1
|
Liguori M, Bianco A, Introna A, Consiglio A, Milella G, Abbatangelo E, D'Errico E, Licciulli F, Grillo G, Simone IL. An early Transcriptomic Investigation in Adult Patients with Spinal Muscular Atrophy Under Treatment with Nusinersen. J Mol Neurosci 2024; 74:89. [PMID: 39325116 PMCID: PMC11427494 DOI: 10.1007/s12031-024-02251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/17/2024] [Indexed: 09/27/2024]
Abstract
Spinal muscular atrophy (SMA) is a rare degenerative disorder with loss of motor neurons caused by mutations in the SMN1 gene. Nusinersen, an antisense oligonucleotide, was approved for SMA treatment to compensate the deficit of the encoded protein SMN by modulating the pre-mRNA splicing of SMN2, the centromeric homologous of SMN1, thus inducing the production of a greater amount of biologically active protein. Here, we reported a 10-month transcriptomics investigation in 10 adult SMA who received nusinersen to search for early genetic markers for clinical monitoring. By comparing their profiles with age-matched healthy controls (HC), we also analyzed the changes in miRNA/mRNAs expression and miRNA-target gene interactions possibly associated with SMA. A multidisciplinary approach of HT-NGS followed by bioinformatics/biostatistics analysis was applied. Within the study interval, those SMA patients who showed some clinical improvements were characterized by having the SMN2/SMN1 ratio slightly increased over the time, while in the stable ones the ratio decreased, suggesting that the estimation of SMN2/SMN1 expression may be an early indicator of nusinersen efficacy. On the other hand, the expression of 38/147 genes/genetic regions DE at T0 between SMA and HC like TRADD and JUND resulted "restored" at T10. We also confirmed the dysregulation of miR-146a(-5p), miR-324-5p and miR-423-5p in SMA subjects. Of interest, miR-146a-5p targeted SMN1, in line with experimental evidence showing the key role of astrocyte-produced miR-146a in SMA motor neuron loss. Molecular pathways such as NOTCH, NF-kappa B, and Toll-like receptor signalings seem to be involved in the SMA pathogenesis.
Collapse
Grants
- D.U.P. n.246/2019, D.D. n. 3 of 13 January 2021 Apulian Regional Council
- D.U.P. n.246/2019, D.D. n. 3 of 13 January 2021 Apulian Regional Council
- D.U.P. n.246/2019, D.D. n. 3 of 13 January 2021 Apulian Regional Council
- D.U.P. n.246/2019, D.D. n. 3 of 13 January 2021 Apulian Regional Council
- D.U.P. n.246/2019, D.D. n. 3 of 13 January 2021 Apulian Regional Council
- D.U.P. n.246/2019, D.D. n. 3 of 13 January 2021 Apulian Regional Council
- D.U.P. n.246/2019, D.D. n. 3 of 13 January 2021 Apulian Regional Council
- D.U.P. n.246/2019, D.D. n. 3 of 13 January 2021 Apulian Regional Council
- D.U.P. n.246/2019, D.D. n. 3 of 13 January 2021 Apulian Regional Council
- D.U.P. n.246/2019, D.D. n. 3 of 13 January 2021 Apulian Regional Council
Collapse
Affiliation(s)
- Maria Liguori
- National Research Council, Department of Biomedicine, Institute of Biomedical Technologies - Bari Unit, 70125, Bari, Italy.
| | - Annalisa Bianco
- National Research Council, Department of Biomedicine, Institute of Biomedical Technologies - Bari Unit, 70125, Bari, Italy
| | - Alessandro Introna
- Neurology Unit, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Arianna Consiglio
- National Research Council, Department of Biomedicine, Institute of Biomedical Technologies - Bari Unit, 70125, Bari, Italy
| | - Giammarco Milella
- Neurology Unit, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Elena Abbatangelo
- National Research Council, Department of Biomedicine, Institute of Biomedical Technologies - Bari Unit, 70125, Bari, Italy
| | - Eustachio D'Errico
- Neurology Unit, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Flavio Licciulli
- National Research Council, Department of Biomedicine, Institute of Biomedical Technologies - Bari Unit, 70125, Bari, Italy
| | - Giorgio Grillo
- National Research Council, Department of Biomedicine, Institute of Biomedical Technologies - Bari Unit, 70125, Bari, Italy
| | | |
Collapse
|
2
|
Dhaffouli F, Elloumi N, Tahri S, Sellami K, Mseddi M, Frikha R, Bahloul E, Charfi A, Turki H, Hachicha H, Masmoudi H, Abida O. Unraveling the role of the vitamin D-VDR pathway in pemphigus vulgaris from Tunisian patients. Steroids 2024; 209:109454. [PMID: 38878876 DOI: 10.1016/j.steroids.2024.109454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024]
Abstract
Vitamin D dysregulation has been recognized as a factor that may cause or aggravate autoimmunity. Vitamin D deficiency was found to be common in pemphigus vulgaris (PV) in different populations. This study aimed to investigate the vitamin D-VDR pathway in PV in the Tunisian population. A serological study was carried out to determine the vitamin D status in newly diagnosed PV patients. CYP27B1, CYP24A1 and VDR mRNA expression was assessed using quantitative real-time PCR in peripheral blood mononuclear cells (PBMC) from untreated newly diagnosed and treated PV patients. In addition, a genetic study was accomplished on VDR polymorphisms to investigate the changes in VDR gene expression. Overall, the serological study confirmed the hypovitaminosis D in newly diagnosed PV patients. Vitamin D-VDR pathway gene expression showed downregulation of CYP27B1 and CYP24A1 mRNA in first-discovery patients compared to healthy controls, while VDR mRNA was highly expressed in newly diagnosed PV patients. Moreover, CYP27B1, CYP24A1 and VDR mRNA were significantly upregulated in chronic disease severity groups compared to mild disease groups. The genetic study showed low VDR gene expression in carriers of FokI > CC genotype, which was more frequent among PV patients, and FokI > C-TaqI > C-ApaI > A-polyA > A16 haplotype, suggesting that the VDR gene polymorphisms testing can provide useful information for PV treatment decision-making. In conclusion, our findings underline the impact of vitamin D-VDR pathway disruption in the PV pathophysiology in Tunisian patients.
Collapse
Affiliation(s)
- Fatma Dhaffouli
- Research Laboratoy LR18/SP12 "Autoimmunity, Cancer And Immunogenetics", Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Nesrine Elloumi
- Research Laboratoy LR18/SP12 "Autoimmunity, Cancer And Immunogenetics", Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Safa Tahri
- Research Laboratoy LR18/SP12 "Autoimmunity, Cancer And Immunogenetics", Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Khadija Sellami
- Department of Dermatology, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Mariem Mseddi
- Laboratory of Research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Tunisia
| | - Rim Frikha
- Research Laboratoy LR18/SP12 "Autoimmunity, Cancer And Immunogenetics", Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Emna Bahloul
- Department of Dermatology, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Aida Charfi
- Immunology Department, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Hamida Turki
- Department of Dermatology, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Hend Hachicha
- Research Laboratoy LR18/SP12 "Autoimmunity, Cancer And Immunogenetics", Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia.
| | - Hatem Masmoudi
- Research Laboratoy LR18/SP12 "Autoimmunity, Cancer And Immunogenetics", Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Olfa Abida
- Research Laboratoy LR18/SP12 "Autoimmunity, Cancer And Immunogenetics", Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| |
Collapse
|
3
|
Bastyte D, Tamasauskiene L, Stakaitiene I, Briede K, Ugenskiene R, Valiukeviciene S, Gradauskiene B. Relation of T Cell Profile with Vitamin D Receptor and Vitamin D-Binding Protein Gene Polymorphisms in Atopy. Int J Mol Sci 2024; 25:9021. [PMID: 39201708 PMCID: PMC11354884 DOI: 10.3390/ijms25169021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
Atopic diseases, including atopic dermatitis (AD) and allergic asthma (AA), are characterized by complex immune responses involving various T cells subsets and their cytokine profiles. It is assumed that single nucleotide polymorphisms (SNPs) in the Vitamin D receptor (VDR) gene and the Vitamin D-binding protein (GC) gene are related to the action of Vitamin D and, consequently, play a role in regulating the immune response. However, there is not enough data to unequivocally support the hypothesis about the relationship between T cells profile and VDR or GC SNPs. Two hundred sixty-six subjects (aged > 18 years) were involved in the study: 100 patients with mild or moderate AD, 85 patients with mild or moderate AA, and 81 healthy individuals. Blood cell counts were determined by standard methods. Flow cytometric analysis was used to evaluate CD4+ T-helper (Th) cell subtypes: Th2, Th1, Th17, and T regulatory (Treg) cells in peripheral blood. Measurements of cytokines, total immunoglobulin E (IgE), and Vitamin D levels in serum were evaluated by ELISA. Significantly higher levels of Th1, Th2, and Th17 cells, along with lower levels of Tregs, were found in patients with atopic diseases compared to healthy individuals. Additionally, higher serum levels of interleukin (IL) 5, IL-17A, and transforming growth factor-β1 (TGF-β1), as well as lower levels of IL-10, were observed in patients with atopic diseases than in control. The study established associations between VDR SNPs and immune profiles: the AA genotype of rs731236 was associated with increased Th2 and Th17 cells and a higher Th1/Th2 ratio; the GG genotype of rs731236 was linked to decreased serum IL-10 and TGF-β1 levels; and the TT genotype of rs11168293 was associated with increased IL-10 levels. Additionally, the GG genotype of GC gene SNP rs4588 was associated with reduced Th2 and Th17 lymphocytes, while the TT genotype of rs4588 was linked to decreased IL-10 levels. Furthermore, the CC genotype of rs7041 was associated with higher levels of Th2, Th17, IL-10, and IL-35, as well as reduced levels of TGF-β1, while the GG genotype of rs3733359 was associated with reduced IL-10 levels. In conclusion, our study demonstrates that the Vitamin D receptor gene single nucleotide polymorphisms rs731236 and rs11168293, along with polymorphisms in the Vitamin D-binding protein gene (rs4588, rs7041, rs3733359), are significantly associated with variations in T cell profiles in atopy. These variations may play a crucial role in promoting inflammation and provide insight into the genetic factors contributing to the pathogenesis of atopy.
Collapse
Affiliation(s)
- Daina Bastyte
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (D.B.); (L.T.)
- Laboratory of Immunology, Department of Immunology and Allergology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Laura Tamasauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (D.B.); (L.T.)
- Laboratory of Immunology, Department of Immunology and Allergology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Ieva Stakaitiene
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Kamilija Briede
- Department of Skin and Venereal Diseases, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Rasa Ugenskiene
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Skaidra Valiukeviciene
- Department of Skin and Venereal Diseases, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Brigita Gradauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (D.B.); (L.T.)
| |
Collapse
|
4
|
García-Domínguez M, Gutiérrez-Del-Río I, Villar CJ, Perez-Gomez A, Sancho-Martinez I, Lombó F. Structural diversification of vitamin D using microbial biotransformations. Appl Microbiol Biotechnol 2024; 108:409. [PMID: 38970663 PMCID: PMC11227467 DOI: 10.1007/s00253-024-13244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Vitamin D deficiencies are linked to multiple human diseases. Optimizing its synthesis, physicochemical properties, and delivery systems while minimizing side effects is of clinical relevance and is of great medical and industrial interest. Biotechnological techniques may render new modified forms of vitamin D that may exhibit improved absorption, stability, or targeted physiological effects. Novel modified vitamin D derivatives hold promise for developing future therapeutic approaches and addressing specific health concerns related to vitamin D deficiency or impaired metabolism, such as avoiding hypercalcemic effects. Identifying and engineering key enzymes and biosynthetic pathways involved, as well as developing efficient cultures, are therefore of outmost importance and subject of intense research. Moreover, we elaborate on the critical role that microbial bioconversions might play in the a la carte design, synthesis, and production of novel, more efficient, and safer forms of vitamin D and its analogs. In summary, the novelty of this work resides in the detailed description of the physiological, medical, biochemical, and epidemiological aspects of vitamin D supplementation and the steps towards the enhanced and simplified industrial production of this family of bioactives relying on microbial enzymes. KEY POINTS: • Liver or kidney pathologies may hamper vitamin D biosynthesis • Actinomycetes are able to carry out 1α- or 25-hydroxylation on vitamin D precursors.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Principality of Asturias, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| | - Ignacio Gutiérrez-Del-Río
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Principality of Asturias, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| | - Claudio J Villar
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Principality of Asturias, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| | | | | | - Felipe Lombó
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Principality of Asturias, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Spain.
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain.
| |
Collapse
|
5
|
Schulz N, Dischereit G, Henke L, Lange U, Klemm P. Prevalence and effects of Vitamin D receptor polymorphism on bone mineral density and metabolism in patients with systemic sclerosis: a preliminary study. Clin Exp Med 2024; 24:121. [PMID: 38847864 PMCID: PMC11161438 DOI: 10.1007/s10238-024-01385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
Patients with systemic sclerosis (SSc) have a disproportionately high prevalence of reduced bone mineral density (BMD). Polymorphisms of the vitamin D receptor (VDR) gene have been associated with osteoporosis in patients with autoimmune diseases. The aim of this study was to investigate the prevalence and possible effects of VDR polymorphism on BMD and bone metabolism in patients with SSc. In patients with SSc measurement of BMD was performed using dual-energy X-ray absorptiometry. VDR polymorphisms (FokI, BsmI) were genotyped using restriction fragment length polymorphism analysis. Markers of bone metabolism (calcium, osteocalcin, β-crosslaps) were determined. Primary endpoint was the prevalence of VDR gene polymorphisms and the association with reduced BMD. Secondary endpoints included associations between bone metabolism and VDR gene polymorphism. 79 Caucasian patients with SSc were included. Overall, 83.5% had reduced BMD (51.9% osteopenia, 31.6% osteoporosis). The prevalence of VDR gene polymorphism (73% BsmI, 77% FokI) was comparable to studies in healthy and rheumatic populations. The homozygous presence of FokI polymorphism, but not BsmI, was significantly associated with reduced axial BMD. Fokl polymorphism was significantly associated with reduced CTX levels, although changes remained within the reference limits. VDR polymorphisms can frequently be found in patients with SSc in comparable prevalence to healthy and rheumatic populations. The homozygous presence of FokI polymorphism, but not BsmI, was significantly associated with reduced axial BMD. This could be a possible contributor for the high prevalence of reduced BMD in 83.5% of patients with SSc in this study.Trial registration. DRKS00032768, date: 05.10.2023, retrospectively registered.
Collapse
Affiliation(s)
- Nils Schulz
- Department of Rheumatology, Clinical Immunology, Osteology and Physical Medicine, Justus-Liebig-University Giessen, Campus Kerckhoff, Benekestr. 2-8, 61231, Bad Nauheim, Germany.
| | - Gabriel Dischereit
- Department of Rheumatology, Clinical Immunology, Osteology and Physical Medicine, Justus-Liebig-University Giessen, Campus Kerckhoff, Benekestr. 2-8, 61231, Bad Nauheim, Germany
| | - Laura Henke
- Department of Rheumatology, Clinical Immunology, Osteology and Physical Medicine, Justus-Liebig-University Giessen, Campus Kerckhoff, Benekestr. 2-8, 61231, Bad Nauheim, Germany
| | - Uwe Lange
- Department of Rheumatology, Clinical Immunology, Osteology and Physical Medicine, Justus-Liebig-University Giessen, Campus Kerckhoff, Benekestr. 2-8, 61231, Bad Nauheim, Germany
| | - Philipp Klemm
- Department of Rheumatology, Clinical Immunology, Osteology and Physical Medicine, Justus-Liebig-University Giessen, Campus Kerckhoff, Benekestr. 2-8, 61231, Bad Nauheim, Germany
| |
Collapse
|
6
|
Murdaca G, Tagliafico L, Page E, Paladin F, Gangemi S. Gender Differences in the Interplay between Vitamin D and Microbiota in Allergic and Autoimmune Diseases. Biomedicines 2024; 12:1023. [PMID: 38790985 PMCID: PMC11117902 DOI: 10.3390/biomedicines12051023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The synergic role of vitamin D and the intestinal microbiota in the regulation of the immune system has been thoroughly described in the literature. Vitamin D deficiency and intestinal dysbiosis have shown a pathogenetic role in the development of numerous immune-mediated and allergic diseases. The physiological processes underlying aging and sex have proven to be capable of having a negative influence both on vitamin D values and the biodiversity of the microbiome. This leads to a global increase in levels of systemic inflammatory markers, with potential implications for all immune-mediated diseases and allergic conditions. Our review aims to collect and analyze the relationship between vitamin D and the intestinal microbiome with the immune system and the diseases associated with it, emphasizing the effect mediated by sexual hormones and aging.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy (E.P.)
- Allergology and Clinical Immunology Unit, San Bartolomeo Hospital, 19038 Sarzana, Italy
| | - Luca Tagliafico
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy (E.P.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Elena Page
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy (E.P.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Francesca Paladin
- Elderly and Disabeld Department, San Paolo Hospital, 17100 Savona, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
7
|
Stroia CM, Ghitea TC, Vrânceanu M, Mureșan M, Bimbo-Szuhai E, Pallag CR, Pallag A. Relationship between Vitamin D3 Deficiency, Metabolic Syndrome and VDR, GC, and CYP2R1 Gene Polymorphisms. Nutrients 2024; 16:1272. [PMID: 38732523 PMCID: PMC11085312 DOI: 10.3390/nu16091272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The presence of vitamin D3 deficiency associated with the presence of metabolic syndrome (MS) has important public health effects. This study aims to investigate the relationship between vitamin D3 deficiency, MS and vitamin D3 receptor (VDR), GC Vitamin D binding protein (GC), and cytochrome P450 family 2 subfamily R member 1 (CYP2R1) gene polymorphisms, and genes whose encoded proteins are responsible for vitamin D3 metabolism and transport. A total of 58 participants were included in this study (age 39 ± 12 years) and were selected over a 12-month period. They were divided into four groups, depending on the presence of polymorphisms in VDR, GC, and CYP2R1 genes and their weight status. At baseline, in months 3, 6, and 12, biochemical parameters including 25(OH)D3, total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides, and homeostatic model assessment (HOMA index), the insulin resistance indicator were measured. Our results show that all subjects in the polymorphism group supplemented with vitamin D3 reached an optimal level of vitamin D3 associated with high concentrations of 25(OH)D3. Weight loss was most significant in patients in the POW group (overweight patients).
Collapse
Affiliation(s)
- Carmina Mariana Stroia
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Timea Claudia Ghitea
- Pharmacy Department, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Maria Vrânceanu
- Department of Toxicology, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, 400012 Cluj-Napoca, Romania;
| | - Mariana Mureșan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Erika Bimbo-Szuhai
- Department of Surgery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Csaba Robert Pallag
- MSc International Economy and Business Program of Study, Department of World Economy, Corvinus University of Budapest, 1093 Budapest, Hungary;
| | - Annamaria Pallag
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
- Pharmacy Department, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| |
Collapse
|
8
|
Golonko A, Pienkowski T, Swislocka R, Orzechowska S, Marszalek K, Szczerbinski L, Swiergiel AH, Lewandowski W. Dietary factors and their influence on immunotherapy strategies in oncology: a comprehensive review. Cell Death Dis 2024; 15:254. [PMID: 38594256 PMCID: PMC11004013 DOI: 10.1038/s41419-024-06641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Immunotherapy is emerging as a promising avenue in oncology, gaining increasing importance and offering substantial advantages when compared to chemotherapy or radiotherapy. However, in the context of immunotherapy, there is the potential for the immune system to either support or hinder the administered treatment. This review encompasses recent and pivotal studies that assess the influence of dietary elements, including vitamins, fatty acids, nutrients, small dietary molecules, dietary patterns, and caloric restriction, on the ability to modulate immune responses. Furthermore, the article underscores how these dietary factors have the potential to modify and enhance the effectiveness of anticancer immunotherapy. It emphasizes the necessity for additional research to comprehend the underlying mechanisms for optimizing the efficacy of anticancer therapy and defining dietary strategies that may reduce cancer-related morbidity and mortality. Persistent investigation in this field holds significant promise for improving cancer treatment outcomes and maximizing the benefits of immunotherapy.
Collapse
Affiliation(s)
- Aleksandra Golonko
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland
| | - Tomasz Pienkowski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland.
| | - Renata Swislocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351, Bialystok, Poland
| | - Sylwia Orzechowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Krystian Marszalek
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
| | - Lukasz Szczerbinski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland
| | - Artur Hugo Swiergiel
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Faculty of Biology, Department of Animal and Human Physiology, University of Gdansk, W. Stwosza 59, 80-308, Gdansk, Poland
| | - Wlodzimierz Lewandowski
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351, Bialystok, Poland
| |
Collapse
|
9
|
Jamoussi M, Alaya F, Jamoussi H, Baraket G, Achouri A, Mahmoud MB, Fray S, Ben Ali N, Messaoud T, Hannachi Salhi A, Fredj M. Vitamin D receptor gene BsmI (rs1544410) polymorphism: role in multiple sclerosis and genotype-phenotype correlations. Mol Biol Rep 2024; 51:478. [PMID: 38578462 DOI: 10.1007/s11033-024-09369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/20/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) has a complex pathophysiology which depends on many endogenous and exogenous factors. Vitamin D involvement has been largely studied in MS. The large distribution of the vitamin D receptor (VDR) in different immune cells is suggestive of an immunomodulatory role. The VDR gene polymorphisms have been proposed as potential risk factors for MS development or evolution with non-conclusive results. METHODS AND RESULTS We conducted a cross-sectional study including patients ≥ 18 years, with a diagnosis of relapsing remitting MS according to the McDonald Criteria and having a minimum follow-up period of one year after starting a disease modifying therapy. Two study groups were compared based on the Multiple Sclerosis Severity Scale or MSSS: "a slow progressor" group for an MSSS ≤ 5, and a "fast progressor" group for an MSSS > 5. The rs1544410 VDR gene polymorphism was studied for all patients. Eighty patients were included. The fast progressor groups had a higher EDSS at onset, a higher total number of relapses, more frequent and shorter time to secondary progression. The progression profile was not statistically different between genotypes and alleles of the VDR gene polymorphism rs1544410. The CC genotype and wild-type allele exhibited a more aggressive disease phenotype with a higher number of relapses the first year, shorter time to secondary progression and cerebral atrophy on assessment. CONCLUSIONS Our results suggest potential genotype-phenotype correlations for the rs1544410 VDR gene polymorphism in the disease course of MS. Future research on a larger scale is needed to confirm these findings.
Collapse
Affiliation(s)
- Maha Jamoussi
- Neurology Department, Charles Nicolle Hospital, Tunis, Tunisia.
- Charles Nicolle Hospital Research Laboratory LR12SP01, Tunis, Tunisia.
- Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia.
| | - Faten Alaya
- Charles Nicolle Hospital Research Laboratory LR12SP01, Tunis, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hela Jamoussi
- Neurology Department, Charles Nicolle Hospital, Tunis, Tunisia
- Charles Nicolle Hospital Research Laboratory LR12SP01, Tunis, Tunisia
- Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Ghada Baraket
- Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Afef Achouri
- Charles Nicolle Hospital Research Laboratory LR12SP01, Tunis, Tunisia
| | - Mariem Ben Mahmoud
- Neurology Department, Charles Nicolle Hospital, Tunis, Tunisia
- Charles Nicolle Hospital Research Laboratory LR12SP01, Tunis, Tunisia
- Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Saloua Fray
- Neurology Department, Charles Nicolle Hospital, Tunis, Tunisia
- Charles Nicolle Hospital Research Laboratory LR12SP01, Tunis, Tunisia
- Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Nadia Ben Ali
- Neurology Department, Charles Nicolle Hospital, Tunis, Tunisia
- Charles Nicolle Hospital Research Laboratory LR12SP01, Tunis, Tunisia
- Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Taieb Messaoud
- Children's Hospital of Tunis Bechir Hamza, Tunis, Tunisia
| | - Amel Hannachi Salhi
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mohamed Fredj
- Neurology Department, Charles Nicolle Hospital, Tunis, Tunisia
- Charles Nicolle Hospital Research Laboratory LR12SP01, Tunis, Tunisia
- Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
10
|
Ferenc K, Sokal-Dembowska A, Helma K, Motyka E, Jarmakiewicz-Czaja S, Filip R. Modulation of the Gut Microbiota by Nutrition and Its Relationship to Epigenetics. Int J Mol Sci 2024; 25:1228. [PMID: 38279228 PMCID: PMC10816208 DOI: 10.3390/ijms25021228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
The intestinal microbiota is a community of microorganisms inhabiting the human intestines, potentially influencing both physiological and pathophysiological processes in the human body. Existing evidence suggests that nutrients can influence the modulation of the gut microbiota. However, there is still limited evidence regarding the effects of vitamin and mineral supplementation on the human gut microbiota through epigenetic modification. It is plausible that maintaining an adequate dietary intake of vitamin D, iron, fibre, zinc and magnesium may have a beneficial effect on alleviating inflammation in the body, reducing oxidative stress, and improving the condition of the intestinal microbiota through various epigenetic mechanisms. Moreover, epigenetics involves alterations in the phenotype of a cell without changing its fundamental DNA sequence. It appears that the modulation of the microbiota by various nutrients may lead to epigenetic regulation. The correlations between microbiota and epigenetics are potentially interdependent. Therefore, the primary objective of this review is to identify the complex relationships between diet, gut microbiota, and epigenetic regulation. These interactions could play a crucial role in systemic health.
Collapse
Affiliation(s)
- Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Aneta Sokal-Dembowska
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Kacper Helma
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Elżbieta Motyka
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | | | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
11
|
Guerini FR, Agliardi C, Oreni L, Groppo E, Bolognesi E, Zanzottera M, Caputo D, Rovaris M, Clerici M. Vitamin D Receptor Gene Polymorphism Predicts the Outcome of Multidisciplinary Rehabilitation in Multiple Sclerosis Patients. Int J Mol Sci 2023; 24:13379. [PMID: 37686183 PMCID: PMC10487750 DOI: 10.3390/ijms241713379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Better knowledge about the possible role of genetic factors in modulating the response to multiple sclerosis (MS) treatment, including rehabilitation, known to promote neural plasticity, could improve the standard of care for this disease. Vitamin D receptor (VDR) gene polymorphisms are associated with MS risk, probably because of the role played by vitamin D in regulating inflammatory and reparative processes. The aim of this study was to evaluate the association of the most important functional VDR SNPs (TaqI (T/C), ApaI (A/C), and FokI (C/T)) with functional outcome in MS patients undergoing multidisciplinary inpatient rehabilitation (MDR) treatment, in order to determine whether genetic profiling might be useful to identify subjects with a higher chance of recovery. To this end, 249 MS inpatients with a diagnosis of either progressive (pMS; n = 155) or relapsing remitting (RRMS; n = 94) disease who underwent MDR treatment (average duration = 5.1 weeks) were genotyped for VDR SNPs by real-time allelic discrimination. The rehabilitation outcome was assessed using the modified Barthel Index (mBI), Expanded Disability Status Scale (EDSS), and pain numerical rating scores (NRS) at the beginning and the end of MDR treatment. A positive correlation was observed in RRMS patients between the VDR TaqI major allele (TT) and mBI increase (i.e., better functional recovery), as assessed by the linear and logistic regression analysis adjusted for gender, age, disease duration, time of hospitalization, HLA-DRB1*15.01 positivity, and number of rehabilitative interventions (Beta = 6.35; p = 0.0002). The VDR-1 TaqI, ApaI, FokI: TCC haplotype was also associated with mBI increase in RRMS patients (Beta = 3.24; p = 0.007), whereas the VDR-2: CAC haplotype was correlated with a lower mBI increase (Beta = -2.18 p = 0.04) compared with the other haplotypes. VDR TaqI major allele (TT), as well as the VDR-1 TaqI, ApaI, FokI: TCC haplotype could be associated with a better rehabilitation outcome in RRMS patients.
Collapse
Affiliation(s)
- Franca Rosa Guerini
- IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (F.R.G.); (L.O.); (E.G.); (E.B.); (M.Z.); (D.C.); (M.R.); (M.C.)
| | - Cristina Agliardi
- IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (F.R.G.); (L.O.); (E.G.); (E.B.); (M.Z.); (D.C.); (M.R.); (M.C.)
| | - Letizia Oreni
- IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (F.R.G.); (L.O.); (E.G.); (E.B.); (M.Z.); (D.C.); (M.R.); (M.C.)
| | - Elisabetta Groppo
- IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (F.R.G.); (L.O.); (E.G.); (E.B.); (M.Z.); (D.C.); (M.R.); (M.C.)
- Ospedale San Paolo, ASST Santi Paolo e Carlo, Clinical Neurology Unit, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Elisabetta Bolognesi
- IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (F.R.G.); (L.O.); (E.G.); (E.B.); (M.Z.); (D.C.); (M.R.); (M.C.)
| | - Milena Zanzottera
- IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (F.R.G.); (L.O.); (E.G.); (E.B.); (M.Z.); (D.C.); (M.R.); (M.C.)
| | - Domenico Caputo
- IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (F.R.G.); (L.O.); (E.G.); (E.B.); (M.Z.); (D.C.); (M.R.); (M.C.)
| | - Marco Rovaris
- IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (F.R.G.); (L.O.); (E.G.); (E.B.); (M.Z.); (D.C.); (M.R.); (M.C.)
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (F.R.G.); (L.O.); (E.G.); (E.B.); (M.Z.); (D.C.); (M.R.); (M.C.)
- Pathophysiology and Transplantation Department, University of Milan, 20122 Milan, Italy
| |
Collapse
|