1
|
Wang F, Li Y, Yuan J, Li C, Lin Y, Gu J, Wang ZY. The U1 small nuclear RNA enhances drought tolerance in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:1126-1146. [PMID: 39067058 DOI: 10.1093/plphys/kiae389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024]
Abstract
Alternative splicing (AS) is an important posttranscriptional regulatory mechanism that improves plant tolerance to drought stress by modulating gene expression and generating proteome diversity. The interaction between the 5' end of U1 small nuclear RNA (U1 snRNA) and the conserved 5' splice site of precursor messenger RNA (pre-mRNA) is pivotal for U1 snRNP involvement in AS. However, the roles of U1 snRNA in drought stress responses remain unclear. This study provides a comprehensive analysis of AtU1 snRNA in Arabidopsis (Arabidopsis thaliana), revealing its high conservation at the 5' end and a distinctive four-leaf clover structure. AtU1 snRNA is localized in the nucleus and expressed in various tissues, with prominent expression in young floral buds, flowers, and siliques. The overexpression of AtU1 snRNA confers enhanced abiotic stress tolerance, as evidenced in seedlings by longer seedling primary root length, increased fresh weight, and a higher greening rate compared with the wild-type. Mature AtU1 snRNA overexpressor plants exhibit higher survival rates and lower water loss rates under drought stress, accompanied by a significant decrease in H2O2 and an increase in proline. This study also provides evidence of altered expression levels of drought-related genes in AtU1 snRNA overexpressor or genome-edited lines, reinforcing the crucial role of AtU1 snRNA in drought stress responses. Furthermore, the overexpression of AtU1 snRNA influences the splicing of downstream target genes, with a notable impact on SPEECHLESS (SPCH), a gene associated with stomatal development, potentially explaining the observed decrease in stomatal aperture and density. These findings elucidate the critical role of U1 snRNA as an AS regulator in enhancing drought stress tolerance in plants, contributing to a deeper understanding of the AS pathway in drought tolerance and increasing awareness of the molecular network governing drought tolerance in plants.
Collapse
Affiliation(s)
- Fan Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, Hainan, China
| | - Yang Li
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, Guangdong, China
- Zhanjiang Research Center, Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Zhanjiang 524300, Guangdong, China
| | - Jianbo Yuan
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, Guangdong, China
| | - Cong Li
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, Guangdong, China
- Zhanjiang Research Center, Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Zhanjiang 524300, Guangdong, China
| | - Yan Lin
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, Guangdong, China
| | - Jinbao Gu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, Guangdong, China
- Zhanjiang Research Center, Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Zhanjiang 524300, Guangdong, China
| | - Zhen-Yu Wang
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, Guangdong, China
| |
Collapse
|
2
|
Gupta P, Jaiswal P. Transcriptional Modulation during Photomorphogenesis in Rice Seedlings. Genes (Basel) 2024; 15:1072. [PMID: 39202430 PMCID: PMC11353317 DOI: 10.3390/genes15081072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Light is one of the most important factors regulating plant gene expression patterns, metabolism, physiology, growth, and development. To explore how light may induce or alter transcript splicing, we conducted RNA-Seq-based transcriptome analyses by comparing the samples harvested as etiolated seedlings grown under continuous dark conditions vs. the light-treated green seedlings. The study aims to reveal differentially regulated protein-coding genes and novel long noncoding RNAs (lncRNAs), their light-induced alternative splicing, and their association with biological pathways. We identified 14,766 differentially expressed genes, of which 4369 genes showed alternative splicing. We observed that genes mapped to the plastid-localized methyl-erythritol-phosphate (MEP) pathway were light-upregulated compared to the cytosolic mevalonate (MVA) pathway genes. Many of these genes also undergo splicing. These pathways provide crucial metabolite precursors for the biosynthesis of secondary metabolic compounds needed for chloroplast biogenesis, the establishment of a successful photosynthetic apparatus, and photomorphogenesis. In the chromosome-wide survey of the light-induced transcriptome, we observed intron retention as the most predominant splicing event. In addition, we identified 1709 novel lncRNA transcripts in our transcriptome data. This study provides insights on light-regulated gene expression and alternative splicing in rice.
Collapse
Affiliation(s)
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
3
|
Jiang Y, Yue Y, Lu C, Latif MZ, Liu H, Wang Z, Yin Z, Li Y, Ding X. AtSNU13 modulates pre-mRNA splicing of RBOHD and ALD1 to regulate plant immunity. BMC Biol 2024; 22:153. [PMID: 38982460 PMCID: PMC11234627 DOI: 10.1186/s12915-024-01951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024] Open
Abstract
Pre-mRNA splicing is a significant step for post-transcriptional modifications and functions in a wide range of physiological processes in plants. Human NHP2L binds to U4 snRNA during spliceosome assembly; it is involved in RNA splicing and mediates the development of human tumors. However, no ortholog has yet been identified in plants. Therefore, we report At4g12600 encoding the ortholog NHP2L protein, and AtSNU13 associates with the component of the spliceosome complex; the atsnu13 mutant showed compromised resistance in disease resistance, indicating that AtSNU13 is a positive regulator of plant immunity. Compared to wild-type plants, the atsnu13 mutation resulted in altered splicing patterns for defense-related genes and decreased expression of defense-related genes, such as RBOHD and ALD1. Further investigation shows that AtSNU13 promotes the interaction between U4/U6.U5 tri-snRNP-specific 27 K and the motif in target mRNAs to regulate the RNA splicing. Our study highlights the role of AtSNU13 in regulating plant immunity by affecting the pre-mRNA splicing of defense-related genes.
Collapse
Affiliation(s)
- Yanke Jiang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Yingzhe Yue
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Muhammad Zunair Latif
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Haifeng Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Zhaoxu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China.
| |
Collapse
|
4
|
Ganie SA, McMulkin N, Devoto A. The role of priming and memory in rice environmental stress adaptation: Current knowledge and perspectives. PLANT, CELL & ENVIRONMENT 2024; 47:1895-1915. [PMID: 38358119 DOI: 10.1111/pce.14855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Plant responses to abiotic stresses are dynamic, following the unpredictable changes of physical environmental parameters such as temperature, water and nutrients. Physiological and phenotypical responses to stress are intercalated by periods of recovery. An earlier stress can be remembered as 'stress memory' to mount a response within a generation or transgenerationally. The 'stress priming' phenomenon allows plants to respond quickly and more robustly to stressors to increase survival, and therefore has significant implications for agriculture. Although evidence for stress memory in various plant species is accumulating, understanding of the mechanisms implicated, especially for crops of agricultural interest, is in its infancy. Rice is a major food crop which is susceptible to abiotic stresses causing constraints on its cultivation and yield globally. Advancing the understanding of the stress response network will thus have a significant impact on rice sustainable production and global food security in the face of climate change. Therefore, this review highlights the effects of priming on rice abiotic stress tolerance and focuses on specific aspects of stress memory, its perpetuation and its regulation at epigenetic, transcriptional, metabolic as well as physiological levels. The open questions and future directions in this exciting research field are also laid out.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| | - Nancy McMulkin
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| | - Alessandra Devoto
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| |
Collapse
|
5
|
Rajendran S, Kang YM, Yang IB, Eo HB, Baek KL, Jang S, Eybishitz A, Kim HC, Je BI, Park SJ, Kim CM. Functional characterization of plant specific Indeterminate Domain (IDD) transcription factors in tomato (Solanum lycopersicum L.). Sci Rep 2024; 14:8015. [PMID: 38580719 PMCID: PMC10997639 DOI: 10.1038/s41598-024-58903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/04/2024] [Indexed: 04/07/2024] Open
Abstract
Plant-specific transcription factors (TFs) are responsible for regulating the genes involved in the development of plant-specific organs and response systems for adaptation to terrestrial environments. This includes the development of efficient water transport systems, efficient reproductive organs, and the ability to withstand the effects of terrestrial factors, such as UV radiation, temperature fluctuations, and soil-related stress factors, and evolutionary advantages over land predators. In rice and Arabidopsis, INDETERMINATE DOMAIN (IDD) TFs are plant-specific TFs with crucial functions, such as development, reproduction, and stress response. However, in tomatoes, IDD TFs remain uncharacterized. Here, we examined the presence, distribution, structure, characteristics, and expression patterns of SlIDDs. Database searches, multiple alignments, and motif alignments suggested that 24 TFs were related to Arabidopsis IDDs. 18 IDDs had two characteristic C2H2 domains and two C2HC domains in their coding regions. Expression analyses suggest that some IDDs exhibit multi-stress responsive properties and can respond to specific stress conditions, while others can respond to multiple stress conditions in shoots and roots, either in a tissue-specific or universal manner. Moreover, co-expression database analyses suggested potential interaction partners within IDD family and other proteins. This study functionally characterized SlIDDs, which can be studied using molecular and bioinformatics methods for crop improvement.
Collapse
Affiliation(s)
- Sujeevan Rajendran
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Yu Mi Kang
- Department of Horticultural and Life Science, Pusan National University, Milyang, 50463, Korea
| | - In Been Yang
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Hye Bhin Eo
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Kyung Lyung Baek
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Seonghoe Jang
- World Vegetable Center Korea Office (WKO), Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Assaf Eybishitz
- World Vegetable Center, P.O. Box 42, Tainan, 74199, Shanhua, Taiwan
| | - Ho Cheol Kim
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Byeong Il Je
- Department of Horticultural and Life Science, Pusan National University, Milyang, 50463, Korea
| | - Soon Ju Park
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Korea
| | - Chul Min Kim
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea.
| |
Collapse
|
6
|
Bühring S, Brunner A, Heeb K, Mergard MP, Schmauck G, Jacob S. An array of signal-specific MoYpd1 isoforms determines full virulence in the pathogenic fungus Magnaporthe oryzae. Commun Biol 2024; 7:265. [PMID: 38438487 PMCID: PMC10912366 DOI: 10.1038/s42003-024-05941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
Magnaporthe oryzae is placed first on a list of the world's top ten plant pathogens with the highest scientific and economic importance. The locus MGG_07173 occurs only once in the genome of M. oryzae and encodes the phosphotransfer protein MoYpd1p, which plays an important role in the high osmolarity glycerol (HOG) signaling pathway for osmoregulation. Originating from this locus, at least three MoYPD1 isoforms are produced in a signal-specific manner. The transcript levels of these MoYPD1-isoforms were individually affected by external stress. Salt (KCI) stress raised MoYPD1_T0 abundance, whereas osmotic stress by sorbitol elevates MoYPD1_T1 levels. In line with this, signal-specific nuclear translocation of green fluorescent protein-fused MoYpd1p isoforms in response to stress was observed. Mutant strains that produce only one of the MoYpd1p isoforms are less virulent, suggesting a combination thereof is required to invade the host successfully. In summary, we demonstrate signal-specific production of MoYpd1p isoforms that individually increase signal diversity and orchestrate virulence in M. oryzae.
Collapse
Affiliation(s)
- Sri Bühring
- Institute of Biotechnology and Drug Research gGmbH (IBWF), Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Antonia Brunner
- Johannes Gutenberg-University Mainz, Microbiology and Biotechnology at the Institute of Molecular Physiology, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Klemens Heeb
- Johannes Gutenberg-University Mainz, Microbiology and Biotechnology at the Institute of Molecular Physiology, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Marius-Peter Mergard
- Johannes Gutenberg-University Mainz, Microbiology and Biotechnology at the Institute of Molecular Physiology, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Greta Schmauck
- Johannes Gutenberg-University Mainz, Microbiology and Biotechnology at the Institute of Molecular Physiology, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Stefan Jacob
- Institute of Biotechnology and Drug Research gGmbH (IBWF), Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany.
| |
Collapse
|
7
|
Alhabsi A, Butt H, Kirschner GK, Blilou I, Mahfouz MM. SCR106 splicing factor modulates abiotic stress responses by maintaining RNA splicing in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:802-818. [PMID: 37924151 PMCID: PMC10837019 DOI: 10.1093/jxb/erad433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Plants employ sophisticated molecular machinery to fine-tune their responses to growth, developmental, and stress cues. Gene expression influences plant cellular responses through regulatory processes such as transcription and splicing. Pre-mRNA is alternatively spliced to increase the genome coding potential and further regulate expression. Serine/arginine-rich (SR) proteins, a family of pre-mRNA splicing factors, recognize splicing cis-elements and regulate both constitutive and alternative splicing. Several studies have reported SR protein genes in the rice genome, subdivided into six subfamilies based on their domain structures. Here, we identified a new splicing factor in rice with an RNA recognition motif (RRM) and SR-dipeptides, which is related to the SR proteins, subfamily SC. OsSCR106 regulates pre-mRNA splicing under abiotic stress conditions. It localizes to the nuclear speckles, a major site for pre-mRNA splicing in the cell. The loss-of-function scr106 mutant is hypersensitive to salt, abscisic acid, and low-temperature stress, and harbors a developmental abnormality indicated by the shorter length of the shoot and root. The hypersensitivity to stress phenotype was rescued by complementation using OsSCR106 fused behind its endogenous promoter. Global gene expression and genome-wide splicing analysis in wild-type and scr106 seedlings revealed that OsSCR106 regulates its targets, presumably through regulating the alternative 3'-splice site. Under salt stress conditions, we identified multiple splice isoforms regulated by OsSCR106. Collectively, our results suggest that OsSCR106 is an important splicing factor that plays a crucial role in accurate pre-mRNA splicing and regulates abiotic stress responses in plants.
Collapse
Affiliation(s)
- Abdulrahman Alhabsi
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Haroon Butt
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Gwendolyn K Kirschner
- Laboratory of Plant Cell and Developmental Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Ikram Blilou
- Laboratory of Plant Cell and Developmental Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
8
|
Han M, Niu M, Gao T, Shen Y, Zhou X, Zhang Y, Liu L, Chai M, Sun G, Wang Y. Responsive Alternative Splicing Events of Opisthopappus Species against Salt Stress. Int J Mol Sci 2024; 25:1227. [PMID: 38279226 PMCID: PMC10816081 DOI: 10.3390/ijms25021227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
Salt stress profoundly affects plant growth, prompting intricate molecular responses, such as alternative splicing (AS), for environmental adaptation. However, the response of AS events to salt stress in Opisthopappus (Opisthopappus taihangensis and Opisthopappus longilobus) remains unclear, which is a Taihang Mountain cliff-dwelling species. Using RNA-seq data, differentially expressed genes (DEGs) were identified under time and concentration gradients of salt stress. Two types of AS, skipped exon (SE) and mutually exclusive exons (MXE), were found. Differentially alternative splicing (DAS) genes in both species were significantly enriched in "protein phosphorylation", "starch and sucrose metabolism", and "plant hormone signal transduction" pathways. Meanwhile, distinct GO terms and KEGG pathways of DAS occurred between two species. Only a small subset of DAS genes overlapped with DEGs under salt stress. Although both species likely adopted protein phosphorylation to enhance salt stress tolerance, they exhibited distinct responses. The results indicated that the salt stress mechanisms of both Opisthopappus species exhibited similarities and differences in response to salt stress, which suggested that adaptive divergence might have occurred between them. This study initially provides a comprehensive description of salt responsive AS events in Opisthopappus and conveys some insights into the molecular mechanisms behind species tolerance on the Taihang Mountains.
Collapse
Affiliation(s)
- Mian Han
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Mengfan Niu
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Ting Gao
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Yuexin Shen
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Xiaojuan Zhou
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Yimeng Zhang
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Li Liu
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Min Chai
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| | - Genlou Sun
- Department of Botany, Saint Mary’s University, Halifax, NS B3H 3C3, Canada
| | - Yiling Wang
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.H.)
| |
Collapse
|
9
|
Thanapipatpong P, Vuttipongchaikij S, Chomtong T, Puangtame W, Napaumpaipond P, Gomez LD, Suttangkakul A. Alternative splicing regulates autophagy in response to environmental stresses in cucumber ( Cucumis sativus). ALL LIFE 2023. [DOI: 10.1080/26895293.2023.2195987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Affiliation(s)
| | - Supachai Vuttipongchaikij
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Thitikorn Chomtong
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Wilasinee Puangtame
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | | | - Anongpat Suttangkakul
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| |
Collapse
|
10
|
Pinto VB, Vidigal PMP, Dal-Bianco M, Almeida-Silva F, Venancio TM, Viana JMS. Transcriptome-based strategies for identifying aluminum tolerance genes in popcorn (Zea mays L. var. everta). Sci Rep 2023; 13:19400. [PMID: 37938583 PMCID: PMC10632369 DOI: 10.1038/s41598-023-46810-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/06/2023] [Indexed: 11/09/2023] Open
Abstract
Aluminum (Al) toxicity limits crop production worldwide. Although studies have identified genes associated with Al tolerance in crops, a large amount of data remains unexplored using other strategies. Here, we searched for single substitutions and InDels across differentially expressed genes (DEGs), linked DEGs to Al-tolerance QTLs reported in the literature for common maize, and investigated the alternative splicing regulated by Al3+ toxicity. We found 929 substitutions between DEGs in Al-tolerant and 464 in Al-sensitive inbred lines, of which 165 and 80 were non-synonymous, respectively. Only 12 NS variants had deleterious predicted effect on protein function in Al-tolerant and 13 in Al-sensitive. Moreover, 378 DEGs were mapped in Al-QTL regions for the Al-tolerant and 213 for the Al-sensitive. Furthermore, Al stress is primarily regulated at the transcriptional level in popcorn. Important genes identified, such as HDT1, SWEET4a, GSTs, SAD9, PIP2-2, CASP-like 5, and AGP, may benefit molecular assisted popcorn breeding or be useful in biotechnological approaches. These findings offer insights into the mechanisms of Al tolerance in popcorn and provide a 'hypothesis-free' strategy for identifying and prioritizing candidate genes that could be used to develop molecular markers or cultivars resilient to acidic soils.
Collapse
Affiliation(s)
- Vitor Batista Pinto
- Departamento de Biologia Geral, Universidade Federal de Viçosa (UFV), Viçosa, MG, 36570-000, Brazil.
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, 28013-602, Brazil.
| | | | - Maximiller Dal-Bianco
- Laboratório de Bioquímica Genética de Plantas/BIOAGRO. UFV, Viçosa, MG, 36570-000, Brazil
| | - Fabricio Almeida-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, CBB. UENF, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Thiago Motta Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, CBB. UENF, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | | |
Collapse
|
11
|
Song YC, Chen MX, Zhang KL, Reddy ASN, Cao FL, Zhu FY. QuantAS: a comprehensive pipeline to study alternative splicing by absolute quantification of splice isoforms. THE NEW PHYTOLOGIST 2023; 240:928-939. [PMID: 37596706 DOI: 10.1111/nph.19193] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/15/2023] [Indexed: 08/20/2023]
Affiliation(s)
- Yu-Chen Song
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, the Key Lab of Tree Genetics and Biotechnology of Educational Department of China and the Key Lab of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Mo-Xian Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, the Key Lab of Tree Genetics and Biotechnology of Educational Department of China and the Key Lab of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Kai-Lu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, the Key Lab of Tree Genetics and Biotechnology of Educational Department of China and the Key Lab of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Fu-Liang Cao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, the Key Lab of Tree Genetics and Biotechnology of Educational Department of China and the Key Lab of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China
| | - Fu-Yuan Zhu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, the Key Lab of Tree Genetics and Biotechnology of Educational Department of China and the Key Lab of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
12
|
Al-Dossary O, Furtado A, KharabianMasouleh A, Alsubaie B, Al-Mssallem I, Henry RJ. Long read sequencing to reveal the full complexity of a plant transcriptome by targeting both standard and long workflows. PLANT METHODS 2023; 19:112. [PMID: 37865785 PMCID: PMC10589961 DOI: 10.1186/s13007-023-01091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Long read sequencing allows the analysis of full-length transcripts in plants without the challenges of reliable transcriptome assembly. Long read sequencing of transcripts from plant genomes has often utilized sized transcript libraries. However, the value of including libraries of differing sizes has not been established. METHODS A comprehensive transcriptome of the leaves of Jojoba (Simmondsia chinensis) was generated from two different PacBio library preparations: standard workflow (SW) and long workflow (LW). RESULTS The importance of using both transcript groups in the analysis was demonstrated by the high proportion of unique sequences (74.6%) that were not shared between the groups. A total of 37.8% longer transcripts were only detected in the long dataset. The completeness of the combined transcriptome was indicated by the presence of 98.7% of genes predicted in the jojoba male reference genome. The high coverage of the transcriptome was further confirmed by BUSCO analysis showing the presence of 96.9% of the genes from the core viridiplantae_odb10 lineage. The high-quality isoforms post Cd-Hit merged dataset of the two workflows had a total of 167,866 isoforms. Most of the transcript isoforms were protein-coding sequences (71.7%) containing open reading frames (ORFs) ≥ 100 amino acids (aa). Alternative splicing and intron retention were the basis of most transcript diversity when analysed at the whole genome level and by specific analysis of the apetala2 gene families. CONCLUSION This suggests the need to specifically target the capture of longer transcripts to provide more comprehensive genome coverage in plant transcriptome analysis and reveal the high level of alternative splicing.
Collapse
Affiliation(s)
- Othman Al-Dossary
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University, 36362, Al Hofuf, Saudi Arabia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
| | - Ardashir KharabianMasouleh
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
| | - Bader Alsubaie
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University, 36362, Al Hofuf, Saudi Arabia
| | - Ibrahim Al-Mssallem
- College of Agriculture and Food Sciences, King Faisal University, 36362, Al Hofuf, Saudi Arabia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia.
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
13
|
Dwivedi SL, Quiroz LF, Reddy ASN, Spillane C, Ortiz R. Alternative Splicing Variation: Accessing and Exploiting in Crop Improvement Programs. Int J Mol Sci 2023; 24:15205. [PMID: 37894886 PMCID: PMC10607462 DOI: 10.3390/ijms242015205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Alternative splicing (AS) is a gene regulatory mechanism modulating gene expression in multiple ways. AS is prevalent in all eukaryotes including plants. AS generates two or more mRNAs from the precursor mRNA (pre-mRNA) to regulate transcriptome complexity and proteome diversity. Advances in next-generation sequencing, omics technology, bioinformatics tools, and computational methods provide new opportunities to quantify and visualize AS-based quantitative trait variation associated with plant growth, development, reproduction, and stress tolerance. Domestication, polyploidization, and environmental perturbation may evolve novel splicing variants associated with agronomically beneficial traits. To date, pre-mRNAs from many genes are spliced into multiple transcripts that cause phenotypic variation for complex traits, both in model plant Arabidopsis and field crops. Cataloguing and exploiting such variation may provide new paths to enhance climate resilience, resource-use efficiency, productivity, and nutritional quality of staple food crops. This review provides insights into AS variation alongside a gene expression analysis to select for novel phenotypic diversity for use in breeding programs. AS contributes to heterosis, enhances plant symbiosis (mycorrhiza and rhizobium), and provides a mechanistic link between the core clock genes and diverse environmental clues.
Collapse
Affiliation(s)
| | - Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, SE, Sweden
| |
Collapse
|
14
|
Shamshad A, Rashid M, Zaman QU. In-silico analysis of heat shock transcription factor (OsHSF) gene family in rice (Oryza sativa L.). BMC PLANT BIOLOGY 2023; 23:395. [PMID: 37592226 PMCID: PMC10433574 DOI: 10.1186/s12870-023-04399-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND One of the most important cash crops worldwide is rice (Oryza sativa L.). Under varying climatic conditions, however, its yield is negatively affected. In order to create rice varieties that are resilient to abiotic stress, it is essential to explore the factors that control rice growth, development, and are source of resistance. HSFs (heat shock transcription factors) control a variety of plant biological processes and responses to environmental stress. The in-silico analysis offers a platform for thorough genome-wide identification of OsHSF genes in the rice genome. RESULTS In this study, 25 randomly dispersed HSF genes with significant DNA binding domains (DBD) were found in the rice genome. According to a gene structural analysis, all members of the OsHSF family share Gly-66, Phe-67, Lys-69, Trp-75, Glu-76, Phe-77, Ala-78, Phe-82, Ile-93, and Arg-96. Rice HSF family genes are widely distributed in the vegetative organs, first in the roots and then in the leaf and stem; in contrast, in reproductive tissues, the embryo and lemma exhibit the highest levels of gene expression. According to chromosomal localization, tandem duplication and repetition may have aided in the development of novel genes in the rice genome. OsHSFs have a significant role in the regulation of gene expression, regulation in primary metabolism and tolerance to environmental stress, according to gene networking analyses. CONCLUSION Six genes viz; Os01g39020, Os01g53220, Os03g25080, Os01g54550, Os02g13800 and Os10g28340 were annotated as promising genes. This study provides novel insights for functional studies on the OsHSFs in rice breeding programs. With the ultimate goal of enhancing crops, the data collected in this survey will be valuable for performing genomic research to pinpoint the specific function of the HSF gene during stress responses.
Collapse
Affiliation(s)
- Areeqa Shamshad
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Rashid
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Qamar Uz Zaman
- Department of Environmental Sciences, The University of Lahore, Lahore, 54590, Pakistan.
| |
Collapse
|
15
|
Hazra A, Pal A, Kundu A. Alternative splicing shapes the transcriptome complexity in blackgram [Vigna mungo (L.) Hepper]. Funct Integr Genomics 2023; 23:144. [PMID: 37133618 DOI: 10.1007/s10142-023-01066-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Vigna mungo, a highly consumed crop in the pan-Asian countries, is vulnerable to several biotic and abiotic stresses. Understanding the post-transcriptional gene regulatory cascades, especially alternative splicing (AS), may underpin large-scale genetic improvements to develop stress-resilient varieties. Herein, a transcriptome based approach was undertaken to decipher the genome-wide AS landscape and splicing dynamics in order to establish the intricacies of their functional interactions in various tissues and stresses. RNA sequencing followed by high-throughput computational analyses identified 54,526 AS events involving 15,506 AS genes that generated 57,405 transcripts isoforms. Enrichment analysis revealed their involvement in diverse regulatory functions and demonstrated that transcription factors are splicing-intensive, splice variants of which are expressed differentially across tissues and environmental cues. Increased expression of a splicing regulator NHP2L1/SNU13 was found to co-occur with lower intron retention events. The host transcriptome is significantly impacted by differential isoform expression of 1172 and 765 AS genes that resulted in 1227 (46.8% up and 53.2% downregulated) and 831 (47.5% up and 52.5% downregulated) transcript isoforms under viral pathogenesis and Fe2+ stressed condition, respectively. However, genes experiencing AS operate differently from the differentially expressed genes, suggesting AS is a unique and independent mode of regulatory mechanism. Therefore, it can be inferred that AS mediates a crucial regulatory role across tissues and stressful situations and the results would provide an invaluable resource for future endeavours in V. mungo genomics.
Collapse
Affiliation(s)
- Anjan Hazra
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Amita Pal
- Division of Plant Biology, Bose Institute, Kolkata, 700091, India.
| | - Anirban Kundu
- Plant Genomics and Bioinformatics Laboratory, P.G. Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India.
| |
Collapse
|
16
|
Laskar P, Hazra A, Pal A, Kundu A. Deciphering the role of alternative splicing as modulators of defense response in the MYMIV- Vigna mungo pathosystem. PHYSIOLOGIA PLANTARUM 2023; 175:e13922. [PMID: 37114622 DOI: 10.1111/ppl.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 06/19/2023]
Abstract
Alternative splicing (AS) is a crucial regulatory mechanism that impacts transcriptome and proteome complexity under stressful situations. Although its role in abiotic stresses is somewhat understood, our understanding of the mechanistic regulation of pre-mRNA splicing in plant-pathogen interaction is meagre. To comprehend this unexplored immune reprogramming mechanism, transcriptome profiles of Mungbean Yellow Mosaic India Virus (MYMIV)-resistant and susceptible Vigna mungo genotypes were analysed for AS genes that may underlie the resistance mechanism. Results revealed a repertoire of AS-isoforms accumulated during pathogenic infestation, with intron retention being the most common AS mechanism. Identification of 688 differential alternatively spliced (DAS) genes in the resistant host elucidates its robust antiviral response, whereas 322 DAS genes were identified in the susceptible host. Enrichment analyses confirmed DAS transcripts pertaining to stress, signalling, and immune system pathways have undergone maximal perturbations. Additionally, a strong regulation of the splicing factors has been observed both at transcriptional and post-transcriptional levels. qPCR validation of candidate DAS transcripts with induced expression upon MYMIV-infection demonstrated a competent immune response in the resistant background. The AS-impacted genes resulted either in partial/complete loss of functional domains or altered sensitivity to miRNA-mediated gene silencing. A complex regulatory module, miR7517-ATAF2, has been identified in an aberrantly spliced ATAF2 isoform that exposes an intronic miR7517 binding site, thereby suppressing the negative regulator to enhance defense reaction. The present study establishes AS as a non-canonical immune reprogramming mechanism that operates in parallel, thereby offering an alternative strategy for developing yellow mosaic-resistant V. mungo cultivars. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Parbej Laskar
- Plant Genomics and Bioinformatics Laboratory, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata
| | - Anjan Hazra
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata
- Present Address: Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata
| | - Amita Pal
- Division of Plant Biology, Bose Institute, Kolkata
| | - Anirban Kundu
- Plant Genomics and Bioinformatics Laboratory, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata
| |
Collapse
|
17
|
Guo X, Wang T, Jiang L, Qi H, Zhang Z. PlaASDB: a comprehensive database of plant alternative splicing events in response to stress. BMC PLANT BIOLOGY 2023; 23:225. [PMID: 37106367 PMCID: PMC10134664 DOI: 10.1186/s12870-023-04234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Alternative splicing (AS) is a co-transcriptional regulatory mechanism of plants in response to environmental stress. However, the role of AS in biotic and abiotic stress responses remains largely unknown. To speed up our understanding of plant AS patterns under different stress responses, development of informative and comprehensive plant AS databases is highly demanded. DESCRIPTION In this study, we first collected 3,255 RNA-seq data under biotic and abiotic stresses from two important model plants (Arabidopsis and rice). Then, we conducted AS event detection and gene expression analysis, and established a user-friendly plant AS database termed PlaASDB. By using representative samples from this highly integrated database resource, we compared AS patterns between Arabidopsis and rice under abiotic and biotic stresses, and further investigated the corresponding difference between AS and gene expression. Specifically, we found that differentially spliced genes (DSGs) and differentially expressed genes (DEG) share very limited overlapping under all kinds of stresses, suggesting that gene expression regulation and AS seemed to play independent roles in response to stresses. Compared with gene expression, Arabidopsis and rice were more inclined to have conserved AS patterns under stress conditions. CONCLUSION PlaASDB is a comprehensive plant-specific AS database that mainly integrates the AS and gene expression data of Arabidopsis and rice in stress response. Through large-scale comparative analyses, the global landscape of AS events in Arabidopsis and rice was observed. We believe that PlaASDB could help researchers understand the regulatory mechanisms of AS in plants under stresses more conveniently. PlaASDB is freely accessible at http://zzdlab.com/PlaASDB/ASDB/index.html .
Collapse
Affiliation(s)
- Xiaokun Guo
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tianpeng Wang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Linyang Jiang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Huan Qi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ziding Zhang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
18
|
Wang L, Wang L, Tan M, Wang L, Zhao W, You J, Wang L, Yan X, Wang W. The pattern of alternative splicing and DNA methylation alteration and their interaction in linseed (Linum usitatissimum L.) response to repeated drought stresses. Biol Res 2023; 56:12. [PMID: 36922868 PMCID: PMC10018860 DOI: 10.1186/s40659-023-00424-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Drought stress has significantly hampered agricultural productivity worldwide and can also result in modifications to DNA methylation levels. However, the dynamics of DNA methylation and its association with the changes in gene transcription and alternative splicing (AS) under drought stress are unknown in linseed, which is frequently cultivated in arid and semiarid regions. RESULTS We analysed AS events and DNA methylation patterns in drought-tolerant (Z141) and drought-sensitive (NY-17) linseed under drought stress (DS) and repeated drought stress (RD) treatments. We found that the number of intron-retention (IR) and alternative 3' splice site (Alt3'SS) events were significantly higher in Z141 and NY-17 under drought stress. We found that the linseed response to the DS treatment was mainly regulated by transcription, while the response to the RD treatment was coregulated by transcription and AS. Whole genome-wide DNA methylation analysis revealed that drought stress caused an increase in the overall methylation level of linseed. Although we did not observe any correlation between differentially methylated genes (DMGs) and differentially spliced genes (DSGs) in this study, we found that the DSGs whose gene body region was hypermethylated in Z141 and hypomethylated in NY-17 were enriched in abiotic stress response Gene Ontology (GO) terms. This finding implies that gene body methylation plays an important role in AS regulation in some specific genes. CONCLUSION Our study is the first comprehensive genome-wide analysis of the relationship between linseed methylation changes and AS under drought and repeated drought stress. Our study revealed different interaction patterns between differentially expressed genes (DEGs) and DSGs under DS and RD treatments and differences between methylation and AS regulation in drought-tolerant and drought-sensitive linseed varieties. The findings will probably be of interest in the future. Our results provide interesting insights into the association between gene expression, AS, and DNA methylation in linseed under drought stress. Differences in these associations may account for the differences in linseed drought tolerance.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | - Lei Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | - Meilian Tan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | - Wei Zhao
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | | | - Xingchu Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | - Wei Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs Oil Crops Research Institute of Chinese Academy of Agricultural Science, Wuhan, 430062, China.
| |
Collapse
|
19
|
Boulanger HG, Guo W, Monteiro LDFR, Calixto CPG. Co-expression network of heat-response transcripts: A glimpse into how splicing factors impact rice basal thermotolerance. Front Mol Biosci 2023; 10:1122201. [PMID: 36818043 PMCID: PMC9932781 DOI: 10.3389/fmolb.2023.1122201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
To identify novel solutions to improve rice yield under rising temperatures, molecular components of thermotolerance must be better understood. Alternative splicing (AS) is a major post-transcriptional mechanism impacting plant tolerance against stresses, including heat stress (HS). AS is largely regulated by splicing factors (SFs) and recent studies have shown their involvement in temperature response. However, little is known about the splicing networks between SFs and AS transcripts in the HS response. To expand this knowledge, we constructed a co-expression network based on a publicly available RNA-seq dataset that explored rice basal thermotolerance over a time-course. Our analyses suggest that the HS-dependent control of the abundance of specific transcripts coding for SFs might explain the widespread, coordinated, complex, and delicate AS regulation of critical genes during a plant's inherent response to extreme temperatures. AS changes in these critical genes might affect many aspects of plant biology, from organellar functions to cell death, providing relevant regulatory candidates for future functional studies of basal thermotolerance.
Collapse
Affiliation(s)
- Hadrien Georges Boulanger
- Université Paris-Saclay, Gif-sur-Yvette, France,École Nationale Supérieure d'Informatique pour l'Industrie et l’Entreprise, Evry-Courcouronnes, France,Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Wenbin Guo
- Information and Computational Sciences, The James Hutton Institute, Dundee, United Kingdom
| | | | - Cristiane Paula Gomes Calixto
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil,*Correspondence: Cristiane Paula Gomes Calixto,
| |
Collapse
|
20
|
Lu K, Li C, Guan J, Liang WH, Chen T, Zhao QY, Zhu Z, Yao S, He L, Wei XD, Zhao L, Zhou LH, Zhao CF, Wang CL, Zhang YD. The PPR-Domain Protein SOAR1 Regulates Salt Tolerance in Rice. RICE (NEW YORK, N.Y.) 2022; 15:62. [PMID: 36463341 PMCID: PMC9719575 DOI: 10.1186/s12284-022-00608-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Previous studies in Arabidopsis reported that the PPR protein SOAR1 plays critical roles in plant response to salt stress. In this study, we reported that expression of the Arabidopsis SOAR1 (AtSOAR1) in rice significantly enhanced salt tolerance at seedling growth stage and promoted grain productivity under salt stress without affecting plant productivity under non-stressful conditions. The transgenic rice lines expressing AtSOAR1 exhibited increased ABA sensitivity in ABA-induced inhibition of seedling growth, and showed altered transcription and splicing of numerous genes associated with salt stress, which may explain salt tolerance of the transgenic plants. Further, we overexpressed the homologous gene of SOAR1 in rice, OsSOAR1, and showed that transgenic plants overexpressing OsSOAR1 enhanced salt tolerance at seedling growth stage. Five salt- and other abiotic stress-induced SOAR1-like PPRs were also identified. These data showed that the SOAR1-like PPR proteins are positively involved in plant response to salt stress and may be used for crop improvement in rice under salinity conditions through transgenic manipulation.
Collapse
Affiliation(s)
- Kai Lu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Cheng Li
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Ju Guan
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Wen-Hua Liang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Tao Chen
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Qing-Yong Zhao
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Zhen Zhu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Shu Yao
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Lei He
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Xiao-Dong Wei
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Ling Zhao
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Li-Hui Zhou
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Chun-Fang Zhao
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Cai-Lin Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Ya-Dong Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China.
| |
Collapse
|
21
|
Jardim-Messeder D, Zamocky M, Sachetto-Martins G, Margis-Pinheiro M. Chloroplastic ascorbate peroxidases targeted to stroma or thylakoid membrane: The chicken or egg dilemma. FEBS Lett 2022; 596:2989-3004. [PMID: 35776057 DOI: 10.1002/1873-3468.14438] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
Ascorbate peroxidases (APXs) are heme peroxidases that remove hydrogen peroxide in different subcellular compartments with concomitant ascorbate cycling. Here, we analysed and discussed phylogenetic and molecular features of the APX family. Ancient APX originated as a soluble stromal enzyme, and early during plant evolution, acquired both chloroplast-targeting and mitochondrion-targeting sequences and an alternative splicing mechanism whereby it could be expressed as a soluble or thylakoid membrane-bound enzyme. Later, independent duplication and neofunctionalization events in some angiosperm groups resulted in individual genes encoding stromal, thylakoidal and mitochondrial isoforms. These data reaffirm the complexity of plant antioxidant defenses that allow diverse plant species to acquire new means to adapt to changing environmental conditions.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Brazil.,Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Brazil
| | - Marcel Zamocky
- Laboratory of Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia.,Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Márcia Margis-Pinheiro
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
22
|
Zhou T, He Y, Zeng X, Cai B, Qu S, Wang S. Comparative Analysis of Alternative Splicing in Two Contrasting Apple Cultivars Defense against Alternaria alternata Apple Pathotype Infection. Int J Mol Sci 2022; 23:ijms232214202. [PMID: 36430679 PMCID: PMC9693243 DOI: 10.3390/ijms232214202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Alternaria blotch disease, caused by the Alternaria alternata apple pathotype (A. alternata AP), is one of the most serious fungal diseases in apples. Alternative splicing (AS), one of the pivotal post-transcriptional regulatory mechanisms, plays essential roles in various disease resistance responses. Here, we performed RNA-Seq for two apple cultivars (resistant cultivar 'Jonathan' (J) and susceptible cultivar 'Starking Delicious' (SD)) infected by A. alternata AP to further investigate their AS divergence. In total, 1454, 1780, 1367 and 1698 specifically regulated differential alternative splicing (DAS) events were detected in J36, J72, SD36 and SD72 groups, respectively. Retained intron (RI) was the dominant AS pattern. Conformably, 642, 764, 585 and 742 uniquely regulated differentially spliced genes (DSGs) were found during A. alternata AP infection. Comparative analysis of AS genes in differential splicing and expression levels suggested that only a small proportion of DSGs overlapped with differentially expressed genes (DEGs). Gene ontology (GO) enrichment analysis demonstrated that the DSGs were significantly enriched at multiple levels of gene expression regulation. Briefly, the specific AS was triggered in apple defense against A. alternata AP. Therefore, this study facilitates our understanding on the roles of AS regulation in response to A. alternata AP infection in apples.
Collapse
|
23
|
Lopes-Caitar VS, Nomura RBG, Hishinuma-Silva SM, de Carvalho MCDCG, Abdelnoor RV, Dias WP, Marcelino-Guimarães FC. Time Course RNA-seq Reveals Soybean Responses against Root-Lesion Nematode and Resistance Players. PLANTS (BASEL, SWITZERLAND) 2022; 11:2983. [PMID: 36365436 PMCID: PMC9655969 DOI: 10.3390/plants11212983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Pratylenchus brachyurus causes serious damage to soybean production and other crops worldwide. Plant molecular responses to RLN infection remain largely unknown and no resistance genes have been identified in soybean. In this study, we analyzed molecular responses to RLN infection in moderately resistant BRSGO (Chapadões-BRS) and susceptible TMG115 RR (TMG) Glycine max genotypes. Differential expression analysis revealed two stages of response to RLN infection and a set of differentially expressed genes (DEGs) in the first stage suggested a pattern-triggered immunity (PTI) in both genotypes. The divergent time-point of DEGs between genotypes was observed four days post-infection, which included the activation of mitogen-activated protein kinase (MAPK) and plant-pathogen interaction genes in the BRS, suggesting the occurrence of an effector-triggered immunity response (ETI) in BRS. The co-expression analyses combined with single nucleotide polymorphism (SNP) uncovered a key element, a transcription factor phytochrome-interacting factor (PIF7) that is a potential regulator of moderate resistance to RLN infection. Two genes for resistance-related leucine-rich repeat (LRR) proteins were found as BRS-specific expressed genes. In addition, alternative splicing analysis revealed an intron retention in a myo-inositol oxygenase (MIOX) transcript, a gene related to susceptibility, may cause a loss of function in BRS.
Collapse
Affiliation(s)
- Valéria Stefania Lopes-Caitar
- Department of Biological Sciences, Universidade Estadual de Londrina (UEL), Londrina 86057-970, PR, Brazil
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil
| | - Rafael Bruno Guayato Nomura
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil
- Department Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), Londrina 86057-970, PR, Brazil
| | - Suellen Mika Hishinuma-Silva
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil
- Department Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), Londrina 86057-970, PR, Brazil
| | | | | | - Waldir Pereira Dias
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil
| | | |
Collapse
|
24
|
Comparative Analysis of Environment-Responsive Alternative Splicing in the Inflorescences of Cultivated and Wild Tomato Species. Int J Mol Sci 2022; 23:ijms231911585. [PMID: 36232886 PMCID: PMC9569760 DOI: 10.3390/ijms231911585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cultivated tomato (Solanum lycopersicum) is bred for fruit production in optimized environments, in contrast to harsh environments where their ancestral relatives thrive. The process of domestication and breeding has profound impacts on the phenotypic plasticity of plant development and the stress response. Notably, the alternative splicing (AS) of precursor message RNA (pre-mRNA), which is one of the major factors contributing to transcriptome complexity, is responsive to developmental cues and environmental change. To determine a possible association between AS events and phenotypic plasticity, we investigated environment-responsive AS events in the inflorescences of cultivated tomato and its ancestral relatives S. pimpinellifolium. Despite that similar AS frequencies were detected in the cultivated tomato variety Moneymaker and two S. pimpinellifolium accessions under the same growth conditions, 528 genes including splicing factors showed differential splicing in the inflorescences of plants grown in open fields and plastic greenhouses in the Moneymaker variety. In contrast, the two S. pimpinellifolium accessions, LA1589 and LA1781, had 298 and 268 genes showing differential splicing, respectively. Moreover, seven heat responsive genes showed opposite expression patterns in response to changing growth conditions between Moneymaker and its ancestral relatives. Accordingly, there were eight differentially expressed splice variants from genes involved in heat response in Moneymaker. Our results reveal distinctive features of AS events in the inflorescences between cultivated tomato and its ancestral relatives, and show that AS regulation in response to environmental changes is genotype dependent.
Collapse
|
25
|
Srikakulam N, Sridevi G, Pandi G. High-quality reference transcriptome construction improves RNA-seq quantification in Oryza sativa indica. Front Genet 2022; 13:995072. [PMID: 36246658 PMCID: PMC9558114 DOI: 10.3389/fgene.2022.995072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
The Reference Transcriptomic Dataset (RTD) is an accurate and comprehensive collection of transcripts originating from a given organism. It holds the key to precise transcript quantification and downstream analysis of differential expressions and regulations. Currently, transcriptome annotations for most crop plants are far from complete. For example, Oryza sativa indica (O. sativa indica) is reported to have 40,759 transcripts in the Ensembl database without alternative transcript isoforms and alternative splicing (AS) events. To generate a high-quality RTD, we conducted RNA sequencing of rice leaf samples collected at various time points during Rhizoctonia solani infection. The obtained reads were analyzed by adopting the recently developed computational analysis pipeline to assemble the RTD with increased transcript and AS diversity for O. sativa indica (IndicaRTD). After stringent quality filtering, the newly constructed transcriptome annotation was comprised of 122,968 non-redundant transcripts from 53,695 genes. This study identified many novel transcripts compared to Ensembl deposited data that are important for regulating molecular and physiological processes in the plant system. Currently, the assembled IndicaRTD must allow fast quantification of transcript and gene expression with high precision.
Collapse
Affiliation(s)
- Nagesh Srikakulam
- Laboratory of RNA Biology and Epigenomics, Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
- *Correspondence: Nagesh Srikakulam, ; Gopal Pandi,
| | - Ganapathi Sridevi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Gopal Pandi
- Laboratory of RNA Biology and Epigenomics, Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
- *Correspondence: Nagesh Srikakulam, ; Gopal Pandi,
| |
Collapse
|
26
|
Bela K, Riyazuddin R, Csiszár J. Plant Glutathione Peroxidases: Non-Heme Peroxidases with Large Functional Flexibility as a Core Component of ROS-Processing Mechanisms and Signalling. Antioxidants (Basel) 2022; 11:antiox11081624. [PMID: 36009343 PMCID: PMC9404953 DOI: 10.3390/antiox11081624] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
Glutathione peroxidases (GPXs) are non-heme peroxidases catalyzing the reduction of H2O2 or organic hydroperoxides to water or corresponding alcohols using glutathione (GSH) or thioredoxin (TRX) as a reducing agent. In contrast to animal GPXs, the plant enzymes are non-seleno monomeric proteins that generally utilize TRX more effectively than GSH but can be a putative link between the two main redox systems. Because of the substantial differences compared to non-plant GPXs, use of the GPX-like (GPXL) name was suggested for Arabidopsis enzymes. GPX(L)s not only can protect cells from stress-induced oxidative damages but are crucial components of plant development and growth. Due to fine-tuning the H2O2 metabolism and redox homeostasis, they are involved in the whole life cycle even under normal growth conditions. Significantly new mechanisms were discovered related to their transcriptional, post-transcriptional and post-translational modifications by describing gene regulatory networks, interacting microRNA families, or identifying Lys decrotonylation in enzyme activation. Their involvement in epigenetic mechanisms was evidenced. Detailed genetic, evolutionary, and bio-chemical characterization, and comparison of the main functions of GPXs, demonstrated their species-specific roles. The multisided involvement of GPX(L)s in the regulation of the entire plant life ensure that their significance will be more widely recognized and applied in the future.
Collapse
Affiliation(s)
- Krisztina Bela
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62., H-6726 Szeged, Hungary
| | - Jolán Csiszár
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
- Correspondence:
| |
Collapse
|
27
|
Ganie SA, Bhat JA, Devoto A. The influence of endophytes on rice fitness under environmental stresses. PLANT MOLECULAR BIOLOGY 2022; 109:447-467. [PMID: 34859329 PMCID: PMC9213282 DOI: 10.1007/s11103-021-01219-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 05/26/2023]
Abstract
KEY MESSAGE Endophytes are crucial for the promotion of rice growth and stress tolerance and can be used to increase rice crop yield. Endophytes can thus be exploited in biotechnology and genetic engineering as eco-friendly and cost-effective means for the development of high-yielding and stress-tolerant rice plants. Rice (Oryza sativa) crop is continuously subjected to biotic and abiotic stresses, compromising growth and consequently yield. The situation is exacerbated by climate change impacting on ecosystems and biodiversity. Genetic engineering has been used to develop stress-tolerant rice, alongside physical and chemical methods to mitigate the effect of these stresses. However, the success of these strategies has been hindered by short-lived field success and public concern on adverse effects associated. The limited success in the field of stress-tolerant cultivars developed through breeding or transgenic approaches is due to the complex nature of stress tolerance as well as to the resistance breakdown caused by accelerated evolution of pathogens. It is therefore necessary to develop novel and acceptable strategies to enhance rice stress tolerance and durable resistance and consequently improve yield. In the last decade, plant growth promoting (PGP) microbes, especially endophytes, have drawn the attention of agricultural scientists worldwide, due to their ability to mitigate environmental stresses in crops, without causing adverse effects. Increasing evidence indicates that endophytes effectively confer fitness benefits also to rice under biotic and abiotic stress conditions. Endophyte-produced metabolites can control the expression of stress-responsive genes and improve the physiological performance and growth of rice plants. This review highlights the current evidence available for PGP microbe-promoted tolerance of rice to abiotic stresses such as salinity and drought and to biotic ones, with special emphasis on endophytes. Associated molecular mechanisms are illustrated, and prospects for sustainable rice production also in the light of the impending climate change, discussed.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Javaid Akhter Bhat
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Alessandra Devoto
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
28
|
The Rice Serine/Arginine Splicing Factor RS33 Regulates Pre-mRNA Splicing during Abiotic Stress Responses. Cells 2022; 11:cells11111796. [PMID: 35681491 PMCID: PMC9180459 DOI: 10.3390/cells11111796] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
Abiotic stresses profoundly affect plant growth and development and limit crop productivity. Pre-mRNA splicing is a major form of gene regulation that helps plants cope with various stresses. Serine/arginine (SR)-rich splicing factors play a key role in pre-mRNA splicing to regulate different biological processes under stress conditions. Alternative splicing (AS) of SR transcripts and other transcripts of stress-responsive genes generates multiple splice isoforms that contribute to protein diversity, modulate gene expression, and affect plant stress tolerance. Here, we investigated the function of the plant-specific SR protein RS33 in regulating pre-mRNA splicing and abiotic stress responses in rice. The loss-of-function mutant rs33 showed increased sensitivity to salt and low-temperature stresses. Genome-wide analyses of gene expression and splicing in wild-type and rs33 seedlings subjected to these stresses identified multiple splice isoforms of stress-responsive genes whose AS are regulated by RS33. The number of RS33-regulated genes was much higher under low-temperature stress than under salt stress. Our results suggest that the plant-specific splicing factor RS33 plays a crucial role during plant responses to abiotic stresses.
Collapse
|
29
|
Mallikarjuna MG, Sharma R, Veeraya P, Tyagi A, Rao AR, Hirenallur Chandappa L, Chinnusamy V. Evolutionary and functional characterisation of glutathione peroxidases showed splicing mediated stress responses in Maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 178:40-54. [PMID: 35276595 DOI: 10.1016/j.plaphy.2022.02.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/02/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Maize (Zea mays L) is an important cereal with extensive adaptability and multifaceted usages. However, various abiotic and biotic stresses limit the productivity of maize across the globe. Exposure of plant to stresses disturb the balance between reactive oxygen species (ROS) production and scavenging, which subsequently increases cellular damage and death of plants. Tolerant genotypes have evolved higher output of scavenging antioxidative defence compounds (ADCs) during stresses as one of the protective mechanisms. The glutathione peroxidases (GPXs) are the broad class of ADCs family. The plant GPXs catalyse the reduction of hydrogen peroxide (H2O2), lipid hydroperoxides and organic hydroperoxides to the corresponding alcohol, and facilitate the regulation of stress tolerance mechanisms. The present investigation was framed to study the maize GPXs using evolutionary and functional analyses. Seven GPX genes with thirteen splice-variants and sixty-three types of cis-acting elements were identified through whole-genome scanning in maize. Evolutionary analysis of GPXs in monocots and dicots revealed mixed and lineage-specific grouping patterns in phylogeny. The expression of ZmGPX splice variants was studied in drought and waterlogging tolerant (L1621701) and sensitive (PML10) genotypes in root and shoot tissues. Further, the differential expression of splice variants of ZmGPX1, ZmGPX3, ZmGPX6 and ZmGPX7 and regulatory network analysis suggested the splicing and regulatory elements mediated stress responses. The present investigation suggests targeting the splicing machinery of GPXs as an approach to enhance the stress tolerance in maize.
Collapse
Affiliation(s)
| | - Rinku Sharma
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Palanisamy Veeraya
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Akshita Tyagi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | | | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
30
|
ASTool: An Easy-to-Use Tool to Accurately Identify Alternative Splicing Events from Plant RNA-Seq Data. Int J Mol Sci 2022; 23:ijms23084079. [PMID: 35456896 PMCID: PMC9031537 DOI: 10.3390/ijms23084079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing (AS) is an essential co-transcriptional regulatory mechanism in eukaryotes. The accumulation of plant RNA-Seq data provides an unprecedented opportunity to investigate the global landscape of plant AS events. However, most existing AS identification tools were originally designed for animals, and their performance in plants was not rigorously benchmarked. In this work, we developed a simple and easy-to-use bioinformatics tool named ASTool for detecting AS events from plant RNA-Seq data. As an exon-based method, ASTool can detect 4 major AS types, including intron retention (IR), exon skipping (ES), alternative 5′ splice sites (A5SS), and alternative 3′ splice sites (A3SS). Compared with existing tools, ASTool revealed a favorable performance when tested in simulated RNA-Seq data, with both recall and precision values exceeding 95% in most cases. Moreover, ASTool also showed a competitive computational speed and consistent detection results with existing tools when tested in simulated or real plant RNA-Seq data. Considering that IR is the most predominant AS type in plants, ASTool allowed the detection and visualization of novel IR events based on known splice sites. To fully present the functionality of ASTool, we also provided an application example of ASTool in processing real RNA-Seq data of Arabidopsis in response to heat stress.
Collapse
|
31
|
ABA Mediates Plant Development and Abiotic Stress via Alternative Splicing. Int J Mol Sci 2022; 23:ijms23073796. [PMID: 35409156 PMCID: PMC8998868 DOI: 10.3390/ijms23073796] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 02/01/2023] Open
Abstract
Alternative splicing (AS) exists in eukaryotes to increase the complexity and adaptability of systems under biophysiological conditions by increasing transcriptional and protein diversity. As a classic hormone, abscisic acid (ABA) can effectively control plant growth, improve stress resistance, and promote dormancy. At the transcriptional level, ABA helps plants respond to the outside world by regulating transcription factors through signal transduction pathways to regulate gene expression. However, at the post-transcriptional level, the mechanism by which ABA can regulate plant biological processes by mediating alternative splicing is not well understood. Therefore, this paper briefly introduces the mechanism of ABA-induced alternative splicing and the role of ABA mediating AS in plant response to the environment and its own growth.
Collapse
|
32
|
Habila S, Khunpolwattana N, Chantarachot T, Buaboocha T, Comai L, Chadchawan S, Pongpanich M. Salt stress responses and SNP-based phylogenetic analysis of Thai rice cultivars. THE PLANT GENOME 2022; 15:e20189. [PMID: 34994516 DOI: 10.1002/tpg2.20189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/30/2021] [Indexed: 05/24/2023]
Abstract
Genetic diversity is important for developing salt-tolerant rice (Oryza sativa L.) cultivars. Certain Thai rice accessions display salt tolerance at the adult or reproductive stage, but their response to salinity at the seedling stage is unknown. In this study, a total of 10 rice cultivars/line, including eight Thai cultivars and standard salt-tolerant cultivar and susceptible line, were screened using a hydroponic system to identify salt-tolerant genotypes at the seedling stage. Different morphophysiological indicators were used to classify tolerant and susceptible genotypes. Phylogenetic analyses were performed to determine the evolutionary relationships between the cultivars. Results showed that 'Lai Mahk', 'Jao Khao', 'Luang Pratahn', and 'Ma Gawk' exhibited salt stress tolerance comparable with the standard salt-tolerance check 'Pokkali'. Whole-exome single-nucleotide polymorphism (SNP)-based phylogenetic analysis showed that the Thai rice cultivars were monophyletic and distantly related to Pokkali and IR29. Lai Mahk and Luang Pratahn were found closely related when using the whole-exome SNPs for the analysis. This is also the case for the analysis of SNPs from 164 salt-tolerance genes and transcription regulatory genes. The tolerant cultivars shared the same haplotype for 16 genes. Overall, the findings of this study identified four salt-stress-tolerant Thai rice cultivars, which could be used in rice breeding programs for salinity tolerance.
Collapse
Affiliation(s)
- Susinya Habila
- Center of Excellence in Environment and Plant Physiology, Dep. of Botany, Faculty of Science, Chulalongkorn Univ., Pathum Wan District, Bangkok, 10330, Thailand
- Dep. of Plant Science and Biotechnology, Faculty of Natural Science, Univ. of Jos, Jos Plateau State, Nigeria
| | - Nopphakhun Khunpolwattana
- Center of Excellence in Environment and Plant Physiology, Dep. of Botany, Faculty of Science, Chulalongkorn Univ., Pathum Wan District, Bangkok, 10330, Thailand
| | - Thanin Chantarachot
- Center of Excellence in Environment and Plant Physiology, Dep. of Botany, Faculty of Science, Chulalongkorn Univ., Pathum Wan District, Bangkok, 10330, Thailand
| | - Teerapong Buaboocha
- Molecular Crop Research Unit, Dep. of Biochemistry, Faculty of Science, Chulalongkorn Univ., Pathum Wan District, Bangkok, 10330, Thailand
- Omics Sciences Center, Faculty of Science, Chulalongkorn Univ., Pathum Wan District, Bangkok, 10330, Thailand
| | - Luca Comai
- Genome Center and Dep. of Plant Biology, UC Davis Genome Center, Univ. of California-Davis, Davis, CA, 95616, USA
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Dep. of Botany, Faculty of Science, Chulalongkorn Univ., Pathum Wan District, Bangkok, 10330, Thailand
- Omics Sciences Center, Faculty of Science, Chulalongkorn Univ., Pathum Wan District, Bangkok, 10330, Thailand
| | - Monnat Pongpanich
- Omics Sciences Center, Faculty of Science, Chulalongkorn Univ., Pathum Wan District, Bangkok, 10330, Thailand
- Dep. of Mathematics and Computer Science, Faculty Science, Chulalongkorn Univ., Pathum Wan District, Bangkok, 10330, Thailand
| |
Collapse
|
33
|
Population Genomics, Transcriptional Response to Heat Shock, and Gut Microbiota of the Hong Kong Oyster Magallana hongkongensis. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Hong Kong oyster Magallana hongkongensis, previously known as Crassostrea hongkongensis, is a true oyster species native to the estuarine-coast of the Pearl River Delta in southern China. The species—with scientific, ecological, cultural, and nutritional importance—has been farmed for hundreds of years. However, there is only limited information on its genetics, stress adaptation mechanisms, and gut microbiota, restricting the sustainable production and use of oyster resources. Here, we present population structure analysis on M. hongkongensis oysters collected from Deep Bay and Lantau Island in Hong Kong, as well as transcriptome analysis on heat shock responses and the gut microbiota profile of M. hongkongensis oysters collected from Deep Bay. Single nucleotide polymorphisms (SNPs), including those on the homeobox genes and heat shock protein genes, were revealed by the whole genome resequencing. Transcriptomes of oysters incubated at 25 °C and 32 °C for 24 h were sequenced which revealed the heat-induced regulation of heat shock protein pathway genes. Furthermore, the gut microbe community was detected by 16S rRNA sequencing which identified Cyanobacteria, Proteobacteria and Spirochaetes as the most abundant phyla. This study reveals the molecular basis for the adaptation of the oyster M. hongkongensis to environmental conditions.
Collapse
|
34
|
Li Y, Di P, Tan J, Chen W, Chen J, Chen W. Alternative Splicing Dynamics During the Lifecycle of Salvia miltiorrhiza Root Revealed the Fine Tuning in Root Development and Ingredients Biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 12:797697. [PMID: 35126423 PMCID: PMC8813970 DOI: 10.3389/fpls.2021.797697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Alternative splicing (AS) is an essential post-transcriptional process that enhances the coding and regulatory potential of the genome, thereby strongly influencing multiple plant physiology processes, such as metabolic biosynthesis. To explore how AS affects the root development and synthesis of tanshinones and phenolic acid pathways in Salvia miltiorrhiza roots, we investigated the dynamic landscape of AS events in S. miltiorrhiza roots during an annual life history. Temporal profiling represented a distinct temporal variation of AS during the entire development stages, showing the most abundant AS events at the early seedling stage (ES stage) and troughs in 45 days after germination (DAG) and 120 DAG. Gene ontology (GO) analysis indicated that physiological and molecular events, such as lateral root formation, gravity response, RNA splicing regulation, and mitogen-activated protein kinase (MAPK) cascade, were greatly affected by AS at the ES stage. AS events were identified in the tanshinones and phenolic acids pathways as well, especially for the genes for the branch points of the pathways as SmRAS and SmKSL1. Fifteen Ser/Arg-rich (SR) proteins and eight phosphokinases (PKs) were identified with high transcription levels at the ES stage, showing their regulatory roles for the high frequency of AS in this stage. Simultaneously, a co-expression network that includes 521 highly expressed AS genes, SRs, and PKs, provides deeper insight into the mechanism for the variable programming of AS.
Collapse
Affiliation(s)
- Yajing Li
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peng Di
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Jingfu Tan
- Shangyao Huayu (Linyi) Traditional Chinese Resources Co. Ltd., Linyi, China
| | - Weixu Chen
- Shangyao Huayu (Linyi) Traditional Chinese Resources Co. Ltd., Linyi, China
| | - Junfeng Chen
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
35
|
Xu Z, Zhang N, Fu H, Wang F, Wen M, Chang H, Wu J, Abdelaala WB, Luo Q, Li Y, Li C, Wang Q, Wang ZY. Salt Stress Modulates the Landscape of Transcriptome and Alternative Splicing in Date Palm ( Phoenix dactylifera L.). FRONTIERS IN PLANT SCIENCE 2022; 12:807739. [PMID: 35126432 PMCID: PMC8810534 DOI: 10.3389/fpls.2021.807739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 05/14/2023]
Abstract
Date palm regards as a valuable genomic resource for exploring the tolerance genes due to its ability to survive under the sever condition. Although a large number of differentiated genes were identified in date palm responding to salt stress, the genome-wide study of alternative splicing (AS) landscape under salt stress conditions remains unknown. In the current study, we identified the stress-related genes through transcriptomic analysis to characterize their function under salt. A total of 17,169 genes were differentially expressed under salt stress conditions. Gene expression analysis confirmed that the salt overly sensitive (SOS) pathway genes, such as PdSOS2;1, PdSOS2;2, PdSOS4, PdSOS5, and PdCIPK11 were involved in the regulation of salt response in date palm, which is consistent with the physiological analysis that high salinity affected the Na+/K+ homeostasis and amino acid profile of date palm resulted in the inhibition of plant growth. Interestingly, the pathway of "spliceosome" was enriched in the category of upregulation, indicating their potential role of AS in date palm response to salt stress. Expectedly, many differentially alternative splicing (DAS) events were found under salt stress conditions, and some splicing factors, such as PdRS40, PdRSZ21, PdSR45a, and PdU2Af genes were abnormally spliced under salt, suggesting that AS-related proteins might participated in regulating the salt stress pathway. Moreover, the number of differentially DAS-specific genes was gradually decreased, while the number of differentially expressed gene (DEG)-specific genes was increased with prolonged salt stress treatment, suggesting that AS and gene expression could be distinctively regulated in response to salt stress. Therefore, our study highlighted the pivotal role of AS in the regulation of salt stress and provided novel insights for enhancing the resistance to salt in date palm.
Collapse
Affiliation(s)
- Zhongliang Xu
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Ning Zhang
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Haiquan Fu
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Fuyou Wang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| | - Mingfu Wen
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
- Zhanjiang Sugarcane Research Center, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Hailong Chang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
| | - Jiantao Wu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
| | - Walid Badawy Abdelaala
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
- Central Laboratory for Date Palm Research and Development of Agriculture Research Center, Giza, Egypt
| | - Qingwen Luo
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
- Zhanjiang Sugarcane Research Center, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Yang Li
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
- Zhanjiang Sugarcane Research Center, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Cong Li
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
- Zhanjiang Sugarcane Research Center, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Qinnan Wang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
| | - Zhen-Yu Wang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
- Zhanjiang Sugarcane Research Center, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| |
Collapse
|
36
|
Safder I, Shao G, Sheng Z, Hu P, Tang S. Genome-wide identification studies - A primer to explore new genes in plant species. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:9-22. [PMID: 34558163 DOI: 10.1111/plb.13340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Genome data have accumulated rapidly in recent years, doubling roughly after every 6 months due to the influx of next-generation sequencing technologies. A plethora of plant genomes are available in comprehensive public databases. This easy access to data provides an opportunity to explore genome datasets and recruit new genes in various plant species not possible a decade ago. In the past few years, many gene families have been published using these public datasets. These genome-wide studies identify and characterize gene members, gene structures, evolutionary relationships, expression patterns, protein interactions and gene ontologies, and predict putative gene functions using various computational tools. Such studies provide meaningful information and an initial framework for further functional elucidation. This review provides a concise layout of approaches used in these gene family studies and demonstrates an outline for employing various plant genome datasets in future studies.
Collapse
Affiliation(s)
- I Safder
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, China
| | - G Shao
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, China
| | - Z Sheng
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, China
| | - P Hu
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, China
| | - S Tang
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
37
|
Bhat JA, Yu D, Bohra A, Ganie SA, Varshney RK. Features and applications of haplotypes in crop breeding. Commun Biol 2021; 4:1266. [PMID: 34737387 PMCID: PMC8568931 DOI: 10.1038/s42003-021-02782-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/09/2021] [Indexed: 12/17/2022] Open
Abstract
Climate change with altered pest-disease dynamics and rising abiotic stresses threatens resource-constrained agricultural production systems worldwide. Genomics-assisted breeding (GAB) approaches have greatly contributed to enhancing crop breeding efficiency and delivering better varieties. Fast-growing capacity and affordability of DNA sequencing has motivated large-scale germplasm sequencing projects, thus opening exciting avenues for mining haplotypes for breeding applications. This review article highlights ways to mine haplotypes and apply them for complex trait dissection and in GAB approaches including haplotype-GWAS, haplotype-based breeding, haplotype-assisted genomic selection. Improvement strategies that efficiently deploy superior haplotypes to hasten breeding progress will be key to safeguarding global food security.
Collapse
Affiliation(s)
- Javaid Akhter Bhat
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Deyue Yu
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Abhishek Bohra
- Crop Improvement Division, ICAR- Indian Institute of Pulses Research (ICAR- IIPR), Kanpur, India
| | - Showkat Ahmad Ganie
- Department of Biotechnology, Visva-Bharati, Santiniketan, 731235, WB, India.
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.
- State Agricultural Biotechnology Centre, Centre for Crop & Food Research Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia.
| |
Collapse
|