface, might retain non-hygroscopicity for a longer period in the atmosphere. Evaluation of long-range soot transport can benefit from consideration of slight and inhomogeneous differences of chemical compounds on soot that occur along with their emission.
Collapse
Affiliation(s)
- Sayako Ueda
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Tatsuhiro Mori
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan; Department of Physics, Faculty of Science Division I, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Yoko Iwamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi, Hiroshima 739-8521, Japan
| | - Yuta Ushikubo
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan; Department of Physics, Faculty of Science Division I, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Kazuhiko Miura
- Department of Physics, Faculty of Science Division I, Tokyo University of Science, Tokyo 162-8601, Japan; Laboratory for Environmental Research at Mount Fuji, 2-5-5 Okubo, Shinjuku-ku, Tokyo 169-0072, Japan
| |
Collapse
|
6
|
Hettiarachchi E, Ivanov S, Kieft T, Goldstein HL, Moskowitz BM, Reynolds RL, Rubasinghege G. Atmospheric Processing of Iron-Bearing Mineral Dust Aerosol and Its Effect on Growth of a Marine Diatom, Cyclotella meneghiniana. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:871-881. [PMID: 33382945 DOI: 10.1021/acs.est.0c06995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Iron (Fe) is a growth-limiting micronutrient for phytoplankton in major areas of oceans and deposited wind-blown desert dust is a primary Fe source to these regions. Simulated atmospheric processing of four mineral dust proxies and two natural dust samples followed by subsequent growth studies of the marine planktic diatom Cyclotella meneghiniana in artificial sea-water (ASW) demonstrated higher growth response to ilmenite (FeTiO3) and hematite (α-Fe2O3) mixed with TiO2 than hematite alone. The processed dust treatment enhanced diatom growth owing to dissolved Fe (DFe) content. The fresh dust-treated cultures demonstrated growth enhancements without adding such dissolved Fe. These significant growth enhancements and dissolved Fe measurements indicated that diatoms acquire Fe from solid particles. When diatoms were physically separated from mineral dust particles, the growth responses become smaller. The post-mineralogy analysis of mineral dust proxies added to ASW showed a diatom-induced increased formation of goethite, where the amount of goethite formed correlated with observed enhanced growth. The current work suggests that ocean primary productivity may not only depend on dissolved Fe but also on suspended solid Fe particles and their mineralogy. Further, the diatom C. meneghiniana benefits more from mineral dust particles in direct contact with cells than from physically impeded particles, suggesting the possibility for alternate Fe-acquisition mechanism/s.
Collapse
Affiliation(s)
- Eshani Hettiarachchi
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - Sergei Ivanov
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Thomas Kieft
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - Harland L Goldstein
- Geosciences and Environmental Change Science Center, U.S. Geological Survey, Denver, Colorado 80225, United States
| | - Bruce M Moskowitz
- Institute for Rock Magnetism, Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Richard L Reynolds
- Geosciences and Environmental Change Science Center, U.S. Geological Survey, Denver, Colorado 80225, United States
- Institute for Rock Magnetism, Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gayan Rubasinghege
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| |
Collapse
|
7
|
Wong JPS, Yang Y, Fang T, Mulholland JA, Russell AG, Ebelt S, Nenes A, Weber RJ. Fine Particle Iron in Soils and Road Dust Is Modulated by Coal-Fired Power Plant Sulfur. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7088-7096. [PMID: 32391689 DOI: 10.1021/acs.est.0c00483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Transition metal ions, such as water-soluble iron (WS-Fe), are toxic components of fine particles (PM2.5). In Atlanta, from 1998 to 2013, a previous study found that WS-Fe was the PM2.5 species most associated with adverse cardiovascular outcomes. We examined this data set to investigate the sources of WS-Fe and the effects of air quality regulations on ambient levels of WS-Fe. We find that insoluble forms of iron in mineral and road dust combined with sulfate from coal-fired electrical generating units were converted into soluble forms by sulfate-driven acid dissolution. Sulfate produced both the highly acidic aerosol (summer pH 1.5-2) and liquid water required for the aqueous phase acid dissolution, but variability in WS-Fe was mainly driven by particle liquid water. These processes were more pronounced in summer when particles were most acidic, whereas in winter the relative importance of WS-Fe from combustion emissions increased. Although WS-Fe constituted a minute fraction of PM2.5 mass (0.15%), the WS-Fe-PM2.5 mass correlation was high (r = 0.67) and may be explained by these formation routes, which, in part, could account for observed associations between PM2.5 mass and adverse health seen in past studies. Similar processes are expected in many regions, implying that these unexpected benefits from coal-burning reduction may be widespread.
Collapse
Affiliation(s)
- Jenny P S Wong
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville E4L 1G8, Canada
| | - Yuhan Yang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Ting Fang
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - James A Mulholland
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30331, United States
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30331, United States
| | - Stefanie Ebelt
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Athanasios Nenes
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
- Institute of Chemical Engineering Science, Foundation for Research and Technology, Patras GR-26504, Greece
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Rodney J Weber
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Griffith EK, Ingall ED, Morton PL, Tavakoli DA, Lai B. Zinc K-edge XANES spectroscopy of mineral and organic standards. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1302-1309. [PMID: 31274458 PMCID: PMC6613124 DOI: 10.1107/s160057751900540x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/19/2019] [Indexed: 05/18/2023]
Abstract
Zinc K-edge X-ray absorption near-edge (XANES) spectroscopy was conducted on 40 zinc mineral samples and organic compounds. The K-edge position varied from 9660.5 to 9666.0 eV and a variety of distinctive peaks at higher post-edge energies were exhibited by the materials. Zinc is in the +2 oxidation state in all analyzed materials, thus the variations in edge position and post-edge features reflect changes in zinc coordination. For some minerals, multiple specimens from different localities as well as pure forms from chemical supply companies were examined. These specimens had nearly identical K-edge and post-edge peak positions with only minor variation in the intensity of the post-edge peaks. This suggests that typical compositional variations in natural materials do not strongly affect spectral characteristics. Organic zinc compounds also exhibited a range of edge positions and post-edge features; however, organic compounds with similar zinc coordination structures had nearly identical spectra. Zinc XANES spectral patterns will allow identification of unknown zinc-containing minerals and organic phases in future studies.
Collapse
Affiliation(s)
- Erin K. Griffith
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr NW, Atlanta, GA 30332-0340, USA
| | - Ellery D. Ingall
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr NW, Atlanta, GA 30332-0340, USA
| | - Peter L. Morton
- Geochemistry, National High Magnetic Field Laboratory, 1800 E Paul Dirac Dr, Tallahassee, FL 32310, USA
| | - David A. Tavakoli
- Materials Characterization Facility, Georgia Institute of Technology, 345 Ferst Dr NW, Atlanta, GA 30332-1000, USA
| | - Barry Lai
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| |
Collapse
|
9
|
Al Nimer A, Rocha L, Rahman MA, Nizkorodov SA, Al-Abadleh HA. Effect of Oxalate and Sulfate on Iron-Catalyzed Secondary Brown Carbon Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6708-6717. [PMID: 31034222 DOI: 10.1021/acs.est.9b00237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Oxalate and sulfate are ubiquitous components of ambient aerosols with a high complexation affinity to iron. However, their effect on iron-driven secondary brown carbon formation in solution from soluble aromatic and aliphatic reagents was not studied. We report masses and hydrodynamic particle sizes of insoluble particles formed from the dark aqueous phase reaction of catechol, guaiacol, fumaric, and muconic acids with Fe(III) in the presence of oxalate or sulfate. Results show that oxalate decreases particle yield in solution from the reaction of Fe(III), with a stronger effect for guaiacol than catechol. For both compounds, the addition of sulfate results in the formation of more polydisperse (0.1-5 μm) and heavier particles than those from control experiments. Reactions with fumaric and muconic acids show that oxalate (not sulfate) and pH are determining factors in the efficiency of particle formation in solution. Polymerization reactions occur readily in the presence of sulfate in solution producing particles with iron-coordinated and/or pore-trapped sulfate anions. The addition of oxalate to the reactions of Fe(III) with all organics, except guaiacol, produced fewer and larger polymeric particles (>0.5 μm). These results imply that even in the presence of competing ligands, the formation of insoluble and colored particles from soluble organic precursors still dominates over the formation of soluble iron complexes.
Collapse
Affiliation(s)
- Aseel Al Nimer
- Department of Chemistry and Biochemistry , Wilfrid Laurier University , Waterloo , ON N2L 3C5 , Canada
| | - Laura Rocha
- Department of Chemistry and Biochemistry , Wilfrid Laurier University , Waterloo , ON N2L 3C5 , Canada
| | - Mohammad A Rahman
- Department of Chemistry and Biochemistry , Wilfrid Laurier University , Waterloo , ON N2L 3C5 , Canada
| | - Sergey A Nizkorodov
- Department of Chemistry , University of California , Irvine , CA 92697 , United States
| | - Hind A Al-Abadleh
- Department of Chemistry and Biochemistry , Wilfrid Laurier University , Waterloo , ON N2L 3C5 , Canada
| |
Collapse
|
10
|
Freedman MA, Ott EJE, Marak KE. Role of pH in Aerosol Processes and Measurement Challenges. J Phys Chem A 2019; 123:1275-1284. [PMID: 30586311 DOI: 10.1021/acs.jpca.8b10676] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
pH is one of the most basic chemical properties of aqueous solution, but its measurement in nanoscale aerosol particles presents many challenges. The pH of aerosol particles is of growing interest in the atmospheric chemistry community because of its demonstrated effects on heterogeneous chemistry and human health, as well as potential effects on climate. The authors have shown that phase transitions of aerosol particles are sensitive to pH, focusing on systems that undergo liquid-liquid phase separation. Currently, aerosol pH is calculated indirectly from knowledge of species present in the gas and aerosol phases through the use of thermodynamic models. From these models, ambient aerosol is expected to be highly acidic (pH ∼ 0-3). Direct measurements have focused on model systems due to the difficulty of this measurement. This area is one in which physical chemists should be encouraged to contribute because of the potential consequences for aerosol processes in the environment.
Collapse
Affiliation(s)
- Miriam Arak Freedman
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Emily-Jean E Ott
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Katherine E Marak
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|