1
|
Rooban S, Arul Senghor K, Vinodhini V, Kumar J. Adropin: A crucial regulator of cardiovascular health and metabolic balance. Metabol Open 2024; 23:100299. [PMID: 39045137 PMCID: PMC11263719 DOI: 10.1016/j.metop.2024.100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
Adropin, a peptide discovered in 2008, has gained recognition as a key regulator of cardiovascular health and metabolic balance. Initially identified for its roles in energy balance, lipid metabolism, and glucose regulation, adropin has also been found to improve cardiovascular health by enhancing endothelial function, modulating lipid profiles, and reducing oxidative stress. These protective mechanisms suggest that adropin may be able to help prevent conditions such as atherosclerosis, hypertension, and other cardiovascular diseases. Research has established connections between adropin and cardiovascular risk factors, such as obesity, insulin resistance, and dyslipidemia, positioning it as a valuable biomarker for evaluating cardiovascular disease risk. New studies highlight adropin's diagnostic and prognostic significance, showing that higher levels are linked to better cardiovascular outcomes, while lower levels are associated with a higher risk of cardiovascular diseases. This review aims to summarize current knowledge on adropin, emphasizing its significance as a promising focus in the intersection of cardiovascular health and metabolic health. By summarizing the latest research findings, this review aims to offer insights into the potential applications of adropin in both clinical practice and research, leading to a deeper understanding of its role in maintaining cardiovascular and metabolic health.
Collapse
Affiliation(s)
- S. Rooban
- Department of Biochemistry, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - K.A. Arul Senghor
- Department of Biochemistry, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - V.M. Vinodhini
- Department of Biochemistry, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - J.S. Kumar
- Department of General Medicine, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Wu W, Zhu L, Dou Z, Hou Q, Wang S, Yuan Z, Li B. Ghrelin in Focus: Dissecting Its Critical Roles in Gastrointestinal Pathologies and Therapies. Curr Issues Mol Biol 2024; 46:948-964. [PMID: 38275675 PMCID: PMC10813987 DOI: 10.3390/cimb46010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
This review elucidates the critical role of ghrelin, a peptide hormone mainly synthesized in the stomach in various gastrointestinal (GI) diseases. Ghrelin participates in diverse biological functions ranging from appetite regulation to impacting autophagy and apoptosis. In sepsis, it reduces intestinal barrier damage by inhibiting inflammatory responses, enhancing GI blood flow, and modulating cellular processes like autophagy and apoptosis. Notably, in inflammatory bowel disease (IBD), serum ghrelin levels serve as markers for distinguishing between active and remission phases, underscoring its potential in IBD treatment. In gastric cancer, ghrelin acts as an early risk marker, and due to its significant role in increasing the proliferation and migration of gastric cancer cells, the ghrelin-GHS-R axis is poised to become a target for gastric cancer treatment. The role of ghrelin in colorectal cancer (CRC) remains controversial; however, ghrelin analogs have demonstrated substantial benefits in treating cachexia associated with CRC, highlighting the therapeutic potential of ghrelin. Nonetheless, the complex interplay between ghrelin's protective and potential tumorigenic effects necessitates a cautious approach to its therapeutic application. In post-GI surgery scenarios, ghrelin and its analogs could be instrumental in enhancing recovery and reducing complications. This article accentuates ghrelin's multifunctionality, shedding light on its influence on disease mechanisms, including inflammatory responses and cancer progression, and examines its therapeutic potential in GI surgeries and disorders, advocating for continued research in this evolving field.
Collapse
Affiliation(s)
- Wei Wu
- Department of Intensive Care Medicine, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (W.W.); (Q.H.); (S.W.); (Z.Y.)
| | - Lei Zhu
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China; (L.Z.); (Z.D.)
| | - Zhimin Dou
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China; (L.Z.); (Z.D.)
| | - Qiliang Hou
- Department of Intensive Care Medicine, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (W.W.); (Q.H.); (S.W.); (Z.Y.)
| | - Sen Wang
- Department of Intensive Care Medicine, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (W.W.); (Q.H.); (S.W.); (Z.Y.)
| | - Ziqian Yuan
- Department of Intensive Care Medicine, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (W.W.); (Q.H.); (S.W.); (Z.Y.)
| | - Bin Li
- Department of Intensive Care Medicine, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China; (W.W.); (Q.H.); (S.W.); (Z.Y.)
- Department of Intensive Care Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China; (L.Z.); (Z.D.)
| |
Collapse
|
3
|
Mohsin S, Elabadlah H, Alotaiba MK, AlAmry S, Almehairbi SJ, Harara MMK, Almuhsin AMH, Tariq S, Howarth FC, Adeghate EA. High-Density Lipoprotein Is Located Alongside Insulin in the Islets of Langerhans of Normal and Rodent Models of Diabetes. Nutrients 2024; 16:313. [PMID: 38276551 PMCID: PMC10818677 DOI: 10.3390/nu16020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Recent studies have implicated pre-beta and beta lipoproteins (VLDL and LDL) in the etiopathogenesis of complications of diabetes mellitus (DM). In contrast, alpha lipoprotein (HDL) is protective of the beta cells of the pancreas. This study examined the distribution of HDL in the islets of Langerhans of murine models of type 1 diabetic rats (streptozotocin (STZ)-induced DM in Wistar rats) and type 2 models of DM rats (Goto-Kakizaki (GK), non-diabetic Zucker lean (ZL), and Zucker diabetic and fatty (ZDF)). The extent by which HDL co-localizes with insulin or glucagon in the islets of the pancreas was also investigated. Pancreatic tissues of Wistar non-diabetic, diabetic Wistar, GK, ZL, and ZDF rats were processed for immunohistochemistry. Pancreatic samples of GK rats fed with either a low-fat or a high-fat diet were prepared for transmission immune-electron microscopy (TIEM) to establish the cytoplasmic localization of HDL in islet cells. HDL was detected in the core and periphery of pancreatic islets of Wistar non-diabetic and diabetic, GK, ZL, and ZDF rats. The average total of islet cells immune positive for HDL was markedly (<0.05) reduced in GK and ZDF rats in comparison to Wistar controls. The number of islet cells containing HDL was also remarkably (p < 0.05) reduced in Wistar diabetic rats and GK models fed on high-fat food. The co-localization study using immunofluorescence and TIEM techniques showed that HDL is detected alongside insulin within the secretory granules of β-cells. HDL did not co-localize with glucagon. This observation implies that HDL may contribute to the metabolism of insulin.
Collapse
Affiliation(s)
- Sahar Mohsin
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Haba Elabadlah
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
- Cambridge Medical and Rehabilitation Center, Al Ain P.O. Box 222297, United Arab Emirates
| | - Mariam K. Alotaiba
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Suhail AlAmry
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Shamma J. Almehairbi
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Maha M. K. Harara
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Aisha M. H. Almuhsin
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Saeed Tariq
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
| | - Frank Christopher Howarth
- Department of Physiology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Ernest A. Adeghate
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.M.)
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
4
|
Adropin’s Role in Energy Homeostasis and Metabolic Disorders. Int J Mol Sci 2022; 23:ijms23158318. [PMID: 35955453 PMCID: PMC9369016 DOI: 10.3390/ijms23158318] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023] Open
Abstract
Adropin is a novel 76-amino acid-peptide that is expressed in different tissues and cells including the liver, pancreas, heart and vascular tissues, kidney, milk, serum, plasma and many parts of the brain. Adropin, encoded by the Enho gene, plays a crucial role in energy homeostasis. The literature review indicates that adropin alleviates the degree of insulin resistance by reducing endogenous hepatic glucose production. Adropin improves glucose metabolism by enhancing glucose utilization in mice, including the sensitization of insulin signaling pathways such as Akt phosphorylation and the activation of the glucose transporter 4 receptor. Several studies have also demonstrated that adropin improves cardiac function, cardiac efficiency and coronary blood flow in mice. Adropin can also reduce the levels of serum triglycerides, total cholesterol and low-density lipoprotein cholesterol. In contrast, it increases the level of high-density lipoprotein cholesterol, often referred to as the beneficial cholesterol. Adropin inhibits inflammation by reducing the tissue level of pro-inflammatory cytokines such as tumor necrosis factor alpha and interleukin-6. The protective effect of adropin on the vascular endothelium is through an increase in the expression of endothelial nitric oxide synthase. This article provides an overview of the existing literature about the role of adropin in different pathological conditions.
Collapse
|
5
|
Abdulrazzaq YM, Bastaki SMA, Adeghate E. Histamine H3 receptor antagonists - Roles in neurological and endocrine diseases and diabetes mellitus. Biomed Pharmacother 2022; 150:112947. [PMID: 35447544 DOI: 10.1016/j.biopha.2022.112947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/28/2022] [Accepted: 04/08/2022] [Indexed: 11/02/2022] Open
Abstract
Human histamine H3 receptor (H3R) was initially described in the brain of rat in 1983 and cloned in 1999. It can be found in the human brain and functions as a regulator of histamine synthesis and release. H3 receptors are predominantly resident in the presynaptic region of neurons containing histamine, where they modulate the synthesis and release of histamine (autoreceptor) or other neurotransmitters such as dopamine, norepinephrine, gamma-aminobutyric acid (GABA), glutamate, acetylcholine and serotonin (all heteroreceptors). The human histamine H3 receptor has twenty isoforms of which eight are functional. H3 receptor expression is seen in the cerebral cortex, neurons of the basal ganglia and hippocampus, which are important for process of cognition, sleep and homoeostatic regulation. In addition, histamine H3R antagonists stimulate insulin release, through inducing the release of acetylcholine and cause significant reduction in total body weight and triglycerides in obese subjects by causing a feeling of satiety in the hypothalamus. The ability of histamine H3R antagonist to reduce diabetes-induced hyperglycaemia is comparable to that of metformin. It is reasonable therefore, to claim that H3 receptor antagonists may play an important role in the therapy of disorders of cognition, the ability to sleep, oxidative stress, inflammation and anomaly of glucose homoeostasis. A large number of H3R antagonists are being developed by pharmaceutical companies and university research centres. As examples of these new drugs, this review will discuss a number of drugs, including the first histamine H3R receptor antagonist produced.
Collapse
Affiliation(s)
- Yousef M Abdulrazzaq
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Salim M A Bastaki
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates; Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
6
|
Role of the Ghrelin System in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23105380. [PMID: 35628187 PMCID: PMC9141034 DOI: 10.3390/ijms23105380] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
The ghrelin system contains several components (e.g., ghrelin with growing number of alternative peptides, growth hormone secretagogue receptors (GHS-Rs), and ghrelin-O-acyl-transferase (GOAT) and participates in regulation of a number of key processes of gastrointestinal (GI) tract cancer progression, including cell proliferation, migration, invasion, apoptosis, inflammation, and angiogenesis. However, its exact role in promoting or inhibiting cancer progression is still unclear. Colorectal cancer (CRC) is one of the most common human malignancies worldwide. Molecular studies suggest an autocrine/paracrine mechanism for the secretion of ghrelin in colorectal carcinogenesis and its contribution to its initial stages. However, the signalling pathways of CRC development involving the ghrelin system are poorly understood. Potential mechanisms of colon carcinogenesis involving components of the ghrelin system were previously described in an animal model and in in vitro studies. However, the diagnostic–prognostic role of serum ghrelin concentrations, tissue expression, or genetic changes of this system in various stages of CRC progression remains an open case. Thus, the aim of this study is to discuss the role of the ghrelin system in colon carcinogenesis, diagnostics and CRC prognostics, as well as the results of studies on the use of ghrelin and its analogues in the therapy of CRC-related syndromes (e.g., cachexia and sarcopenia).
Collapse
|
7
|
Emerald BS, Mohsin S, D’Souza C, John A, El-Hasasna H, Ojha S, Raza H, al-Ramadi B, Adeghate E. Diabetes Mellitus Alters the Immuno-Expression of Neuronal Nitric Oxide Synthase in the Rat Pancreas. Int J Mol Sci 2022; 23:ijms23094974. [PMID: 35563364 PMCID: PMC9105024 DOI: 10.3390/ijms23094974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Nitric oxide is generated from nitric oxide synthase following hyperglycemia-induced oxidative stress during the course of diabetes mellitus (DM). We examined the temporal immuno-expression of neuronal nitric oxide synthase (nNOS) in the pancreas of diabetic and non-diabetic rats using immunohistochemical, immunofluorescence and western blot techniques 12 h, 24 h, 1 week, 2 weeks, 1, 8 and 15 months after induction of DM. nNOS co-localized with pancreatic beta cells but disappears 12 h after the onset of DM. In contrast, the nNOS content of pancreatic nerves increased significantly (p < 0.001) 24 h after the induction of DM, and decreased sharply thereafter. However, nNOS-positive ganglion cells were observed even 15 months post-diabetes. ROS increased by more than 100% two months after the onset of DM compared to non-diabetic control but was significantly (p < 0.000001) reduced at 9 months after the induction of DM. The pancreatic content of GSH increased significantly (p < 0.02) after 9 months of DM. Although, TBARS content was significantly (p < 0.009; p < 0.002) lower in aged (9 months) non-diabetic and DM rats, TBARS rate was markedly (p < 0.02) higher 9 months after the induction of DM when compared to younger age group. In conclusion, nNOS is present in pancreatic beta cell, but disappears 12 h after the onset of diabetes. In contrast, the tissue level of nNOS of pancreatic nerves increased in the first week of diabetes, followed by a sharp reduction. nNOS may play important roles in the metabolism of pancreatic beta cell.
Collapse
Affiliation(s)
- Bright Starling Emerald
- Departments of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (B.S.E.); (S.M.); (C.D.)
| | - Sahar Mohsin
- Departments of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (B.S.E.); (S.M.); (C.D.)
| | - Crystal D’Souza
- Departments of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (B.S.E.); (S.M.); (C.D.)
| | - Annie John
- Departments of Biochemistry, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.J.); (H.R.)
| | - Hussain El-Hasasna
- Departments of Medical Microbiology and Immunology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (H.E.-H.); (B.a.-R.)
| | - Shreesh Ojha
- Departments of Pharmacology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates;
| | - Haider Raza
- Departments of Biochemistry, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (A.J.); (H.R.)
| | - Basel al-Ramadi
- Departments of Medical Microbiology and Immunology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (H.E.-H.); (B.a.-R.)
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Ernest Adeghate
- Departments of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates; (B.S.E.); (S.M.); (C.D.)
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Correspondence:
| |
Collapse
|
8
|
Zwain A, Mohammed HQ. EFFECT OF 20-HOUR FASTING AND LOW FAT DIET ON GHRELIN HORMONE, GLUCOSE LEVEL AND LIVER FUNCTION IN ALBINO RATS MALE. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:798-802. [PMID: 35633350 DOI: 10.36740/wlek202204109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The aim: It aims to study the effect of fasting and low fat diet on ghrelin hormone, glucose level, the liver enzymes AST and ALT. PATIENTS AND METHODS Materials and methods: The experimental study was conducted using 24 healthy young male albino rat weighing 95±5 gram and age 2 month, one-way (ANOVA) were employed to determine a significance of differences. RESULTS Results: A significant increase p≤0.05 in glucose level of non-fasting control group compere with non-fasting low fat diet group, significant increase p≤0.05 in glucose level of control group fasting for 20h compared with low fat diet fasting for 20h group, significant decrease p≤0.05 when compares non-fasting low fat diet compares to 20h fasting low fat diet and significant decrease p≤0.05 when compares non-fasting control compares to 20h fasting control, while the effect of fasting and low fat diet on ghrelin hormone. A significant decrease p≤0.05 in ghrelin hormone level of non-fasting control group compere with non-fasting low fat diet group, significant increase p≤0.05 in ghrelin hormone of control group fasting for 20h compared with low fat diet fasting for 20h group, non-fasting control compares to 20h fasting control show a significant (p≤0.05) increase, Fasting with low fat diet cause a significant decrease p≤0.05 in ALT level, also in AST level there was a significant decrease p≤0.05 after 20h fasting. CONCLUSION Conclusions: The fasting and low fat diet have effected on ghrelin hormone, glucose level and fasting with low fat diet cause decrease in ALT level, also in AST level decrease after 20h fasting in male albino rats.
Collapse
|
9
|
Masule MV, Rathod S, Agrawal Y, Patil CR, Nakhate KT, Ojha S, Goyal SN, Mahajan UB. Ghrelin mediated regulation of neurosynaptic transmitters in depressive disorders. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100113. [PMID: 35782191 PMCID: PMC9240712 DOI: 10.1016/j.crphar.2022.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Ghrelin is a peptide released by the endocrine cells of the stomach and the neurons in the arcuate nucleus of the hypothalamus. It modulates both peripheral and central functions. Although ghrelin has emerged as a potent stimulator of growth hormone release and as an orexigenic neuropeptide, the wealth of literature suggests its involvement in the pathophysiology of affective disorders including depression. Ghrelin exhibits a dual role through the advancement and reduction of depressive behavior with nervousness in the experimental animals. It modulates depression-related signals by forming neuronal networks with various neuropeptides and classical neurotransmitter systems. The present review emphasizes the integration and signaling of ghrelin with other neuromodulatory systems concerning depressive disorders. The role of ghrelin in the regulation of neurosynaptic transmission and depressive illnesses implies that the ghrelin system modulation can yield promising antidepressive therapies. Ghrelin is the orexigenic type of neuropeptide. It binds with the growth hormone secretagogue receptor (GHSR). GHSR is ubiquitously present in the various brain regions. Ghrelin is involved in the regulation of depression-related behavior. The review focuses on the neurotransmission and signaling of ghrelin in neuropsychiatric and depressive disorders.
Collapse
Affiliation(s)
- Milind V. Masule
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Sumit Rathod
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Yogeeta Agrawal
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Chandragouda R. Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Kartik T. Nakhate
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sameer N. Goyal
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India
- Corresponding author.
| | - Umesh B. Mahajan
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
- Corresponding author.
| |
Collapse
|
10
|
Early (5-Day) Onset of Diabetes Mellitus Causes Degeneration of Photoreceptor Cells, Overexpression of Incretins, and Increased Cellular Bioenergetics in Rat Retina. Cells 2021; 10:cells10081981. [PMID: 34440748 PMCID: PMC8394146 DOI: 10.3390/cells10081981] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
The effects of early (5-day) onset of diabetes mellitus (DM) on retina ultrastructure and cellular bioenergetics were examined. The retinas of streptozotocin-induced diabetic rats were compared to those of non-diabetic rats using light and transmission electron microscopy. Tissue localization of glucagon-like-peptide-1 (GLP-1), exendin-4 (EXE-4), and catalase (CAT) in non-diabetic and diabetic rat retinas was conducted using immunohistochemistry, while the retinal and plasma concentration of GLP-1, EXE-4, and CAT were measured with ELISA. Lipid profiles and kidney and liver function markers were measured from the blood of non-diabetic and diabetic rats with an automated biochemical analyzer. Oxygen consumption was monitored using a phosphorescence analyzer, and the adenosine triphosphate (ATP) level was determined using the Enliten ATP assay kit. Blood glucose and cholesterol levels were significantly higher in diabetic rats compared to control. The number of degenerated photoreceptor cells was significantly higher in the diabetic rat retina. Tissue levels of EXE-4, GLP-1 and CAT were significantly (p = 0.002) higher in diabetic rat retina compared to non-diabetic controls. Retinal cellular respiration was 50% higher (p = 0.004) in diabetic (0.53 ± 0.16 µM O2 min−1 mg−1, n = 10) than in non-diabetic rats (0.35 ± 0.07 µM O2 min−1 mg−1, n = 11). Retinal cellular ATP was 76% higher (p = 0.077) in diabetic (205 ± 113 pmol mg−1, n = 10) than in non-diabetic rats (116 ± 99 pmol mg−1, n = 12). Thus, acute (5-day) or early onslaught of diabetes-induced hyperglycemia increased incretins and antioxidant levels and oxidative phosphorylation. All of these events could transiently preserve retinal function during the early phase of the progression of diabetes.
Collapse
|
11
|
Zhou P, Jiang X, Li X. Design and evaluation of GLP-1 receptor G-protein biased agonist with prolonged efficacy on diabetes. Life Sci 2021:119844. [PMID: 34293397 DOI: 10.1016/j.lfs.2021.119844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/30/2021] [Accepted: 07/11/2021] [Indexed: 12/25/2022]
Abstract
AIM Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have emerged as potent drug development target for treating diabetes and obesity. Here, we designed and evaluated novel long-acting GLP-1R G protein biased agonist with potent clinical application. MAIN METHODS GLP-1R G-protein biased sequences were screened via a high-throughput autocrine-based strategy and then fused to Exendin (9-39). These fusion peptides were further performed with site-specific modification. Surface plasmon resonance (SPR) measurements, GLP-1R activation potencies and plasma stability tests were applied to screen optimal candidate. Acute and chronic hypoglycemic and insulinotropic activities of selected agent were evaluated in diabetic and obese rodent animals. MAIN FINDINGS AX09 exert highest binding affinities for GLP-1R extracellular domain (GLP-1R ECD). Further in vitro plasma stability and GLP-1R activation assays demonstrated better potency of AX18. Acute pharmacodynamic evaluation of AX18 demonstrated the promising insulinotropic and hypoglycemic activities which were exhibited in a dose-dependent manner. Prolonged hypoglycemic efficacies of AX18 were also observed in both hypoglycemic duration test and multiple oral glucose tolerance tests (OGTTs) in the diabetic mice. Further pharmacokinetic test in cynomolgus monkeys exhibited that the half-life of AX18 was more than 6 days. Once weekly treatment of AX18 in diabetic mice for 8-week achieved significantly improved %HbA1C, insulin resistance, glucose tolerance, β-cells and diabetic retinal injury. Chronic treatment of AX18 in diet-induced obese (DIO) mice also exhibited beneficial efficacies on %HbA1C, inflammation-related factors lowering, and weight gains. CONCLUSION AX18, as a novel GLP-1R G protein biased agonist, exhibited potency for treating diabetes mellitus and its complications.
Collapse
Affiliation(s)
- Peng Zhou
- Peking University Third Hospital, Beijing 100191, PR China
| | - Xiaodan Jiang
- Peking University Third Hospital, Beijing 100191, PR China
| | - Xuemin Li
- Peking University Third Hospital, Beijing 100191, PR China.
| |
Collapse
|
12
|
Nociceptin Increases Antioxidant Expression in the Kidney, Liver and Brain of Diabetic Rats. BIOLOGY 2021; 10:biology10070621. [PMID: 34356475 PMCID: PMC8301093 DOI: 10.3390/biology10070621] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/30/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Simple Summary Nociceptin (NC) is a small peptide implicated in the physiology of pain, learning and memory. Here we investigated the role of NC in the induction of antioxidants in the kidney, liver, and the brain of diabetic rats using morphological and biochemical methods. Normal and diabetic animals were treated with NC for 5 days. Catalase (CAT) was expressed in the kidney, liver, and the neurons of the brain. Although CAT was markedly (p < 0.05) lower in the tubules of the kidney of normal and diabetic animals after NC treatment, NC significantly (p < 0.001) increased the presence of CAT in the liver and brain of diabetic rats. Superoxide dismutase (SOD) was observed in kidney tubules, hepatocytes, and neurons of the brain. Treatment with NC markedly (p < 0.001) increased the level of SOD in hepatocytes and neurons of the brain. Glutathione reductase (GRED) was seen in the convoluted tubules of the kidney, hepatocytes and neurons of the brain. Treatment with NC markedly increased (p < 0.001) the expression of GRED in kidney tubules, hepatocytes and neurons of the brain. In conclusion, NC can help diabetic patients mitigate the effects of oxidative stress by its ability to induce endogenous antioxidants. Abstract Nociceptin (NC) consists of 17 amino acids (aa) and takes part in the processing of learning and memory. The role of NC in the induction of endogenous antioxidants in still unclear. We examined the effect of NC on the expression of endogenous antioxidants in kidney, liver, cerebral cortex (CC), and hippocampus after the onset of diabetes mellitus, using enzyme-linked immunosorbent assay and immunohistochemistry. Exogenous NC (aa chain 1–17; 10 µg/kg body weight) was given intraperitoneally to normal and diabetic rats for 5 days. Our results showed that catalase (CAT) is present in the proximal (PCT) and distal (DCT) convoluted tubules of kidney, hepatocytes, and neurons of CC and hippocampus. The expression of CAT was significantly (p < 0.05) reduced in the kidney of normal and diabetic rats after treatment with NC. However, NC markedly (p < 0.001) increased the expression CAT in the liver and neurons of CC of diabetic rats. Superoxide dismutase (SOD) is widely distributed in the PCT and DCT of kidney, hepatocytes, and neurons of CC and hippocampus. NC significantly (p < 0.001) increased the expression of SOD in hepatocytes and neurons of CC and the hippocampus but not in the kidney. Glutathione reductase (GRED) was observed in kidney tubules, hepatocytes and neurons of the brain. NC markedly increased (p < 0.001) the expression of GRED in PCT and DCT cells of the kidney and hepatocytes of liver and neurons of CC. In conclusion, NC is a strong inducer of CAT, SOD, and GRED expression in the kidney, liver and brain of diabetic rats.
Collapse
|
13
|
Subba R, Sandhir R, Singh SP, Mallick BN, Mondal AC. Pathophysiology linking depression and type 2 diabetes: Psychotherapy, physical exercise, and fecal microbiome transplantation as damage control. Eur J Neurosci 2021; 53:2870-2900. [PMID: 33529409 DOI: 10.1111/ejn.15136] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/10/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Diabetes increases the likelihood of developing depression and vice versa. Research on this bidirectional association has somewhat managed to delineate the interplay among implicated physiological processes. Still, further exploration is required in this context. This review addresses the comorbidity by investigating suspected common pathophysiological mechanisms. One such factor is psychological stress which disturbs the hypothalamic-pituitary-adrenal axis causing hormonal imbalance. This includes elevated cortisol levels, a common biomarker of both depression and diabetes. Disrupted insulin signaling drives the hampered neurotransmission of serotonin, dopamine, and norepinephrine. Also, adipokine hormones such as adiponectin, leptin, and resistin and the orexigenic hormone, ghrelin, are involved in both depression and T2DM. This disarray further interferes with physiological processes encompassing sleep, the gut-brain axis, metabolism, and mood stability. Behavioral coping mechanisms, such as unhealthy eating, mediate disturbed glucose homeostasis, and neuroinflammation. This is intricately linked to oxidative stress, redox imbalance, and mitochondrial dysfunction. However, interventions such as psychotherapy, physical exercise, fecal microbiota transplantation, and insulin-sensitizing agents can help to manage the distressing condition. The possibility of glucagon-like peptide 1 possessing a therapeutic role has also been discussed. Nonetheless, there stands an urgent need for unraveling new correlating targets and biological markers for efficient treatment.
Collapse
Affiliation(s)
- Rhea Subba
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rajat Sandhir
- Dept. of Biochemistry, Panjab University, Chandigarh, Punjab, India
| | - Surya Pratap Singh
- Dept. of Biochemistry, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | | |
Collapse
|
14
|
Lotfy M, Ksiksi TS, Palakkot AR, D’Souza CM, Mohsin S, Adeghate EA. Anti-diabetic Effect of Acridocarpus Orientalis. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2020. [DOI: 10.2174/1874104502014010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Acridocarpus orientalis (AO) is a medicinal herb indigenous to tropical and subtropical Africa, Arabian Peninsula, and New Caledonia with reported anti-inflammatory and antioxidant properties.
Objective:
To determine whether AO has any beneficial effects on diabetes-induced metabolic parameters in rats.
Materials and Methods:
Diabetes mellitus was induced in male Wistar rats by streptozotocin. Diabetic rats were treated with three doses of AO extract (50, 100, and 200 mg/kg BW) for 30 days. Kidney, liver, and pancreatic tissue samples were processed for histopathology to determine the effect of AO on the cells of these organs. The effect of AO on pancreatic islet cells and serum insulin levels was also examined using immunohistochemistry and enzyme-linked immunosorbent assay techniques, respectively.
Results:
AO (100 mg/kg BW) caused a marked reduction in blood glucose levels in diabetic rats compared to diabetic control on day 10 of the study. Moreover, AO (200 mg/kg BW) increased the number of insulin-positive cells with a concomitant reduction in the number of glucagon-immunoreactive cells in pancreatic islets. AO (100 mg/kg) also increased the serum level of superoxide dismutase significantly. Although the administration of AO was able to significantly decrease the diabetes-associated increases in serum creatinine and bilirubin levels, it had no effect on blood urea nitrogen, serum aspartate, or alanine aminotransferase levels. Histopathological examination showed that AO has no toxic effect on the structure of the pancreas, liver, and kidney.
Conclusion:
Our findings showed that AO could alleviate some complications of diabetes mellitus.
Collapse
|