1
|
Lu Y, Bartoszek EM, Cortada M, Bodmer D, Levano Huaman S. Mitochondrial-derived peptides, HNG and SHLP3, protect cochlear hair cells against gentamicin. Cell Death Discov 2024; 10:445. [PMID: 39433756 PMCID: PMC11493991 DOI: 10.1038/s41420-024-02215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
Preservation of hair cells is critical for maintaining hearing function, as damage to sensory cells potentially leads to irreparable sensorineural hearing loss. Hair cell loss is often associated with inflammation and oxidative stress. One promising class of bioactive peptides is mitochondrial-derived peptides (MDPs), which have already been proven to protect various tissues from cellular stresses and delay aging processes. Humanin (HN) is one of the best-known members of this family, and recently, we have shown its protective effect in hair cells. The synthetic derivate HN S14G (HNG) has a more potent protective effect than natural HN making it a more useful peptide candidate to promote cytoprotection. A less-known MDP is small humanin-like peptide 3 (SHLP3), which has cytoprotective effects similar to HN, but likely acts through different signaling pathways. Therefore, we examined the effect of exogenous HNG and SHLP3 in auditory hair cells and investigated the molecular mechanisms involved. For this purpose, explants of the organ of Corti (OC) were treated with gentamicin in the presence and absence of HNG or SHLP3. Administration of HNG and SHLP3 reduced gentamicin-induced hair cell loss. The protective mechanisms of HNG and SHLP3 in OC explants included, in part, modulation of AKT and AMPKα. In addition, treatment with HNG and SHLP3 reduced gentamicin-induced oxidative stress and inflammatory gene overexpression. Overall, our data show that HNG and SHLP3 protect hair cells from gentamicin-induced toxicity. This offers new perspectives for the development of therapeutic strategies with MDPs against hearing loss.
Collapse
Affiliation(s)
- Yu Lu
- Department of Biomedicine, University of Basel Hospital, Basel, Switzerland
| | | | - Maurizio Cortada
- Department of Biomedicine, University of Basel Hospital, Basel, Switzerland
- Department of Otolaryngology, Head and Neck Surgery, University of Basel Hospital, Basel, Switzerland
| | - Daniel Bodmer
- Department of Biomedicine, University of Basel Hospital, Basel, Switzerland
- Department of Otolaryngology, Head and Neck Surgery, University of Basel Hospital, Basel, Switzerland
| | | |
Collapse
|
2
|
Daisy Precilla S, Biswas I, Anitha TS, Agieshkumar B. Microproteins unveiling new dimensions in cancer. Funct Integr Genomics 2024; 24:152. [PMID: 39223429 DOI: 10.1007/s10142-024-01426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
In the complex landscape of cancer biology, the discovery of microproteins has triggered a paradigm shift, thereby, challenging the conventional conceptions of gene regulation. Though overlooked for years, these entities encoded by the small open reading frames (100-150 codons), have a significant impact on various cellular processes. As precision medicine pioneers delve deeper into the genome and proteome, microproteins have come into the limelight. Typically characterized by a single protein domain that directly binds to the target protein complex and regulates their assembly, these microproteins have been shown to play a key role in fundamental biological processes such as RNA processing, DNA repair, and metabolism regulation. Techniques for identification and characterization, such as ribosome profiling and proteogenomic approaches, have unraveled unique mechanisms by which these microproteins regulate cell signaling or pathological processes in most diseases including cancer. However, the functional relevance of these microproteins in cancer remains unclear. In this context, the current review aims to "rethink the essence of these genes" and explore "how these hidden players-microproteins orchestrate the signaling cascades of cancer, both as accelerators and brakes.".
Collapse
Affiliation(s)
- S Daisy Precilla
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth, Puducherry, 607 402, India.
| | - Indrani Biswas
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth, Puducherry, 607 402, India
| | - T S Anitha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605 014, India
| | - B Agieshkumar
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth, Puducherry, 607 402, India
| |
Collapse
|
3
|
Bolignano D, Greco M, Presta P, Duni A, Zicarelli M, Mercuri S, Pappas E, Lakkas L, Musolino M, Naka KK, Pugliese S, Misiti R, Foti DP, Andreucci M, Coppolino G, Dounousi E. Unbalanced circulating Humanin levels and cardiovascular risk in chronic hemodialysis patients: a pilot, prospective study. J Nephrol 2024; 37:1863-1870. [PMID: 39102184 PMCID: PMC11519124 DOI: 10.1007/s40620-024-02032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Mortality and cardiovascular (CV) risk prediction in individuals with end-stage kidney disease (ESKD) on chronic hemodialysis (HD) remains challenging due to the multitude of implicated factors. In a multicenter ESKD-HD cohort, we tested the prognostic yield of the assessment of circulating Humanin, a small mitochondrial-derived peptide involved in CV protection, on CV events and mortality. METHODS We conducted a prospective, observational, pilot study on 94 prevalent HD patients. The prognostic capacity of circulating Humanin levels was tested on a primary composite (all-cause mortality + non-fatal CV events) and a secondary exploratory endpoint (all-cause mortality alone). RESULTS Baseline Humanin level was comparable in patients reaching the primary or secondary endpoint as compared to others (p = 0.69 and 0.76, respectively). Unadjusted followed by multivariable Cox regression analyses adjusted for age, left ventricular mass index (LVMi), E/e', pulse pressure and diabetes mellitus indicated a non-linear relationship between Humanin levels and the composite outcome with the highest Hazard Ratio (HR) associated with very low (< 450.7 pg/mL; HR ranging from 4.25 to 2.49) and very high (> 759.5 pg/mL; HR ranging from 5.84 to 4.50) Humanin values. Restricted cubic splines fitting univariate and multivariate Cox regression analyses visually confirmed a curvilinear trend with an increasing risk observed for lower and higher Humanin values around the median, respectively. A similar, u-shaped association was also evidenced with the secondary endpoint. CONCLUSIONS Altered Humanin levels may impart prognostic information in ESKD-HD patients at risk of death or CV events. Future investigations are needed to confirm whether Humanin measurement could improve CV and mortality risk prediction beyond traditional risk models.
Collapse
Affiliation(s)
- Davide Bolignano
- Nephrology and Dialysis Unit, Magna Graecia University, Catanzaro, Italy.
- Department of Medical and Surgical Sciences-Renal Unit, University "Magna Graecia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy.
| | - Marta Greco
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
- Clinical Pathology Lab, Magna Graecia University, Catanzaro, Italy
| | - Pierangela Presta
- Nephrology and Dialysis Unit, Magna Graecia University, Catanzaro, Italy
| | - Anila Duni
- Department of Nephrology, School of Medicine, University of Ioannina, Ioannina, Greece
| | | | - Simone Mercuri
- Nephrology and Dialysis Unit, Magna Graecia University, Catanzaro, Italy
| | - Efthymios Pappas
- Hemodialysis Unit, General Hospital of Filiates, Filiates, Greece
| | - Lampros Lakkas
- Physiology Department, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Michela Musolino
- Nephrology and Dialysis Unit, Magna Graecia University, Catanzaro, Italy
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Katerina K Naka
- Second Department of Cardiology, University Hospital of Ioannina, Ioannina, Greece
| | - Sara Pugliese
- Nephrology and Dialysis Unit, Magna Graecia University, Catanzaro, Italy
| | - Roberta Misiti
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
- Clinical Pathology Lab, Magna Graecia University, Catanzaro, Italy
| | - Daniela Patrizia Foti
- Clinical Pathology Lab, Magna Graecia University, Catanzaro, Italy
- Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Michele Andreucci
- Nephrology and Dialysis Unit, Magna Graecia University, Catanzaro, Italy
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Giuseppe Coppolino
- Nephrology and Dialysis Unit, Magna Graecia University, Catanzaro, Italy
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Evangelia Dounousi
- Department of Nephrology, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
4
|
Piergentili R, Sechi S. Non-Coding RNAs of Mitochondrial Origin: Roles in Cell Division and Implications in Cancer. Int J Mol Sci 2024; 25:7498. [PMID: 39000605 PMCID: PMC11242419 DOI: 10.3390/ijms25137498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group, in terms of structure and sequence length, consisting of RNA molecules that do not code for proteins. These ncRNAs have a central role in the regulation of gene expression and are virtually involved in every process analyzed, ensuring cellular homeostasis. Although, over the years, much research has focused on the characterization of non-coding transcripts of nuclear origin, improved bioinformatic tools and next-generation sequencing (NGS) platforms have allowed the identification of hundreds of ncRNAs transcribed from the mitochondrial genome (mt-ncRNA), including long non-coding RNA (lncRNA), circular RNA (circRNA), and microRNA (miR). Mt-ncRNAs have been described in diverse cellular processes such as mitochondrial proteome homeostasis and retrograde signaling; however, the function of the majority of mt-ncRNAs remains unknown. This review focuses on a subgroup of human mt-ncRNAs whose dysfunction is associated with both failures in cell cycle regulation, leading to defects in cell growth, cell proliferation, and apoptosis, and the development of tumor hallmarks, such as cell migration and metastasis formation, thus contributing to carcinogenesis and tumor development. Here we provide an overview of the mt-ncRNAs/cancer relationship that could help the future development of new biomedical applications in the field of oncology.
Collapse
Affiliation(s)
| | - Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
5
|
Yousef H, Feng SF, Jelinek HF. Exploratory risk prediction of type II diabetes with isolation forests and novel biomarkers. Sci Rep 2024; 14:14409. [PMID: 38909127 PMCID: PMC11193708 DOI: 10.1038/s41598-024-65044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Type II diabetes mellitus (T2DM) is a rising global health burden due to its rapidly increasing prevalence worldwide, and can result in serious complications. Therefore, it is of utmost importance to identify individuals at risk as early as possible to avoid long-term T2DM complications. In this study, we developed an interpretable machine learning model leveraging baseline levels of biomarkers of oxidative stress (OS), inflammation, and mitochondrial dysfunction (MD) for identifying individuals at risk of developing T2DM. In particular, Isolation Forest (iForest) was applied as an anomaly detection algorithm to address class imbalance. iForest was trained on the control group data to detect cases of high risk for T2DM development as outliers. Two iForest models were trained and evaluated through ten-fold cross-validation, the first on traditional biomarkers (BMI, blood glucose levels (BGL) and triglycerides) alone and the second including the additional aforementioned biomarkers. The second model outperformed the first across all evaluation metrics, particularly for F1 score and recall, which were increased from 0.61 ± 0.05 to 0.81 ± 0.05 and 0.57 ± 0.06 to 0.81 ± 0.08, respectively. The feature importance scores identified a novel combination of biomarkers, including interleukin-10 (IL-10), 8-isoprostane, humanin (HN), and oxidized glutathione (GSSG), which were revealed to be more influential than the traditional biomarkers in the outcome prediction. These results reveal a promising method for simultaneously predicting and understanding the risk of T2DM development and suggest possible pharmacological intervention to address inflammation and OS early in disease progression.
Collapse
Affiliation(s)
- Hibba Yousef
- Biotechnology Research Center, Technology Innovation Institute, Masdar City, P. O. Box 9639, Abu Dhabi, United Arab Emirates.
| | - Samuel F Feng
- Department of Science and Engineering, Sorbonne University Abu Dhabi, Abu Dhabi, United Arab Emirates
- SUAD Research Institute, Sorbonne University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Herbert F Jelinek
- Department of Medical Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
- Biotechnology Center, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Cadoni MPL, Coradduzza D, Congiargiu A, Sedda S, Zinellu A, Medici S, Nivoli AM, Carru C. Platelet Dynamics in Neurodegenerative Disorders: Investigating the Role of Platelets in Neurological Pathology. J Clin Med 2024; 13:2102. [PMID: 38610867 PMCID: PMC11012481 DOI: 10.3390/jcm13072102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Background: Neurological disorders, particularly those associated with aging, pose significant challenges in early diagnosis and treatment. The identification of specific biomarkers, such as platelets (PLTs), has emerged as a promising strategy for early detection and intervention in neurological health. This systematic review aims to explore the intricate relationship between PLT dynamics and neurological health, focusing on their potential role in cognitive functions and the pathogenesis of cognitive disorders. Methods: Adhering to PRISMA guidelines, a comprehensive search strategy was employed in the PubMed and Scholar databases to identify studies on the role of PLTs in neurological disorders published from 2013 to 2023. The search criteria included studies focusing on PLTs as biomarkers in neurological disorders, their dynamics, and their potential in monitoring disease progression and therapy effectiveness. Results: The systematic review included 104 studies, revealing PLTs as crucial biomarkers in neurocognitive disorders, acting as inflammatory mediators. The findings suggest that PLTs share common features with altered neurons, which could be utilised for monitoring disease progression and evaluating the effectiveness of treatments. PLTs are identified as significant biomarkers for detecting neurological disorders in their early stages and understanding the pathological events leading to neuronal death. Conclusions: The systematic review underscores the critical role of PLTs in neurological disorders, highlighting their potential as biomarkers for the early detection and monitoring of disease progression. However, it also emphasises the need for further research to solidify the use of PLTs in neurological disorders, aiming to enhance early diagnosis and intervention strategies.
Collapse
Affiliation(s)
| | | | | | - Stefania Sedda
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Serenella Medici
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Alessandra Matilde Nivoli
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
- Psychiatric Unit Clinic of the University Hospital, 07100 Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
7
|
Romero-Becera R, Santamans AM, Arcones AC, Sabio G. From Beats to Metabolism: the Heart at the Core of Interorgan Metabolic Cross Talk. Physiology (Bethesda) 2024; 39:98-125. [PMID: 38051123 DOI: 10.1152/physiol.00018.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023] Open
Abstract
The heart, once considered a mere blood pump, is now recognized as a multifunctional metabolic and endocrine organ. Its function is tightly regulated by various metabolic processes, at the same time it serves as an endocrine organ, secreting bioactive molecules that impact systemic metabolism. In recent years, research has shed light on the intricate interplay between the heart and other metabolic organs, such as adipose tissue, liver, and skeletal muscle. The metabolic flexibility of the heart and its ability to switch between different energy substrates play a crucial role in maintaining cardiac function and overall metabolic homeostasis. Gaining a comprehensive understanding of how metabolic disorders disrupt cardiac metabolism is crucial, as it plays a pivotal role in the development and progression of cardiac diseases. The emerging understanding of the heart as a metabolic and endocrine organ highlights its essential contribution to whole body metabolic regulation and offers new insights into the pathogenesis of metabolic diseases, such as obesity, diabetes, and cardiovascular disorders. In this review, we provide an in-depth exploration of the heart's metabolic and endocrine functions, emphasizing its role in systemic metabolism and the interplay between the heart and other metabolic organs. Furthermore, emerging evidence suggests a correlation between heart disease and other conditions such as aging and cancer, indicating that the metabolic dysfunction observed in these conditions may share common underlying mechanisms. By unraveling the complex mechanisms underlying cardiac metabolism, we aim to contribute to the development of novel therapeutic strategies for metabolic diseases and improve overall cardiovascular health.
Collapse
Affiliation(s)
| | | | - Alba C Arcones
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| |
Collapse
|
8
|
Karachaliou CE, Livaniou E. Neuroprotective Action of Humanin and Humanin Analogues: Research Findings and Perspectives. BIOLOGY 2023; 12:1534. [PMID: 38132360 PMCID: PMC10740898 DOI: 10.3390/biology12121534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Humanin is a 24-mer peptide first reported in the early 2000s as a new neuroprotective/cytoprotective factor rescuing neuronal cells from death induced by various Alzheimer's disease-associated insults. Nowadays it is known that humanin belongs to the novel class of the so-called mitochondrial-derived peptides (which are encoded by mitochondrial DNA) and has been shown to exert beneficial cytoprotective effects in a series of in vitro and/or in vivo experimental models of human diseases, including not only neurodegenerative disorders but other human diseases as well (e.g., age-related macular degeneration, cardiovascular diseases, or diabetes mellitus). This review article is focused on the presentation of recent in vitro and in vivo research results associated with the neuroprotective action of humanin as well as of various, mainly synthetic, analogues of the peptide; moreover, the main mode(s)/mechanism(s) through which humanin and humanin analogues may exert in vitro and in vivo regarding neuroprotection have been reported. The prospects of humanin and humanin analogues to be further investigated in the frame of future research endeavors against neurodegenerative/neural diseases have also been briefly discussed.
Collapse
Affiliation(s)
| | - Evangelia Livaniou
- Immunopeptide Chemistry Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 153 10 Agia Paraskevi, Greece;
| |
Collapse
|
9
|
Coradduzza D, Medici S, Chessa C, Zinellu A, Madonia M, Angius A, Carru C, De Miglio MR. Assessing the Predictive Power of the Hemoglobin/Red Cell Distribution Width Ratio in Cancer: A Systematic Review and Future Directions. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2124. [PMID: 38138227 PMCID: PMC10744746 DOI: 10.3390/medicina59122124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
Background and Objectives: The hemoglobin (Hb)/red cell distribution width (RDW) ratio has emerged as an accessible, repeatable, and inexpensive prognostic factor that may predict survival in cancer patients. The focus of this systematic review is to investigate the prognostic role of the Hb/RDW ratio in cancer and the implications for clinical practice. Materials and Methods: A literature search of PubMed, Scopus, and Web of Science databases was performed by an independent author between 18 March and 30 March 2023 to collect relevant literature that assessed the prognostic value of the Hb/RDW ratio in cancer. Overall survival (OS), progression-free survival (PFS), and the association of these with the Hb/RDW ratio were considered to be the main endpoints. Results: Thirteen retrospective studies, including 3818 cancer patients, were identified and involved in this review. It was observed that, when patients with a high vs. low Hb/RDW ratio were compared, those with a lower Hb/RDW ratio had significantly poorer outcomes (p < 0.05). In lung cancer patients, a one-unit increase in the Hb/RDW ratio reduces mortality by 1.6 times, whilst in esophageal squamous-cell carcinoma patients, a lower Hb/RDW ratio results in a 1.416-times greater risk of mortality. Conclusions: A low Hb/RDW ratio was associated with poor OS and disease progression in patients with cancer. This blood parameter should be considered a standard biomarker in clinical practice for predicting OS and PFS in cancer patients. Future searches will be necessary to determine and standardize the Hb/RDW cut-off value and to assess whether the Hb/RDW ratio is optimal as an independent prognostic factor or if it requires incorporation into risk assessment models for predicting outcomes in cancer patients.
Collapse
Affiliation(s)
- Donatella Coradduzza
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (D.C.); (A.Z.)
| | - Serenella Medici
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Carla Chessa
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (C.C.); (M.M.)
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (D.C.); (A.Z.)
| | - Massimo Madonia
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (C.C.); (M.M.)
| | - Andrea Angius
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Cagliari, 09042 Cagliari, Italy;
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (D.C.); (A.Z.)
- Control Quality Unit, Azienda-Ospedaliera Universitaria (AOU), 07100 Sassari, Italy
| | - Maria Rosaria De Miglio
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (C.C.); (M.M.)
| |
Collapse
|
10
|
Zhao Q, Cai MM, Li D, Zhao BY, Zhou SS, Wu ZR, Shi YJ, Su L. S14G-humanin confers cardioprotective effects against chronic adrenergic and pressure overload-induced heart failure in mice. Heliyon 2023; 9:e21892. [PMID: 38045183 PMCID: PMC10692773 DOI: 10.1016/j.heliyon.2023.e21892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 09/18/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
S14G-humanin (HNG), an analog of the mitochondria-derived peptide humanin, has demonstrated protective effects against various cardiovascular diseases. However, the specific pharmacological effects of HNG in heart failure (HF) have not been previously reported. Therefore, in this study, we aimed to investigate the potential protective effect of HNG in HF using a mouse model. HF was induced in mice through intraperitoneal injection of isoproterenol or transverse aortic constriction, followed by separate administration of HNG to assess its therapeutic impact. Our results revealed that HNG treatment significantly delayed the onset of cardiac dysfunction and structural remodeling in the HF mouse model. Furthermore, HNG administration was associated with reduced infiltration of inflammatory cells, improved myocardial fibrosis, and attenuation of cardiomyocyte apoptosis in the treated cardiac tissues. Additionally, we identified the involvement of the transforming growth factor-beta signaling pathway in the beneficial effects of HNG in isoproterenol-induced HF mice. Collectively, these findings underscore the therapeutic potential of HNG in preventing the progression of HF, as demonstrated in two distinct HF mouse models.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Ming-Ming Cai
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Dan Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Bin-Yi Zhao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Shuang-Shan Zhou
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zhen-Ru Wu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yu-Jun Shi
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Li Su
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| |
Collapse
|
11
|
Wen X, Coradduzza D, Shen J, Scanu AM, Muroni MR, Massidda M, Rallo V, Carru C, Angius A, De Miglio MR. Harnessing Minimal Residual Disease as a Predictor for Colorectal Cancer: Promising Horizons Amidst Challenges. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1886. [PMID: 37893604 PMCID: PMC10608819 DOI: 10.3390/medicina59101886] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
Minimal Residual Disease (MRD) detection has emerged as an independent factor in clinical and pathological cancer assessment offering a highly effective method for predicting recurrence in colorectal cancer (CRC). The ongoing research initiatives such as the DYNAMIC and CIRCULATE-Japan studies, have revealed the potential of MRD detection based on circulating tumor DNA (ctDNA) to revolutionize management for CRC patients. MRD detection represents an opportunity for risk stratification, treatment guidance, and early relapse monitoring. Here we overviewed the evolving landscape of MRD technology and its promising applications through the most up-to-date research and reviews, underscoring the transformative potential of this approach. Our primary focus is to provide a point-to-point perspective and address key challenges relating to the adoption of ctDNA-based MRD detection in the clinical setting. By identifying critical areas of interest and hurdles surrounding clinical significance, detection criteria, and potential applications of basic research, this article offers insights into the advancements needed to evaluate the role of ctDNA in CRC MRD detection, contributing to favorable clinical options and improved outcomes in the management of CRC.
Collapse
Affiliation(s)
- Xiaofen Wen
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (X.W.); (D.C.); (J.S.); (C.C.)
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Donatella Coradduzza
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (X.W.); (D.C.); (J.S.); (C.C.)
| | - Jiaxin Shen
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (X.W.); (D.C.); (J.S.); (C.C.)
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Antonio Mario Scanu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (M.M.)
| | - Maria Rosaria Muroni
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (M.M.)
| | - Matteo Massidda
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (M.M.)
| | - Vincenzo Rallo
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, CNR, Cittadella Universitaria di Cagliari, Monserrato, 09042 Cagliari, Italy; (V.R.); (A.A.)
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (X.W.); (D.C.); (J.S.); (C.C.)
| | - Andrea Angius
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, CNR, Cittadella Universitaria di Cagliari, Monserrato, 09042 Cagliari, Italy; (V.R.); (A.A.)
| | - Maria Rosaria De Miglio
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (M.M.)
| |
Collapse
|
12
|
Kose C, Korpe B, Yakut Yucel K, Arat O, Bucak M, Engin Ustun Y. A New Antioxidant Marker in Cord Blood of Fetuses with Late Fetal Growth Restriction: Humanin. Fetal Pediatr Pathol 2023; 42:775-784. [PMID: 37366369 DOI: 10.1080/15513815.2023.2229432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Purpose: This study investigated the Humanin levels in the umbilical cord blood of fetuses with late fetal growth restriction (FGR) and -evaluated their association with perinatal outcomes. Materials and Methods: A total of 95 single pregnancies between 32-41 wk (45 with late FGR and 50 controls) were included. Doppler parameters, birth weight and the need for neonatal intensive care unit admission (NICU) were assessed. Correlations between Humanin levels and these parameters were analyzed. Results: Higher Humanin levels were found in fetuses with late FGR compared to the control group (p < 0.05). No significant correlation was observed between Humanin levels and Doppler parameters. Elevated Humanin levels were associated with an increased need for NICU (p < 0.05). Conclusions: The statistically higher levels of Humanin in fetuses with late FGR may suggest the potential of Humanin as an indicator of late FGR. Further research is needed to explore the clinical utility of Humanin.
Collapse
Affiliation(s)
- Caner Kose
- Ankara Etlik City Hospital, Ankara, Turkey
| | | | | | - Ozgur Arat
- Ankara Etlik City Hospital, Ankara, Turkey
| | | | - Yaprak Engin Ustun
- University of Health Sciences Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
13
|
Coradduzza D, Sedda S, Cruciani S, De Miglio MR, Ventura C, Nivoli A, Maioli M. Age-Related Cognitive Decline, Focus on Microbiome: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:13680. [PMID: 37761988 PMCID: PMC10531012 DOI: 10.3390/ijms241813680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is a complex process influenced by genetics and the environment, leading to physiological decline and increased susceptibility to diseases. Cognitive decline is a prominent feature of aging, with implications for different neurodegenerative disorders. The gut microbiome has gained attention for its potential impact on health and disease, including cognitive function. This systematic review and meta-analysis aimed to investigate the relationship between the gut microbiome and cognitive function in the context of aging. Following PRISMA guidelines, a comprehensive search strategy was employed in PubMed, Scopus, and Web of Science databases. Studies exploring the role of the microbiome in cognition and neurodegenerative disorders, published between 2013 and 2023, were included. Data extraction and quality assessment were performed. Quantitative synthesis using statistical analyses was performed to examine microbial diversity and relative abundance in various cognitive conditions. Sixteen studies involving a total of 1303 participants were included in the analysis. The gut microbiota's relative abundance was different in individuals with cognitive impairments such as Alzheimer's disease, Parkinson's disease, and dementia, compared to the healthy controls. The most prevalent phyla affected were Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria. Meta-analyses indicated substantial heterogeneity among studies focusing on Alzheimer's disease. The overall quality of evidence related to microbial analysis was moderate. The gut microbiome's role in cognitive decline and neurodegenerative disorders warrants investigation. Altered microbial abundance, particularly in specific phyla, is associated with cognitive impairments. However, variations in study findings and methodologies highlight the complexity of the relationship between the gut microbiome and cognitive function. Further studies are needed to better understand the mechanisms underlying this connection and its potential implications for aging and cognitive health.
Collapse
Affiliation(s)
- Donatella Coradduzza
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (D.C.); (S.S.); (S.C.)
| | - Stefania Sedda
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (D.C.); (S.S.); (S.C.)
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (D.C.); (S.S.); (S.C.)
| | - Maria Rosaria De Miglio
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (M.R.D.M.); (A.N.)
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems-Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Alessandra Nivoli
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (M.R.D.M.); (A.N.)
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (D.C.); (S.S.); (S.C.)
- Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| |
Collapse
|
14
|
Coradduzza D, Bo M, Congiargiu A, Azara E, De Miglio MR, Erre GL, Carru C. Decoding the Microbiome's Influence on Rheumatoid Arthritis. Microorganisms 2023; 11:2170. [PMID: 37764014 PMCID: PMC10536067 DOI: 10.3390/microorganisms11092170] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The aim is better to understand and critically explore and present the available data from observational studies on the pathogenetic role of the microbiome in the development of rheumatoid arthritis (RA). The electronic databases PubMed, Scopus, and Web of Science were screened for the relevant literature published in the last ten years. The primary outcomes investigated included the influence of the gut microbiome on the pathogenesis and development of rheumatoid arthritis, exploring the changes in microbiota diversity and relative abundance of microbial taxa in individuals with RA and healthy controls (HCs). The risk of bias in the included literature was assessed using the GRADE criteria. Ten observational studies were identified and included in the qualitative assessment. A total of 647 individuals with RA were represented in the literature, in addition to 16 individuals with psoriatic arthritis (PsA) and 247 HCs. The biospecimens comprised fecal samples across all the included literature, with 16S rDNA sequencing representing the primary method of biological analyses. Significant differences were observed in the RA microbiome compared to that of HCs: a decrease in Faecalibacterium, Fusicatenibacter, Enterococcus, and Megamonas and increases in Eggerthellales, Collinsella, Prevotella copri, Klebsiella, Escherichia, Eisenbergiella, and Flavobacterium. There are significant alterations in the microbiome of individuals with RA compared to HCs. This includes an increase in Prevotella copri and Lactobacillus and reductions in Collinsella. Collectively, these alterations are proposed to induce inflammatory responses and degrade the integrity of the intestinal barrier; however, further studies are needed to confirm this relationship.
Collapse
Affiliation(s)
- Donatella Coradduzza
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.B.); (A.C.)
| | - Marco Bo
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.B.); (A.C.)
| | - Antonella Congiargiu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.B.); (A.C.)
| | - Emanuela Azara
- Institute of Biomolecular Chemistry, National Research Council, 07100 Sassari, Italy;
| | - Maria Rosaria De Miglio
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (M.R.D.M.); (G.L.E.)
| | - Gian Luca Erre
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (M.R.D.M.); (G.L.E.)
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.B.); (A.C.)
- Control Quality Unit, Azienda-Ospedaliera Universitaria (AOU), 07100 Sassari, Italy
| |
Collapse
|