1
|
Khan A, Murad W, Salahuddin, Ali S, Shah SS, Halim SA, Khalid A, Kashtoh H, Khan A, Al-Harrasi A. Contribution of mushroom farming to mitigating food scarcity: Current status, challenges and potential future prospects in Pakistan. Heliyon 2024; 10:e40362. [PMID: 39660206 PMCID: PMC11629274 DOI: 10.1016/j.heliyon.2024.e40362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Food insecurity, pollution, and malnutrition are some critical issues tackled by the modern world in the recent era. However, edible mushrooms are nutritionally, economically, and biotechnologically valuable groups of macro fungi. Besides being an essential source of edible food, it is also exploited in pharmacological industries as a potential source of anticancer, antioxidant and immunomodulating agents. Mushrooms are not only a rich nutritional source of functional food all over the world, but also have highly significant bioactive compounds that are considered nutraceuticals, cosmeceuticals, and mycotherapeutics across the globe. However, their cultivation is very low compared to their demand. Its cultivation consents the sustainable management of agro-industrial waste and generates decent income using low inputs. Additionally, the mushroom could also be used for the recirculation of forest waste by acting as a natural decomposer that in turn creates great opportunities for the development of economically miserable developing countries, like Pakistan. Mushroom farming is one of the promising approaches to explore such unwanted agro-waste materials from the environment and ensure food security. Mushroom farming is one of the cheapest sources to overcome the deficiency caused by malnutrition. Interestingly, it supports the local economy by offering more and more livelihood opportunities and significant income sources for local and national trade. The current review article emphasizes the prompt mushroom farming industries in Pakistan that can save lives by providing cheaper nutritional food and rich income sources.
Collapse
Affiliation(s)
- Asif Khan
- Department of Technology, Universidade Estadual de Maringá, Umuarama, PR87501-390, Brazil
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Salahuddin
- Agricultural Research Station, Charsadda, 24520, Pakistan
| | - Sajid Ali
- Department of Horticulture and Life Sciences, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Syed Sikandar Shah
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, Polytechnic School of University of São Paulo, São Paulo, Brazil
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Sultanate of Oman
| | - Asaad Khalid
- Health Research Center, Jazan University, P.O. Box: 114, Jazan, 45142, Saudi Arabia
| | - Hamdy Kashtoh
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, Gyeongbuk, Republic of Korea
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Sultanate of Oman
- Department of Chemical and Biological Engineering, College of Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Sultanate of Oman
| |
Collapse
|
2
|
Nkosi NC, Basson AK, Ntombela ZG, Dlamini NG, Pullabhotla RVSR. Green Synthesis, Characterization and Application of Silver Nanoparticles Using Bioflocculant: A Review. Bioengineering (Basel) 2024; 11:492. [PMID: 38790359 PMCID: PMC11117625 DOI: 10.3390/bioengineering11050492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Nanotechnology has emerged as an effective means of removing contaminants from water. Traditional techniques for producing nanoparticles, such as physical methods (condensation and evaporation) and chemical methods (oxidation and reduction), have demonstrated high efficiency. However, these methods come with certain drawbacks, including the significant energy requirement and the use of costly and hazardous chemicals that may cause nanoparticles to adhere to surfaces. To address these limitations, researchers are actively developing alternative procedures that are cost-effective, environmentally safe, and user-friendly. One promising approach involves biological synthesis, which utilizes plants or microorganisms as reducing and capping agents. This review discusses various methods of nanoparticle synthesis, with a focus on biological synthesis using naturally occurring bioflocculants from microorganisms. Bioflocculants offer several advantages, including harmlessness, biodegradability, and minimal secondary pollution. Furthermore, the review covers the characterization of synthesized nanoparticles, their antimicrobial activity, and cytotoxicity. Additionally, it explores the utilization of these NPs in water purification and dye removal processes.
Collapse
Affiliation(s)
- Nkanyiso C. Nkosi
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Albertus K. Basson
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Zuzingcebo G. Ntombela
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Nkosinathi G. Dlamini
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Rajasekhar V. S. R. Pullabhotla
- Chemistry Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
3
|
Parameswari BD, Rajakumar M, Hariharan A, Kumar S, Mohamed K, Ballal S. Green Synthesis of Ganoderma Lucidum-Mediated Silver Nanoparticles and its Microbial Activity against Oral Pathogenic Microbes: An In Vitro Study. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S1456-S1460. [PMID: 38882887 PMCID: PMC11174218 DOI: 10.4103/jpbs.jpbs_933_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 06/18/2024] Open
Abstract
Nanotechnology is developing into a fast-expanding discipline with applications in science and technology, and nanostructures are a crucial research tool in many fields. Due to their remarkable electrical, optical, magnetic, catalytic, and pharmacological capabilities, metal and metal oxide nanoparticles (NPs) have drawn study interest. Natural elements (plants, microorganisms, fungi, etc.) are utilized in a chemical-free, environmentally benign way to synthesize metals and metal oxides. The optical, electrical, and antimicrobial qualities of silver nanoparticle (AgNP) make them a popular choice. More than 200 active ingredients, including water-soluble, organic-soluble, and volatile chemicals, are found in Ganoderma. The main components are polysaccharides, adenosine, and terpenoids, each of which has exceptional therapeutic properties. This article explains the synthesis of Ag NPs by Ganoderma lucidum and tests the antibacterial effectiveness for use in biological applications.
Collapse
Affiliation(s)
- Balakrishnan Devi Parameswari
- Department of Prosthodontics, Faculty of Dental Sciences, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Manickam Rajakumar
- Department of Prosthodontics, Tamil Nadu Government Dental College, Chennai, Tamil Nadu, India
| | - Annapoorni Hariharan
- Department of Prosthodontics, Faculty of Dental Sciences, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Senthil Kumar
- Department of Fashion Technology, National Institute of Fashion Technology, New Delhi, India
| | - Kasim Mohamed
- Department of Prosthodontics, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Suma Ballal
- Department of Prosthodontics, Faculty of Dental Sciences, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| |
Collapse
|
4
|
Alahmari F, Khan FA, Sozeri H, Sertkol M, Jaremko M. Electrospun Cu-Co ferrite nanofibers: synthesis, structure, optical and magnetic properties, and anti-cancer activity. RSC Adv 2024; 14:7540-7550. [PMID: 38440265 PMCID: PMC10910578 DOI: 10.1039/d3ra08087k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/14/2024] [Indexed: 03/06/2024] Open
Abstract
In this study, we investigated Cu-Co ferrite nanofibers (NFs) that were synthesized for the first time employing the electrospinning technique. The structure, phase purity and crystallite size of all the prepared NFs were revealed by powder X-ray diffraction (PXRD) analysis. The NFs crystallized in the Fd3̄m (no. 227) space group and the cation distribution arrangement over distinct sites in their structure was analyzed. Scanning electron microscopy (SEM) together with energy-dispersive X-ray (EDX) spectroscopy analysis showed the microstructure of the NFs and verified their expected chemical compositions. High-resolution transmission electron microscopy (TEM) images confirmed the fibrous nature and the construction of the NFs. The band gap energies derived from the UV-vis reflectance spectra showed a blue shift with an increase in the amount of Cu in the sample from 1.42 eV to 1.86 eV. Magnetization (M) as a function of magnetic field (H) measurements performed at ambient and low temperatures showed the ferrimagnetic behavior of all the NFs. The magnetic parameters including coercivity (Hc), saturation magnetization (Ms), remanent magnetization (Mr), and squareness ratio were determined from the recorded magnetization curves. At 300 K, Ms was reduced from 78.8 to 42.4 emu g-1, Mr reduced from 22.8 to 7.6 emu g-1 and the Bohr magneton reduced from 3.3 to 1.8μB with an increase in the content of Cu in the samples. The same trend was observed at 10 K, where Ms was reduced from 93.7 to 50.9 emu g-1, Mr reduced from 60.9 to 35.9 emu g-1 and the Bohr magneton reduced from 3.94 to 2.16μB. Alternatively, Hc has the highest values for x = 0 (850 Oe at 300 K and 5220 Oe at 10 K) and x = 0.6 (800 Oe at 300 K and 5400 Oe at 10 K). The anti-cancer activity of the NFs was evaluated using the MTT cell viability assay, showing a reduction in the viability of both HCT-116 and HeLa cancer cells compared to non-cancerous HEK-293 cells after treatment with the NFs. Apoptotic activity was examined by DAPI staining, where treatment with the NFs induced chromatin condensation and nuclear disintegration in HCT-116 cells.
Collapse
Affiliation(s)
- Fatimah Alahmari
- Department of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University P. O. Box 1982 31441 Dammam Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University P. O. Box 1982 31441 Dammam Saudi Arabia
| | - H Sozeri
- TUBITAK-UME, National Metrology Institute P. O. Box 54 41470 Gebze Kocaeli Turkey
| | - M Sertkol
- Department of Basic Science, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University P. O. Box 1982 Dammam 34212 Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
5
|
Shandhiya M, Janarthanan B, Sharmila S. A comprehensive review on antibacterial analysis of natural extract-based metal and metal oxide nanoparticles. Arch Microbiol 2024; 206:52. [PMID: 38175198 DOI: 10.1007/s00203-023-03743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/31/2023] [Accepted: 11/11/2023] [Indexed: 01/05/2024]
Abstract
Pharmaceutical, food packing, cosmetics, agriculture, energy storage devices widely utilize metal and metal oxide nanoparticles prepared via different physical and chemical methods. It resulted in the release of several dangerous compounds and solvents as the nanoparticles were being formed. Currently, Researchers interested in preparing nanoparticles (NPs) via biological approach due to their unique physiochemical properties which took part in reducing the environmental risks. However, a number of microbial species are causing dangerous illnesses and are a threat to the entire planet. The metal and metal oxide nanoparticles played a significant role in the identification and elimination of microbes when prepared using natural extract. Its biological performance is thus also becoming exponentially more apparent than it was using in conventional techniques. Despite the fact that they hurt germs, their small size and well-defined shape encourage surface contact with them. The generation of Reactive Oxygen Species (ROS), weakens the bacterial cell membrane by allowing internal cellular components to seep out. The bacterium dies as a result of this. Numerous studies on different nanoparticles and their antibacterial efficacy against various diseases are still accessible. The main objective of the biogenic research on the synthesis of key metals and metal oxides (such as gold, silver, titanium dioxide, nickel oxide, and zinc oxide) using various plant extracts is reviewed in this study along with the process of nanoparticle formation and the importance of phytochemicals found in the plant extract.
Collapse
Affiliation(s)
- M Shandhiya
- Department of Physics, Karpagam Academy of Higher Education, Coimbatore, India
| | - B Janarthanan
- Department of Physics, Karpagam Academy of Higher Education, Coimbatore, India
| | - S Sharmila
- Department of Physics, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Chennai, India.
| |
Collapse
|
6
|
Tahmasebi E, Mohammadi M, Yazdanian M, Alam M, Abbasi K, Hosseini HM, Tavakolizadeh M, Khayatan D, Hassani Z, Tebyaniyan H. Antimicrobial properties of green synthesized novel TiO 2 nanoparticles using Iranian propolis extracts. J Basic Microbiol 2023; 63:1030-1048. [PMID: 37442766 DOI: 10.1002/jobm.202300221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
The oral antimicrobial and cytotoxic properties of green synthesized novel titanium dioxide nanoparticles (TiO2 NPs) using Iranian propolis extracts were investigated on oral bacteria and fibroblast cells. In this study, propolis was sampled, and alcoholic extracts were prepared. The TiO2 NPs were biosynthesized using propolis extracts. The synthesized TiO2 NPs were characterized by scanning electron microscope (SEM), X-ray diffraction analysis, energy-dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering, ultraviolet-visible (UV-Vis), transmission electron microscope, Brunauer-Emmett-Teller, and zeta potential. MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide), minimal inhibitory concentration, minimum bactericidal concentration, minimum fungicidal concentration, biofilm formation, and degradation tests were studied to clarify the oral antimicrobial properties of green synthesized TiO2 NPs. According to the FTIR analysis, the propolis extract contained flavonoids and phenolic compounds in addition to TiO2 NPs. Additionally, UV-Vis revealed that intense bands had formed NPs. EDX spectra and SEM images revealed that the stabilizing agent was in perfect quasi-spherical shapes around 21 nm. An EDX spectrum was used to verify the presence of titanium and oxygen. There were no significant cytotoxicity effects. The antibacterial results showed that Pro1TiO2 (Khalkhal sample) had better effects than Pro2TiO2 (Gilan sample) and TiO2 NPs. The present study presents a new process for synthesizing TiO2 NPs from propolis extracts with less toxic effects and user-friendly, eco-friendly, and economical materials. Pro1TiO2 NPs may be considered the best candidate for clinical application.
Collapse
Affiliation(s)
- Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohammadi
- School of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Tavakolizadeh
- Department of Chemistry, Polymer Research Laboratory, Sharif University of Technology, Tehran, Iran
| | - Danial Khayatan
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Hassani
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| |
Collapse
|
7
|
Al Baroot A, Elsayed KA, Khan FA, Haladu SA, Ercan F, Çevik E, Drmosh QA, Almessiere MA. Anticancer Activity of Au/CNT Nanocomposite Fabricated by Nanosecond Pulsed Laser Ablation Method on Colon and Cervical Cancer. MICROMACHINES 2023; 14:1455. [PMID: 37512767 PMCID: PMC10384248 DOI: 10.3390/mi14071455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/15/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
Gold nanoparticles (AuNPs) and carbon nanotubes (CNTs) are increasingly being investigated for cancer management due to their physicochemical properties, low toxicity, and biocompatibility. This study used an eco-friendly technique (laser synthesis) to fabricate AuNP and Au/CNT nanocomposites. AuNPs, Au/CNTs, and CNTs were tested as potential cancer nanotherapeutics on colorectal carcinoma cells (HCT-116) and cervical cancer cells (HeLa) using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. In addition, the non-cancer embryonic kidney cells HEK-293 were taken as a control in the study. The cell viability assay demonstrated a significant reduction in cancer cell population post 48 h treatments of AuNPs, and Au/CNTs. The average cell viabilities of AuNPs, Au/CNTs, and CNTs for HCT-116 cells were 50.62%, 65.88%, 93.55%, and for HeLa cells, the cell viabilities were 50.88%, 66.51%, 91.73%. The cell viabilities for HEK-293 were 50.44%, 65.80%, 93.20%. Both AuNPs and Au/CNTs showed higher cell toxicity and cell death compared with CNT nanomaterials. The treatment of AuNPs and Au/CNTs showed strong inhibitory action on HCT-116 and HeLa cells. However, the treatment of CNTs did not significantly decrease HCT-116 and HeLa cells, and there was only a minor decrease. The treatment of AuNPs, and Au/CNTs, on normal HEK-293 cells also showed a significant decrease in cell viability, but the treatment of CNTs did not produce a significant decrease in the HEK-293 cells. This study shows that a simplified synthesis technique like laser synthesis for the preparation of high-purity nanomaterials has good efficacy for possible future cancer therapy with minimal toxicity.
Collapse
Affiliation(s)
- Abbad Al Baroot
- Department of Basic Engineering Sciences, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Khaled A Elsayed
- Department of Basic Engineering Sciences, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Shamsuddeen A Haladu
- Department of Basic Engineering Sciences, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Filiz Ercan
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Emre Çevik
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Q A Drmosh
- Department of Materials Science and Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Centre for Hydrogen and Energy Storage (HES), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - M A Almessiere
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
8
|
Hannachi E, Khan FA, Slimani Y, Rehman S, Trabelsi Z, Akhtar S, Al-Suhaimi EA. Fabrication, Characterization, Anticancer and Antibacterial Activities of ZnO Nanoparticles Doped with Y and Ce Elements. J CLUST SCI 2023; 34:1777-1788. [DOI: 10.1007/s10876-022-02348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
|
9
|
Loshchinina EA, Vetchinkina EP, Kupryashina MA. Diversity of Mycogenic Oxide and Chalcogenide Nanoparticles: A Review. Biomimetics (Basel) 2023; 8:224. [PMID: 37366819 DOI: 10.3390/biomimetics8020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Oxide and chalcogenide nanoparticles have great potential for use in biomedicine, engineering, agriculture, environmental protection, and other research fields. The myco-synthesis of nanoparticles with fungal cultures, their metabolites, culture liquids, and mycelial and fruit body extracts is simple, cheap and environmentally friendly. The characteristics of nanoparticles, including their size, shape, homogeneity, stability, physical properties and biological activity, can be tuned by changing the myco-synthesis conditions. This review summarizes the data on the diversity of oxide and chalcogenide nanoparticles produced by various fungal species under different experimental conditions.
Collapse
Affiliation(s)
- Ekaterina A Loshchinina
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Elena P Vetchinkina
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Maria A Kupryashina
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| |
Collapse
|
10
|
Mbatha LS, Akinyelu J, Chukwuma CI, Mokoena MP, Kudanga T. Current Trends and Prospects for Application of Green Synthesized Metal Nanoparticles in Cancer and COVID-19 Therapies. Viruses 2023; 15:741. [PMID: 36992450 PMCID: PMC10054370 DOI: 10.3390/v15030741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Cancer and COVID-19 have been deemed as world health concerns due to the millions of lives that they have claimed over the years. Extensive efforts have been made to develop sophisticated, site-specific, and safe strategies that can effectively diagnose, prevent, manage, and treat these diseases. These strategies involve the implementation of metal nanoparticles and metal oxides such as gold, silver, iron oxide, titanium oxide, zinc oxide, and copper oxide, formulated through nanotechnology as alternative anticancer or antiviral therapeutics or drug delivery systems. This review provides a perspective on metal nanoparticles and their potential application in cancer and COVID-19 treatments. The data of published studies were critically analysed to expose the potential therapeutic relevance of green synthesized metal nanoparticles in cancer and COVID-19. Although various research reports highlight the great potential of metal and metal oxide nanoparticles as alternative nanotherapeutics, issues of nanotoxicity, complex methods of preparation, biodegradability, and clearance are lingering challenges for the successful clinical application of the NPs. Thus, future innovations include fabricating metal nanoparticles with eco-friendly materials, tailor making them with optimal therapeutics for specific disease targeting, and in vitro and in vivo evaluation of safety, therapeutic efficiency, pharmacokinetics, and biodistribution.
Collapse
Affiliation(s)
- Londiwe Simphiwe Mbatha
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Jude Akinyelu
- Department of Biochemistry, Federal University Oye-Ekiti, Private Mail Bag 373, Ekiti State 370111, Nigeria
| | - Chika Ifeanyi Chukwuma
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa
| | - Mduduzi Paul Mokoena
- Department of Pathology, Pre-Clinical Sciences Division, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Tukayi Kudanga
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| |
Collapse
|
11
|
Loshchinina EA, Vetchinkina EP, Kupryashina MA. Diversity of Biogenic Nanoparticles Obtained by the Fungi-Mediated Synthesis: A Review. Biomimetics (Basel) 2022; 8:biomimetics8010001. [PMID: 36648787 PMCID: PMC9844505 DOI: 10.3390/biomimetics8010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Fungi are very promising biological objects for the green synthesis of nanoparticles. Biogenic synthesis of nanoparticles using different mycological cultures and substances obtained from them is a promising, easy and environmentally friendly method. By varying the synthesis conditions, the same culture can be used to produce nanoparticles with different sizes, shapes, stability in colloids and, therefore, different biological activity. Fungi are capable of producing a wide range of biologically active compounds and have a powerful enzymatic system that allows them to form nanoparticles of various chemical elements. This review attempts to summarize and provide a comparative analysis of the currently accumulated data, including, among others, our research group's works, on the variety of the characteristics of the nanoparticles produced by various fungal species, their mycelium, fruiting bodies, extracts and purified fungal metabolites.
Collapse
Affiliation(s)
| | - Elena P. Vetchinkina
- Correspondence: ; Tel.: +7-8452-970-444 or +7-8452-970-383; Fax: +7-8452-970-383
| | | |
Collapse
|
12
|
Khalil AT, Ovais M, Iqbal J, Ali A, Ayaz M, Abbas M, Ahmad I, Devkota HP. Microbes-mediated synthesis strategies of metal nanoparticles and their potential role in cancer therapeutics. Semin Cancer Biol 2022; 86:693-705. [PMID: 34118405 DOI: 10.1016/j.semcancer.2021.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 01/27/2023]
Abstract
Past few years have seen a paradigm shift towards ecofriendly, green and biological fabrication of metal nanoparticles (MNPs) for diverse nanomedicinal applications especially in cancer nanotheranostics. Besides, the well-known green synthesis methods of plant materials, the potential of the microbial world (bacteria, fungi, alga, etc.) in biofabrication is equally realized. Biomolecules and enzymes in the microbial cells are capable of catalyzing the biosynthesis process. These microbial derived inorganic nanoparticles have been frequently evaluated as potential agents in cancer therapies revealing exciting results. Through, cellular and molecular pathways, these microbial derived nanoparticles are capable of killing the cancer cells. Considering the recent developments in the anticancer applications of microbial derived inorganic MNPs, a dire need was felt to bring the available information to a single document. This manuscript reviews not only the mechanistic aspects of the microbial derived MNPs but also include the diverse mechanisms that governs their anticancer potential. Besides, an updated literature review is presented that includes studies of 2019-onwards.
Collapse
Affiliation(s)
- Ali Talha Khalil
- Department of Pathology, Lady Reading Hospital Medical Teaching Institution, Peshawar, KP, Pakistan.
| | - Muhammad Ovais
- National Center for Nanosciences and Nanotechnology (NCNST), Beijjing, China.
| | - Javed Iqbal
- Center for Plant Sciences and Biodiversity, University of Swat, Kanju, 19201, Pakistan.
| | - Arbab Ali
- National Center for Nanosciences and Nanotechnology (NCNST), Beijjing, China.
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, KP, Pakistan.
| | | | - Irshad Ahmad
- Department of Life Sciences, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
| | - Hari Parsad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Program for Leading Graduate Schools, HIGO Program, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
13
|
Aldossary HA, Rehman S, Jermy BR, AlJindan R, Aldayel A, AbdulAzeez S, Akhtar S, Khan FA, Borgio JF, Al-Suhaimi EA. Therapeutic Intervention for Various Hospital Setting Strains of Biofilm Forming Candida auris with Multiple Drug Resistance Mutations Using Nanomaterial Ag-Silicalite-1 Zeolite. Pharmaceutics 2022; 14:2251. [PMID: 36297684 PMCID: PMC9611151 DOI: 10.3390/pharmaceutics14102251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/14/2022] Open
Abstract
Candida auris (C. auris), an emerging multidrug-resistant microorganism, with limited therapeutical options, is one of the leading causes of nosocomial infections. The current study includes 19 C. auris strains collected from King Fahd Hospital of the University and King Fahad Specialist Hospital in Dammam, identified by 18S rRNA gene and ITS region sequencing. Drug-resistance-associated mutations in ERG11, TAC1B and FUR1 genes were screened to gain insight into the pattern of drug resistance. Molecular identification was successfully achieved using 18S rRNA gene and ITS region and 5 drug-resistance-associated missense variants identified in the ERG11 (F132Y and K143R) and TAC1B (H608Y, P611S and A640V) genes of C. auris strains, grouped into 3 clades. The prophylactic and therapeutic application of hydrothermally synthesized Ag-silicalite-1 (Si/Ag ratio 25) nanomaterial was tested against the 3 clades of clinical C. auris strains. 4wt%Ag/TiZSM-5 prepared using conventional impregnation technique was used for comparative study, and nano formulations were characterized using different techniques. The antibiofilm activity of nanomaterials was tested by cell kill assay, scanning electron microscopy (SEM) and light microscopy. Across all the clades of C. auris strains, 4 wt%Ag/TiZSM-5 and Ag-silicalite-1 demonstrated a significant (p = 1.1102 × 10-16) inhibitory effect on the biofilm's survival rate: the lowest inhibition value was (10%) with Ag-silicalite-1 at 24 and 48 h incubation. A profound change in morphogenesis in addition to the reduction in the number of C.auris cells was shown by SEM and light microscopy. The presence of a high surface area and the uniform dispersion of nanosized Ag species displays enhanced anti-Candida activity, and therefore it has great potential against the emerging multidrug-resistant C. auris.
Collapse
Affiliation(s)
- Hanan A. Aldossary
- Master Program of Biotechnology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Suriya Rehman
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - B. Rabindran Jermy
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Reem AlJindan
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 40017, Saudi Arabia
| | - Afra Aldayel
- Department of Pathology & Lab Medicine, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - J. Francis Borgio
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Ebtesam Abdullah Al-Suhaimi
- Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
14
|
Torres-Limiñana J, Feregrino-Pérez AA, Vega-González M, Escobar-Alarcón L, Cervantes-Chávez JA, Esquivel K. Green Synthesis via Eucalyptus globulus L. Extract of Ag-TiO2 Catalyst: Antimicrobial Activity Evaluation toward Water Disinfection Process. NANOMATERIALS 2022; 12:nano12111944. [PMID: 35683797 PMCID: PMC9183104 DOI: 10.3390/nano12111944] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/05/2023]
Abstract
The problem of water pollution by persistent substances and microorganisms requires solutions that materials such as silver-modified titanium dioxide can provide due to their excellent photocatalytic and antimicrobial properties. However, the synthesis methods conventionally used to obtain these materials involve toxic chemical reagents such as sodium borohydride (NaBH4). The search for alternative synthesis methods that use environmentally friendly substances, such as the biosynthesis method, was evaluated. Silver-titanium dioxide (Ag-TiO2) was synthesized by a Eucalyptus globulus L. extract as a reductive agent through sol-gel and microwave-assisted sol-gel processes. Four different solvents were tested to extract secondary metabolites to determine their roles in reducing silver nanoparticles. Titanium dioxide nanoparticles with sizes from 11 to 14 nm were obtained in the anatase phase, and no narrowing of the bandgap was observed (3.1–3.2 eV) for the Ag-TiO2 materials compared with the pure TiO2. Interestingly, the bacterial inhibition values were close to 100%, suggesting an effective antimicrobial mechanism related to the properties of silver. Finally, by the physicochemical characterization of the materials and their antimicrobial properties, it was possible to obtain a suitable biosynthesized Ag-TiO2 material as a green option for water disinfection that may be compared to the conventional methods.
Collapse
Affiliation(s)
- Jacqueline Torres-Limiñana
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Queretaro 76010, Mexico; (J.T.-L.); (A.A.F.-P.)
| | - Ana A. Feregrino-Pérez
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Queretaro 76010, Mexico; (J.T.-L.); (A.A.F.-P.)
| | - Marina Vega-González
- Centro de Geociencias, Universidad Nacional Autónoma de México, Campus Juriquilla. Blvd. Juriquilla, 3001, Santiago de Queretaro 76230, Mexico;
| | - Luis Escobar-Alarcón
- Departamento de Física, ININ, Carr. México-Toluca, La Marquesa, Ocoyoacac 52750, Mexico;
| | - José Antonio Cervantes-Chávez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Carr. Chichimequillas-Anillo Vial Fray Junípero Serra, Km 8, Santiago de Queretaro 76000, Mexico;
| | - Karen Esquivel
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Queretaro 76010, Mexico; (J.T.-L.); (A.A.F.-P.)
- Correspondence: ; Tel.: +52-442-192-1200 (ext. 65401)
| |
Collapse
|
15
|
Govindasamy GA, Mydin RBSMN, Harun NH, Effendy WNFWE, Sreekantan S. Annealing temperature influences the cytocompatibility, bactericidal and bioactive properties of green synthesised TiO2 nanocomposites. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Singh SP, Mishra A, Shyanti RK, Singh RP, Acharya A. Silver Nanoparticles Synthesized Using Carica papaya Leaf Extract (AgNPs-PLE) Causes Cell Cycle Arrest and Apoptosis in Human Prostate (DU145) Cancer Cells. Biol Trace Elem Res 2021; 199:1316-1331. [PMID: 32557113 DOI: 10.1007/s12011-020-02255-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022]
Abstract
Treatment of cancer has been limited by the poor efficacy and toxicity profiles of available drugs. There is a growing demand to develop alternative approaches to combat cancer such as use of nano-formulation-based drugs. Here, we report biosynthesis and characterization of silver nanoparticles (AgNPs) with papaya leaf extract (PLE) and its anti-cancer properties against different human cancer cells. Purified nanoparticles were characterized by standard techniques, such as TEM, STM, SEM, EDS, XRD, and FTIR. Furthermore, cytotoxic activity of AgNPs-PLE was carried out against different human cancer cells and non-tumorigenic human keratinocytes cells. AgNPs-PLE when compared with AgNPs-citric acid or PLE showed better efficacy against cancer cells and was also relatively less toxic to normal cells. Treatment of DU145 cells with AgNPs-PLE (0.5-5.0 μg/ml) for 24-48 h lowered total cell number by 24-36% (P < 0.05). Inhibition of cell growth was linked with arrest of cell cycle at G2/M phase at 24 h, while G1 and G2/M phase arrests at 48 h. ROS production was observed at earlier time points in presence of AgNPs-PLE, suggesting its role behind apoptosis in DU145 cells. Induction of apoptosis (57%) was revealed by AO/EB staining in DU145 cells along with induction of Bax, cleaved caspase-3, and cleaved PARP proteins. G1-S phase cell cycle check point marker, cyclin D1 was down-regulated along with an increase in cip1/p21 and kip1/p27 tumor suppressor proteins by AgNPs-PLE. These findings suggest the anti-cancer properties of AgNPs-PLE.
Collapse
Affiliation(s)
- Surya P Singh
- Department of Zoology, Banaras Hindu University, Varanasi, UP, India
| | - Abhijeet Mishra
- Cancer and Radiation Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ritis K Shyanti
- Cancer and Radiation Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rana P Singh
- Cancer and Radiation Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Arbind Acharya
- Department of Zoology, Banaras Hindu University, Varanasi, UP, India.
| |
Collapse
|
17
|
Khan SA, Shahid S, Ayaz A, Alkahtani J, Elshikh MS, Riaz T. Phytomolecules-Coated NiO Nanoparticles Synthesis Using Abutilon indicum Leaf Extract: Antioxidant, Antibacterial, and Anticancer Activities. Int J Nanomedicine 2021; 16:1757-1773. [PMID: 33688190 PMCID: PMC7936927 DOI: 10.2147/ijn.s294012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/22/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND NiO nanoparticles have attracted much attention due to their unique properties. They have been synthesized using chemical and physical techniques that often need toxic chemicals. These toxic chemicals cannot easily be removed from the nanoparticle's surface, make them less biocompatible, and limit their biological applications. Instead, plants based green synthesis of nanoparticles uses phytomolecules as reducing and capping agents. These phytomolecules are biologically active with no or less toxic effects. MATERIALS AND METHODS Phytomolecules-coated NiO nanoparticles were synthesized employing a green route using Abutilon indicum leaf extract. For comparative study, we also have synthesized NiO nanoparticles using the co-precipitation method. Synthesized nanoparticles were successfully characterized using different spectroscopic techniques. The synthesized nanoparticles were evaluated for antibacterial activity with agar well diffusion assay against different bacteria compared to standard drug and plant extract. They are also examined for anticancer potential using MTT assay against HeLa cancer cells, and further, their antioxidant potential was determined using DPPH assay. Biocompatibility of the synthesized nanoparticles was assessed against fibroblast cells. RESULTS Phytomolecules-coated NiO nanoparticles were demonstrated superior antibacterial and anticancer performance against bacteria (E. coli, B. bronchiseptica, B. subtilis, and S. aureus) by presenting highest zone of inhibitions (18 ± 0.58 mm, 21 ± 0.45 mm, 22 ± 0.32 mm, and 23 ± 0.77 mm) and HeLa cancer cells by exhibiting the least cell viability percentage (51.74 ± 0.35%) compared to plant extract and chemically synthesized NiO nanoparticles but were comparable to standard antibiotic and anticancer drugs, respectively. Phytomolecules-coated NiO nanoparticles were also demonstrated excellent antioxidant activity (79.87 ± 0.43% DPPH inhibition) and biocompatibility (> 90% cell viability) with fibroblast cells. CONCLUSION Nanoparticle synthesis using the Abutilon indicum leaf extract is an efficient and economical method, produces biocompatible and more biologically active nanoparticles, which can be an excellent candidate for therapeutic applications.
Collapse
Affiliation(s)
- Shakeel Ahmad Khan
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Sammia Shahid
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Amber Ayaz
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Jawaher Alkahtani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Tauheeda Riaz
- Department of Chemistry, Government College Women University Sialkot, Sialkot, Pakistan
| |
Collapse
|
18
|
Rabbani A, Haghniaz R, Khan T, Khan R, Khalid A, Naz SS, Ul-Islam M, Vajhadin F, Wahid F. Development of bactericidal spinel ferrite nanoparticles with effective biocompatibility for potential wound healing applications. RSC Adv 2021; 11:1773-1782. [PMID: 35424142 PMCID: PMC8693516 DOI: 10.1039/d0ra08417d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/20/2020] [Indexed: 12/18/2022] Open
Abstract
The current study was devised to explore the antibacterial activity and underlying mechanism of spinel ferrite nanoparticles (NPs) along with their biocompatibility and wound healing potentials. In this regard, nickel ferrite and zinc/nickel ferrite NPs were synthesized via a modified co-precipitation method and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy Energy-dispersive X-ray spectroscopy (EDX). The biocompatibility of the synthesized NPs with human dermal fibroblast (HDF) and red blood cells (RBCs) was assessed. The biocompatible concentrations of the NPs were used to investigate the antimicrobial activity against various pathogenic Gram-negative and Gram-positive bacteria. The mode of bactericidal action was also explored. In vitro scratch assay was performed to evaluate the wound healing potential of NPs. The SEM-EDX analysis showed that the average particles size of nickel ferrite and zinc/nickel ferrite were 49 and 46 nm, respectively, with appropriate elemental composition and homogenous distribution. The XRD pattern showed all the characteristic diffraction peaks of spinel ferrite NPs, which confirmed the synthesis of the pure phase cubic spinel structure. The biocompatible concentration of nickel ferrite and zinc/nickel ferrite NPs was found to be 250 and 125 μg ml-1, respectively. Both the NPs showed inhibition against all the selected strains in the concentration range of 50 to 1000 μg ml-1. Studies on the underlying antimicrobial mechanism revealed damage to the cell membrane, protein leakage, and intracellular reactive oxygen species production. The in vitro scratch assay confirmed the migration and proliferation of fibroblast with artificial wound shrinkage. This study shows that nickel ferrite and zinc/nickel ferrite NPs could be a strong candidate for antibacterial and wound healing nano-drugs.
Collapse
Affiliation(s)
- Atiya Rabbani
- Department of Biotechnology, COMSATS University Islamabad Abbottabad Campus Pakistan
| | - Reihaneh Haghniaz
- Khademhosseini's Laboratory, Center for Minimally Invasive Therapeutics (CMIT) California NanoSystems Institute, University of California Los Angles Los Angles USA
| | - Taous Khan
- Department of Pharmacy, COMSATS University Islamabad Abbottabad Campus Pakistan
| | - Romana Khan
- Department of Environmental Sciences, COMSATS University Islamabad Abbottabad Campus Pakistan
| | - Ayesha Khalid
- Department of Biotechnology, COMSATS University Islamabad Abbottabad Campus Pakistan
| | - Syeda Sohaila Naz
- Department of Nanosciences and Technology, National Centre for Physics Islamabad Pakistan
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University Salalah Oman
| | | | - Fazli Wahid
- Department of Biotechnology, COMSATS University Islamabad Abbottabad Campus Pakistan
- Department of Biomedical Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology Mang, Khanpur Road Haripur Pakistan
| |
Collapse
|
19
|
Ukuhor HO. The interrelationships between antimicrobial resistance, COVID-19, past, and future pandemics. J Infect Public Health 2021; 14:53-60. [PMID: 33341485 PMCID: PMC7831651 DOI: 10.1016/j.jiph.2020.10.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 was first reported in Wuhan, China in December 2019 and is associated with high levels of morbidity and mortality. Various types of bacterial and fungal infections occur in patients with COVID-19 with some resistant to antimicrobials that are associated with significantly worse outcomes and deaths. Besides, antimicrobial-resistant (AMR) co-infections are responsible for clinically significant mortality in past pandemics. There is evidence to suggest that factors such as the proliferation of adulterated antimicrobials in some developing countries, international travels, issues with healthcare financing, use/misuse by humans, and in agricultural production and climate change are determinants of AMR at various levels of society. These complex interrelated determinants intersect with AMR in current and past pandemics and could amplify the potential of a future antimicrobial resistance pandemic. Therefore, global concerted interventions targeted at all levels of society to reduce the use/misuse of antimicrobials and disrupt these multifaceted, interrelated, and interdependent factors are urgently needed. This paper leverages prior research to describe complex major determinants of antimicrobial resistance and provides fresh insights into possible intervention strategies to tackle antimicrobial resistance including in the current and future pandemics.
Collapse
Affiliation(s)
- Hyacinth O Ukuhor
- Saudi Electronic University, Department of Public Health, P. O. Box 93499, Riyadh 11673, Saudi Arabia.
| |
Collapse
|