1
|
Germelli L, Angeloni E, Da Pozzo E, Tremolanti C, De Felice M, Giacomelli C, Marchetti L, Muscatello B, Barresi E, Taliani S, Da Settimo Passetti F, Trincavelli ML, Martini C, Costa B. 18 kDa TSPO targeting drives polarized human microglia towards a protective and restorative neurosteroidome profile. Cell Mol Life Sci 2025; 82:34. [PMID: 39757281 DOI: 10.1007/s00018-024-05544-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/30/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025]
Abstract
An aberrant pro-inflammatory microglia response has been associated with most neurodegenerative disorders. Identifying microglia druggable checkpoints to restore their physiological functions is an emerging challenge. Recent data have shown that microglia produce de novo neurosteroids, endogenous molecules exerting potent anti-inflammatory activity. Here, the role of neurosteroidogenesis in the modulation of microgliosis was explored in human microglia cells. In particular, CYP11A1 inhibition or TSPO pharmacological stimulation, crucial proteins involved in the rate limiting step of the neurosteroidogenic cascade, were employed. CYP11A1 inhibition led microglia to acquire a dysfunctional and hyperreactive phenotype, while selective TSPO ligands promoted the establishment of an anti-inflammatory one. Analysis of specific neurosteroid levels (neurosteroidome) identified allopregnanolone/pregnanolone as crucial metabolites allowing controlled activation of microglia. Importantly, the neurosteroid shift towards a greater androgenic/estrogenic profile supported the transition from pro-inflammatory to neuroprotective microglia, suggesting the therapeutic potential of de novo microglial neurosteroidogenesis stimulation for neuroinflammatory-related disorders.
Collapse
Affiliation(s)
- Lorenzo Germelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Elisa Angeloni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy.
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy.
| | - Chiara Tremolanti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Martina De Felice
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Chiara Giacomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Laura Marchetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Beatrice Muscatello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Federico Da Settimo Passetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Maria Letizia Trincavelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| |
Collapse
|
2
|
Lian X, Bai Y, Du P, Jing Z, Gao J, Liu F, Hu J, Xi Y. Causal influences of testosterone on brain structure change rate: A sex-stratified Mendelian randomization study. J Steroid Biochem Mol Biol 2025; 245:106629. [PMID: 39481491 DOI: 10.1016/j.jsbmb.2024.106629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
The impact of testosterone levels on changes in brain structure has been reported. However, it is still unclear which specific brain region could be affected. This study approached Mendelian randomization method to reveal the causal relationship between testosterone levels and the rate of longitudinal structural changes in the brain. The testosterone-related GWAS data were determined from 425,097 European participants. The GWAS data on the rate of longitudinal structural changes in the brain came from the ENIGMA consortium, which included 15,640 all-age participants from 40 longitudinal cohorts. The inverse variance weighted was considered as the main estimate, MR Egger and weighted median methods were used to supplement IVW. A positive correlation was found between total testosterone levels and bioavailable testosterone levels in women and age-independent longitudinal changes in cerebral WM and surface area. The sex hormone-binding globulin levels were found a negative correlation with age-dependent longitudinal structural changes of cortical GM in men. Additionally, we also found that the bioavailable testosterone level in males was negatively associated with the quadratic age-dependent longitudinal change rate in the globus pallidum. We also found estradiol levels and sex hormone-binding globulin levels were negatively associated with the quadratic age-dependent longitudinal change rate of total brain in men. Moreover, we found a positive correlation between total testosterone levels and linear age-dependent longitudinal changes in the hippocampus in both males and females. The testosterone levels in different genders may have varying degrees of causal effects on the structural changes of brain regions. These findings provide evidence for the influence of the brain glandular axis on brain structure, particularly during female brain development.
Collapse
Affiliation(s)
- Xin Lian
- Department of Obstetrics and Gynecology, People's Hospital of Linyi County, Yuncheng Central Hospital of Shanxi Medical University, 1125 Fuxi Street, Yuncheng 044100, China
| | - Yaqi Bai
- School of Clinical Medicine, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030000, China
| | - Pengyang Du
- Department of Neurology, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China
| | - Zhinan Jing
- School of Clinical Medicine, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030000, China
| | - Jimi Gao
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China
| | - Fan Liu
- Department of Neurology, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China
| | - Jingjing Hu
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China.
| | - Yujia Xi
- Department of Urology, Second Hospital of Shanxi Medical University, Male Reproductive Medicine Center, 382 Wuyi Road, Taiyuan 030001, China.
| |
Collapse
|
3
|
Nesbitt C, Van Der Walt A, Butzkueven H, Cheung AS, Jokubaitis VG. Exploring the role of sex hormones and gender diversity in multiple sclerosis. Nat Rev Neurol 2025; 21:48-62. [PMID: 39658653 DOI: 10.1038/s41582-024-01042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 12/12/2024]
Abstract
Sex and sex hormones are thought to influence multiple sclerosis (MS) through effects on inflammation, myelination and neurodegeneration, and exogenous hormones have been explored for their therapeutic potential. However, our understanding of how sex hormones influence MS disease processes and outcomes remains incomplete. Furthermore, our current knowledge is derived primarily from studies that focus exclusively on cisgender populations with exclusion of gender-diverse people. Gender-affirming hormone therapy comprising exogenous sex hormones or sex hormone blocking agents are commonly used by transgender and gender-diverse individuals, and it could influence MS risk and outcomes at various stages of disease. A better understanding of the impact and potential therapeutic effects of both endogenous and exogenous sex hormones in MS is needed to improve care and outcomes for cisgender individuals and, moreover, for gender-diverse populations wherein an evidence base does not exist. In this Perspective, we discuss the effects of endogenous and exogenous sex hormones in MS, including their potential therapeutic benefits, and examine both established sex-based dimorphisms and the potential for gender-diverse dimorphisms. We advocate for future research that includes gender-diverse people to enhance our knowledge of the interplay of sex and sex hormones in MS, leading to the development of more effective and inclusive treatment strategies and improvement of care for all individuals with MS.
Collapse
Affiliation(s)
- Cassie Nesbitt
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia.
- Multiple Sclerosis and Neuroimmunology Clinic, Alfred Health, Melbourne, Victoria, Australia.
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.
| | - Anneke Van Der Walt
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Multiple Sclerosis and Neuroimmunology Clinic, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Multiple Sclerosis and Neuroimmunology Clinic, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Ada S Cheung
- Trans Health Research Group, Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
- Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Vilija G Jokubaitis
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia.
- Multiple Sclerosis and Neuroimmunology Clinic, Alfred Health, Melbourne, Victoria, Australia.
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
González-Gil A, Sánchez-Maldonado B, Rojo C, Flor-García M, Queiroga FL, Ovalle S, Ramos-Ruiz R, Fuertes-Recuero M, Picazo RA. Proneurogenic actions of follicle-stimulating hormone on neurospheres derived from ovarian cortical cells in vitro. BMC Vet Res 2024; 20:372. [PMID: 39160565 PMCID: PMC11334536 DOI: 10.1186/s12917-024-04203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Neural stem and progenitor cells (NSPCs) from extra-neural origin represent a valuable tool for autologous cell therapy and research in neurogenesis. Identification of proneurogenic biomolecules on NSPCs would improve the success of cell therapies for neurodegenerative diseases. Preliminary data suggested that follicle-stimulating hormone (FSH) might act in this fashion. This study was aimed to elucidate whether FSH promotes development, self-renewal, and is proneurogenic on neurospheres (NS) derived from sheep ovarian cortical cells (OCCs). Two culture strategies were carried out: (a) long-term, 21-days NS culture (control vs. FSH group) with NS morphometric evaluation, gene expression analyses of stemness and lineage markers, and immunolocalization of NSPCs antigens; (b) NS assay to demonstrate FSH actions on self-renewal and differentiation capacity of NS cultured with one of three defined media: M1: positive control with EGF/FGF2; M2: control; and M3: M2 supplemented with FSH. RESULTS In long-term cultures, FSH increased NS diameters with respect to control group (302.90 ± 25.20 μm vs. 183.20 ± 7.63 on day 9, respectively), upregulated nestin (days 15/21), Sox2 (day 21) and Pax6 (days 15/21) and increased the percentages of cells immunolocalizing these proteins. During NS assays, FSH stimulated NSCPs proliferation, and self-renewal, increasing NS diameters during the two expansion periods and the expression of the neuron precursor transcript DCX during the second one. In the FSH-group there were more frequent cell-bridges among neighbouring NS. CONCLUSIONS FSH is a proneurogenic hormone that promotes OCC-NSPCs self-renewal and NS development. Future studies will be necessary to support the proneurogenic actions of FSH and its potential use in basic and applied research related to cell therapy.
Collapse
Affiliation(s)
- Alfredo González-Gil
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro SN, Madrid, 28040, Spain.
| | - Belén Sánchez-Maldonado
- Department of Animal Medicine and Surgery, School of Veterinary Medicine, Complutense University of Madrid, Madrid, 28040, Spain
| | - Concepción Rojo
- Department of Anatomy and Embriology, School of Veterinary Medicine, University Complutense of Madrid, Madrid, 28040, Spain
| | - Miguel Flor-García
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Felisbina Luisa Queiroga
- Centre for the Study of Animal Science, CECA-ICETA, University of Porto, Porto, Portugal.
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Quinta dos Prados, Vila Real, 5000-801, Portugal.
| | - Susana Ovalle
- Genomic Unit Cantoblanco, Fundación Parque Científico de Madrid. C/ Faraday 7, Madrid, 28049, Spain
| | - Ricardo Ramos-Ruiz
- Genomic Unit Cantoblanco, Fundación Parque Científico de Madrid. C/ Faraday 7, Madrid, 28049, Spain
| | - Manuel Fuertes-Recuero
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro SN, Madrid, 28040, Spain
| | - Rosa Ana Picazo
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro SN, Madrid, 28040, Spain
| |
Collapse
|
5
|
Barrón-González M, Rivera-Antonio AM, Jarillo-Luna RA, Santiago-Quintana JM, Levaro-Loquio D, Pérez-Capistran T, Guerra-Araiza CH, Soriano-Ursúa MA, Farfán-García ED. Borolatonin limits cognitive deficit and neuron loss while increasing proBDNF in ovariectomised rats. Fundam Clin Pharmacol 2024; 38:730-741. [PMID: 38423984 DOI: 10.1111/fcp.12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Borolatonin is a potential therapeutic agent for some neuronal diseases such as Alzheimer's disease (AD). Its administration exerts ameliorative effects such as those induced by the equimolar administration of melatonin in behavioral tests on male rats and in neuronal immunohistochemistry assays. OBJECTIVE In this study, motivated by sex differences in neurobiology and the incidence of AD, the ability of borolatonin to induce changes in female rats was assessed. METHODS Effects of borolatonin were measured by the evaluation of both behavioral and immunohistopathologic approaches; additionally, its ability to limit amyloid toxicity was determined in vitro. RESULTS Surprisingly, behavioral changes were similar to those reported in male rats, but not those evaluated by immunoassays regarding neuronal survival; while pro-brain-derived neurotrophic factor (BDNF) immunoreactivity and the limitation of toxicity by amyloid in vitro were observed for the first time. CONCLUSION Borolatonin administration induced changes in female rats. Differences induced by the administration of borolatonin or melatonin could be related to the differences in the production of steroid hormones in sex dependence. Further studies are required to clarify the possible mechanism and origin of differences in disturbed memory caused by the gonadectomy procedure between male and female rats.
Collapse
Affiliation(s)
- Mónica Barrón-González
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Astrid M Rivera-Antonio
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, ESM-IPN, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Rosa A Jarillo-Luna
- Laboratorio de Morfología, Sección de Estudios de Posgrado e Investigación, ESM-IPN, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - José M Santiago-Quintana
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - David Levaro-Loquio
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Teresa Pérez-Capistran
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Christian H Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México, Mexico
| | - Marvin A Soriano-Ursúa
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Eunice D Farfán-García
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| |
Collapse
|
6
|
Kritzer MF, Adler A, Locklear M. Androgen effects on mesoprefrontal dopamine systems in the adult male brain. Neuroscience 2024:S0306-4522(24)00306-3. [PMID: 38977069 DOI: 10.1016/j.neuroscience.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Epidemiological data show that males are more often and/or more severely affected by symptoms of prefrontal cortical dysfunction in schizophrenia, Parkinson's disease and other disorders in which dopamine circuits associated with the prefrontal cortex are dysregulated. This review focuses on research showing that these dopamine circuits are powerfully regulated by androgens. It begins with a brief overview of the sex differences that distinguish prefrontal function in health and prefrontal dysfunction or decline in aging and/or neuropsychiatric disease. This review article then spotlights data from human subjects and animal models that specifically identify androgens as potent modulators of prefrontal cortical operations and of closely related, functionally critical measures of prefrontal dopamine level or tone. Candidate mechanisms by which androgens dynamically control mesoprefrontal dopamine systems and impact prefrontal states of hypo- and hyper-dopaminergia in aging and disease are then considered. This is followed by discussion of a working model that identifies a key locus for androgen modulation of mesoprefrontal dopamine systems as residing within the prefrontal cortex itself. The last sections of this review critically consider the ways in which the organization and regulation of mesoprefrontal dopamine circuits differ in the adult male and female brain, and highlights gaps where more research is needed.
Collapse
Affiliation(s)
- Mary F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, United States.
| | - Alexander Adler
- Department of Oncology and Immuno-Oncology, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States
| | | |
Collapse
|
7
|
Hussain G, Akram R, Anwar H, Sajid F, Iman T, Han HS, Raza C, De Aguilar JLG. Adult neurogenesis: a real hope or a delusion? Neural Regen Res 2024; 19:6-15. [PMID: 37488837 PMCID: PMC10479850 DOI: 10.4103/1673-5374.375317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/27/2023] [Accepted: 04/10/2023] [Indexed: 07/26/2023] Open
Abstract
Adult neurogenesis, the process of creating new neurons, involves the coordinated division, migration, and differentiation of neural stem cells. This process is restricted to neurogenic niches located in two distinct areas of the brain: the subgranular zone of the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricle, where new neurons are generated and then migrate to the olfactory bulb. Neurogenesis has been thought to occur only during the embryonic and early postnatal stages and to decline with age due to a continuous depletion of neural stem cells. Interestingly, recent years have seen tremendous progress in our understanding of adult brain neurogenesis, bridging the knowledge gap between embryonic and adult neurogenesis. Here, we discuss the current status of adult brain neurogenesis in light of what we know about neural stem cells. In this notion, we talk about the importance of intracellular signaling molecules in mobilizing endogenous neural stem cell proliferation. Based on the current understanding, we can declare that these molecules play a role in targeting neurogenesis in the mature brain. However, to achieve this goal, we need to avoid the undesired proliferation of neural stem cells by controlling the necessary checkpoints, which can lead to tumorigenesis and prove to be a curse instead of a blessing or hope.
Collapse
Affiliation(s)
- Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Rabia Akram
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Haseeb Anwar
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Faiqa Sajid
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Tehreem Iman
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Hyung Soo Han
- Department of Physiology, School of Medicine, Clinical Omics Institute, Kyungpook National University, Daegu, Korea
| | - Chand Raza
- Department of Zoology, Faculty of Chemistry and Life Sciences, Government College University, Lahore, Pakistan
| | - Jose-Luis Gonzalez De Aguilar
- INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence, Strasbourg, France, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
8
|
Palamarchuk IS, Slavich GM, Vaillancourt T, Rajji TK. Stress-related cellular pathophysiology as a crosstalk risk factor for neurocognitive and psychiatric disorders. BMC Neurosci 2023; 24:65. [PMID: 38087196 PMCID: PMC10714507 DOI: 10.1186/s12868-023-00831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
In this narrative review, we examine biological processes linking psychological stress and cognition, with a focus on how psychological stress can activate multiple neurobiological mechanisms that drive cognitive decline and behavioral change. First, we describe the general neurobiology of the stress response to define neurocognitive stress reactivity. Second, we review aspects of epigenetic regulation, synaptic transmission, sex hormones, photoperiodic plasticity, and psychoneuroimmunological processes that can contribute to cognitive decline and neuropsychiatric conditions. Third, we explain mechanistic processes linking the stress response and neuropathology. Fourth, we discuss molecular nuances such as an interplay between kinases and proteins, as well as differential role of sex hormones, that can increase vulnerability to cognitive and emotional dysregulation following stress. Finally, we explicate several testable hypotheses for stress, neurocognitive, and neuropsychiatric research. Together, this work highlights how stress processes alter neurophysiology on multiple levels to increase individuals' risk for neurocognitive and psychiatric disorders, and points toward novel therapeutic targets for mitigating these effects. The resulting models can thus advance dementia and mental health research, and translational neuroscience, with an eye toward clinical application in cognitive and behavioral neurology, and psychiatry.
Collapse
Affiliation(s)
- Iryna S Palamarchuk
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Sunnybrook Health Sciences Centre, Division of Neurology, Toronto, ON, Canada.
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada.
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Kraemer RR, Kraemer BR. The effects of peripheral hormone responses to exercise on adult hippocampal neurogenesis. Front Endocrinol (Lausanne) 2023; 14:1202349. [PMID: 38084331 PMCID: PMC10710532 DOI: 10.3389/fendo.2023.1202349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
Over the last decade, a considerable amount of new data have revealed the beneficial effects of exercise on hippocampal neurogenesis and the maintenance or improvement of cognitive function. Investigations with animal models, as well as human studies, have yielded novel understanding of the mechanisms through which endocrine signaling can stimulate neurogenesis, as well as the effects of exercise on acute and/or chronic levels of these circulating hormones. Considering the effects of aging on the decline of specific endocrine factors that affect brain health, insights in this area of research are particularly important. In this review, we discuss how different forms of exercise influence the peripheral production of specific endocrine factors, with particular emphasis on brain-derived neurotrophic factor, growth hormone, insulin-like growth factor-1, ghrelin, estrogen, testosterone, irisin, vascular endothelial growth factor, erythropoietin, and cortisol. We also describe mechanisms through which these endocrine responses to exercise induce cellular changes that increase hippocampal neurogenesis and improve cognitive function.
Collapse
Affiliation(s)
- Robert R. Kraemer
- Department of Kinesiology and Health Studies, Southeastern Louisiana University, Hammond, LA, United States
| | - Bradley R. Kraemer
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, United States
| |
Collapse
|
10
|
Michalik K, Smolarek M, Borkowski J, Tchorowski M, Korczuk N, Gorczyca P, Wojtarowicz N, Zatoń M. Changes in Reaction Time, Balance and Neuroplasticity after Exercise with a Face Mask in Male Adults with Mild COVID-19 Symptoms. Healthcare (Basel) 2023; 11:2800. [PMID: 37893874 PMCID: PMC10606898 DOI: 10.3390/healthcare11202800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
This study compared physiological, perceptual and neuroprotective hormone and metabolite responses and changes in coordination as an effect of aerobic exercise with and without a face mask in people with mild symptoms of COVID-19. Forty men took part in this study. Half declared mild symptoms of SARS-CoV-2 infection in the 6 months before the study (Declared) and the other half did not (Non-declared). In a random order, with a 7-day interval, they performed a 30-min walk on a treadmill at a speed of 6 km/h wearing a surgical face mask (Masked) and without it (Unmasked). The heart rate, heart rate variability, oxygen saturation, lactate concentration and rate of perceived exertion were recorded. The reaction time and balance were measured before and after the exercise. The concentrations of brain-derived neurotrophic factor, testosterone, cortisol, epinephrine and antibodies in the blood serum were determined. Physiological and perceptual responses, reaction times, and balance did not differ between the tested conditions. Three-way RM-ANOVA with post hoc Bonferroni analysis revealed lower post-exercise cortisol concentrations in the Masked and Unmasked conditions in both groups (p ≤ 0.001). Asymptomatic infection with this virus is prevalent, and mild COVID-19 causes similar responses to aerobic exercise with a surgical face mask and does not lead to impaired coordination.
Collapse
Affiliation(s)
- Kamil Michalik
- Department of Human Motor Skills, Faculty of Physical Education and Sport, Wroclaw University of Health and Sport Sciences, 51-612 Wrocław, Poland;
| | - Marcin Smolarek
- Department of Human Motor Skills, Faculty of Physical Education and Sport, Wroclaw University of Health and Sport Sciences, 51-612 Wrocław, Poland;
| | - Jacek Borkowski
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, Wroclaw University of Health and Sport Sciences, 51-612 Wrocław, Poland; (J.B.); (M.Z.)
| | - Miłosz Tchorowski
- Students Scientific Association Exercise Physiology, Faculty of Physical Education and Sport, Wroclaw University of Health and Sport Sciences, 51-612 Wrocław, Poland; (M.T.); (N.K.); (P.G.); (N.W.)
| | - Natalia Korczuk
- Students Scientific Association Exercise Physiology, Faculty of Physical Education and Sport, Wroclaw University of Health and Sport Sciences, 51-612 Wrocław, Poland; (M.T.); (N.K.); (P.G.); (N.W.)
| | - Piotr Gorczyca
- Students Scientific Association Exercise Physiology, Faculty of Physical Education and Sport, Wroclaw University of Health and Sport Sciences, 51-612 Wrocław, Poland; (M.T.); (N.K.); (P.G.); (N.W.)
| | - Natalia Wojtarowicz
- Students Scientific Association Exercise Physiology, Faculty of Physical Education and Sport, Wroclaw University of Health and Sport Sciences, 51-612 Wrocław, Poland; (M.T.); (N.K.); (P.G.); (N.W.)
| | - Marek Zatoń
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, Wroclaw University of Health and Sport Sciences, 51-612 Wrocław, Poland; (J.B.); (M.Z.)
| |
Collapse
|
11
|
Sivcev S, Kudova E, Zemkova H. Neurosteroids as positive and negative allosteric modulators of ligand-gated ion channels: P2X receptor perspective. Neuropharmacology 2023; 234:109542. [PMID: 37040816 DOI: 10.1016/j.neuropharm.2023.109542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/06/2023] [Accepted: 04/07/2023] [Indexed: 04/13/2023]
Abstract
Neurosteroids are steroids synthesized de novo in the brain from cholesterol in an independent manner from peripheral steroid sources. The term "neuroactive steroid" includes all steroids independent of their origin, and newly synthesized analogs of neurosteroids that modify neuronal activities. In vivo application of neuroactive steroids induces potent anxiolytic, antidepressant, anticonvulsant, sedative, analgesic and amnesic effects, mainly through interaction with the γ-aminobutyric acid type-A receptor (GABAAR). However, neuroactive steroids also act as positive or negative allosteric regulators on several ligand-gated channels including N-methyl-d-aspartate receptors (NMDARs), nicotinic acetylcholine receptors (nAChRs) and ATP-gated purinergic P2X receptors. Seven different P2X subunits (P2X1-7) can assemble to form homotrimeric or heterotrimeric ion channels permeable for monovalent cations and calcium. Among them, P2X2, P2X4, and P2X7 are the most abundant within the brain and can be regulated by neurosteroids. Transmembrane domains are necessary for neurosteroid binding, however, no generic motif of amino acids can accurately predict the neurosteroid binding site for any of the ligand-gated ion channels including P2X. Here, we will review what is currently known about the modulation of rat and human P2X by neuroactive steroids and the possible structural determinants underlying neurosteroid-induced potentiation and inhibition of the P2X2 and P2X4 receptors.
Collapse
Affiliation(s)
- Sonja Sivcev
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Zemkova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
12
|
Willson C. Misadventures in Toxicology: Concentration Matters for Testosterone-Induced Neurotoxicity. TOXICS 2023; 11:258. [PMID: 36977023 PMCID: PMC10057866 DOI: 10.3390/toxics11030258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Testosterone is the predominant androgen in men and has important physiological functions. Due to declining testosterone levels from a variety of causes, testosterone replacement therapy (TRT) is increasingly utilized, while testosterone is also abused for aesthetic and performance-enhancing purposes. It has been increasingly speculated that aside from more well-established side effects, testosterone may cause neurological damage. However, the in vitro data utilized to support such claims is limited due to the high concentrations used, lack of consideration of tissue distribution, and species differences in sensitivity to testosterone. In most cases, the concentrations studied in vitro are unlikely to be reached in the human brain. Observational data in humans concerning the potential for deleterious changes in brain structure and function are limited by their inherent design as well as significant potential confounders. More research is needed as the currently available data are limited; however, what is available provides rather weak evidence to suggest that testosterone use or abuse has neurotoxic potential in humans.
Collapse
Affiliation(s)
- Cyril Willson
- EuSci LLC, 1309 S 204th St, #293, Elkhorn, NE 68022, USA
| |
Collapse
|
13
|
Vasenina EE. [Gender characteristics of anxiety disorders]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:48-53. [PMID: 37966439 DOI: 10.17116/jnevro202312310148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Anxiety and depression are an extremely significant issue of the modern society. According to the epidemiological data, the development of various affective syndromes shows gender-related differences. For example, clinically significant anxiety occurs 2.5 times more often in women than in men. Anxiety disorders in women are characterized by less favorable course, a tendency to relapses and chronification, and also by poor clinical response to therapy. Taking gender differences into account, a significant role of reproductive hormones may be assumed in development of both affective disorders and the features of the course of the disease. In this review we discuss various effects of testosterone, estrogens that can influence development risks of anxiety and depression, as well as possibly influence therapeutic choices.
Collapse
Affiliation(s)
- E E Vasenina
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
14
|
Anderson DJ, Vazirnia P, Loehr C, Sternfels W, Hasoon J, Viswanath O, Kaye AD, Urits I. Testosterone Replacement Therapy in the Treatment of Depression. Health Psychol Res 2022; 10:38956. [PMID: 36452903 PMCID: PMC9704723 DOI: 10.52965/001c.38956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Depression is a common disorder that affects millions globally and is linked to reduced quality of life and mortality. Its pathophysiology is complex and there are several forms of treatment proposed in the literature with differing side effect profiles. Many patients do not respond to treatment which warrants augmentation with other treatments and the investigation of novel treatments. One of these treatments includes testosterone therapy which evidence suggests might improve depressed mood in older patients with low levels of testosterone and helps restore physical impairments caused by age-related hormonal changes. OBJECTIVE The objective of this review is to synthesize information regarding clinical depression, its treatment options, and the efficacy and safety of testosterone treatment for the treatment of depression. METHODS This review utilized comprehensive secondary and tertiary data analysis across many academic databases and published work pertaining to the topic of interest. RESULTS Within some subpopulations such as men with dysthymic disorder, treatment resistant depression, or low testosterone levels, testosterone administration yielded positive results in the treatment of depression. Additionally, rodent models have shown that administering testosterone to gonadectomized male animals reduces symptoms of depression. Conversely, some studies have found no difference in depressive symptoms after treatment with testosterone when compared with placebo. It was also noted that over administration of testosterone is associated with multiple adverse effects and complications. CONCLUSION The current evidence provides mixed conclusions on the effectiveness of testosterone therapy for treating depression. More research is needed in adult men to see if declining testosterone levels directly influence the development of depression.
Collapse
Affiliation(s)
| | | | - Catherine Loehr
- School of Medicine, Louisiana State University Health Sciences Center
| | - Whitney Sternfels
- School of Medicine, Louisiana State University Health Sciences Center
| | - Jamal Hasoon
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Omar Viswanath
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School; Valley Anesthesiology and Pain Consultants, Envision Physician Services; Department of Anesthesiology, University of Arizona College of Medicine Phoenix; Department of Anesthesiology, Creighton University School of Medicine
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center
| | - Ivan Urits
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School; Department of Anesthesiology, Louisiana State University Health Shreveport
| |
Collapse
|
15
|
Karolczak K, Kostanek J, Soltysik B, Konieczna L, Baczek T, Kostka T, Watala C. Relationships between Plasma Concentrations of Testosterone and Dihydrotestosterone and Geriatric Depression Scale Scores in Men and Women Aged 60-65 Years-A Multivariate Approach with the Use of Quade's Test. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12507. [PMID: 36231806 PMCID: PMC9566053 DOI: 10.3390/ijerph191912507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The potential role of testosterone and dihydrotestosterone in the pathogenesis of depression in older subjects is poorly recognized and understood. The current study examines the symptoms of depression in males and females at the age of 60-65 using a short version (15 questions) of the Geriatric Depression Scale (GDS) questionnaire. Blood plasma levels of androgens were estimated by LC/MS/MS. Total GDS score calculated for males were not found to be significantly associated with plasma levels of testosterone or dihydrotestosterone. Older men with higher plasma testosteronemia were more likely to report being in good spirits most of the time, but more willing to stay at home than undertake outside activities. The men with higher plasma levels of dihydrotestosterone also perceived themselves as being in good spirits most of the time. Older men with higher testosterone were more likely to report having more problems with their memory than others. No significant associations were found between plasma levels of androgens and GDS scores in older women; however, some tendencies suggest that testosterone and dihydrotestosterone may act as antidepressants in older women.
Collapse
Affiliation(s)
- Kamil Karolczak
- Department of Haemostatic Disorders, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Joanna Kostanek
- Department of Haemostatic Disorders, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Bartlomiej Soltysik
- Department of Geriatrics, Healthy Aging Research Center (HARC), Medical University of Lodz, pl. Hallera 1, 90-647 Lodz, Poland
| | - Lucyna Konieczna
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, ul. Hallera 107, 80-416 Gdańsk, Poland
| | - Tomasz Baczek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, ul. Hallera 107, 80-416 Gdańsk, Poland
| | - Tomasz Kostka
- Department of Geriatrics, Healthy Aging Research Center (HARC), Medical University of Lodz, pl. Hallera 1, 90-647 Lodz, Poland
| | - Cezary Watala
- Department of Haemostatic Disorders, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland
| |
Collapse
|
16
|
Saleki K, Banazadeh M, Saghazadeh A, Rezaei N. Aging, testosterone, and neuroplasticity: friend or foe? Rev Neurosci 2022; 34:247-273. [PMID: 36017670 DOI: 10.1515/revneuro-2022-0033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/03/2022] [Indexed: 11/15/2022]
Abstract
Neuroplasticity or neural plasticity implicates the adaptive potential of the brain in response to extrinsic and intrinsic stimuli. The concept has been utilized in different contexts such as injury and neurological disease. Neuroplasticity mechanisms have been classified into neuroregenerative and function-restoring processes. In the context of injury, neuroplasticity has been defined in three post-injury epochs. Testosterone plays a key yet double-edged role in the regulation of several neuroplasticity alterations. Research has shown that testosterone levels are affected by numerous factors such as age, stress, surgical procedures on gonads, and pharmacological treatments. There is an ongoing debate for testosterone replacement therapy (TRT) in aging men; however, TRT is more useful in young individuals with testosterone deficit and more specific subgroups with cognitive dysfunction. Therefore, it is important to pay early attention to testosterone profile and precisely uncover its harms and benefits. In the present review, we discuss the influence of environmental factors, aging, and gender on testosterone-associated alterations in neuroplasticity, as well as the two-sided actions of testosterone in the nervous system. Finally, we provide practical insights for further study of pharmacological treatments for hormonal disorders focusing on restoring neuroplasticity.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, 47176 47745 Babol, Iran.,USERN Office, Babol University of Medical Sciences, 47176 47745 Babol, Iran.,Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran
| | - Mohammad Banazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran.,Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, 76169 13555 Kerman, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14197 33151 Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14197 33151 Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 14176 13151 Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran
| |
Collapse
|
17
|
Farfán-García ED, Rosales-Hernández MC, Castillo-García EL, Abad-García A, Ruiz-Maciel O, Velasco-Silveyra LM, González-Muñiz AY, Andrade-Jorge E, Soriano-Ursúa MA. Identification and evaluation of boronic compounds ameliorating cognitive deficit in orchiectomized rats. J Trace Elem Med Biol 2022; 72:126979. [PMID: 35364473 DOI: 10.1016/j.jtemb.2022.126979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Boron is a trace element with increasing importance in drug design. In this sense, boronic acids are emerging as therapeutic agents for several diseases. METHODS Herein, 3- and 4- acetamidophenylboronic acids and 4-acetamidophenylboronic acid pinacol ester were identified as potential inhibitors of acetylcholinesterase through docking assays on eel, rat, and human acetylcholinesterases indicating binding on the gorge region of the target enzymes. Then, these compounds were evaluated in vitro and in vivo. RESULTS It was found these compounds showed ability to inhibit acetylcholinesterase as competitive and non-competitive inhibitors. But also, these compounds were non-toxic to PC12 cells at micromolar concentration, and they have the ability to protect those cells against damage by amyloid-beta. CONCLUSIONS Noticeably, intraperitoneal administration of these boronic compounds to rats with the cognitive deficit induced by orchiectomy provided ameliorative effects on disrupted behavior and neuronal damage induced by hormonal deprivation. Additional approaches are required to evaluate the possibility of multiple mechanisms of action for the observed effects in the central nervous system.
Collapse
Affiliation(s)
- Eunice D Farfán-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México City, México.
| | - Martha C Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis. Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México City, México
| | - Emily L Castillo-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México City, México
| | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México City, México
| | - Omar Ruiz-Maciel
- Departamento de Bioquímica y Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México City, México
| | - Luz M Velasco-Silveyra
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México City, México
| | - Alejandra Y González-Muñiz
- Laboratorio de Biofísica y Biocatálisis. Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México City, México
| | - Erik Andrade-Jorge
- Departamento de Bioquímica y Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México City, México
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México City, México.
| |
Collapse
|
18
|
Li Q, Zhang L, Zhang Z, Wang Y, Zuo C, Bo S. A Shorter-Bout of HIIT Is More Effective to Promote Serum BDNF and VEGF-A Levels and Improve Cognitive Function in Healthy Young Men. Front Physiol 2022; 13:898603. [PMID: 35846013 PMCID: PMC9277476 DOI: 10.3389/fphys.2022.898603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: The aim of this study was to investigate the effects of single bouts of high-intensity interval training (HIIT) with different duration on serum brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor-A (VEGF-A) levels and cognitive function in healthy young men. Methods: Twelve healthy young men were participated in two HIIT treatments (20 min HIIT and 30 min HIIT) in a random order. BDNF, VEGF-A, cortisol, testosterone, blood lactic acid were measured and cognitive function was assessed by Stroop test (CWST) and Digital Span test (DST) before, immediately after, and 30 min after HIIT. Results: 20 and 30 min HIIT increased BLa (both p < 0.01), cortisol (20 min HIIT: p < 0.05; 30 min HIIT: p < 0.01), and testosterone (both p < 0.05) levels immediately when compared with their baselines. While BLa and cortisol were significantly higher in 30 min HIIT group than in 20 min HIIT group. Moreover, BDNF concentration (p < 0.01), DST-F (p < 0.01) and DST-B (p < 0.05) were increased and response time of Stroop was decreased immediately after HIIT only in 20 min HIIT group. VEGF-A concentration was increased immediately after HIIT in both groups (p < 0.01), but after 30 min recovery, it was returned to the baseline in the 20 min HIIT group and was lower than the baseline in 30 min HIIT group (p < 0.05). Conclusion: Twenty minutes HIIT is more effective than 30 minutes HIIT for promoting serum levels of BDNF and VEGF-A as well as cognitive function in healthy young men.
Collapse
Affiliation(s)
- Qing Li
- College of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Li Zhang
- College of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Zhengguo Zhang
- College of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Yuhan Wang
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Chongwen Zuo
- College of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Shumin Bo
- College of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
- *Correspondence: Shumin Bo,
| |
Collapse
|
19
|
Evaluation of the effect of nicotine and O-acetyl-L-carnitine on testosterone-induced spatial learning impairment in Morris water maze and assessment of protein markers. LEARNING AND MOTIVATION 2022. [DOI: 10.1016/j.lmot.2022.101810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Muthu SJ, Lakshmanan G, Seppan P. Influence of Testosterone depletion on Neurotrophin-4 in Hippocampal synaptic plasticity and its effects on learning and memory. Dev Neurosci 2022; 44:102-112. [PMID: 35086088 DOI: 10.1159/000522201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/22/2022] [Indexed: 11/19/2022] Open
Abstract
Sex steroids are neuromodulators that play a crucial role in learning, memory, and synaptic plasticity, providing circuit flexibility and dynamic functional connectivity in mammals. Previous studies indicate that testosterone is crucial for neuronal functions and required further investigation on various frontiers. However, it is surprising to note that studies on testosterone-induced NT-4 expression and its influence on synaptic plasticity and learning and memory moderation are scanty. The present study is focused on analyzing the localized influence of neurotrophin-4 (NT4) on hippocampal synaptic plasticity and associated moderation in learning and memory under testosterone deprivation. Adult Wistar albino rats were randomly divided into various groups, control (Cont), orchidectomy (ORX), orchidectomy + testosterone supplementation (ORX+T) and control + testosterone (Cont+T). After two weeks, the serum testosterone level was undetectable in ORX rats. The behavioural assessment showed a decline in the learning ability of ORX rats with increased working and reference memory errors in the behavioural assessment in the 8-arm radial maze. The mRNA and protein expressions of NT-4 and androgen receptors were significantly reduced in the ORX group. In addition, there was a decrease in the number of neuronal dendrites in Golgi-Cox staining. These changes were not seen in ORX+T rats with improved learning behaviour. Indicating that testosterone exerts its protective effect on hippocampal synaptic plasticity through androgen receptor-dependent neurotrophin-4 regulation in learning and memory upgrade.
Collapse
Affiliation(s)
- Sakthi Jothi Muthu
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Ganesh Lakshmanan
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Prakash Seppan
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| |
Collapse
|
21
|
Muthu SJ, Lakshmanan G, Shimray KW, Kaliyappan K, Sathyanathan SB, Seppan P. Testosterone Influence on Microtubule-Associated Proteins and Spine Density in Hippocampus: Implications on Learning and Memory. Dev Neurosci 2022; 44:498-507. [PMID: 35609517 DOI: 10.1159/000525038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022] Open
Abstract
The thorny protrusions or spines increase the neuronal surface area, facilitate synaptic interconnections among neurons, and play an essential role in the hippocampus. Increasing evidence suggests that testosterone, the gonadal hormone, plays an important role in neurogenesis and synaptic plasticity. The role of testosterone on microtubule-associated proteins on dendritic neurite stability in the hippocampus and its impact on learning disability is not elucidated. Adult male Wistar albino rats were randomly selected for the control, castrated, castrated + testosterone, and control + testosterone groups. Bilateral orchidectomy was done, and the testosterone propionate was administered during the entire trial period, i.e., 14 days. The learning assessments were done using working/reference memory versions of the 8-arm radial maze and hippocampal tissues processed for histological and protein expressions. There were reduced expressions of microtubule-associated protein 2 (MAP2), postsynaptic density protein 95 (PSD95), and androgen receptor (AR) and increased expression of pTau in the castrated group. Conversely, the expression of MAP2, PSD95, and AR was increased, and the pTau expression was reduced in the hippocampus of the castrated rat administrated with testosterone. Androgen-depleted rats showed impaired synaptic plasticity in the hippocampus associated with contracted microtubule dynamics. Along with learning disability, there was an increased number of reference memory errors and working memory errors in castrated rats. Observations suggest that androgen regulates expression of neural tissue-specific MAPs and plays a vital role in hippocampus synaptic plasticity and that a similar mechanism may underlie neurological disorders in aging and hypogonadal men.
Collapse
Affiliation(s)
- Sakthi Jothi Muthu
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | - Ganesh Lakshmanan
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | - Khayinmi Wungpam Shimray
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | - Kathiravan Kaliyappan
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | | | - Prakash Seppan
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| |
Collapse
|
22
|
Ysrraelit MC, Correale J. Impact of Andropause on Multiple Sclerosis. Front Neurol 2021; 12:766308. [PMID: 34803897 PMCID: PMC8602357 DOI: 10.3389/fneur.2021.766308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022] Open
Abstract
Andropause results from the natural decrease in testosterone levels that occurs with age. In contrast to menopause, which is a universal, well-characterized process associated with absolute gonadal failure, andropause ensues after gradual decline of both hypothalamic-pituitary-gonadal axis activity, as well as of testicular function, a process which usually develops over a period of many years. Increasing evidence on greater risk of Multiple sclerosis (MS) associated with lower testosterone levels is being reported. Likewise, epidemiological studies have shown a later age of onset of MS in men, relative to women, which could perhaps respond to the decline in protective testosterone levels. In this review, we will discuss the role of androgens in the development and function of the innate and adaptive immune response, as well as in neuroprotective mechanisms relevant to MS. Testosterone effects observed in different animal models and in epidemiological studies in humans will be discussed, as well as their correlation with physical disability and cognitive function levels. Finally, published and ongoing clinical trials exploring the role of androgens, particularly at key stages of sexual maturation, will be reviewed.
Collapse
Affiliation(s)
- Maria C Ysrraelit
- Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - Jorge Correale
- Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| |
Collapse
|
23
|
Saengmearnuparp T, Lojanapiwat B, Chattipakorn N, Chattipakorn S. The connection of 5-alpha reductase inhibitors to the development of depression. Biomed Pharmacother 2021; 143:112100. [PMID: 34479019 DOI: 10.1016/j.biopha.2021.112100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
Recent literature connects 5-alpha reductase inhibitors (5-ARIs) with neuropsychiatric adverse effects. Several clinical studies have indicated that former 5-ARIs users had a higher incidence of depressive symptoms and neuropsychiatric side effects than non-users. However, the underlying mechanisms involved in the depression in former 5-ARIs patients, a condition known as "post finasteride syndrome (PFS)", are not thoroughly understood. This review aims to summarize and discuss the association between 5-ARIs and depression as well as possible mechanisms. We used PubMed search terms including "depression", "depressive symptoms", "MDD", "anxiety", or "suicidal idea", and "5-alpha reductase inhibitors", "finasteride", "dutasteride", "5-ARIs". All relevant articles from in vivo and clinical studies from 2002 to 2021 were carefully reviewed. Any contradictory findings were included and debated. The potential mechanisms that link 5-ARIs and depression include alteration in neuroactive steroids, dopaminergic dysfunction, reduced hippocampal neurogenesis, increased neuroinflammation, alteration of the HPA axis, and epigenetic modifications. From this review, we hope to provide information for future studies based on animal experiments, and potential therapeutic strategies for depressive patients with PFS.
Collapse
Affiliation(s)
| | - Bannakij Lojanapiwat
- Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
24
|
Muhammad N, Lembede BW, Erlwanger KH. Neonatal zingerone protects against the development of high-fructose diet-induced metabolic syndrome in adult Sprague-Dawley rats. J Dev Orig Health Dis 2021; 12:671-679. [PMID: 32500848 DOI: 10.1017/s2040174420000525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During the early postnatal period, dietary manipulations can alter the developmental trajectory of the growing offspring, causing beneficial or adverse health outcomes later in adult life. We investigated the potential preventive effects of neonatal zingerone intake on the development of fructose-induced metabolic derangements in rats.Four-day old male and female Sprague-Dawley rat pups (n = 79) were randomly grouped and administered: 10 ml/kg body weight (bwt) of distilled water (W), 10 ml/kg bwt 20% fructose solution (FS), 10 ml/kg bwt fructose solution + 40 mg/kg bwt of zingerone in distilled water (ZF) or 40 mg/kg bwt of zingerone in distilled water (ZW) pre-weaning. After weaning, W and ZW continued on unlimited tap water, while FS and ZF continued on unlimited fructose solution for 10 weeks. Body mass and food and fluid intake were evaluated, plasma was collected for metabolic assays and visceral fat was quantified.Food intake was decreased, fructose and overall caloric intake were increased due to fructose feeding in both sexes (P < 0.05). When compared with the controls, the high-fructose diet significantly raised the terminal body masses of females (P < 0.0001), concentrations of triglycerides, total cholesterol, LDL-c, TG:HDL-c ratio and visceral fat mass relative to bwt in both sexes (P < 0.05). Zingerone prevented (P < 0.05) the fructose-induced increase in body mass (females) and hypercholesterolemia (both sexes). Levels of HDL-c, glycaemic parameters and adiponectin were not affected by the interventions (P > 0.05). Sex-related differences were observed in food, fluid and caloric intake, terminal mass, cholesterol subtypes and visceral fat percentage (P < 0.05).Zingerone could be used strategically in the neonatal phase as a prophylatic management of high-fructose diet-induced metabolic syndrome.
Collapse
Affiliation(s)
- N Muhammad
- School of Physiology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
- Department of Physiology, College of Health Sciences, Federal University Birnin Kebbi, Birnin Kebbi, Nigeria
| | - B W Lembede
- School of Physiology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - K H Erlwanger
- School of Physiology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
25
|
McEwan S, Kwon H, Tahiri A, Shanmugarajah N, Cai W, Ke J, Huang T, Belton A, Singh B, Wang L, Pang ZP, Dirice E, Engel EA, El Ouaamari A. Deconstructing the origins of sexual dimorphism in sensory modulation of pancreatic β cells. Mol Metab 2021; 53:101260. [PMID: 34023484 PMCID: PMC8258979 DOI: 10.1016/j.molmet.2021.101260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/29/2021] [Accepted: 05/17/2021] [Indexed: 01/02/2023] Open
Abstract
The regulation of glucose-stimulated insulin secretion and glucose excursion has a sensory component that operates in a sex-dependent manner. OBJECTIVE Here, we aim to dissect the basis of the sexually dimorphic interaction between sensory neurons and pancreatic β cells and its overall impact on insulin release and glucose homeostasis. METHODS We used viral retrograde tracing techniques, surgical and chemodenervation models, and primary cell-based co-culture systems to uncover the biology underlying sex differences in sensory modulation of pancreatic β-cell activity. RESULTS Retrograde transsynaptic labeling revealed a sex difference in the density of sensory innervation in the pancreas. The number of sensory neurons emanating from the dorsal root and nodose ganglia that project in the pancreas is higher in male than in female mice. Immunostaining and confocal laser scanning microscopy confirmed the higher abundance of peri-islet sensory axonal tracts in the male pancreas. Capsaicin-induced sensory chemodenervation concomitantly enhanced glucose-stimulated insulin secretion and glucose clearance in male mice. These metabolic benefits were blunted when mice were orchidectomized prior to the ablation of sensory nerves. Interestingly, orchidectomy also lowered the density of peri-islet sensory neurons. In female mice, capsaicin treatment did not affect glucose-induced insulin secretion nor glucose excursion and ovariectomy did not modify these outcomes. Interestingly, same- and opposite-sex sensory-islet co-culture paradigms unmasked the existence of potential gonadal hormone-independent mechanisms mediating the male-female difference in sensory modulation of islet β-cell activity. CONCLUSION Taken together, these data suggest that the sex-biased nature of the sensory control of islet β-cell activity is a result of a combination of neurodevelopmental inputs, sex hormone-dependent mechanisms and the potential action of somatic molecules encoded by the sex chromosome complement.
Collapse
Affiliation(s)
- Sara McEwan
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Hyokjoon Kwon
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Azeddine Tahiri
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Nivetha Shanmugarajah
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11568, USA
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11568, USA
| | - Jin Ke
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tianwen Huang
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ariana Belton
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Bhagat Singh
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Le Wang
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Zhiping P. Pang
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Ercument Dirice
- Department of Medicine and Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Esteban A. Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Abdelfattah El Ouaamari
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,Corresponding author. Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
26
|
Lyu Z, Ghoshdastidar S, Rekha KR, Suresh D, Mao J, Bivens N, Kannan R, Joshi T, Rosenfeld CS, Upendran A. Developmental exposure to silver nanoparticles leads to long term gut dysbiosis and neurobehavioral alterations. Sci Rep 2021; 11:6558. [PMID: 33753813 PMCID: PMC7985313 DOI: 10.1038/s41598-021-85919-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Due to their antimicrobial properties, silver nanoparticles (AgNPs) are used in a wide range of consumer products that includes topical wound dressings, coatings for biomedical devices, and food-packaging to extend the shelf-life. Despite their beneficial antimicrobial effects, developmental exposure to such AgNPs may lead to gut dysbiosis and long-term health consequences in exposed offspring. AgNPs can cross the placenta and blood–brain-barrier to translocate in the brain of offspring. The underlying hypothesis tested in the current study was that developmental exposure of male and female mice to AgNPs disrupts the microbiome–gut–brain axis. To examine for such effects, C57BL6 female mice were exposed orally to AgNPs at a dose of 3 mg/kg BW or vehicle control 2 weeks prior to breeding and throughout gestation. Male and female offspring were tested in various mazes that measure different behavioral domains, and the gut microbial profiles were surveyed from 30 through 120 days of age. Our study results suggest that developmental exposure results in increased likelihood of engaging in repetitive behaviors and reductions in resident microglial cells. Echo-MRI results indicate increased body fat in offspring exposed to AgNPs exhibit. Coprobacillus spp., Mucispirillum spp., and Bifidobacterium spp. were reduced, while Prevotella spp., Bacillus spp., Planococcaceae, Staphylococcus spp., Enterococcus spp., and Ruminococcus spp. were increased in those developmentally exposed to NPs. These bacterial changes were linked to behavioral and metabolic alterations. In conclusion, developmental exposure of AgNPs results in long term gut dysbiosis, body fat increase and neurobehavioral alterations in offspring.
Collapse
Affiliation(s)
- Zhen Lyu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65212, USA
| | - Shreya Ghoshdastidar
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Karamkolly R Rekha
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
| | - Dhananjay Suresh
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Jiude Mao
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65212, USA.,MU Institute of Data Science and Informatics, University of Missouri, Columbia, MO, 65212, USA
| | - Nathan Bivens
- DNA Core Facility, University of Missouri, Columbia, MO, 65212, USA
| | - Raghuraman Kannan
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA.,Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
| | - Trupti Joshi
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65212, USA. .,Department of Health Management and Informatics, University of Missouri, Columbia, MO, 65212, USA. .,MU Institute of Data Science and Informatics, University of Missouri, Columbia, MO, 65212, USA. .,Bond Life Sciences Center, University of Missouri, Columbia, MO, 65212, USA.
| | - Cheryl S Rosenfeld
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65212, USA. .,MU Institute of Data Science and Informatics, University of Missouri, Columbia, MO, 65212, USA. .,Bond Life Sciences Center, University of Missouri, Columbia, MO, 65212, USA. .,Genetics Area Program, University of Missouri, Columbia, MO, 65212, USA. .,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, 65212, USA. .,Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO, 65212, USA.
| | - Anandhi Upendran
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO, 65212, USA. .,MU-Institute of Clinical and Translational Science, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
27
|
Long KLP, Breton JM, Barraza MK, Perloff OS, Kaufer D. Hormonal Regulation of Oligodendrogenesis I: Effects across the Lifespan. Biomolecules 2021; 11:biom11020283. [PMID: 33672939 PMCID: PMC7918364 DOI: 10.3390/biom11020283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
The brain’s capacity to respond to changing environments via hormonal signaling is critical to fine-tuned function. An emerging body of literature highlights a role for myelin plasticity as a prominent type of experience-dependent plasticity in the adult brain. Myelin plasticity is driven by oligodendrocytes (OLs) and their precursor cells (OPCs). OPC differentiation regulates the trajectory of myelin production throughout development, and importantly, OPCs maintain the ability to proliferate and generate new OLs throughout adulthood. The process of oligodendrogenesis, the creation of new OLs, can be dramatically influenced during early development and in adulthood by internal and environmental conditions such as hormones. Here, we review the current literature describing hormonal regulation of oligodendrogenesis within physiological conditions, focusing on several classes of hormones: steroid, peptide, and thyroid hormones. We discuss hormonal regulation at each stage of oligodendrogenesis and describe mechanisms of action, where known. Overall, the majority of hormones enhance oligodendrogenesis, increasing OPC differentiation and inducing maturation and myelin production in OLs. The mechanisms underlying these processes vary for each hormone but may ultimately converge upon common signaling pathways, mediated by specific receptors expressed across the OL lineage. However, not all of the mechanisms have been fully elucidated, and here, we note the remaining gaps in the literature, including the complex interactions between hormonal systems and with the immune system. In the companion manuscript in this issue, we discuss the implications of hormonal regulation of oligodendrogenesis for neurological and psychiatric disorders characterized by white matter loss. Ultimately, a better understanding of the fundamental mechanisms of hormonal regulation of oligodendrogenesis across the entire lifespan, especially in vivo, will progress both basic and translational research.
Collapse
Affiliation(s)
- Kimberly L. P. Long
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; (J.M.B.); (D.K.)
- Correspondence:
| | - Jocelyn M. Breton
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; (J.M.B.); (D.K.)
| | - Matthew K. Barraza
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA;
| | - Olga S. Perloff
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94143, USA;
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; (J.M.B.); (D.K.)
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
28
|
Shao S, Cui Y, Chen ZB, Zhang B, Huang SM, Liu XW. Androgen deficit changes the response to antidepressant drugs in tail suspension test in mice. Aging Male 2020; 23:1259-1265. [PMID: 32396485 DOI: 10.1080/13685538.2020.1762074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Depressive symptoms are throughout our life, especially in the older population, the sex hormones reduction link to a high risk of depression. In this study, we investigated whether bilateral orchiectomy (ORX) modifies mice behaviors and antidepressant drugs effects through tail suspension test (TST). We evaluated behavioral changes at 1 week, 2 weeks, 1 month, and up to 2 months after ORX. The behavior responses to doxepin, fluoxetine, and venlafaxine at 1 week, 2 weeks, 1 month, and 2 months after ORX were evaluated. No apparent difference was detected among the durations of immobility of the control group, sham operation group, and ORX group in the TST at 1 week and 2 weeks after ORX. But the immobility time of ORX group was obvious longer than that of both control group and sham operation group at 1 month and 2 months after ORX. Only the antidepressant effect of venlafaxine was observed at 1 week and 2 weeks after ORX, while the antidepressant response to fluoxetine decreased 1 month and 2 months after ORX. The response to antidepressant drugs was strongly modified in ORX mice. Our results suggest that not all antidepressant drugs are suitable for depression with androgen deficiency.HighlightsMice with low androgen were more prone to depression-like behaviors.The response to antidepressants changed under the condition of low androgen in mice.Not all antidepressant drugs are appropriate for patients with low androgen.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Neuroscience, Institute for Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Cui
- Department of Veterinary Medcine, College of Agriculture, Hainan University, Haikou, China
| | - Zhao-Bin Chen
- Department of Neuroscience, Institute for Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Marketing, China Medical System Co, LTD, Shenzhen, China
| | - Bo Zhang
- Department of Neuroscience, Institute for Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shu-Ming Huang
- Department of Neuroscience, Institute for Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xue-Wei Liu
- Department of Neuropharmacology, College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
29
|
Premachandran H, Zhao M, Arruda-Carvalho M. Sex Differences in the Development of the Rodent Corticolimbic System. Front Neurosci 2020; 14:583477. [PMID: 33100964 PMCID: PMC7554619 DOI: 10.3389/fnins.2020.583477] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
In recent years, a growing body of research has shown sex differences in the prevalence and symptomatology of psychopathologies, such as depression, anxiety, and fear-related disorders, all of which show high incidence rates in early life. This has highlighted the importance of including female subjects in animal studies, as well as delineating sex differences in neural processing across development. Of particular interest is the corticolimbic system, comprising the hippocampus, amygdala, and medial prefrontal cortex. In rodents, these corticolimbic regions undergo dynamic changes in early life, and disruption to their normative development is believed to underlie the age and sex-dependent effects of stress on affective processing. In this review, we consolidate research on sex differences in the hippocampus, amygdala, and medial prefrontal cortex across early development. First, we briefly introduce current principles on sexual differentiation of the rodent brain. We then showcase corticolimbic regional sex differences in volume, morphology, synaptic organization, cell proliferation, microglia, and GABAergic signaling, and explain how these differences are influenced by perinatal and pubertal gonadal hormones. In compiling this research, we outline evidence of what and when sex differences emerge in the developing corticolimbic system, and illustrate how temporal dynamics of its maturational trajectory may differ in male and female rodents. This will help provide insight into potential neural mechanisms underlying sex-specific critical windows for stress susceptibility and behavioral emergence.
Collapse
Affiliation(s)
| | - Mudi Zhao
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
30
|
LaDage LD. Broadening the functional and evolutionary understanding of postnatal neurogenesis using reptilian models. ACTA ACUST UNITED AC 2020; 223:223/15/jeb210542. [PMID: 32788272 DOI: 10.1242/jeb.210542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The production of new neurons in the brains of adult animals was first identified by Altman and Das in 1965, but it was not until the late 20th century when methods for visualizing new neuron production improved that there was a dramatic increase in research on neurogenesis in the adult brain. We now know that adult neurogenesis is a ubiquitous process that occurs across a wide range of taxonomic groups. This process has largely been studied in mammals; however, there are notable differences between mammals and other taxonomic groups in how, why and where new neuron production occurs. This Review will begin by describing the processes of adult neurogenesis in reptiles and identifying the similarities and differences in these processes between reptiles and model rodent species. Further, this Review underscores the importance of appreciating how wild-caught animals vary in neurogenic properties compared with laboratory-reared animals and how this can be used to broaden the functional and evolutionary understanding of why and how new neurons are produced in the adult brain. Studying variation in neural processes across taxonomic groups provides an evolutionary context to adult neurogenesis while also advancing our overall understanding of neurogenesis and brain plasticity.
Collapse
Affiliation(s)
- Lara D LaDage
- Division of Mathematics and Natural Sciences, Penn State Altoona, 3000 Ivyside Dr., Altoona, PA 16601, USA
| |
Collapse
|
31
|
Jorgensen C, Wang Z. Hormonal Regulation of Mammalian Adult Neurogenesis: A Multifaceted Mechanism. Biomolecules 2020; 10:biom10081151. [PMID: 32781670 PMCID: PMC7465680 DOI: 10.3390/biom10081151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023] Open
Abstract
Adult neurogenesis—resulting in adult-generated functioning, integrated neurons—is still one of the most captivating research areas of neuroplasticity. The addition of new neurons in adulthood follows a seemingly consistent multi-step process. These neurogenic stages include proliferation, differentiation, migration, maturation/survival, and integration of new neurons into the existing neuronal network. Most studies assessing the impact of exogenous (e.g., restraint stress) or endogenous (e.g., neurotrophins) factors on adult neurogenesis have focused on proliferation, survival, and neuronal differentiation. This review will discuss the multifaceted impact of hormones on these various stages of adult neurogenesis. Specifically, we will review the evidence for hormonal facilitation (via gonadal hormones), inhibition (via glucocorticoids), and neuroprotection (via recruitment of other neurochemicals such as neurotrophin and neuromodulators) on newly adult-generated neurons in the mammalian brain.
Collapse
Affiliation(s)
- Claudia Jorgensen
- Behavioral Science Department, Utah Valley University, Orem, UT 84058, USA
- Correspondence:
| | - Zuoxin Wang
- Psychology Department and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA;
| |
Collapse
|