1
|
Li X, Tian Y, Cao H, Cheng J. Serum sST2: key biomarkers in COVID-19 patients with implications for coronary artery disease. BMC Infect Dis 2025; 25:471. [PMID: 40197291 PMCID: PMC11974224 DOI: 10.1186/s12879-025-10849-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 03/24/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND As the coronavirus disease-2019 (COVID-19) pandemic persists, post-COVID-19 syndrome (PS), characterized by symptoms like chest pain, fatigue, and palpitations, is becoming a significant medical and social issue. COVID-19 patients with existing coronary artery disease (CAD) may face higher risks of complications. It is crucial to assess if PS patients also have CAD, though data is limited. METHODS We studied 75 COVID-19 patients and 68 non-COVID-19 patients admitted to our hospital between 2022/12/20 to 2023/01/20. Demographic, laboratory, and clinical data were collected upon admission. The Gensini score (GS) was used to assess coronary atherosclerosis severity. Patients were categorized by GS and clinical traits to identify potential independent risks linked to CAD and COVID-19 severity. RESULTS COVID-19 patients with existing CAD had higher levels of serum soluble growth stimulation expression of gene 2 protein (sST2), myeloperoxidase, ALT, AST, PT, B-type natriuretic peptide (BNP), and hypersensitive troponin-I (hs-cTnI), along with longer hospital stays, more ICU admissions, and increased heart failure and ACS morbidity compared to those without CAD. Univariate and multivariate analysis identified sST2 as an independent risk factor for COVID-19 patients with coexisting CAD (odds ratio 1.122). sST2 levels were positively correlated with coronary angiography GS (r = 0.474, p < 0.001) in COVID-19 patients and were significantly higher in cases with GS ≥ 32, regardless of COVID-19 status (p < 0.001) and specifically in COVID-19 patients (p = 0.006). ROC analysis showed sST2 predicted ICU admission, hospital stay duration, and morbidity of HF and ACS similarly to GS. CONCLUSIONS Admission serum sST2 levels should be considered in COVID-19 patients with CAD-like symptoms for treatment planning and could serve as a prognostic biomarker for COVID-19 with co-existing CAD in clinical practice.
Collapse
Affiliation(s)
- Xueqin Li
- Department of Laboratory Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yaxin Tian
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
- Department of Health Statistics, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Hongyan Cao
- Department of Health Statistics, Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Jinfang Cheng
- Department of Cardiovascular Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyaun, 030032, China.
| |
Collapse
|
2
|
Wu M, Li W, Leung H, Wang Y, Wan Q, Chen P, Chen C, Li Y, Yao X, He M. Targeting WDPF domain of Hsp27 achieves a broad spectrum of antiviral. MedComm (Beijing) 2025; 6:e70032. [PMID: 40013315 PMCID: PMC11862887 DOI: 10.1002/mco2.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/03/2024] [Accepted: 11/14/2024] [Indexed: 02/28/2025] Open
Abstract
Enterovirus A71 (EV-A71) is a positive-sense single-stranded RNA virus, which hijacks host proteins to benefit viral internal ribosome entry site (IRES)-dependent protein translation and further propagation. We demonstrated that serine 78 (S78) phosphorylation of Hsp27 is critical for Hsp27/hnRNP A1 relocalization upon EV-A71 infection. Here, we report that the deletion of WDPF and ACD domains disturbs subcellular localization of Hsp27, resulting in partial nuclear translocation. The domain deletion-induced Hsp27 nuclear translocation fails to direct hnRNP A1 translocation. The 2Apro-induced IRES activity and viral replication are suppressed by the deletion of WDPF or ACD domain. Surprisingly, a peptide (WDPF) dramatically inhibits S78 phosphorylation. Therefore, hnRNP A1 translocation, viral IRES activity, and viral protein translation and propagation are all strongly suppressed by the WDPF peptide, but not by peptide without WDPFR sequence (ΔWDPF). Moreover, the WDPF peptide also has potent antiviral activity on other RNA virus (e.g., coronavirus HCoV-OC43) and DNA virus (e.g., HSV-1 and HBV). Peptide treatment with kinase inhibitor Sorafenib brings an additional inhibitory effect on HCoV-OC43 and HSV-1. Taken together, we uncover a crucial role of WDPF domain in S78 phosphorylation for EV-A71-induced hnRNP A1 nuclear translocation, IRES-dependent viral protein translation, and EV-A71 propagation. Our results explore a new path for target-based pan-antiviral strategy.
Collapse
Affiliation(s)
- Mandi Wu
- Department of Biomedical SciencesCity University of Hong KongHong Kong Special Administrative RegionHong KongChina
| | - Wei Li
- Weihai Municipal HospitalCheeloo College of MedicineShandong UniversityWeihaiShandongChina
| | - Houying Leung
- Department of Biomedical SciencesCity University of Hong KongHong Kong Special Administrative RegionHong KongChina
| | - Yiran Wang
- Department of Biomedical SciencesCity University of Hong KongHong Kong Special Administrative RegionHong KongChina
| | - Qianya Wan
- Department of Biomedical SciencesCity University of Hong KongHong Kong Special Administrative RegionHong KongChina
| | - Peiran Chen
- Department of Biomedical SciencesCity University of Hong KongHong Kong Special Administrative RegionHong KongChina
| | - Cien Chen
- Department of Biomedical SciencesCity University of Hong KongHong Kong Special Administrative RegionHong KongChina
| | - Yichen Li
- Department of Biomedical SciencesCity University of Hong KongHong Kong Special Administrative RegionHong KongChina
| | - Xi Yao
- Department of Biomedical SciencesCity University of Hong KongHong Kong Special Administrative RegionHong KongChina
| | - Ming‐Liang He
- Department of Biomedical SciencesCity University of Hong KongHong Kong Special Administrative RegionHong KongChina
- CityU Shenzhen Research InstituteNanshanShenzhenChina
| |
Collapse
|
3
|
Navhaya LT, Blessing DM, Yamkela M, Godlo S, Makhoba XH. A comprehensive review of the interaction between COVID-19 spike proteins with mammalian small and major heat shock proteins. Biomol Concepts 2024; 15:bmc-2022-0027. [PMID: 38872399 DOI: 10.1515/bmc-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/13/2023] [Indexed: 06/15/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a novel disease that had devastating effects on human lives and the country's economies worldwide. This disease shows similar parasitic traits, requiring the host's biomolecules for its survival and propagation. Spike glycoproteins severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 spike protein) located on the surface of the COVID-19 virus serve as a potential hotspot for antiviral drug development based on their structure. COVID-19 virus calls into action the chaperonin system that assists the attacker, hence favoring infection. To investigate the interaction that occurs between SARS-CoV-2 spike protein and human molecular chaperons (HSPA8 and sHSP27), a series of steps were carried out which included sequence attainment and analysis, followed by multiple sequence alignment, homology modeling, and protein-protein docking which we performed using Cluspro to predict the interactions between SARS-CoV-2 spike protein and human molecular chaperones of interest. Our findings depicted that SARS-CoV-2 spike protein consists of three distinct chains, chains A, B, and C, which interact forming hydrogen bonds, hydrophobic interactions, and electrostatic interactions with both human HSPA8 and HSP27 with -828.3 and -827.9 kcal/mol as binding energies for human HSPA8 and -1166.7 and -1165.9 kcal/mol for HSP27.
Collapse
Affiliation(s)
- Liberty T Navhaya
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Turfloop Campus, Sovenga, 0727, South Africa
| | - Dzveta Mutsawashe Blessing
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice Campus, 1 King Williams Town, 5700, South Africa
| | - Mthembu Yamkela
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), Florida Campus, Roodepoort, 1709, South Africa
| | - Sesethu Godlo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), Florida Campus, Roodepoort, 1709, South Africa
| | - Xolani Henry Makhoba
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), Florida Campus, Roodepoort, 1709, South Africa
| |
Collapse
|
4
|
Chiu MH, Gershkovich B, Yu IL, O'Brien ER, Deng J, McDonald B. Heat shock protein 27 in the pathogenesis of COVID-19 and non-COVID acute respiratory distress syndrome. Cell Stress Chaperones 2023; 28:877-887. [PMID: 37966617 PMCID: PMC10746647 DOI: 10.1007/s12192-023-01381-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 11/16/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common cause of hypoxemic respiratory failure in intensive care units that has increased dramatically as a result of the COVID-19 pandemic. In both COVID-19 and non-COVID ARDS, the pathogenesis of lung injury involves local (pulmonary) and systemic inflammation, leading to impaired gas exchange, requirement for mechanical ventilation, and a high risk of mortality. Heat shock protein 27 (HSP27) is a chaperone protein expressed in times of cell stress with roles in modulation of systemic inflammation via the NF-κB pathway. Given its important role as a modulator of inflammation, we sought to investigate the role of HSP27 and its associated auto-antibodies in ARDS caused by both SARS-CoV-2 and non-COVID etiologies. A total of 68 patients admitted to the intensive care unit with ARDS requiring mechanical ventilation were enrolled in a prospective, observational study that included 22 non-COVID-19 and 46 COVID-19 patients. Blood plasma levels of HSP27, anti-HSP27 auto-antibody (AAB), and cytokine profiles were measured on days 1 and 3 of ICU admission along with clinical outcome measures. Patients with COVID-19 ARDS displayed significantly higher levels of HSP27 in plasma, and a higher ratio of HSP27:AAB on both day 1 and day 3 of ICU admission. In patients with COVID-19, higher levels of circulating HSP27 and HSP27:AAB ratio were associated with a more severe systemic inflammatory response and adverse clinical outcomes including more severe hypoxemic respiratory failure. These findings implicate HSP27 as a marker of advanced pathogenesis of disease contributing to the dysregulated systemic inflammation and worse clinical outcomes in COVID-19 ARDS, and therefore may represent a potential therapeutic target.
Collapse
Affiliation(s)
- Michael H Chiu
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, University of Calgary, Calgary, Canada.
- Department of Critical Care Medicine, University of Calgary, Calgary, Canada.
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | | | - Ian-Ling Yu
- Department of Critical Care Medicine, University of Calgary, Calgary, Canada
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Edward R O'Brien
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, University of Calgary, Calgary, Canada
| | - Jingti Deng
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, University of Calgary, Calgary, Canada
| | - Braedon McDonald
- Department of Critical Care Medicine, University of Calgary, Calgary, Canada
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
5
|
Al‐Kuraishy HM, Al‐Gareeb AI, Mohammed AA, Alexiou A, Papadakis M, Batiha GE. The potential link between Covid-19 and multiple myeloma: A new saga. Immun Inflamm Dis 2022; 10:e701. [PMID: 36444620 PMCID: PMC9673426 DOI: 10.1002/iid3.701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Covid-19 is considered a primary respiratory disease-causing viral pneumonia and, in severe cases, leads to acute lung injury and acute respiratory distress syndrome (ARDS). In addition, though, extra-pulmonary manifestations of Covid-19 have been shown. Furthermore, severe acute respiratory distress syndrome coronavirus type 2 (SARS-CoV-2) infection may coexist with several malignancies, including multiple myeloma (MM). METHODS This critical literature review aimed to find the potential association between SARS-CoV-2 infection and MM in Covid-19 patients with underlying MM. Narrative literature and databases search revealed that ARDS is developed in both MM and Covid-19 due to hypercalcemia and proteasome dysfunction. RESULTS Notably, the expression of angiogenic factors and glutamine deficiency could link Covid-19 severity and MM in the pathogenesis of cardiovascular complications. MM and Covid-19 share thrombosis as a typical complication; unlike thrombosis in Covid-19, which reflects disease severity, thrombosis does not reflect disease severity in MM. In both conditions, thromboprophylaxis is essential to prevent pulmonary thrombosis and other thromboembolic disorders. Moreover, Covid-19 may exacerbate the development of acute kidney injury and neurological complications in MM patients. CONCLUSION These findings highlighted that MM patients might be a risk group for Covid-19 severity due to underlying immunosuppression and most of those patients need specific management in the Covid-19 era.
Collapse
Affiliation(s)
- Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineALmustansiriyia UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineALmustansiriyia UniversityBaghdadIraq
| | - Ali A Mohammed
- The Chest Clinic, Barts Health NHS TrustWhipps Cross University HospitalLondonUK
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamAustralia
- AFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
6
|
Caillet C, Stofberg ML, Muleya V, Shonhai A, Zininga T. Host cell stress response as a predictor of COVID-19 infectivity and disease progression. Front Mol Biosci 2022; 9:938099. [PMID: 36032680 PMCID: PMC9411049 DOI: 10.3389/fmolb.2022.938099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
The coronavirus disease (COVID-19) caused by a coronavirus identified in December 2019 has caused a global pandemic. COVID-19 was declared a pandemic in March 2020 and has led to more than 6.3 million deaths. The pandemic has disrupted world travel, economies, and lifestyles worldwide. Although vaccination has been an effective tool to reduce the severity and spread of the disease there is a need for more concerted approaches to fighting the disease. COVID-19 is characterised as a severe acute respiratory syndrome . The severity of the disease is associated with a battery of comorbidities such as cardiovascular diseases, cancer, chronic lung disease, and renal disease. These underlying diseases are associated with general cellular stress. Thus, COVID-19 exacerbates outcomes of the underlying conditions. Consequently, coronavirus infection and the various underlying conditions converge to present a combined strain on the cellular response. While the host response to the stress is primarily intended to be of benefit, the outcomes are occasionally unpredictable because the cellular stress response is a function of complex factors. This review discusses the role of the host stress response as a convergent point for COVID-19 and several non-communicable diseases. We further discuss the merits of targeting the host stress response to manage the clinical outcomes of COVID-19.
Collapse
Affiliation(s)
- Celine Caillet
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Victor Muleya
- Department of Biochemistry, Midlands State University, Gweru, Zimbabwe
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Tawanda Zininga
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
7
|
Timpau AS, Miftode RS, Leca D, Timpau R, Miftode IL, Petris AO, Costache II, Mitu O, Nicolae A, Oancea A, Jigoranu A, Tuchilus CG, Miftode EG. A Real Pandora's Box in Pandemic Times: A Narrative Review on the Acute Cardiac Injury Due to COVID-19. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071085. [PMID: 35888173 PMCID: PMC9318707 DOI: 10.3390/life12071085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/08/2023]
Abstract
The intricate relationship between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the cardiovascular system is an extensively studied pandemic topic, as there is an ever-increasing amount of evidence that reports a high prevalence of acute cardiac injury in the context of viral infection. In patients with Coronavirus disease 2019, COVID-19, a significant increase in serum levels of cardiac troponin or other various biomarkers was observed, suggesting acute cardiac injury, thus predicting both a severe course of the disease and a poor outcome. Pathogenesis of acute cardiac injury is not yet completely elucidated, though several mechanisms are allegedly involved, such as a direct cardiomyocyte injury, oxygen supply-demand inequity caused by hypoxia, several active myocardial depressant factors during sepsis, and endothelial dysfunction due to the hyperinflammatory status. Moreover, the increased levels of plasma cytokines and catecholamines and a significantly enhanced prothrombotic environment may lead to the destabilization and rupture of atheroma plaques, subsequently triggering an acute coronary syndrome. In the present review, we focus on describing the epidemiology, pathogenesis, and role of biomarkers in the diagnosis and prognosis of patients with acute cardiac injury in the setting of the COVID-19 pandemic. We also explore some novel therapeutic strategies involving immunomodulatory therapy, as well as their role in preventing a severe form of the disease, with both the short-term outcome and the long-term cardiovascular sequelae being equally important in patients with SARS-CoV-2 induced acute cardiac injury.
Collapse
Affiliation(s)
- Amalia-Stefana Timpau
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.-S.T.); (D.L.); (I.-L.M.); (E.-G.M.)
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.O.P.); (O.M.); (A.N.); (A.O.); (A.J.)
| | - Radu-Stefan Miftode
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.O.P.); (O.M.); (A.N.); (A.O.); (A.J.)
- Correspondence: (R.-S.M.); (I.I.C.)
| | - Daniela Leca
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.-S.T.); (D.L.); (I.-L.M.); (E.-G.M.)
| | - Razvan Timpau
- Department of Radiology and Medical Imaging, St. Spiridon Emergency Hospital, 700115 Iasi, Romania;
| | - Ionela-Larisa Miftode
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.-S.T.); (D.L.); (I.-L.M.); (E.-G.M.)
| | - Antoniu Octavian Petris
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.O.P.); (O.M.); (A.N.); (A.O.); (A.J.)
| | - Irina Iuliana Costache
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.O.P.); (O.M.); (A.N.); (A.O.); (A.J.)
- Correspondence: (R.-S.M.); (I.I.C.)
| | - Ovidiu Mitu
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.O.P.); (O.M.); (A.N.); (A.O.); (A.J.)
| | - Ana Nicolae
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.O.P.); (O.M.); (A.N.); (A.O.); (A.J.)
| | - Alexandru Oancea
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.O.P.); (O.M.); (A.N.); (A.O.); (A.J.)
| | - Alexandru Jigoranu
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.O.P.); (O.M.); (A.N.); (A.O.); (A.J.)
| | - Cristina Gabriela Tuchilus
- Department of Preventive Medicine and Interdisciplinarity (Microbiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania;
| | - Egidia-Gabriela Miftode
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.-S.T.); (D.L.); (I.-L.M.); (E.-G.M.)
| |
Collapse
|
8
|
Rotondo JC, Martini F, Maritati M, Caselli E, Gallenga CE, Guarino M, De Giorgio R, Mazziotta C, Tramarin ML, Badiale G, Tognon M, Contini C. Advanced Molecular and Immunological Diagnostic Methods to Detect SARS-CoV-2 Infection. Microorganisms 2022; 10:1193. [PMID: 35744711 PMCID: PMC9231257 DOI: 10.3390/microorganisms10061193] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 emerged in late 2019 in China and quickly spread across the globe, causing over 521 million cases of infection and 6.26 million deaths to date. After 2 years, numerous advances have been made. First of all, the preventive vaccine, which has been implemented in record time, is effective in more than 95% of cases. Additionally, in the diagnostic field, there are numerous molecular and antigenic diagnostic kits that are equipped with high sensitivity and specificity. Real Time-PCR-based assays for the detection of viral RNA are currently considered the gold-standard method for SARS-CoV-2 diagnosis and can be used efficiently on pooled nasopharyngeal, or oropharyngeal samples for widespread screening. Moreover, additional, and more advanced molecular methods such as droplet-digital PCR (ddPCR), clustered regularly interspaced short palindromic repeats (CRISPR) and next-generation sequencing (NGS), are currently under development to detect the SARS-CoV-2 RNA. However, as the number of subjects infected with SARS-CoV-2 continuously increases globally, health care systems are being placed under increased stress. Thus, the clinical laboratory plays an important role, helping to select especially asymptomatic individuals who are actively carrying the live replicating virus, with fast and non-invasive molecular technologies. Recent diagnostic strategies, other than molecular methods, have been adopted to either detect viral antigens, i.e., antigen-based immunoassays, or human anti-SARS-CoV-2 antibodies, i.e., antibody-based immunoassays, in nasal or oropharyngeal swabs, as well as in blood or saliva samples. However, the role of mucosal sIgAs, which are essential in the control of viruses entering the body through mucosal surfaces, remains to be elucidated, and in particular the role of the immune response in counteracting SARS-CoV-2 infection, primarily at the site(s) of virus entry that appears to be promising.
Collapse
Affiliation(s)
- John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Martina Maritati
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Orthopaedic Ward, Casa di Cura Santa Maria Maddalena, 45030 Occhiobello, Italy
| | - Elisabetta Caselli
- Section of Microbiology, CIAS Research Center and LTTA, Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Carla Enrica Gallenga
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Matteo Guarino
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (M.G.); (R.D.G.)
| | - Roberto De Giorgio
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (M.G.); (R.D.G.)
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Maria Letizia Tramarin
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Giada Badiale
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Carlo Contini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| |
Collapse
|
9
|
Upregulated Proteasome Subunits in COVID-19 Patients: A Link with Hypoxemia, Lymphopenia and Inflammation. Biomolecules 2022; 12:biom12030442. [PMID: 35327634 PMCID: PMC8946050 DOI: 10.3390/biom12030442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Severe COVID-19 disease leads to hypoxemia, inflammation and lymphopenia. Viral infection induces cellular stress and causes the activation of the innate immune response. The ubiquitin-proteasome system (UPS) is highly implicated in viral immune response regulation. The main function of the proteasome is protein degradation in its active form, which recognises and binds to ubiquitylated proteins. Some proteasome subunits have been reported to be upregulated under hypoxic and hyperinflammatory conditions. Here, we conducted a prospective cohort study of COVID-19 patients (n = 44) and age-and sex-matched controls (n = 20). In this study, we suggested that hypoxia could induce the overexpression of certain genes encoding for subunits from the α and β core of the 20S proteasome and from regulatory particles (19S and 11S) in COVID-19 patients. Furthermore, the gene expression of proteasome subunits was associated with lymphocyte count reduction and positively correlated with inflammatory molecular and clinical markers. Given the importance of the proteasome in maintaining cellular homeostasis, including the regulation of the apoptotic and pyroptotic pathways, these results provide a potential link between COVID-19 complications and proteasome gene expression.
Collapse
|
10
|
Biomarkers Associated with Cardiovascular Disease in COVID-19. Cells 2022; 11:cells11060922. [PMID: 35326373 PMCID: PMC8946710 DOI: 10.3390/cells11060922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/20/2022] [Accepted: 03/05/2022] [Indexed: 02/08/2023] Open
Abstract
Coronavirus disease-19 (COVID-19) emerged late December 2019 in the city of Wuhan, China and has since spread rapidly all over the world causing a global pandemic. While the respiratory system is the primary target of disease manifestation, COVID-19 has been shown to also affect several other organs, making it a rather complex, multi-system disease. As such, cardiovascular involvement has been a topic of discussion since the beginning of the COVID-19 pandemic, primarily due to early reports of excessive myocardial injury in these patients. Treating physicians are faced with multiple challenges in the management and early triage of patients with COVID-19, as disease severity is highly variable ranging from an asymptomatic infection to critical cases rapidly deteriorating to intensive care treatment or even fatality. Laboratory biomarkers provide important prognostic information which can guide decision making in the emergency department, especially in patients with atypical presentations. Several cardiac biomarkers, most notably high-sensitive cardiac troponin (hs-cTn) and N-terminal pro-B-type natriuretic peptide (NT-proBNP), have emerged as valuable predictors of prognosis in patients with COVID-19. The purpose of this review was to offer a concise summary on prognostic cardiac biomarkers in COVID-19 and discuss whether routine measurements of these biomarkers are warranted upon hospital admission.
Collapse
|