1
|
Sharma A, Thakur A, Nanda V. Impact of green techniques on intricate cell wall structure of bee pollen to enhance functional characteristics and improve its in vitro digestibility. J Food Sci 2024. [PMID: 39495596 DOI: 10.1111/1750-3841.17472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/15/2024] [Accepted: 09/28/2024] [Indexed: 11/06/2024]
Abstract
Bee pollen is a nutrient-rich super food, but its rigid dual-layered structure limits nutrient release and absorption. The outer exine, composed of stress-resistant sporopollenin, and the inner intine, consisting of cellulose and pectin, form a barrier to digestive breakdown. This study investigates the potential of green techniques, specifically supercritical fluid extraction and ultrasonication, to disaggregate pollen cell walls, enhancing its bioavailability and maximizing nutrient utilization. Ultrasonication treated pollen (USTP) and supercritical fluid extraction-treated pollen (STP) demonstrated disruption, as evidenced by scanning electron microscopy imaging. In relation to scanning electron microscopy, techno-functional, antioxidant, and compositional analysis displayed a positive outcome, with crude lipid, protein, antioxidant activity (2,2-diphenyl-1-picrylhydrazyl activity and 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid assay) and total phenolic content increased by 34.80%, 32.58%, 10.80%, 11.37%, and 83.94%, respectively. Based on the above properties, USTP for 4 h and STP at 400 bar for 40 min were identified as the optimal conditions for disintegration. Furthermore, optimized samples analyzed for amino acid and mineral release revealed a notable increase in composition of essential amino acid and minerals (Ca, Cu, Fe, etc.) by ∼1.5 and 1.2 times, respectively. Along with significant changes in composition, fractured pollen exhibited 1.4 folds increase in protein digestibility with minor differences in thermal stability, and crystallinity as established by differential scanning calorimetry, and X-ray diffraction analysis. The study confirms that nutrient release and absorption remain restricted without pre-treatment, highlighting the necessity of specific treatment to disintegrate bee pollen before its use as a functional food ingredient. PRACTICAL APPLICATION: Bee pollen is a rich source of all the essential nutrients required by the humans and recognised as a complete food. However, its tough cellular structure restricts its utilisation in numerous food applications. Therefore, to disintegrate bee pollen and release its nutrients, ultrasonication and super critical fluid extraction processes were employed to improve its utilization for human purposes. Both the treatment techniques, enhanced bee pollen's bioavailability and functional properties, making it more suitable for use in nutraceuticals and functional foods.These treatments proved to increase the antioxidant capacity, digestibility, and create high-value ingredient for supplements, beverages, and fortified foods.
Collapse
Affiliation(s)
- Anamika Sharma
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, India
| | - Avinash Thakur
- Department of Chemical Engineering, Sant Longowal Institute of Engineering and Technology, Longowal, India
| | - Vikas Nanda
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, India
| |
Collapse
|
2
|
Neagu AN, Josan CL, Jayaweera TM, Weraduwage K, Nuru N, Darie CC. Double-Edged Sword Effect of Diet and Nutrition on Carcinogenic Molecular Pathways in Breast Cancer. Int J Mol Sci 2024; 25:11078. [PMID: 39456858 PMCID: PMC11508170 DOI: 10.3390/ijms252011078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Environmental exposure to a mixture of chemical xenobiotics acts as a double-edged sword, promoting or suppressing tumorigenesis and the development of breast cancer (BC). Before anything else, we are what we eat. In this review, we highlight both "the good" and "the bad" sides of the daily human diet and dietary patterns that could influence BC risk (BCR) and incidence. Thus, regularly eating new, diversified, colorful, clean, nutrient-rich, energy-boosting, and raw food, increases apoptosis and autophagy, antioxidation, cell cycle arrest, anti-inflammation, and the immune response against BC cells. Moreover, a healthy diet could lead to a reduction in or the inhibition of genomic instability, BC cell stemness, growth, proliferation, invasion, migration, and distant metastasis. We also emphasize that, in addition to beneficial compounds, our food is more and more contaminated by chemicals with harmful effects, which interact with each other and with endogenous proteins and lipids, resulting in synergistic or antagonistic effects. Thus, a healthy and diverse diet, combined with appropriate nutritional behaviors, can exert anti-carcinogenic effects and improve treatment efficacy, BC patient outcomes, and the overall quality of life of BC patients.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Claudiu-Laurentiu Josan
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Taniya M. Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| | - Krishan Weraduwage
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| | - Niyogushima Nuru
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| |
Collapse
|
3
|
Tkacz E, Rujna P, Więcławek W, Lewandowski B, Mika B, Sieciński S. Application of 2D Extension of Hjorth's Descriptors to Distinguish Defined Groups of Bee Pollen Images. Foods 2024; 13:3193. [PMID: 39410227 PMCID: PMC11476096 DOI: 10.3390/foods13193193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Adulteration of food products is a serious problem in the current economy. Honey has become the third most counterfeit food product in the world and requires effective authentication methods. This article presents a new approach to the differentiation of bee pollen, which can support the development of a methodology to test honey quality based on the analysis of bee pollen. The proposed method is built on applying the Hjorth descriptors-Activity, Mobility, and Complexity-known from electroencephalography (EEG) analysis, for 2D bee pollen images. The sources for extracting the bee pollen images were the photos of honey samples, which were taken using a digital camera with a resolution of 5 megapixels connected to the tube of an optical microscope. The honey samples used were prepared according to the Polish standard PN-88/A-77626 (related to the European standard CELEX-32001L0110-PL-TXT). The effectiveness of the proposed method was positively verified for three selected groups of bee pollen-Brassica napus, Helianthus, and Phacelia-containing 35 images. Statistical analysis confirms the ability of the Hjorth descriptors to differentiate the indicated bee pollen groups. Based on the results obtained, there is a significant difference between the bee pollen groups under consideration regarding Activity p<0.00001, Mobility p<0.0001, and Complexity p<0.00001.
Collapse
Affiliation(s)
- Ewaryst Tkacz
- Department of Clinical Engineering, Academy of Silesia, Rolna 43, 40-555 Katowice, Poland;
| | | | - Wojciech Więcławek
- Department of Medical Informatics and Artificial Intelligence, Faculty of Biomedical Engineering, Silesian University of Technology, F.D. Roosevelta 40, 41-800 Zabrze, Poland; (W.W.); (B.M.)
| | | | - Barbara Mika
- Department of Medical Informatics and Artificial Intelligence, Faculty of Biomedical Engineering, Silesian University of Technology, F.D. Roosevelta 40, 41-800 Zabrze, Poland; (W.W.); (B.M.)
| | - Szymon Sieciński
- Department of Clinical Engineering, Academy of Silesia, Rolna 43, 40-555 Katowice, Poland;
- Institute of Medical Informatics, University of Luebeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
4
|
Capparelli S, Pieracci Y, Sagona S, Flamini G, Coppola F, Sanmartin C, Taglieri I, Venturi F, Felicioli A, Pistelli L. The volatile and sensory profiles of Tuscan bee pollens stored at different temperatures. Nat Prod Res 2024:1-8. [PMID: 39225382 DOI: 10.1080/14786419.2024.2389312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
The healthy properties of bee pollen mainly depend on the botanical, geographical origin and storage conditions. This study aimed to characterise the composition of volatile compounds and describe the sensory profile of Tuscan bee pollens collected in two different areas in the same period and stored for six months under different conditions. The headspace solid-phase microextraction (HS-SPME) analyses of volatile compounds showed that non-terpene derivatives represented the predominant chemical class in all examined samples, among which aldehydes were the main compounds. Apocaroteonids and oxygenated monoterpenes were also present in lower percentages, with strong separation of the chemical profiles between room temperature samples and those of other storage conditions. The sensory profile was analysed by panel test, the bee pollen produced in the suburban area seemed to show less attractiveness, taste and olfactory. Both samples stored at room temperature showed the worst sensory profile, compared to the other storage conditions.
Collapse
Affiliation(s)
- Sonia Capparelli
- Department of Agriculture Food Environment, University of Pisa, Pisa, Italy
| | | | - Simona Sagona
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Guido Flamini
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutraceuticals and Food for Health (NUTRAFOOD), University of Pisa, Pisa, Italy
| | - Francesca Coppola
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
- Interdepartmental Center of Agro-Environmental Research "Enrico Avanzi", University of Pisa, Pisa, Italy
| | - Chiara Sanmartin
- Department of Agriculture Food Environment, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutraceuticals and Food for Health (NUTRAFOOD), University of Pisa, Pisa, Italy
| | - Isabella Taglieri
- Department of Agriculture Food Environment, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutraceuticals and Food for Health (NUTRAFOOD), University of Pisa, Pisa, Italy
| | - Francesca Venturi
- Department of Agriculture Food Environment, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutraceuticals and Food for Health (NUTRAFOOD), University of Pisa, Pisa, Italy
| | - Antonio Felicioli
- Interdepartmental Research Center Nutraceuticals and Food for Health (NUTRAFOOD), University of Pisa, Pisa, Italy
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
- Interdepartmental Center of Agro-Environmental Research "Enrico Avanzi", University of Pisa, Pisa, Italy
| | - Laura Pistelli
- Department of Agriculture Food Environment, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutraceuticals and Food for Health (NUTRAFOOD), University of Pisa, Pisa, Italy
- Interdepartmental Center of Agro-Environmental Research "Enrico Avanzi", University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Bose D, Famurewa AC, Akash A, Othman EM. The Therapeutic Mechanisms of Honey in Mitigating Toxicity from Anticancer Chemotherapy Toxicity: A Review. J Xenobiot 2024; 14:1109-1129. [PMID: 39189178 PMCID: PMC11348124 DOI: 10.3390/jox14030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
Within the domain of conventional oncochemotherapeutics, anticancer chemotherapy (AC) has emerged as a potent strategy for the treatment of cancers. AC is the mainstay strategy for solid and non-solid cancer treatment. Its mechanistic action targets the blockage of DNA transcription and the dysregulation of cell cycle machinery in cancer cells, leading to the activation of death pathways. However, the attendant side effect of toxicity inflicted by AC on healthy tissues presents a formidable challenge. The crucial culprit in the AC side effect of toxicity is unknown, although oxidative stress, mitochondrial impairment, inflammatory cascades, autophagy dysregulation, apoptosis, and certain aberrant signaling have been implicated. Honey is a natural bee product with significant health benefits and pharmacological properties. Interestingly, the literature reports that honey may proffer a protection mechanism for delicate tissue/organs against the side effect of toxicity from AC. Thus, this review delves into the prospective role of honey as an alleviator of the AC side effect of toxicity; it provides an elucidation of the mechanisms of AC toxicity and honey's molecular mechanisms of mitigation. The review endeavors to unravel the specific molecular cascades by which honey orchestrates its mitigating effects, with the overarching objective of refining its application as an adjuvant natural product. Honey supplementation prevents AC toxicity via the inhibition of oxidative stress, NF-κB-mediated inflammation, and caspase-dependent apoptosis cascades. Although there is a need for increased mechanistic studies, honey is a natural product that could mitigate the various toxicities induced by AC.
Collapse
Affiliation(s)
- Debalina Bose
- P.K. Sinha Centre for Bioenergy and Renewables, Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302, West Bengal, India;
| | - Ademola C. Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, P.M.B. 1010, Abakaliki 482131, Nigeria
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Aman Akash
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany;
| | - Eman M. Othman
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany;
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Cancer Therapy Research Center (CTRC), Department of Biochemistry-I, Biocenter, University of Wuerzburg, Theodor-Boveri-Weg 1, 97074 Wuerzburg, Germany
| |
Collapse
|
6
|
Stevanović J, Glavinić U, Ristanić M, Erjavec V, Denk B, Dolašević S, Stanimirović Z. Bee-Inspired Healing: Apitherapy in Veterinary Medicine for Maintenance and Improvement Animal Health and Well-Being. Pharmaceuticals (Basel) 2024; 17:1050. [PMID: 39204155 PMCID: PMC11357515 DOI: 10.3390/ph17081050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
This review aims to present current knowledge on the effects of honey bee products on animals based on in vivo studies, focusing on their application in clinical veterinary practice. Honey's best-proven effectiveness is in treating wounds, including those infected with antibiotic-resistant microorganisms, as evidenced in horses, cats, dogs, mice, and rats. Propolis manifested a healing effect in numerous inflammatory and painful conditions in mice, rats, dogs, and pigs and also helped in oncological cases in mice and rats. Bee venom is best known for its effectiveness in treating neuropathy and arthritis, as shown in dogs, mice, and rats. Besides, bee venom improved reproductive performance, immune response, and general health in rabbits, chickens, and pigs. Pollen was effective in stimulating growth and improving intestinal microflora in chickens. Royal jelly might be used in the management of animal reproduction due to its efficiency in improving fertility, as shown in rats, rabbits, and mice. Drone larvae are primarily valued for their androgenic effects and stimulation of reproductive function, as evidenced in sheep, chickens, pigs, and rats. Further research is warranted to determine the dose and method of application of honey bee products in animals.
Collapse
Affiliation(s)
- Jevrosima Stevanović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (U.G.); (Z.S.)
| | - Uroš Glavinić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (U.G.); (Z.S.)
| | - Marko Ristanić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (U.G.); (Z.S.)
| | - Vladimira Erjavec
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Barış Denk
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03204, Turkey;
| | | | - Zoran Stanimirović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (U.G.); (Z.S.)
| |
Collapse
|
7
|
Iorizzo M, Albanese G, Letizia F, Testa B, Di Criscio D, Petrarca S, Di Martino C, Ganassi S, Avino P, Pannella G, Aturki Z, Tedino C, De Cristofaro A. Diversity of plant pollen sources, microbial communities, and phenolic compounds present in bee pollen and bee bread. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34517-x. [PMID: 39073714 DOI: 10.1007/s11356-024-34517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
The pollination of several crops, as well as wild plants, depends on honeybees. To get the nutrients required for growth and survival, honeybee colonies are dependent on pollen supply. Bee pollen (BP) is partially packed in honeycomb cells and processed into beebread (BB) by microbial metabolism. The composition of pollen is highly variable and is mainly dependent on ecological habitat, geographical origin, honey plants, climatic conditions, and seasonal variations. Although there are important differences between the BP and the BB, little comparative chemical and microbiological data on this topic exists in the literature, particularly for samples with the same origin. In this study, BP and BB pollen samples were collected from two apiaries located in the Campania and Molise regions of Southern Italy. Phenolic profiles were detected via HPLC, while antioxidant activity was determined by ABTS·+ and DPPH· assay. The next-generation sequencing (NGS) based on RNA analysis of 16S (rRNA) and internal transcribed spacer (ITS2) regions were used to investigate the microbial community (bacteria and fungi) and botanical origin of the BP and BB. Chemical analysis showed a higher content of flavonols in BP (rutin, myricetin, quercetin, and kaempferol), while in BB there was a higher content of phenolic acids. The NGS analysis revealed that the microbial communities and pollen sources are dependent on the geographical location of apiaries. In addition, diversity was highlighted between the microbial communities present in the BP and BB samples collected from each apiary.
Collapse
Affiliation(s)
- Massimo Iorizzo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Gianluca Albanese
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy.
| | - Francesco Letizia
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Bruno Testa
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Dalila Di Criscio
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Sonia Petrarca
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
- CONAPROA, Consorzio Nazionale Produttori Apistici, 86100, Campobasso, Italy
| | - Catello Di Martino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Sonia Ganassi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Pasquale Avino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Gianfranco Pannella
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, 00159, Rome, Italy
| | - Zeineb Aturki
- Istituto Per I Sistemi Biologici, Consiglio Nazionale Delle Ricerche, Area Della Ricerca Di Roma I, Via Salaria Km 29.300, 00015, Monterotondo, Rome, Italy
| | - Cosimo Tedino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Antonio De Cristofaro
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| |
Collapse
|
8
|
Antonietta Carrera M, Martinez Martinez JA, Hernando MD, Fernández-Alba AR. Simultaneous analysis of pesticides and mycotoxins in primary processed foods: The case of bee pollen. Heliyon 2024; 10:e33512. [PMID: 39040399 PMCID: PMC11260969 DOI: 10.1016/j.heliyon.2024.e33512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Primary Processed Foods are a class of food items that are ready for consumption after minimal processing in the supply chain. These products are ubiquitous in our daily diet, but so far a limited number of studies dealt with the optimization of quality control methods to check their content of contaminants. Among primary processed foods, bee pollen is a nutritionally acclaimed food supplement, whose contamination with pesticides and mycotoxins has been largely proven. For this reason, the present study aimed at optimizing for the first time a comprehensive LC-MS/MS method capable of analyzing 282 pesticides and 8 mycotoxins in bee pollen. To obtain a suitable method, two extraction procedures (QuEChERS and Accelerated Solvent Extraction), as well as different chromatographic gradients and columns, were tested. The optimized methodology, comprehending an extraction based on semi-automated QuEChERS, and an analytical method including inert LC column technology, was validated and applied to a sample set of 34 bee pollens. The analyzed samples collectively showed the presence of 41 pesticides and 1 mycotoxin.
Collapse
Affiliation(s)
- Maria Antonietta Carrera
- Department of Desertification and Geo-ecology, Experimental Station of Arid Zones, CSIC, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - José Antonio Martinez Martinez
- European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables Agrifood Campus of International Excellence (ceiA3), Department of Chemistry and Physics, University of Almeria, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - María Dolores Hernando
- Department of Desertification and Geo-ecology, Experimental Station of Arid Zones, CSIC, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - Amadeo R. Fernández-Alba
- European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables Agrifood Campus of International Excellence (ceiA3), Department of Chemistry and Physics, University of Almeria, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| |
Collapse
|
9
|
Capparelli S, Pieracci Y, Coppola F, Marchioni I, Sagona S, Felicioli A, Pistelli L, Pistelli L. The colors of Tuscan bee pollen: phytochemical profile and antioxidant activity. Nat Prod Res 2024; 38:2313-2319. [PMID: 36739857 DOI: 10.1080/14786419.2023.2172727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 02/07/2023]
Abstract
Bee pollen's nutritional and beneficial health properties depend on the botanical origin and storage conditions. Palynological analysis determines the botanical composition of the multiflora and colour fractions. This study aimed to characterize the phytochemical profile and antioxidant activity of Tuscan bee pollen stored at freezing temperature for 2 years to verify the preservation of nutraceutical properties of the multiflora and colour fractions. Polyphenols, flavonoids content, antioxidant activity and volatile compounds profiles were measured. Non-terpene derivatives (acids and aldehydes) represented the main class of volatile compounds in most analysed samples. Among the colour fractions, coral showed significant differences in the antioxidant compounds. In the multiflora were also determined the soluble sugar content (128.33 mg/g of fresh weight) and mineral content, with the prevalence of K, organic N and Ca. The results suggest that the freezing storage of bee pollen for a long period can be still used as food.
Collapse
Affiliation(s)
- Sonia Capparelli
- Department of Agriculture Food Environment, University of Pisa, Pisa, Italy
| | | | | | - Ilaria Marchioni
- Department of Agriculture Food Environment, University of Pisa, Pisa, Italy
| | - Simona Sagona
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Antonio Felicioli
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutraceuticals and Food for Health (NUTRAFOOD), University of Pisa, Pisa, Italy
| | - Luisa Pistelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutraceuticals and Food for Health (NUTRAFOOD), University of Pisa, Pisa, Italy
| | - Laura Pistelli
- Department of Agriculture Food Environment, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutraceuticals and Food for Health (NUTRAFOOD), University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Flamminii F, Consalvo A, Cichelli A, Chiaudani A. Assessing Mineral Content and Heavy Metal Exposure in Abruzzo Honey and Bee Pollen from Different Anthropic Areas. Foods 2024; 13:1930. [PMID: 38928872 PMCID: PMC11202465 DOI: 10.3390/foods13121930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Honey and bee pollen offer potential health benefits due to their nutrient and bioactive molecules, but they may also harbor contaminants such as heavy metals. This study aimed to assess the content of different metals, including Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Zn, Cu, As, Rb, Sr, Cd, Cs, Tl, Pb and U, in honey and bee pollen collected from different Abruzzo region (Italy) areas (A1, A2, A3, A4), characterized by different anthropic influences described by Corine Land Cover maps. Differences were observed in the mineral and heavy metal content associated with the influence of biotic and abiotic factors. Honeys were found to be safe in regard to non-carcinogenic risk in all the consumer categories (THQm < 1). A particular carcinogenic risk concern was identified for toddlers associated with Cr (LCTR > 1 × 10-4) in A1, A2 and A3 apiaries. Pb and Ni represent potential non-carcinogenic and carcinogenic health risks in children and adults due to bee pollen consumption, showing high values of THQm and LCTR. The results suggest the advantages of utilizing bee products to screen mineral and heavy metal content, providing valuable insights into environmental quality and potential health risks.
Collapse
Affiliation(s)
- Federica Flamminii
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (A.C.); (A.C.)
| | - Ada Consalvo
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Via Luigi Polacchi, 11, 66100 Chieti, Italy;
| | - Angelo Cichelli
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (A.C.); (A.C.)
| | - Alessandro Chiaudani
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (A.C.); (A.C.)
| |
Collapse
|
11
|
Asoutis Didaras N, Karaiskou I, Nikolaidis M, Siaperopoulou C, Georgi I, Tsadila C, Karatasou K, Amoutzias GD, Mossialos D. Contribution of Microbiota to Bioactivity Exerted by Bee Bread. Pharmaceuticals (Basel) 2024; 17:761. [PMID: 38931428 PMCID: PMC11206572 DOI: 10.3390/ph17060761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Bee-collected pollen (BCP) and bee bread (BB) are honey bee products known for their beneficial biological properties. The main goal of this study was to investigate BB microbiota and its contribution to bioactivity exerted by BB. The microbiota of BB samples collected at different maturation stages was investigated via culture-independent (Next Generation Sequencing, NGS) and culture-dependent methods. Microbial communities dynamically fluctuate during BB maturation, ending in a stable microbial community structure in mature BB. Bee bread bacterial isolates were tested for phenotypes and genes implicated in the production and secretion of enzymes as well as antibacterial activity. Out of 309 bacterial isolates, 41 secreted hemicellulases, 13 cellulases, 39 amylases, 132 proteinases, 85 Coomassie brilliant blue G or R dye-degrading enzymes and 72 Malachite Green dye-degrading enzymes. Furthermore, out of 309 bacterial isolates, 42 exhibited antibacterial activity against Staphylococcus aureus, 34 against Pseudomonas aeruginosa, 47 against Salmonella enterica ser. Typhimurium and 43 against Klebsiella pneumoniae. Artificially fermented samples exerted higher antibacterial activity compared to fresh BCP, strongly indicating that BB microbiota contribute to BB antibacterial activity. Our findings suggest that BB microbiota is an underexplored source of novel antimicrobial agents and enzymes that could lead to new applications in medicine and the food industry.
Collapse
Affiliation(s)
- Nikos Asoutis Didaras
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| | - Ioanna Karaiskou
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (M.N.); (G.D.A.)
| | - Christina Siaperopoulou
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| | - Irini Georgi
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| | - Christina Tsadila
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| | - Katerina Karatasou
- Apicultural Centre of Larissa, Federation of Greek Beekeepers Associations, 41222 Larissa, Greece;
| | - Grigoris D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (M.N.); (G.D.A.)
| | - Dimitris Mossialos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| |
Collapse
|
12
|
Anjum SI, Ullah A, Gohar F, Raza G, Khan MI, Hameed M, Ali A, Chen CC, Tlak Gajger I. Bee pollen as a food and feed supplement and a therapeutic remedy: recent trends in nanotechnology. Front Nutr 2024; 11:1371672. [PMID: 38899322 PMCID: PMC11186459 DOI: 10.3389/fnut.2024.1371672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
Pollen grains are the male reproductive part of the flowering plants. It is collected by forager honey bees and mixed with their salivary secretions, enzymes, and nectar, which form fermented pollen or "bee bread" which is stored in cells of wax honeycombs. Bee pollen (BP) is a valuable apitherapeutic product and is considered a nutritional healthy food appreciated by natural medicine from ancient times. Recently, BP has been considered a beneficial food supplement and a value-added product that contains approximately 250 different bioactive components. It contains numerous beneficial elements such as Mg, Ca, Mn, K, and phenolic compounds. BP possesses strong antioxidant, anti-inflammatory, antimicrobial, antiviral, analgesic, immunostimulant, neuroprotective, anti-cancer, and hepatoprotective properties. It is used for different purposes for the welfare of mankind. Additionally, there is a growing interest in honey bee products harvesting and utilizing for many purposes as a natural remedy and nutritive function. In this review, the impacts of BP on different organisms in different ways by highlighting its apitherapeutic efficacy are described.
Collapse
Affiliation(s)
- Syed Ishtiaq Anjum
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Amjad Ullah
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
- Department of Plant Protection, Ministry of National Food Security and Research, Karachi, Pakistan
| | - Faryal Gohar
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Ghulam Raza
- Department of Biological Sciences, University of Baltistan, Skardu, Pakistan
| | - Muhammad Ilyas Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Mehwish Hameed
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
13
|
Mashhadi Z, Davati N, Emamifar A, Karami M. The effect of nano/microparticles of bee pollen on the shelf life of high-fat cooked sausage during refrigerated storage. Food Sci Nutr 2024; 12:4269-4283. [PMID: 38873449 PMCID: PMC11167182 DOI: 10.1002/fsn3.4086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 06/15/2024] Open
Abstract
Sausage is susceptible to oxidative changes in lipids and microbial spoilage due to the presence of water, fat, protein, and vitamins. Bee pollen (BP) as a source of potential antioxidants and antibacterial compounds can effectively prevent lipid peroxidation and microbial spoilage in meat products. The aim of the present study was to investigate the antibacterial and antioxidant activities of BP and the effects of nano/microparticles of bee pollen extract (n/m BP) at a concentration of 125 and 250 mg/100 g meat on the oxidative stability and microbial growth of high-fat sausage during 30 days of storage at 4°C. The formation of BP particles in the nano/micro range was confirmed by scanning electron microscopy. High concentrations of total phenolic compounds (28.26 ± 0.10 mg GAE/g BP) with antioxidant activity (EC50 = 5.4 ± 0.07 mg/mL) were detected in BP. Based on the microdilution assay, the minimum inhibitory concentration of n/m BP for all test bacteria was 1000 (μg/mL) and the minimum bactericidal concentration of n/m BP was 2000 (μg/mL) for Staphylococcus aureus and Bacillus cereus and 4000 (μg/mL) for Escherichia coli and Pseudomonas aeruginosa. The n/m BP treatment (250 mg/100 g meat) showed a higher pH value (p < .05) and lower TBARS values (p < .05) than the ascorbic acid treatment (100 mg/100 g meat) and the control during the storage period. The microbial analysis showed that the addition of n/m BP led to a significant decrease (p < .05) in the total bacterial count, coliforms, S. aureus, and fungal population compared to the other samples. The results show that the addition of n/m BP (125 mg/100 g) can improve the texture, taste, and overall acceptability of the sausage compared to the control sample. In conclusion, this study suggests that BP can replace synthetic antioxidants in high-fat sausages at the nano/microparticle level.
Collapse
Affiliation(s)
- Zahra Mashhadi
- Department of Food Science and Technology, Faculty of Food IndustryBu‐Ali Sina UniversityHamedanIran
| | - Nafiseh Davati
- Department of Food Science and Technology, Faculty of Food IndustryBu‐Ali Sina UniversityHamedanIran
| | - Aryou Emamifar
- Department of Food Science and Technology, Faculty of Food IndustryBu‐Ali Sina UniversityHamedanIran
| | - Mostafa Karami
- Department of Food Science and Technology, Faculty of Food IndustryBu‐Ali Sina UniversityHamedanIran
| |
Collapse
|
14
|
Carrera MA, Sánchez LM, Morales MM, Fernández-Alba AR, Hernando MD. Method optimisation for large scope pesticide multiresidue analysis in bee pollen: A pilot monitoring study. Food Chem 2024; 436:137652. [PMID: 37839127 DOI: 10.1016/j.foodchem.2023.137652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 09/30/2023] [Indexed: 10/17/2023]
Abstract
Pesticide contamination in emerging foods and supplements is currently a topic of great interest. This study focused on the evaluation of pesticide residues in commercial bee pollen samples to evaluate the risk associated with their consumption. To this end, an automated clean-up method for the pesticide extracts of bee pollen was developed. An LC-MS/MS and a GC-MS/MS method were validated for the analysis of 353 pesticides in 80 bee pollen samples purchased from different countries. The results showed the presence of 77 different pesticide residues in bee pollen, including plant protection chemicals and veterinary treatments. 85 % of the samples were contaminated with pesticides and no relevant differences were found between conventional and organic samples. Pesticide concentrations exceeding the imposed MRL were found in 40 % of the samples, but the risk assessment showed that consumers are not exposed to an unacceptable risk when consuming the evaluated bee pollen.
Collapse
Affiliation(s)
- Maria Antonietta Carrera
- Department of Desertification and Geo-ecology, Experimental Station of Arid Zones, CSIC, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| | - Lorena Manzano Sánchez
- European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables Agrifood Campus of International Excellence (ceiA3), Department of Chemistry and Physics, University of Almeria, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| | - María Murcia Morales
- European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables Agrifood Campus of International Excellence (ceiA3), Department of Chemistry and Physics, University of Almeria, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| | - Amadeo R Fernández-Alba
- European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables Agrifood Campus of International Excellence (ceiA3), Department of Chemistry and Physics, University of Almeria, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| | - María Dolores Hernando
- Department of Desertification and Geo-ecology, Experimental Station of Arid Zones, CSIC, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain.
| |
Collapse
|
15
|
Çobanoğlu DN. Assessing monofloral bee pollens from Türkiye: Palynological verification, phenolic profile, and antioxidant activity. J Food Sci 2024; 89:1711-1726. [PMID: 38235995 DOI: 10.1111/1750-3841.16928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024]
Abstract
Honey bee pollen (HBP) is a hive product produced by worker bees from floral pollen grains agglutination. It is characterized by its excellent nutritional and bioactive composition, making it a superior source of human nutrition. This study aimed to evaluate the monofloral bee pollen samples, including Cistus, Crataegus monogyna, Cyanus, Elaeagnus angustifolia, Papaver somniferum, Quercus, Salix, Sinapis, and Silybum from Türkiye according to palynological analysis, antioxidant activity, phenolic profiles, and color. The phenolic profiles were detected using ultra-high performance liquid chromatography coupled with tandem mass spectrometry. Bee pollens were categorized into monofloral, bifloral, and multifloral, underscoring the significance of confirming the botanical source of them depending on palynological analyses. Total phenolic content (TPC) of bee pollens ranged from 4.5 to 14.4 mg gallic acid/g HBP. The samples exhibited antioxidant activity for 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS •+ ) ranging from 94.9 to 233.5 µmol trolox/g HBP, whereas lower values were seen for 2,2-diphenyl-1-picrylhydrazyl (DPPH•) ranging from 25.86 to 70.81 µmol trolox/g HBP. A yellowish-red tint color was also displayed for whole samples, whereas only E. angustifolia bee pollen indicated a darker color (L* = 31.6). Among the phenolic compounds, luteolin, kaempferol, isorhamnetin, rutin, and genistein were the most abundant, and their profiles varied across the samples. It was also observed that TPC, antioxidant activities, and polyphenol composition were higher in samples containing pollen grains of P. somniferum, Quercus, Plantago, and E. angustifolia species. PRACTICAL APPLICATION: The increasing number of new findings on honey bee pollen is crucial to food science and technology. In this sense, this study offers a robust method for verifying the authenticity and quality of 11 monofloral bee pollens, which is crucial for the food industry. It also identifies potential sources of high-quality pollen, benefiting producers, and consumers seeking superior bee pollen products.
Collapse
Affiliation(s)
- Duygu Nur Çobanoğlu
- Department of Crop and Animal Production, Vocational School of Food, Agriculture and Livestock, Bingol University, Bingol, Türkiye
| |
Collapse
|
16
|
Maicelo-Quintana JL, Reyna-Gonzales K, Balcázar-Zumaeta CR, Auquiñivin-Silva EA, Castro-Alayo EM, Medina-Mendoza M, Cayo-Colca IS, Maldonado-Ramirez I, Silva-Zuta MZ. Potential application of bee products in food industry: An exploratory review. Heliyon 2024; 10:e24056. [PMID: 38268589 PMCID: PMC10806293 DOI: 10.1016/j.heliyon.2024.e24056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
Over the past eight years, bee products such as wax, honey, propolis, and pollen have generated intense curiosity about their potential food uses; to explore these possibilities, this review examines the nutritional benefits and notable characteristics of each product related to the food industry. While all offer distinct advantages, there are challenges to overcome, including the risk of honey contamination. Indeed, honey has excellent potential as a healthier alternative to sugar, while propolis's remarkable antibacterial and antioxidant properties can be enhanced through microencapsulation. Pollen is a versatile food with multiple applications in various products. In addition, the addition of beeswax to oleogels and its use as a coating demonstrate significant improvements in the quality and preservation of environmentally sustainable foods over time. This study demonstrates that bee products and apitherapy are essential for sustainable future food and innovative medical treatments.
Collapse
Affiliation(s)
- Jorge L. Maicelo-Quintana
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru
| | - Katherine Reyna-Gonzales
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - César R. Balcázar-Zumaeta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Erick A. Auquiñivin-Silva
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Efrain M. Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Marleni Medina-Mendoza
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Ilse S. Cayo-Colca
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru
| | - Italo Maldonado-Ramirez
- Facultad de Ingeniería de Sistemas y Mecánica, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru
| | - Miguelina Z. Silva-Zuta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| |
Collapse
|
17
|
Bin Hafeez A, Pełka K, Worobo R, Szweda P. In Silico Safety Assessment of Bacillus Isolated from Polish Bee Pollen and Bee Bread as Novel Probiotic Candidates. Int J Mol Sci 2024; 25:666. [PMID: 38203838 PMCID: PMC10780176 DOI: 10.3390/ijms25010666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Bacillus species isolated from Polish bee pollen (BP) and bee bread (BB) were characterized for in silico probiotic and safety attributes. A probiogenomics approach was used, and in-depth genomic analysis was performed using a wide array of bioinformatics tools to investigate the presence of virulence and antibiotic resistance properties, mobile genetic elements, and secondary metabolites. Functional annotation and Carbohydrate-Active enZYmes (CAZYme) profiling revealed the presence of genes and a repertoire of probiotics properties promoting enzymes. The isolates BB10.1, BP20.15 (isolated from bee bread), and PY2.3 (isolated from bee pollen) genome mining revealed the presence of several genes encoding acid, heat, cold, and other stress tolerance mechanisms, adhesion proteins required to survive and colonize harsh gastrointestinal environments, enzymes involved in the metabolism of dietary molecules, antioxidant activity, and genes associated with the synthesis of vitamins. In addition, genes responsible for the production of biogenic amines (BAs) and D-/L-lactate, hemolytic activity, and other toxic compounds were also analyzed. Pan-genome analyses were performed with 180 Bacillus subtilis and 204 Bacillus velezensis genomes to mine for any novel genes present in the genomes of our isolates. Moreover, all three isolates also consisted of gene clusters encoding secondary metabolites.
Collapse
Affiliation(s)
- Ahmer Bin Hafeez
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| | - Karolina Pełka
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| | - Randy Worobo
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA;
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| |
Collapse
|
18
|
Barker T, Bulling M, Thomas V, Sweet M. The Effect of Pollen on Coral Health. BIOLOGY 2023; 12:1469. [PMID: 38132295 PMCID: PMC10740922 DOI: 10.3390/biology12121469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Corals are facing a range of threats, including rises in sea surface temperature and ocean acidification. Some now argue that keeping corals ex situ (in aquaria), may be not only important but necessary to prevent local extinction, for example in the Florida Reef Tract. Such collections or are already becoming common place, especially in the Caribbean, and may act as an ark, preserving and growing rare or endangered species in years to come. However, corals housed in aquaria face their own unique set of threats. For example, hobbyists (who have housed corals for decades) have noticed seasonal mortality is commonplace, incidentally following months of peak pollen production. So, could corals suffer from hay fever? If so, what does the future hold? In short, the answer to the first question is simple, and it is no, corals cannot suffer from hay fever, primarily because corals lack an adaptive immune system, which is necessary for the diagnosis of such an allergy. However, the threat from pollen could still be real. In this review, we explore how such seasonal mortality could play out. We explore increases in reactive oxygen species, the role of additional nutrients and how the microbiome of the pollen may introduce disease or cause dysbiosis in the holobiont.
Collapse
Affiliation(s)
- Triona Barker
- Aquatic Research Facility, Nature-Based Solutions Research Centre, University of Derby, Derby DE22 1GB, UK
| | - Mark Bulling
- Aquatic Research Facility, Nature-Based Solutions Research Centre, University of Derby, Derby DE22 1GB, UK
| | - Vincent Thomas
- Coral Spawning Lab, Unit 6 Midas Metro Centre, 193 Garth Road, Morden SM4 4NE, UK
| | - Michael Sweet
- Aquatic Research Facility, Nature-Based Solutions Research Centre, University of Derby, Derby DE22 1GB, UK
- Coral Spawning Lab, Unit 6 Midas Metro Centre, 193 Garth Road, Morden SM4 4NE, UK
| |
Collapse
|
19
|
Rodríguez-Pólit C, Gonzalez-Pastor R, Heredia-Moya J, Carrera-Pacheco SE, Castillo-Solis F, Vallejo-Imbaquingo R, Barba-Ostria C, Guamán LP. Chemical Properties and Biological Activity of Bee Pollen. Molecules 2023; 28:7768. [PMID: 38067498 PMCID: PMC10708394 DOI: 10.3390/molecules28237768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Pollen, a remarkably versatile natural compound collected by bees for its abundant source of proteins and nutrients, represents a rich reservoir of diverse bioactive compounds with noteworthy chemical and therapeutic potential. Its extensive biological effects have been known and exploited since ancient times. Today, there is an increased interest in finding natural compounds against oxidative stress, a factor that contributes to various diseases. Recent research has unraveled a multitude of biological activities associated with bee pollen, ranging from antioxidant, anti-inflammatory, antimicrobial, and antifungal properties to potential antiviral and anticancer applications. Comprehending the extensive repertoire of biological properties across various pollen sources remains challenging. By investigating a spectrum of pollen types and their chemical composition, this review produces an updated analysis of the bioactive constituents and the therapeutic prospects they offer. This review emphasizes the necessity for further exploration and standardization of diverse pollen sources and bioactive compounds that could contribute to the development of innovative therapies.
Collapse
Affiliation(s)
- Cristina Rodríguez-Pólit
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (R.G.-P.); (J.H.-M.); (S.E.C.-P.); (F.C.-S.)
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Quito 170403, Ecuador;
- Escuela de Salud Pública, Universidad San Francisco de Quito USFQ, Quito 170527, Ecuador
| | - Rebeca Gonzalez-Pastor
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (R.G.-P.); (J.H.-M.); (S.E.C.-P.); (F.C.-S.)
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (R.G.-P.); (J.H.-M.); (S.E.C.-P.); (F.C.-S.)
| | - Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (R.G.-P.); (J.H.-M.); (S.E.C.-P.); (F.C.-S.)
| | - Fabián Castillo-Solis
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (R.G.-P.); (J.H.-M.); (S.E.C.-P.); (F.C.-S.)
| | - Roberto Vallejo-Imbaquingo
- Departamento de Estudios Organizacionales y Desarrollo Humano DESODEH, Facultad de Ciencias Administrativas, Escuela Politécnica Nacional, Quito 170525, Ecuador;
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador;
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Linda P. Guamán
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (R.G.-P.); (J.H.-M.); (S.E.C.-P.); (F.C.-S.)
| |
Collapse
|
20
|
Pełka K, Hafeez AB, Worobo RW, Szweda P. Probiotic potential of Bacillus Isolates from Polish Bee Pollen and Bee Bread. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10157-4. [PMID: 37725304 DOI: 10.1007/s12602-023-10157-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
The main goal of this study was the evaluation of the probiotic potential of 10 Bacillus spp. strains isolated from 5 bee bread and 3 bee pollen samples. The antagonistic interaction with Staphylococcus aureus and Escherichia coli was a primary criterion for the preliminary selection of the isolates. Three out of ten strains-PY2.3 (isolated from pollen), BP20.15 and BB10.1 (both isolated from bee bread)-were found to be possible probiotic strains. All these strains are safe for humans (exhibiting [Formula: see text]-hemolytic activity) and meet all essential requirements for probiotics in terms of viability in the presence of bile salts and acid conditions, hydrophobicity, auto-aggregation, and co-aggregation with the cells of important human pathogenic bacteria. They also assimilate more than 30% of cholesterol after 24 h of incubation. These three isolates are resistant to penicillin but sensitive (or exhibit moderate resistance) to the other nine antibiotics tested herein. On the basis of whole-genome sequencing, BP20.15 and BB10.1 were classified as B. subtilis and PY2.3 as B. velezensis. Moreover, genomic analyses revealed that all these isolates are potential producers of different antimicrobial compounds, including bacteriocins and secondary metabolites. The outcomes of this study have proven that some of the Bacillus strains isolated from bee pollen or bee bread are potential probiotics.
Collapse
Affiliation(s)
- Karolina Pełka
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80233, Gdansk, Poland
| | - Ahmer Bin Hafeez
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80233, Gdansk, Poland
| | - Randy W Worobo
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80233, Gdansk, Poland.
| |
Collapse
|
21
|
Kieliszek M, Piwowarek K, Kot AM, Wojtczuk M, Roszko M, Bryła M, Trajkovska Petkoska A. Recent advances and opportunities related to the use of bee products in food processing. Food Sci Nutr 2023; 11:4372-4397. [PMID: 37576029 PMCID: PMC10420862 DOI: 10.1002/fsn3.3411] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 08/15/2023] Open
Abstract
Nowadays, natural foods that can provide positive health effects are gaining more and more popularity. Bees and the products they produce are our common natural heritage that should be developed. In the article, we presented the characteristics of bee products and their use in industry. We described the development and importance of beekeeping in the modern world. Due to their high nutritional value and therapeutic properties, bee products are of great interest and their consumption is constantly growing. The basis for the use of bee products in human nutrition is their properties and unique chemical composition. The conducted research and opinions confirm the beneficial effect of bee products on health. The current consumer awareness of the positive impact of food having a pro-health effect on health and well-being affects the increase in interest and demand for this type of food among various social groups. Enriching the daily diet with bee products may support the functioning of the organism. New technologies have appeared on the market to improve the process of obtaining bee products. The use of bee products plays a large role in many industries; moreover, the consumption of bee products and promotion of their medicinal properties are very important in shaping proper eating habits.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food SciencesWarsaw University of Life Sciences—SGGWWarsawPoland
| | - Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food SciencesWarsaw University of Life Sciences—SGGWWarsawPoland
| | - Anna M. Kot
- Department of Food Biotechnology and Microbiology, Institute of Food SciencesWarsaw University of Life Sciences—SGGWWarsawPoland
| | - Marta Wojtczuk
- Department of Food Biotechnology and Microbiology, Institute of Food SciencesWarsaw University of Life Sciences—SGGWWarsawPoland
| | - Marek Roszko
- Department of Food Safety and Chemical AnalysisProf. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research InstituteWarsawPoland
| | - Marcin Bryła
- Department of Food Safety and Chemical AnalysisProf. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research InstituteWarsawPoland
| | - Anka Trajkovska Petkoska
- Faculty of Technology and Technical Social SciencesSt. Kliment Ohridski University‐BitolaVelesNorth Macedonia
| |
Collapse
|
22
|
Kostić AŽ, Milinčić DD, Špirović Trifunović B, Nedić N, Gašić UM, Tešić ŽL, Stanojević SP, Pešić MB. Monofloral Corn Poppy Bee-Collected Pollen-A Detailed Insight into Its Phytochemical Composition and Antioxidant Properties. Antioxidants (Basel) 2023; 12:1424. [PMID: 37507962 PMCID: PMC10376007 DOI: 10.3390/antiox12071424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this study was to compile a detailed phytochemical profile and assess the antioxidant properties of bee-collected pollen (PBP) obtained from corn poppy (Papaver rhoeas L.) plants. To achieve this, a lipid fraction was prepared for quantifying fatty acids using GC-FID. Extractable and alkaline-hydrolysable PBP fractions (obtained from a defatted sample) were used to determine the qualitative and quantitative profiles of phenolic compounds, phenylamides and alkaloids using UHPLC/Q-ToF-MS. Additionally, various spectrophotometric assays (TAC, FRP, CUPRAC, DPPH⦁) were conducted to evaluate the antioxidant properties. Phenolic compounds were more present in the extractable fraction than in the alkaline-hydrolysable fraction. Luteolin was the predominant compound in the extractable fraction, followed by tricetin and various derivatives of kaempferol. This study presents one of the first reports on the quantification of tricetin aglycone outside the Myrtaceae plant family. The alkaline-hydrolysable fraction exhibited a different phenolic profile, with a significantly lower amount of phenolics. Kaempferol/derivatives, specific compounds like ferulic and 5-carboxyvanillic acids, and (epi)catechin 3-O-gallate were the predominant compounds in this fraction. Regarding phenylamides, the extractable fraction demonstrated a diverse range of these bioactive compounds, with a notable abundance of different spermine derivatives. In contrast, the hydrolysable fraction contained six spermine derivatives and one spermidine derivative. The examined fractions also revealed the presence of seventeen different alkaloids, belonging to the benzylisoquinoline, berberine and isoquinoline classes. The fatty-acid profile confirmed the prevalence of unsaturated fatty acids. Furthermore, both fractions exhibited significant antioxidant activity, with the extractable fraction showing particularly high activity. Among the assays conducted, the CUPRAC assay highlighted the exceptional ability of PBP's bioactive compounds to reduce cupric ions.
Collapse
Affiliation(s)
- Aleksandar Ž Kostić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Danijel D Milinčić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Bojana Špirović Trifunović
- Department for Pesticides and Herbology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Nebojša Nedić
- Department for Breeding and Reproduction of Domestic and Bred Animals, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Uroš M Gašić
- Department of Plant Physiology, Institute for Biological Research Siniša Stanković-National Institute of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Živoslav Lj Tešić
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia
| | - Sladjana P Stanojević
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Mirjana B Pešić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| |
Collapse
|
23
|
Qi D, Lu M, Li J, Ma C. Metabolomics Reveals Distinctive Metabolic Profiles and Marker Compounds of Camellia ( Camellia sinensis L.) Bee Pollen. Foods 2023; 12:2661. [PMID: 37509753 PMCID: PMC10378613 DOI: 10.3390/foods12142661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Camellia bee pollen (CBP) is a major kind of bee product which is collected by honeybees from tea tree (Camellia sinensis L.) flowers and agglutinated into pellets via oral secretion. Due to its special healthcare value, the authenticity of its botanical origin is of great interest. This study aimed at distinguishing CBP from other bee pollen, including rose, apricot, lotus, rape, and wuweizi bee pollen, based on a non-targeted metabolomics approach using ultra-high performance liquid chromatography-mass spectrometry. Among the bee pollen groups, 54 differential compounds were identified, including flavonol glycosides and flavone glycosides, catechins, amino acids, and organic acids. A clear separation between CBP and all other samples was observed in the score plots of the principal component analysis, indicating distinctive metabolic profiles of CBP. Notably, L-theanine (864.83-2204.26 mg/kg) and epicatechin gallate (94.08-401.82 mg/kg) were identified exclusively in all CBP and were proposed as marker compounds of CBP. Our study unravels the distinctive metabolic profiles of CBP and provides specific and quantified metabolite indicators for the assessment of authentic CBP.
Collapse
Affiliation(s)
- Dandan Qi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
- Tea Research Institute, Shangdong Academy of Agricultural Sciences, Jinan 250000, China
| | - Meiling Lu
- Agilent Technologies (China) Co., Ltd., Beijing 100102, China
| | - Jianke Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Chuan Ma
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| |
Collapse
|
24
|
Guo F, Yang Y, Duan Y, Li C, Gao H, Liu H, Cui Q, Guo Z, Liu X, Wang Z. Quality Marker Discovery and Quality Evaluation of Eucommia ulmoides Pollen Using UPLC-QTOF-MS Combined with a DPPH-HPLC Antioxidant Activity Screening Method. Molecules 2023; 28:5288. [PMID: 37446949 DOI: 10.3390/molecules28135288] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Pollen, as an important component of Eucommia ulmoides (EUP), is rich in nutrients and is receiving increasing attention. At present, there are no reports on research related to the chemical composition and quality standards of EUP, and there are significant quality differences and counterfeit phenomena in the market. This study used a UPLC-QTOF-MS system to identify 49 chemical components in EUP for the first time. In the second step, 2,2-diphenyl-1-picrylhydrazyl (DPPH)-HPLC antioxidant activity screening technology was used to identify the main active components of EUP, quercetin-3-O-sophoroside (QSH), quercetin-3-O-sambubioside (QSB), and quercetin 3-O-neohesperidoside (QNH), and their purification, preparation, and structure identification were carried out. Third, molecular docking was used to predict the activity of these components. Fourth, the intracellular ROS generation model of RAW264.7 induced by H2O2 was used to verify and evaluate the activity of candidate active ingredients to determine their feasibility as Q-markers. Finally, a quality control method for EUP was constructed using the three selected components as Q-markers. The identification of chemical components and the discovery, prediction, and confirmation of characteristic Q-markers in EUP provide important references for better research on EUP and the effective evaluation and control of its quality. This approach provides a new model for the quality control of novel foods or dietary supplements.
Collapse
Affiliation(s)
- Fengqian Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yichun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yu Duan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huimin Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongyu Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiping Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhongyuan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoqian Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhimin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
25
|
Habib HM, El-Fakharany EM, El-Gendi H, El-Ziney MG, El-Yazbi AF, Ibrahim WH. Palm Fruit ( Phoenix dactylifera L.) Pollen Extract Inhibits Cancer Cell and Enzyme Activities and DNA and Protein Damage. Nutrients 2023; 15:2614. [PMID: 37299576 PMCID: PMC10255713 DOI: 10.3390/nu15112614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Palm fruit pollen extract (PFPE) is a natural source of bioactive polyphenols. The primary aim of the study was to determine the antioxidant, antimicrobial, anticancer, enzyme inhibition, bovine serum albumin (BSA), and DNA-protective properties of PFPE and identify and quantify the phenolic compounds present in PFPE. The results demonstrated that PFPE exhibited potent antioxidant activity in various radical-scavenging assays, including (2,2-diphenyl-1-picrylhydrazyl) (DPPH•), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS•), nitric oxide (NO), ferric-reducing/antioxidant power (FRAP), and total antioxidant capacity (TAC). PFPE also displayed antimicrobial activity against several pathogenic bacteria. Similarly, PFPE reduced acetylcholinesterase, tyrosinase, and α-amylase activities. PFPE has been proven to have an anticancer effect against colon carcinoma (Caco-2), hepatoma (HepG-2), and breast carcinoma (MDA) cancer cells. Apoptosis occurred in PFPE-treated cells in a dose-dependent manner, and cell cycle arrest was observed. Furthermore, in breast cancer cells, PFPE down-regulated Bcl-2 and p21 and up-regulated p53 and Caspase-9. These results show that PFPE constitutes a potential source of polyphenols for pharmaceutical, nutraceutical, and functional food applications.
Collapse
Affiliation(s)
- Hosam M. Habib
- Research & Innovation Hub, Alamein International University (AIU), Alamein City 5060310, Egypt; (H.M.H.); (A.F.E.-Y.)
| | - Esmail M. El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA City), New Borg El Arab, Alexandria P.O. Box 21934, Egypt;
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA City), New Borg El Arab, Alexandria P.O. Box 21934, Egypt;
| | - Mohamed G. El-Ziney
- Dairy Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria P.O. Box 21545, Egypt;
| | - Ahmed F. El-Yazbi
- Research & Innovation Hub, Alamein International University (AIU), Alamein City 5060310, Egypt; (H.M.H.); (A.F.E.-Y.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Faculty of Pharmacy, Alamein International University (AIU), Alamein City 5060310, Egypt
| | - Wissam H. Ibrahim
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
26
|
Kacemi R, Campos MG. Translational Research on Bee Pollen as a Source of Nutrients: A Scoping Review from Bench to Real World. Nutrients 2023; 15:nu15102413. [PMID: 37242296 DOI: 10.3390/nu15102413] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The emphasis on healthy nutrition is gaining a forefront place in current biomedical sciences. Nutritional deficiencies and imbalances have been widely demonstrated to be involved in the genesis and development of many world-scale public health burdens, such as metabolic and cardiovascular diseases. In recent years, bee pollen is emerging as a scientifically validated candidate, which can help diminish conditions through nutritional interventions. This matrix is being extensively studied, and has proven to be a very rich and well-balanced nutrient pool. In this work, we reviewed the available evidence on the interest in bee pollen as a nutrient source. We mainly focused on bee pollen richness in nutrients and its possible roles in the main pathophysiological processes that are directly linked to nutritional imbalances. This scoping review analyzed scientific works published in the last four years, focusing on the clearest inferences and perspectives to translate cumulated experimental and preclinical evidence into clinically relevant insights. The promising uses of bee pollen for malnutrition, digestive health, metabolic disorders, and other bioactivities which could be helpful to readjust homeostasis (as it is also true in the case of anti-inflammatory or anti-oxidant needs), as well as the benefits on cardiovascular diseases, were identified. The current knowledge gaps were identified, along with the practical challenges that hinder the establishment and fructification of these uses. A complete data collection made with a major range of botanical species allows more robust clinical information.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria G Campos
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre (CQC, FCT Unit 313), Faculty of Science and Technology, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| |
Collapse
|
27
|
Dimitriou TG, Asoutis Didaras N, Barda C, Skopeliti D, Kontogianni K, Karatasou K, Skaltsa H, Mossialos D. Antiviral Activity of Beebread, Bee-Collected Pollen and Artificially Fermented Follen against Influenza A Virus. Foods 2023; 12:foods12101978. [PMID: 37238799 DOI: 10.3390/foods12101978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Bee-collected pollen (BCP) and the naturally fermented BCP product known as bee bread (BB) are functional foods renowned for their nutritious, antioxidant, antibacterial and other therapeutic properties. This is the first study employed to assess the antiviral activity of BCP and BB against influenza A virus (IAV) H1N1 along with their proteinaceous, aqueous and n-butanol fractions. Additionally, artificially fermented BCP has been evaluated against IAV (H1N1). Antiviral activity was assessed in vitro by comparative real-time PCR assay. IC50 values ranged from 0.022 to 10.04 mg/mL, and Selectivity Index (SI) values ranged from 1.06 to 338.64. Artificially fermented BCP samples AF5 and AF17 demonstrated higher SI values than unfermented BCP, and proteinaceous fractions demonstrated the highest SI values. The chemical profile of BCP and BB samples, analyzed using NMR and LC-MS, revealed the presence of specialized metabolites that may contribute toward the antiviral activity. Overall, the significant anti-IAV activity of BB and BCP harvested in Thessaly (Greece) could be attributed to chemical composition (especially undiscovered yet proteinaceous compounds) and possibly to microbiome metabolism. Further research regarding the antiviral properties of BCP and BB will elucidate the mode of action and could lead to new treatments against IAV or other viral diseases.
Collapse
Affiliation(s)
- Tilemachos G Dimitriou
- Laboratory of Microbial Biotechnology, Molecular Bacteriology-Virology, Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 42500 Larissa, Greece
| | - Nikos Asoutis Didaras
- Laboratory of Microbial Biotechnology, Molecular Bacteriology-Virology, Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 42500 Larissa, Greece
| | - Christina Barda
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian, University of Athens, Zografou, 15771 Athens, Greece
| | - Dimitra Skopeliti
- Laboratory of Microbial Biotechnology, Molecular Bacteriology-Virology, Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 42500 Larissa, Greece
| | - Katerina Kontogianni
- Laboratory of Microbial Biotechnology, Molecular Bacteriology-Virology, Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 42500 Larissa, Greece
| | - Katerina Karatasou
- Apicultural Centre of Larissa, Federation of Greek Beekeepers Associations, 41500 Larissa, Greece
| | - Helen Skaltsa
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian, University of Athens, Zografou, 15771 Athens, Greece
| | - Dimitris Mossialos
- Laboratory of Microbial Biotechnology, Molecular Bacteriology-Virology, Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 42500 Larissa, Greece
| |
Collapse
|
28
|
Alonazi M, Ben Bacha A, Alharbi MG, Khayyat AIA, Al-Ayadhi L, El-Ansary A. Bee Pollen and Probiotics' Potential to Protect and Treat Intestinal Permeability in Propionic Acid-Induced Rodent Model of Autism. Metabolites 2023; 13:metabo13040548. [PMID: 37110206 PMCID: PMC10143803 DOI: 10.3390/metabo13040548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Rodent models may help investigations on the possible link between autism spectrum disorder (ASD) and gut microbiota since autistic patients frequently manifested gastrointestinal troubles as co-morbidities. Thirty young male rats were divided into five groups: Group 1 serves as control; Group 2, bee pollen and probiotic-treated; and Group 3, propionic acid (PPA)-induced rodent model of autism; Group 4 and Group 5, the protective and therapeutic groups were given bee pollen and probiotic combination treatment either before or after the neurotoxic dose of PPA, respectively. Serum occludin, zonulin, lipid peroxides (MDA), glutathione (GSH), glutathione-S-transferase (GST), glutathione peroxidase (GPX), catalase, and gut microbial composition were assessed in all investigated groups. Recorded data clearly indicated the marked elevation in serum occludin (1.23 ± 0.15 ng/mL) and zonulin (1.91 ± 0.13 ng/mL) levels as potent biomarkers of leaky gut in the PPA- treated rats while both were normalized to bee pollen/probiotic-treated rats. Similarly, the high significant decrease in catalase (3.55 ± 0.34 U/dL), GSH (39.68 ± 3.72 µg/mL), GST (29.85 ± 2.18 U/mL), and GPX (13.39 ± 1.54 U/mL) concomitant with a highly significant increase in MDA (3.41 ± 0.12 µmoles/mL) as a marker of oxidative stress was also observed in PPA-treated animals. Interestingly, combined bee pollen/probiotic treatments demonstrated remarkable amelioration of the five studied oxidative stress variables as well as the fecal microbial composition. Overall, our findings demonstrated a new approach to the beneficial use of bee pollen and probiotic combination as a therapeutic intervention strategy to relieve neurotoxic effects of PPA, a short-chain fatty acid linked to the pathoetiology of autism.
Collapse
Affiliation(s)
- Mona Alonazi
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Abir Ben Bacha
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Mona G Alharbi
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Arwa Ishaq A Khayyat
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Laila Al-Ayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| | - Afaf El-Ansary
- Central Laboratory, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| |
Collapse
|
29
|
Milinčić DD, Salević-Jelić AS, Kostić AŽ, Stanojević SP, Nedović V, Pešić MB. Food nanoemulsions: how simulated gastrointestinal digestion models, nanoemulsion, and food matrix properties affect bioaccessibility of encapsulated bioactive compounds. Crit Rev Food Sci Nutr 2023; 64:8091-8113. [PMID: 37021463 DOI: 10.1080/10408398.2023.2195519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Food nanoemulsions are known as very effective and excellent carriers for both lipophilic and hydrophilic bioactive compounds (BCs) and have been successfully used for controlled delivery and protection of BCs during gastrointestinal digestion (GID). However, due to sensitive and fragile morphology, BCs-loaded nanoemulsions have different digestion pathways depending on their properties, food matrix properties, and applied models for testing their digestibility and BCs bioaccessibility. Thus, this review gives a critical review of the behavior of encapsulated BCs into food nanoemulsions during each phase of GID in different static and dynamic in vitro digestion models, as well as of the influence of nanoemulsion and food matrix properties on BCs bioaccessibility. In the last section, the toxicity and safety of BCs-loaded nanoemulsions evaluated on in vitro and in vivo GID models have also been discussed. Better knowledge of food nanoemulsions' behavior in different models of simulated GI conditions and within different nanoemulsion and food matrix types can help to standardize the protocol for their testing aiming for researchers to compare results and design BCs-loaded nanoemulsions with better performance and higher targeted BCs bioaccessibility.
Collapse
Affiliation(s)
- Danijel D Milinčić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Ana S Salević-Jelić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Ž Kostić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Slađana P Stanojević
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Viktor Nedović
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Mirjana B Pešić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
30
|
Nemauluma MFD, Manyelo TG, Ng'ambi JW, Kolobe SD, Malematja E. EFFECTS OF BEE POLLEN INCLUSION ON PERFORMANCE AND CARCASS CHARACTERISTICS OF BROILER CHICKENS. Poult Sci 2023; 102:102628. [PMID: 37043957 PMCID: PMC10140164 DOI: 10.1016/j.psj.2023.102628] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
This study was conducted to determine the effect of bee pollen (BP) inclusion on performance and carcass characteristics in broiler chickens. A total of 240 Ross 308 broiler chicks were allocated to 4 treatments (BP inclusion levels of 0, 4, 8, or 12 g/kg DM feed) in a randomized complete block design with sex as a block having 3 replicates with 10 chickens per replicate. After 21 d, the chickens remained in their treatment groups and fed standard grower diet. The results of the current study revealed that BP inclusion had positively improved (P < 0.05) average weekly feed intake (FI), body weight (BW), body weight gain (BWG), and feed conversion ratio (FCR) in both sexes. However, the apparent nutrient digestibility, metabolizable energy (ME), and nutrient digestibility were not affected by the dietary BP. Furthermore, carcass yield in both sexes was improved (P < 0.05) by BP inclusion levels. In contrast, meat pH, shear force, and sensory evaluation in both sexes were not affected (P > 0.05). The results suggest that the broiler chicks can utilize bioactive compounds in BP when supplemented in the starter diets and subsequently improve their growth parameters throughout the growing period as well as carcass yield at slaughter age. These positive improvements could be due to high quality amino acids, essential oils, vitamins, and minerals of BP. Therefore, it is concluded that BP inclusion level of 12 g/kg or more in the starter diets could have positive effects on growth performance and carcass yield at slaughter age without causing adverse effects on meat physico-chemical properties and sensory evaluation in both male and female broiler chickens.
Collapse
|
31
|
Erdoğan A, Şeker ME, Kahraman SD. Evaluation of Environmental and Nutritional Aspects of Bee Pollen Samples Collected from East Black Sea Region, Turkey, via Elemental Analysis by ICP-MS. Biol Trace Elem Res 2023; 201:1488-1502. [PMID: 35362937 DOI: 10.1007/s12011-022-03217-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Honeybee pollens are good food sources in terms of their mineral contents and are specific to the regions they are collected. In addition, they may be used as bioindicators in the assessment of environmental pollution based on their potentially toxic element contents. In the present study, mineral element composition and potentially toxic element levels of honeybee pollen samples collected from various cities in East Black Sea Region of Turkey (18 samples) were determined by inductively coupled plasma mass spectrometry (ICP-MS) after microwave assisted acid digestion. The method validation was performed by using CRM (Certified Reference Material-BCR®279-Sea Lettuce-Ulva lactuca) to evaluate the accuracy and precision. Elemental composition of honeybee pollens were detected within the following ranges (minimum-maximum, mg kg-1 dry pollen); Mn (manganese): 11.579-117.349, Fe (Iron): 34.865-811.043, Zn (zinc): 17.707-56.223, Se (selenium): 0.422-0.722, Cr (chromium): 0.848-6.949, Cu (copper): 7.510-26.344, Mg (magnesium): 549.921-2149.716, Ca (calcium): 726.575-2201.837, Na (sodium): 36.518-120.283, Pb (lead): < 0.005-0.622, Cd (cadmium): 0.039-1.390, Ni (nickel): 2.317-21.710, and As (arsenic): 1.331-2.248. Recommended daily allowance, target hazard quotients, hazard index, and carcinogenic risk values of the pollens were calculated with the help of these results. In considering THQ values, pollens were determined to be safe for the consumption of both genders. Based on the carcinogenic risk calculation, most of the pollens examined in this study were categorized as moderately risky. Monitoring studies can be used to identify new sources of contamination or the origin and spread of a particular element. Hence, bee pollens can also be considered as potential bioindicators of toxic metal pollution. HIGHLIGHTS: • Mineral content and potentially toxic metal levels of 18 honeybee pollens were determined. • Recommended daily allowance (RDA) values were calculated. • The nutritional aspects of honeybee pollen samples were evaluated. • Hazard quotient (HQ), hazard index (HI), and carcinogenic risk (CR) estimation of honeybee pollens were assessed. • The potentiality of honeybee pollens as a bioindicator for pollution was discussed.
Collapse
Affiliation(s)
- Ayşegül Erdoğan
- Ege University Application and Research Center For Testing and Analysis (EGE MATAL), Bornova, 35100, Izmir, Turkey.
| | - Mehmet Emin Şeker
- Department of Crop and Animal Production, Vocational School, Giresun University, Espiye, 28600, Giresun, Turkey
| | - Seda Dicle Kahraman
- Department of Crop and Animal Production, Vocational School, Giresun University, Espiye, 28600, Giresun, Turkey
- Department of Food Processing, Vocational School, Giresun University, Espiye, 28600, Giresun, Turkey
| |
Collapse
|
32
|
Ali A, Paramanya A, Poojari P, Arslan-Acaroz D, Acaroz U, Kostić AŽ. The Utilization of Bee Products as a Holistic Approach to Managing Polycystic Ovarian Syndrome-Related Infertility. Nutrients 2023; 15:nu15051165. [PMID: 36904163 PMCID: PMC10005493 DOI: 10.3390/nu15051165] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Bee products, including honey, have been utilized since ancient times for nutritional and therapeutic purposes. Recently, other bee products such as bee pollen, royal jelly, and propolis have caught a lot of attention. Being high in antioxidants and bioactive compounds, these products have established their applications in the pharmaceutical field as supplementary or alternative medicines. This review focuses on their use against polycystic ovarian syndrome (PCOS)-related infertility. A systematic search of electronic databases including PubMed, Web of Science ScienceDirect, and Google Scholar was conducted from their inceptions up to November 2022. Studies with a small sample size, studies with inconclusive data, and pre-prints have been excluded. A narrative synthesis was performed during draft preparation after the authors independently performed a literature search. A total of 47 studies were finalized for the review. It can be observed that in vivo data on the use of bee products in treating PCOS mostly deals with their use in synergism with the PCOS medicines to enhance their effect and/or curb their side effects; however, clinical trials for the same are limited. With the amount of data being limited, it is difficult to map out the mechanism by which these products act in managing PCOS inside the human body. The review gives detailed insights into the reversal and restorative properties of bee products against the aberrations in reproductive health caused by PCOS.
Collapse
Affiliation(s)
- Ahmad Ali
- Department of Life Sciences, University of Mumbai, Vidyanagari, Mumbai 400098, India
- Correspondence: (A.A.); (A.Ž.K.)
| | - Additiya Paramanya
- Department of Life Sciences, University of Mumbai, Vidyanagari, Mumbai 400098, India
| | - Payal Poojari
- Department of Life Sciences, University of Mumbai, Vidyanagari, Mumbai 400098, India
| | - Damla Arslan-Acaroz
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
- ACR Bio Food and Biochemistry Research and Development, 03200 Afyonkarahisar, Turkey
| | - Ulas Acaroz
- ACR Bio Food and Biochemistry Research and Development, 03200 Afyonkarahisar, Turkey
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, Bishkek KG-720038, Kyrgyzstan
| | - Aleksandar Ž. Kostić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
- Correspondence: (A.A.); (A.Ž.K.)
| |
Collapse
|
33
|
Characterization of Bee Bread Produced with Defined Starter Cultures Mimicking the Natural Fermentation Process. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Bee bread is a product with unique properties for humans and bees that is produced through the fermentation of pollen in the honeycomb, mainly caused by lactic acid bacteria (LAB) and yeast strains present in the environment. It is a rich source of nutrients such as proteins, polyphenols and vitamins. Despite the potential nutritional value of bee bread, it is consumed at low levels, as harvesting bee bread from the hives is costly and difficult. This study aimed to produce a standard bee bread by using different strains of the fructophilic lactic acid bacteria (FLAB) Lactobacillus kunkeei and the yeasts Starmeralla magnolia MP-2 and Zygosaccharomyces siamensis MP-14, previously isolated from bee products. In this context, bee bread was produced from pollen by solid-state fermentation using selected FLAB and yeast species, which were then compared with spontaneously developed and commercially available bee bread in terms of microbial stability, physicochemical properties, total phenolic component amounts, in vitro digestibility and amino acid profiles. As a result, it was determined that bee bread made from bee pollen fermented with starter cultures showed improved characteristics than commercial bee bread and was more advantageous in terms of absorption as well as production processes.
Collapse
|
34
|
Kasiotis KM, Zafeiraki E, Manea-Karga E, Anastasiadou P, Machera K. Pesticide Residues and Metabolites in Greek Honey and Pollen: Bees and Human Health Risk Assessment. Foods 2023; 12:706. [PMID: 36832781 PMCID: PMC9955768 DOI: 10.3390/foods12040706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Bees encounter a plethora of environmental contaminants during nectar and pollen collection from plants. Consequently, after their entrance into the beehives, the transfer of numerous pollutants to apicultural products is inevitable. METHODS In this context, during the period of 2015-2020, 109 samples of honey, pollen, and beebread were sampled and analyzed for the determination of pesticides and their metabolites. More than 130 analytes were investigated in each sample by applying two validated multiresidue methods (HPLC-ESI-MS/MS and GC-MS/MS). RESULTS Until the end of 2020, 40 determinations were reported in honey, resulting in a 26% positive to at least one active substance. The concentrations of pesticides ranged from 1.3 ng/g to 785 ng/g honey. For seven active substances in honey and pollen, maximum residue limits (MRLs) exceedances were observed. Coumaphos, imidacloprid, acetamiprid, amitraz metabolites (DMF and DMPF), and tau-fluvalinate were the predominant compounds detected in honey, while several pyrethroids such as λ-cyhalothrin, cypermethrin, and cyfluthrin were also found. Pollen and beebread, as expected, accumulated a higher number of active substances and metabolites (32 in total), exhibiting almost double the number of detections. CONCLUSIONS Although the above findings verify the occurrence of numerous pesticide and metabolite residues in both honey and pollen, the human risk assessment in the majority of the cases does not raise any concerns, and the same applies to bee risk assessment.
Collapse
Affiliation(s)
- Konstantinos M. Kasiotis
- Laboratory of Pesticides’ Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 145 61 Kifissia, Greece
| | | | | | | | | |
Collapse
|
35
|
Xue F, Li C. Effects of ultrasound assisted cell wall disruption on physicochemical properties of camellia bee pollen protein isolates. ULTRASONICS SONOCHEMISTRY 2023; 92:106249. [PMID: 36459901 PMCID: PMC9712773 DOI: 10.1016/j.ultsonch.2022.106249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/12/2022] [Accepted: 11/27/2022] [Indexed: 05/15/2023]
Abstract
Camellia bee pollen protein isolates were extracted by cell wall disruption using ultrasonication, freeze-thawing, enzymatic hydrolysis, and their combinations. The effects of these methods on microstructure of cell wall, protein release, protein yield, physiochemical properties and structure of proteins were investigated. As compared with physical treatments (ultrasonication, freeze-thawing and their combination), the enzymatic hydrolysis significantly improved the yield of proteins, because it not only promoted the release of proteins from the inside of pollen, but also released proteins in pollen wall. The proteins extracted by enzymatic hydrolysis method also exhibited better solubility, emulsifying and gelation properties due to the partial hydrolysis of proteins by protease. In addition, when ultrasound was combined with freeze-thawing or enzymatic hydrolysis, it could further improve the yield of proteins and the functional properties of proteins, which was mainly related to the changes of protein structure induced by cavitation effect of ultrasound.
Collapse
Affiliation(s)
- Feng Xue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
36
|
Sevin S, Tutun H, Yipel M, Aluç Y, Ekici H. Concentration of essential and non-essential elements and carcinogenic / non-carcinogenic health risk assessment of commercial bee pollens from Turkey. J Trace Elem Med Biol 2023; 75:127104. [PMID: 36427435 DOI: 10.1016/j.jtemb.2022.127104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/16/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Bee pollen, known as a natural super-food with valuable nutritional ingredients, is regarded as a good indicator of ecotoxic substances, such as potentially toxic elements (PTEs). Therefore, this study aims to examine the concentrations of selected PTEs (Al, As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Se, Sn, Sr, V, Zn) in bee pollen purchased from online markets in Turkey and perform a health risk assessment to identify the potential risk to consumers. METHODS The quantitative analyses were conducted by inductively coupled plasma optical emission spectrometry (ICP-OES). RESULTS The mean values of essential PTEs in decreasing content order were Mg > Fe > Zn > Mn > Cu > Ni > Se > Cr > Mo >Co = V. Regarding the results of the study, daily consumption (40 g for adult or 20 g for children) of commercial bee pollen can recompense 20-35 % of daily Cu, Mn, Se requirements for children, adults, pregnant, and breastfeeding women. The decreasing content order of non-essential elements was Al > Sn > Sr > Ba > Pb > As. Cadmium and Hg concentrations were below the detection limits in all the samples. In terms of food and public health; detection of the PTEs concentrations is necessary to assess the quality and safety of bee pollen before consumption. According to the carcinogenic and non-carcinogenic risk assessments; commercial pollen consumption does not pose a health risk to either children or adults for the PTEs monitored in this study. CONCLUSION We conclude that bee pollen is an ideal indicator for the monitoring of environmental pollution of PTEs and also a valuable source of essential elements. This study highlights the need to develop standards that regulate acceptable concentrations of PTEs.
Collapse
Affiliation(s)
- Sedat Sevin
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Hidayet Tutun
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.
| | - Mustafa Yipel
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Yaşar Aluç
- Scientific and Technological Research Application and Research Center, Kırıkkale University, Kırıkkale, Turkey
| | - Hüsamettin Ekici
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Kırıkkale University, Kırıkkale, Turkey
| |
Collapse
|
37
|
Biscuits Enriched with Monofloral Bee Pollens: Nutritional Properties, Techno-Functional Parameters, Sensory Profile, and Consumer Preference. Foods 2022; 12:foods12010018. [PMID: 36613234 PMCID: PMC9818951 DOI: 10.3390/foods12010018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Bee pollens are potential functional food ingredients as they contain essential nutrients and a wide range of bioactive compounds. The aim of this study was to investigate the effects of enrichment with monofloral bee pollens on the nutritional properties, techno-functional parameters, sensory profile, and consumer preference of biscuits. Biscuits were prepared according to the AACC-approved method by substituting wheat flour with pollens of rapeseed (Brassica napus L.), phacelia (Phacelia tanacetifolia Benth.) and sunflower (Helianthus annuus L.) at 2%, 5% and 10% levels. The macronutrient composition of the biscuits was determined: crude protein content (Kjeldahl method), crude fat content (Soxhlet extraction), ash content (carbonization), moisture content (drying), carbohydrate content (formula). Their total phenolic content (TPC) and in vitro antioxidant capacity (FRAP, TEAC, DPPH) were determined spectrophotometrically. The colour of the biscuits was measured using a tristimulus-based instrument, and their texture was characterized by using a texture analyser. Sensory profile of biscuits was determined by qualitative descriptive analysis (QDA). The consumer acceptance and purchase intention of the biscuits were also evaluated, based on the responses of 100 consumers. Additionally, an external preference map was created to illustrate the relationship between consumer preference and the sensory profile of the biscuits, and penalty analysis was conducted to identify directions for product development. Phacelia pollen appeared to be the most effective for improving the nutritional quality of biscuits. The addition of phacelia pollen at the 10% substitution level increased the protein content and TPC of the control biscuit by 21% and 145%, respectively. Significant changes (p < 0.05) were also observed regarding the colour and texture of biscuits. The results of the QDA revealed that biscuits containing pollens of different botanical sources have heterogeneous sensory attributes. The biscuit containing sunflower pollen at the 2% substitution level was preferred the most (overall liking = 6.9 ± 1.6), and purchase intentions were also the highest for this product. Based on the results of the present study, it is recommended to use sunflower pollen for developing pollen-enriched foods in the future.
Collapse
|
38
|
dos Santos TR, dos Santos Melo J, dos Santos AV, Severino P, Lima ÁS, Souto EB, Zielińska A, Cardoso JC. Development of a Protein-Rich By-Product by 2 3 Factorial Design: Characterization of Its Nutritional Value and Sensory Analysis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248918. [PMID: 36558047 PMCID: PMC9783521 DOI: 10.3390/molecules27248918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The aim of this study was the development of a cereal bar based on bee pollen (BP), honey (H), and flour by-products (peel passion fruit flour-PPFF), generating an innovative product. BP is a protein-rich ingredient and can be used in the composition of cereal bars. PPFF is a by-product rich in fibers. The formulations were developed using a 23 factorial design with four replicates in the center point, studying the sensory analysis as a response variable. The texture and nutritional parameters were performed for the optimal formulation. BP showed ca. 15% of protein. The final formulation (10.35% BP, 6.8% PPFF, and 25% H) presented 22.2% moisture, 1.8% ash, 0.4% total fat, 3.0% fiber, 63.1% carbohydrates, and 74.0 Kcal/25 g. The sensory analysis presented valued around 7 (typical of a traditional bar). Regarding the possibility of purchasing the product, 51% of the panelists said they would probably buy the developed product. The formulated cereal bar had a similar composition as those already marketed. Moreover, it can be considered a source of fiber and is sensory acceptable. This approach opens up new opportunities for developing nutritional and functional foodstuff with improved sensorial aspects.
Collapse
Affiliation(s)
- Thamara R. dos Santos
- Department of Pharmacy, Tiradentes University (UNIT), Murilo Dantas Ave. 300, Farolândia, Aracaju 49032-490, SE, Brazil
| | - Jakcline dos Santos Melo
- Department of Pharmacy, Tiradentes University (UNIT), Murilo Dantas Ave. 300, Farolândia, Aracaju 49032-490, SE, Brazil
| | - Alysson V. dos Santos
- Post-Graduation Program in Process Engineering, Tiradentes University (UNIT), Murilo Dantas Ave. 300, Farolândia, Aracaju 49032-490, SE, Brazil
| | - Patrícia Severino
- Department of Pharmacy, Tiradentes University (UNIT), Murilo Dantas Ave. 300, Farolândia, Aracaju 49032-490, SE, Brazil
- Post-Graduation Program in Industrial Biotechnology, Tiradentes University (UNIT), Murilo Dantas Ave. 300, Farolândia, Aracaju 49032-490, SE, Brazil
- Technology and Research Institute (ITP), Tiradentes University (UNIT), Murilo Dantas Ave. 300, Farolândia, Aracaju 49032-490, SE, Brazil
| | - Álvaro S. Lima
- Post-Graduation Program in Process Engineering, Tiradentes University (UNIT), Murilo Dantas Ave. 300, Farolândia, Aracaju 49032-490, SE, Brazil
- Post-Graduation Program in Industrial Biotechnology, Tiradentes University (UNIT), Murilo Dantas Ave. 300, Farolândia, Aracaju 49032-490, SE, Brazil
- Technology and Research Institute (ITP), Tiradentes University (UNIT), Murilo Dantas Ave. 300, Farolândia, Aracaju 49032-490, SE, Brazil
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- REQUIMTE/UCIBIO, Faculty of Pharmacy of University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Correspondence: (E.B.S.); (A.Z.)
| | - Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
- Correspondence: (E.B.S.); (A.Z.)
| | - Juliana C. Cardoso
- Department of Pharmacy, Tiradentes University (UNIT), Murilo Dantas Ave. 300, Farolândia, Aracaju 49032-490, SE, Brazil
- Post-Graduation Program in Industrial Biotechnology, Tiradentes University (UNIT), Murilo Dantas Ave. 300, Farolândia, Aracaju 49032-490, SE, Brazil
- Post-Graduation Program in Environmental and Health, Tiradentes University (UNIT), Murilo Dantas Ave. 300, Farolândia, Aracaju 49032-490, SE, Brazil
| |
Collapse
|
39
|
Unveiling the Techno-Functional and Bioactive Properties of Bee Pollen as an Added-Value Food Ingredient. Food Chem 2022; 405:134958. [DOI: 10.1016/j.foodchem.2022.134958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
|
40
|
Tao Y, Zhou E, Li F, Meng L, Li Q, Wu L. Allergenicity Alleviation of Bee Pollen by Enzymatic Hydrolysis: Regulation in Mice Allergic Mediators, Metabolism, and Gut Microbiota. Foods 2022; 11:foods11213454. [PMID: 36360070 PMCID: PMC9658975 DOI: 10.3390/foods11213454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Bee pollen as a nutrient-rich functional food has been considered for use as an adjuvant for chronic disease therapy. However, bee pollen can trigger food-borne allergies, causing a great concern to food safety. Our previous study demonstrated that the combined use of cellulase, pectinase and papain can hydrolyze allergens into peptides and amino acids, resulting in reduced allergenicity of bee pollen based on in vitro assays. Herein, we aimed to further explore the mechanisms behind allergenicity alleviation of enzyme-treated bee pollen through a BALB/c mouse model. Results showed that the enzyme-treated bee pollen could mitigate mice scratching frequency, ameliorate histopathological injury, decrease serum IgE level, and regulate bioamine production. Moreover, enzyme-treated bee pollen can modulate metabolic pathways and gut microbiota composition in mice, further supporting the alleviatory allergenicity of enzyme-treated bee pollen. The findings could provide a foundation for further development and utilization of hypoallergenic bee pollen products.
Collapse
Affiliation(s)
- Yuxiao Tao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Enning Zhou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Fukai Li
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Lifeng Meng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Qiangqiang Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
- Correspondence: ; Tel.: +86-132-6949-5300
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| |
Collapse
|
41
|
Characterization of Romanian Bee Pollen—An Important Nutritional Source. Foods 2022; 11:foods11172633. [PMID: 36076817 PMCID: PMC9455760 DOI: 10.3390/foods11172633] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022] Open
Abstract
Bee pollen represents an important bee product, which is produced by mixing flower pollens with nectar honey and bee’s salivary substances. It represents an important source of phenolic compounds which can have great importance for importance for prophylaxis of diseases, particularly to prevent cardiovascular and neurodegenerative disorders, those having direct correlation with oxidative damage. The aim of this study was to characterize 24 bee pollen samples in terms of physicochemical parameters, organic acids, total phenolic content, total flavonoid content, individual phenolics compounds, fatty acids, and amino acids from the Nort East region of Romania, which have not been studied until now. The bee pollen can be considered as a high protein source (the mean concentration was 22.31% d.m.) with a high energy value (390.66 kcal/100 g). The total phenolic content ranged between 4.64 and 17.93 mg GAE/g, while the total flavonoid content ranged between 4.90 and 20.45 mg QE/g. The high protein content was observed in Robinia pseudoacacia, the high content of lipids was observed in Robinia pseudoacacia pollen, the high fructose content in Prunus spp. pollen while the high F/G ratio was observed in Pinaceae spp. pollen. The high TPC was observed in Prunus spp. pollen, the high TFC was observed in Robinia pseudoacacia pollen, the high free amino acid content was observed in Pinaceae spp. pollen, and the high content of PUFA was reported in Taraxacum spp. pollen. A total of 16 amino acids (eight essential and eight non-essential amino acids) were quantified in the bee pollen samples analyzed. The total content of the amino acids determined for the bee pollen samples varied between 11.31 µg/mg and 45.99 µg/mg. Our results can indicate that the bee pollen is a rich source of protein, fatty acids, amino acids and bioactive compounds.
Collapse
|
42
|
Alfawaz HA, El-Ansary A, Al-Ayadhi L, Bhat RS, Hassan WM. Protective Effects of Bee Pollen on Multiple Propionic Acid-Induced Biochemical Autistic Features in a Rat Model. Metabolites 2022; 12:metabo12070571. [PMID: 35888695 PMCID: PMC9323335 DOI: 10.3390/metabo12070571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 11/26/2022] Open
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental disorders that clinically presented as impaired social interaction, repetitive behaviors, and weakened communication. The use of bee pollen as a supplement rich in amino acids amino acids, vitamins, lipids, and countless bioactive substances may lead to the relief of oxidative stress, neuroinflammation, glutamate excitotoxicity, and impaired neurochemistry as etiological mechanisms autism. Thirty young male Western albino rats were randomly divided as: Group I-control; Group II, in which autism was induced by the oral administration of 250 mg propionic acid/kg body weight/day for three days followed by orally administered saline until the end of experiment and Group III, the bee pollen-treated group, in which the rats were treated with 250 mg/kg body weight of bee pollen for four weeks before autism was induced as described for Group II. Markers related to oxidative stress, apoptosis, inflammation, glutamate excitotoxicity, and neurochemistry were measured in the brain tissue. Our results indicated that while glutathione serotonin, dopamine, gamma-aminobutyric acid (GABA), GABA/Glutamate ratio, and vitamin C were significantly reduced in propionic acid-treated group (p < 0.05), glutamate, IFN-γ, IL-1A, IL-6, caspase-3, and lipid peroxide levels were significantly elevated (p < 0.05). Bee pollen supplementation demonstrates protective potency presented as amelioration of most of the measured variables with significance range between (p < 0.05)−(p < 0.001).
Collapse
Affiliation(s)
- Hanan A. Alfawaz
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Afaf El-Ansary
- Central Research Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, Riyadh 11495, Saudi Arabia
- Correspondence: ; Tel.: +966-508462529; Fax: +966-11-4682184
| | - Laila Al-Ayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh 11461, Saudi Arabia;
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Sciences, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Wail M. Hassan
- Department of Biomedical Sciences, School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA;
| |
Collapse
|
43
|
Kostić AŽ, Dojčinović B, Špirović Trifunović B, Milinčić DD, Nedić N, Stanojević S, Pešić M. Micro/trace/toxic elements and insecticide residues level in monofloral bee-collected sunflower pollen- health risk assessment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:568-575. [PMID: 35611769 DOI: 10.1080/03601234.2022.2079348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The aim of the current research was to determine the content of (potentially) toxic elements and insecticide residues in monofloral sunflower bee-collected pollen. For micro- and trace elements determination Inductively Coupled Plasma Optical Emission (ICP-OES) analytical method was used while insecticide residue content was monitored by applying Liquid Chromatography-Mass Spectrometry (LC-MS/MS) technique. In total, seventeen micro/trace elements were quantified. None of the twenty four examined insecticides were detected above the limit of detection (LOD) which makes studied sunflower bee-collected pollen eco-friendly both to bees and humans. Based on presence of several toxic as well as potentially toxic elements calculations for estimated weekly intakes (EWI), and oral intakes (OI) were made and used for health risk assessment based on the computation of two different health risk quotients (HQ)- acute (HQA) and long-term (HQL). The obtained results proved that all HQ values for adults were negligible or low except in case of HQL value for arsenic (0.32) which can be characterized as medium. However, in case of children much more precaution is needed due to significant HQL risk for arsenic (1.511). The attained data can help to make additional linkage between bee-collected pollen as food ingredients and potential benefits/risks for human health.
Collapse
Affiliation(s)
- Aleksandar Ž Kostić
- Faculty of Agriculture, Chair of Chemistry and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Biljana Dojčinović
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | | | - Danijel D Milinčić
- Faculty of Agriculture, Chair of Chemistry and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Nebojša Nedić
- Faculty of Agriculture, Chair for Breeding and Reproduction of Domestic and Bred Animals, University of Belgrade, Belgrade, Serbia
| | - Sladjana Stanojević
- Faculty of Agriculture, Chair of Chemistry and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Mirjana Pešić
- Faculty of Agriculture, Chair of Chemistry and Biochemistry, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
44
|
Barta DG, Cornea-Cipcigan M, Margaoan R, Vodnar DC. Biotechnological Processes Simulating the Natural Fermentation Process of Bee Bread and Therapeutic Properties-An Overview. Front Nutr 2022; 9:871896. [PMID: 35571893 PMCID: PMC9097220 DOI: 10.3389/fnut.2022.871896] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Recent signs of progress in functional foods and nutraceuticals highlighted the favorable impact of bioactive molecules on human health and longevity. As an outcome of the fermentation process, an increasing interest is developed in bee products. Bee bread (BB) is a different product intended for humans and bees, resulting from bee pollen's lactic fermentation in the honeycombs, abundant in polyphenols, nutrients (vitamins and proteins), fatty acids, and minerals. BB conservation is correlated to bacteria metabolites, mainly created by Pseudomonas spp., Lactobacillus spp., and Saccharomyces spp., which give lactic acid bacteria the ability to outperform other microbial groups. Because of enzymatic transformations, the fermentation process increases the content of new compounds. After the fermentation process is finalized, the meaningful content of lactic acid and several metabolites prevent the damage caused by various pathogens that could influence the quality of BB. Over the last few years, there has been an increase in bee pollen fermentation processes to unconventional dietary and functional supplements. The use of the chosen starters improves the bioavailability and digestibility of bioactive substances naturally found in bee pollen. As a consequence of enzymatic changes, the fermentation process enhances BB components and preserves them against loss of characteristics. In this aspect, the present review describes the current biotechnological advancements in the development of BB rich in beneficial components derived from bee pollen fermentation and its use as a food supplement and probiotic product with increased shelf life and multiple health benefits.
Collapse
Affiliation(s)
- Daniel Gabriel Barta
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Mihaiela Cornea-Cipcigan
- Advanced Horticultural Research Institute of Transylvania, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Rodica Margaoan
- Advanced Horticultural Research Institute of Transylvania, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
45
|
Ilie CI, Oprea E, Geana EI, Spoiala A, Buleandra M, Gradisteanu Pircalabioru G, Badea IA, Ficai D, Andronescu E, Ficai A, Ditu LM. Bee Pollen Extracts: Chemical Composition, Antioxidant Properties, and Effect on the Growth of Selected Probiotic and Pathogenic Bacteria. Antioxidants (Basel) 2022; 11:antiox11050959. [PMID: 35624823 PMCID: PMC9137718 DOI: 10.3390/antiox11050959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022] Open
Abstract
This paper evaluated the chemical and biological properties of bee pollen samples from Romania. Firstly, the bee pollen alcoholic extracts (BPEs) were obtained from raw bee pollen harvested by Apis mellifera carpatica bees. The chemical composition of BPE was obtained by determination of total phenol content and total flavonoid content, UHPLC-DAD-ESI/MS analysis of phenolic compounds, and GC-MS analysis of fatty acids, esters, and terpenes. Additionally, the antioxidant activity was evaluated by the Trolox Equivalent Antioxidant Capacity method. Furthermore, the biological properties of BPE were evaluated (antimicrobial and cytotoxic activity). The raw BP samples studied in this paper had significant phenolic acid and flavonoid content, and moderate fatty acid, ester, and terpene content. P1, P2, and P4 have the highest TPC and TFC levels, and the best antioxidant activity. All BPEs studied had antimicrobial activity on pathogenic strains isolated from the clinic or standard strains. A synergistic antimicrobial effect of the BPEs was observed along with the soluble compounds of L. rhamnosus MF9 and E. faecalis 2M17 against some pathogenic (clinical) strains and, considering the tumour proliferation inhibitory activity, makes BP a potential prebiotic and antitumour agent for the gut environment.
Collapse
Affiliation(s)
- Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (E.A.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
| | - Eliza Oprea
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 1–3 Aleea Portocalelor, 060101 Bucharest, Romania;
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 030018 Bucharest, Romania
- Correspondence: (E.O.); (A.F.)
| | - Elisabeta-Irina Geana
- National R&D Institute for Cryogenics and Isotopic Technologies—ICIT, 4th Uzinei Street, 240050 Râmnicu Vâlcea, Romania;
| | - Angela Spoiala
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (E.A.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
| | - Mihaela Buleandra
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 90–92 Șoseaua Panduri, 050663 Bucharest, Romania; (M.B.); (I.A.B.)
| | | | - Irinel Adriana Badea
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 90–92 Șoseaua Panduri, 050663 Bucharest, Romania; (M.B.); (I.A.B.)
| | - Denisa Ficai
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (E.A.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (E.A.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
- Correspondence: (E.O.); (A.F.)
| | - Lia-Mara Ditu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 1–3 Aleea Portocalelor, 060101 Bucharest, Romania;
- Research Institute of the University of Bucharest, 050095 Bucharest, Romania;
| |
Collapse
|
46
|
Conti ME, Astolfi ML, Finoia MG, Massimi L, Canepari S. Biomonitoring of element contamination in bees and beehive products in the Rome province (Italy). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:36057-36074. [PMID: 35060025 DOI: 10.1007/s11356-021-18072-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
UNLABELLED In this study, we determined the levels of elements (i.e. As, Be, Cd, Cr, Hg, Ni, Pb, U, and Zn) in bees and edible beehive products (honey, wax, pollen, and propolis) sampled from five selected sites in the Rome province (Italy). RATIONALE to increase the information variety endowment, the monitoring breakdown structure (MBS) conceptual model was used (nine elements, 429 samples, and approximately thirteen thousand determinations over a 1-year survey). Thus, we employed Johnson's probabilistic method to build the control charts. Then, we measured the element concentration overlap ranges and the overlap bioaccumulation index (OBI). Subsequently, we evaluated the estimated daily intake (EDI) of the analysed elements and matched them with acceptable reference doses. The human health risk caused by the intake of individual elements found in edible beehive products and their risk summation were evaluated through the target hazard quotient (THQ) and hazard index (HI) methods. FINDINGS excluding honey, this study confirms the capacity of wax, pollen, propolis, and bees to accumulate high levels of toxic and potentially toxic elements from the surrounding environment (with high OBI-U, i.e. OBI-Upper values, i.e. the common upper concentration limit of the overlap concentration range). Bees and pollen showed a high bioaccumulation Cd surplus (OBI-U = 44.0 and 22.3, respectively). On the contrary, honey had high OBI-L values (i.e. honey concentrates metals several times less than the common lower concentration limit of the overlap concentration range). This finding implies that honey is useless as an environmental indicator compared with the other biomonitor/indicators. The EDI values for the edible beehive products were lower than the health and safety reference doses for all the considered elements. Our data show that honey, wax, propolis, and pollen are safe for consumption by both adults and children (THQ < 1; HI < 1), even considering the sporadic possibility of consuming them simultaneously. ORIGINALITY This study has been conducted for the first time in the Rome province and demonstrates that edible indicators are safe for consumption for the considered elements in bees and edible beehive products. Depending on the ecosystem/pollutants studied, the OBI consents to make a correct choice for environmental biomonitoring studies and to focus the attention on the most sensitive biomonitors/indicators when required at the project level.
Collapse
Affiliation(s)
- Marcelo Enrique Conti
- Department of Management, University of Rome, Via del Castro Laurenziano 9, 00161, Sapienza, Italy.
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, P. Le Aldo Moro, 00185, Rome, Italy
| | - Maria Grazia Finoia
- Italian National Institute for Environmental Protection and Research, Viale V. Brancati 60, 00166, Rome, Italy
| | - Lorenzo Massimi
- Department of Environmental Biology, Sapienza University of Rome, P. Le Aldo Moro, 00185, Rome, Italy
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, P. Le Aldo Moro, 00185, Rome, Italy
| |
Collapse
|
47
|
Şeker ME, Erdoğan A, Korkmaz SD, Küplülü Ö. Bee pollens as biological indicators: An ecological assessment of pollution in Northern Turkey via ICP-MS and XPS analyses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:36161-36169. [PMID: 35060036 DOI: 10.1007/s11356-021-18007-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
In this study, pollens were collected from 25 different locations of Northern Turkey to investigate pollution monitoring. Surface chemistry of pollen samples was characterized by X-ray photoelectron spectroscopy (XPS). Then the concentrations of certain elements (Li, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Ba, and Pb) in pollen samples were determined by inductively coupled plasma mass spectrometry (ICP-MS) for the evaluation of environmental pollution. The levels of elements were detected in the following ranges (minimum-maximum, mg/kg dry pollen): Li (0.18-0.39), Al (24.98-308.04), V (6.18-98.58), Cr (1.05-6.81), Mn (13.85-95.91), Fe (52.20-326.26), Co (0.15-0.34), Ni (1.66-10.79), Cu (8.61-19.01), Zn (20.47-70.02), As (1.22-2.65), Se (0.39-0.67), Cd (0.05-0.74), Ba (0.73-16.30), and Pb (0.00-0.26). It has been concluded that there is a correlation between the pollen samples with high heavy metal concentrations and traffic density as these regions are closer to the road in the northern region. It is exposed to pollution from various sources such as intensified urbanization and tourism activities carried out on land and sea; industrial activities are increasing rapidly due to the opportunities offered by the coastal areas, sea transportation, and agricultural, domestic, and industrial pollution coming from the inner regions through rivers and streams. In this sense, pollens can be used as potential bio-indicators for monitoring heavy metal pollution and gives an idea about how we can use them for future assessing purposes.
Collapse
Affiliation(s)
- Mehmet Emin Şeker
- Department of Crop and Animal Production, Vocational School, Giresun University, Espiye, 28600, Giresun, Turkey.
| | - Ayşegül Erdoğan
- Ege University Application and Research Center for Testing and Analysis (EGE MATAL), Bornova, 35100, İzmir, Turkey
| | - Seda Dicle Korkmaz
- Department of Food Processing, Vocational School, Giresun University, Espiye, 28600, Giresun, Turkey
| | - Özlem Küplülü
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Ankara University, 06110, Ankara, Turkey
| |
Collapse
|
48
|
The Honey Bee Apis mellifera: An Insect at the Interface between Human and Ecosystem Health. BIOLOGY 2022; 11:biology11020233. [PMID: 35205099 PMCID: PMC8869587 DOI: 10.3390/biology11020233] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Apis mellifera Linnaeus (1758), a honey bee, is a eusocial insect widely known for its role in pollination, an essential ecosystem service for plant biodiversity, and quality of vegetables and fruit products. In addition, honey bees and bee products are valuable bioindicators of pollutants, such as airborne particulate matter, heavy metals, and pesticides. In this review, we explore the provisioning, regulating, and cultural services provided by the honey bee, an insect at the interface between human and ecosystem health. Abstract The concept of ecosystem services is widely understood as the services and benefits thatecosystems provide to humans, and they have been categorised into provisioning, regulating, supporting, and cultural services. This article aims to provide an updated overview of the benefits that the honey bee Apis mellifera provides to humans as well as ecosystems. We revised the role of honey bees as pollinators in natural ecosystems to preserve and restore the local biodiversity of wild plants; in agro-ecosystems, this species is widely used to enhance crop yield and quality, meeting the increasing food demand. Beekeeping activity provides humans not only with high-quality food but also with substances used as raw materials and in pharmaceuticals, and in polluted areas, bees convey valuable information on the environmental presence of pollutants and their impact on human and ecosystem health. Finally, the role of the honey bee in symbolic tradition, mysticism, and the cultural values of the bee habitats are also presented. Overall, we suggest that the symbolic value of the honey bee is the most important role played by this insect species, as it may help revitalise and strengthen the intimate and reciprocal relationship between humans and the natural world, avoiding the inaccuracy of considering the ecosystems as mere providers of services to humans.
Collapse
|
49
|
Occurrence and human health risk assessment of mineral elements and pesticides residues in bee pollen. Food Chem Toxicol 2022; 161:112826. [DOI: 10.1016/j.fct.2022.112826] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 11/18/2022]
|
50
|
Nowak A, Nowak I. Review of harmful chemical pollutants of environmental origin in honey and bee products. Crit Rev Food Sci Nutr 2021:1-23. [PMID: 34904474 DOI: 10.1080/10408398.2021.2012752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Honey is a natural food with many pro-health properties, which comprises a wide variety of valuable ingredients. It can also be the source of chemical contaminants of environmental origin, including POPs that can contribute to adverse health effects to human. Monitoring the degree of pollution of honey/bee products with hazardous chemicals is important from a nutraceutical point of view. In the present work, overview of recent literature data on chemical pollutants in honey/bee products originating from the environment was performed. Their MLs, MRLs and EDI were discussed. It can be concluded that huge amount of research concerned on the presence of TMs and pesticides in honey. Most of the studies have shown that honey/bee products sampled from urban and industrialized areas were more contaminated than these sampled from ecological and rural locations. More pollutants were usually detected in propolis and bee pollen than in honey. Based on their research and regulations, authors stated, that most of the toxic pollutants of environmental origin in honey/bee products are at levels that do not pose a threat to the health of the potential consumer. The greatest concern relates to pesticides and TMs, because in some research MLs in individual samples were highly exceeded.
Collapse
Affiliation(s)
- Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Lodz, Poland
| | - Ireneusz Nowak
- Faculty of Law and Administration, University of Lodz, Lodz, Poland
| |
Collapse
|