1
|
Ryu DH, Cho JY, Yu HS, Kim JW, Kim JC, Son YJ, Nho CW, Hamayun M, Kim HY. Salvia miltiorrhiza bunge extracts: a promising source for anti-atopic dermatitis activity. BMC Complement Med Ther 2024; 24:217. [PMID: 38844985 PMCID: PMC11155122 DOI: 10.1186/s12906-024-04524-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory condition characterized by the accumulation of reactive oxygen species and the expression of inflammatory factors. Regarding its anti-atopic activity, numerous traditional medicinal materials and secondary metabolic products play pivotal roles in modulating the associated mechanisms. METHODS This study aimed to utilize Salvia miltiorrhiza Bunge (SMB) as an anti-AD source. In-vitro activity assessments and qualitative and quantitative analyses using UPLC-TQ-MS/MS and HPLC-DAD were conducted in two cultivars ('Dasan' and 'Kosan'). Statistical analysis indicated that the profiles of their secondary metabolites contribute significantly to their pharmacological properties. Consequently, bio-guided fractionation was undertaken to figure out the distinct roles of the secondary metabolites present in SMB. RESULTS Comparative study of two cultivars indicated that 'Dasan', having higher salvianolic acid A and B, exhibited stronger antioxidant and anti-inflammatory activities. Meanwhile, 'Kosan', containing higher tanshinones, showed higher alleviating activities on anti-AD related genes in mRNA levels. Additionally, performed bio-guided fractionation re-confirmed that the hydrophilic compounds of SMB can prevent AD by inhibiting accumulation of ROS and suppressing inflammatory factors and the lipophilic components can directly inhibit AD. CONCLUSIONS SMB was revealed as a good source for anti-AD activity. Several bioactive compounds were identified from the UPLC-TQ-MS/MS and different compounds content was linked to biological activities. Characterization of these compounds may be helpful to understand differential role of secondary metabolites from SMB on alleviation of AD.
Collapse
Affiliation(s)
- Da Hye Ryu
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon, 25451, Republic of Korea
| | - Jwa Yeong Cho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon, 25451, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Hyung-Seok Yu
- Natural Product Informatics Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
| | - Jin-Woo Kim
- Natural Product Informatics Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Chul Kim
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- Natural Product Informatics Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
| | - Yang-Ju Son
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Chu Won Nho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon, 25451, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Garden Campus, Khyber Pakhtunkhwa, 23200, Pakistan
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon, 25451, Republic of Korea.
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
2
|
Cai H, Wen H, Li J, Lu L, Zhao W, Jiang X, Bai R. Small-molecule agents for treating skin diseases. Eur J Med Chem 2024; 268:116269. [PMID: 38422702 DOI: 10.1016/j.ejmech.2024.116269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Skin diseases are a class of common and frequently occurring diseases that significantly impact daily lives. Currently, the limited effective therapeutic drugs are far from meeting the clinical needs; most drugs typically only provide symptomatic relief rather than a cure. Developing small-molecule drugs with improved efficacy holds paramount importance for treating skin diseases. This review aimed to systematically introduce the pathogenesis of common skin diseases in daily life, list related drugs applied in the clinic, and summarize the clinical research status of candidate drugs and the latest research progress of candidate compounds in the drug discovery stage. Also, it statistically analyzed the number of publications and global attention trends for the involved skin diseases. This review might provide practical information for researchers engaged in dermatological drugs and further increase research attention to this disease area.
Collapse
Affiliation(s)
- Hong Cai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Hao Wen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Junjie Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Liuxin Lu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Wenxuan Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
3
|
Varshney M, Bahadur S. Comprehensive Review on Phytoconstituents-based Nanomedicine for the Treatment of Atopic Dermatitis. Curr Pharm Biotechnol 2024; 25:737-756. [PMID: 37888809 DOI: 10.2174/0113892010245092230922180341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 10/28/2023]
Abstract
Atopic dermatitis (AD) is known as a chronic disease characterized by eczematous and pruritus skin lesions. The pathology behind atopic dermatitis etiology is loss of epidermal barrier, which prevents the production of protein filaggrin that can induce T-cell infiltration and inflammation. Treatment of AD is majorly based on limiting skin repair as well as reducing inflammation and itching. There are several remedies available for the treatment of AD, such as Janus kinase and calcineurin inhibitors, topical corticosteroids, and phosphodiesterase-4 inhibitors. The conventional formulations in the market have limited safety and efficacy. Hence, effective treatment of atopic dermatitis requires the development of novel, efficacious, reliable, and specific therapies. Recent research data have revealed that some naturally occurring medicinal plants have potential applications in the management of AD through different mechanisms. The nanotechnology-based therapeutics have gained a lot of attention in the last decade for the improvement in the activity of drugs having low absorption due to poor solubility, thus leading to lesser bioavailability. Therapies based on nanotechnology can be an effective way to overcome these obstacles. Due to their effective propensity to provide better drug diffusion and bioavailability as well as drug targeting potential at the desired site of action, these approaches may have decreased adverse drug effects, better penetration, and enhanced therapeutic efficacy. Hence, this review highlights the potential of phytoconstituents-based novel formulations for the treatment of atopic dermatitis. Furthermore, recent patents on therapeutic approaches to atopic dermatitis have also been briefly described.
Collapse
Affiliation(s)
- Mayuri Varshney
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, U.P. India
| | - Shiv Bahadur
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, U.P. India
| |
Collapse
|
4
|
Shi M, Zhang J, Li M, Zhao Y, Guo Y, Xu J, Liu R, Li Z, Ren D, Liu P. Liquiritigenin Confers Liver Protection by Enhancing NRF2 Signaling through Both Canonical and Non-canonical Signaling Pathways. J Med Chem 2023; 66:11324-11334. [PMID: 37534604 DOI: 10.1021/acs.jmedchem.3c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Oxidative stress plays a critical role in drug-induced liver injury. In recent years, liquiritigenin (LQ), a natural flavonoid distributed in Glycyrrhizae Radix et Rhizoma (Gan Cao), shows protective effects against oxidative hepatotoxicity. However, the underlying mechanism remains unclear. In this study, we mainly investigated the role of NRF2, a core transcription factor in oxidative stress, in LQ-induced hepatoprotection. Our results indicated that the function of LQ to eliminate reactive oxygen species in liver cells was dependent on NRF2 activation. Both a canonical signaling pathway and a non-canonical signaling pathway are involved in LQ-induced NRF2 activation. LQ induced NRF2 activation in a KEAP1-C151-dependent manner partially. Meanwhile, LQ led to the blockage of autophagic flux and upregulation of p62, which competitively bound with KEAP1 and conferred NRF2 activation in a KEAP1-C151-independent manner. Totally, our study reveals a novel molecular mechanism underlying the hepatoprotection of LQ, providing a new insight into the pathogenesis and therapeutic strategy of oxidative liver injury.
Collapse
Affiliation(s)
- Mengjiao Shi
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jian Zhang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Miaomiao Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun 130021, China
| | - Yaping Zhao
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ying Guo
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jiayi Xu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Rongrong Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Zongfang Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Dongmei Ren
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Pengfei Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Key Laboratory of Environment and Genes Related To Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an 710061, China
| |
Collapse
|
5
|
Ahn YM, Shin S, Jang JH, Jung J. Bojungikgi-tang improves skin barrier function and immune response in atopic dermatitis mice fed a low aryl hydrocarbon receptor ligand diet. Chin Med 2023; 18:100. [PMID: 37573390 PMCID: PMC10423424 DOI: 10.1186/s13020-023-00806-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/17/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND The aryl hydrocarbon receptor (AhR) is a transcription factor that plays a crucial role in regulating the immune system and maintaining skin barrier function. AhR signaling is pivotal in the pathogenesis of inflammatory diseases such as atopic dermatitis (AD), and the absence of AhR ligands further contributes to the progression or worsening of AD symptoms. METHODS AD was induced with 2,4-dinitrochlorobenzene (DNCB), and Bojungikgi-tang (BJIKT) was administered orally daily for 10 weeks. Serum IgE, splenocyte IL-4, and IFN-γ levels, skin barrier genes, and AhR target gene expressions were analyzed using RNA-sequencing analysis. Spleen tissues were extracted for fluorescence-activated cell sorting (FACS) analysis to analyze the effect of BJIKT on immune responses. A correlation analysis was conducted to analyze the correlation between immune markers and skin barrier genes and AhR target genes. RESULTS BJIKT effectively improved AD symptoms in AD mice fed a low AhR ligand diet by reducing neutrophil and eosinophil counts, lowering IgE levels in the blood, and decreasing IL-4 and IFN-γ levels in the splenocytes. Additionally, BJIKT significantly reduced epithelial skin thickness and transepidermal water loss (TEWL) values and reversed the decreased expression of skin barrier genes. BJIKT also considerably altered the expression of AhR target genes, including Ahr, Ahrr, cytochrome P450 1A1 (CYP1A1), and CYP1B1. Furthermore, AhR target pathway genes were negatively correlated with immune cell subtypes, including CD4 + and CD8 + T cells and macrophages (CD11b + F4/80 +) at the systemic level. CONCLUSIONS BJIKT can regulate AhR activation and may help reduce inflammation in AD by regulating the expression of skin barrier genes and immune responses.
Collapse
Affiliation(s)
- You Mee Ahn
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Sarah Shin
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Ji-Hye Jang
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Jeeyoun Jung
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea.
| |
Collapse
|
6
|
Huang X, Fei Q, Yu S, Liu S, Zhang L, Chen X, Cao L, Wang Z, Shan M. A comprehensive review: Botany, phytochemistry, traditional uses, pharmacology, and toxicology of Spatholobus suberectus vine stems. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116500. [PMID: 37062528 DOI: 10.1016/j.jep.2023.116500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Spatholobus suberectus vine stem (SSVS) is the dried lianoid stem of the leguminous plant, Spatholobus suberectus Dunn, which is mainly distributed in China and some Southeast Asian countries. Due to its notable effects of promoting blood circulation and tonifying blood, regulating menstruation and relieving pain, this phytomedicine has been used in traditional Chinese medicine for hundreds of years. AIM OF THE STUDY This review is designed to provide a comprehensive profile of SSVS concerning its botany, traditional uses, phytochemistry, quality control, pharmacology, pharmacokinetics, and toxicology and attempts to provide a scientific basis and future directions for further research and development. MATERIALS AND METHODS Related document information was collected with the help of databases such as the Web of Science, Science Direct, PubMed, China National Knowledge Infrastructure (CNKI) and Flora of China. RESULTS SSVS is reported to be traditionally used to treat rheumatic arthralgia, numbness and paralysis, blood deficiency, irregular menstruation and other gynecological diseases. Botanical studies have revealed that there are some confusable varieties in some specific locations with a long history. Additionally, 145 chemical constituents have been isolated and identified from SSVS, including flavonoids, organic acids, terpenoids, lignans, and phenolic glycosides. Pharmacological studies have shown that SSVS has a variety of effects, such as nervous system regulation, and antioxidative, antitumor, antiviral, antidiabetic, and anti-inflammatory effects. However, in regard to the absorption-distribution-metabolism-elimination-toxicity (ADMET) of SSVS, few studies have been carried out, and few articles have been published. CONCLUSION With a long history of traditional uses, a variety of bioactive phytochemicals and a wide range of definite pharmacological activities, SSVS is believed to have great potential in clinical applications and further research, development and exploitation. The precise action mechanisms, rational quality control and quality markers, and explicit ADMET routes should be highlighted in the future, which might provide effective help to safely, effectively and sustainably use this herbal medicine.
Collapse
Affiliation(s)
- Xiaojun Huang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Qingqing Fei
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Sheng Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Shengjin Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Li Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Xialin Chen
- National Key Laboratory of Pharmaceutical New Technology for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, 222001, PR China
| | - Liang Cao
- National Key Laboratory of Pharmaceutical New Technology for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, 222001, PR China
| | - Zhenzhong Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; National Key Laboratory of Pharmaceutical New Technology for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, 222001, PR China
| | - Mingqiu Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|
7
|
Zhao G, Tong Y, Xu J, Zhu W, Zeng J, Liu R, Luan F, Zeng N. Jing-Fang powder ethyl acetate extracts attenuate atopic dermatitis by modulating T-cell activity. Mol Immunol 2023; 160:133-149. [PMID: 37429064 DOI: 10.1016/j.molimm.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/24/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023]
Abstract
Jing-Fang powder ethyl acetate extract (JFEE) and its isolated C (JFEE-C) possess favorable anti-inflammatory and anti-allergic properties; however, their inhibitory effects on T cell activity remain unknown. In vitro, Jurkat T cells and primary mouse CD4+ T cells were used to explore the regulatory effects of JFEE and JFEE-C as well as their potential mechanisms on activated T cells. Furthermore, T cell-mediated atopic dermatitis (AD) mouse model was established to confirm these inhibitory effects in vivo. The results showed that JFEE and JFEE-C inhibited T cell activation by suppressing the production of interleukin-2 (IL-2) and interferon-gamma (IFN-γ) without showing cytotoxicity. Flow cytometry showed the inhibitory effects of JFEE and JFEE-C on the activation-induced proliferation and apoptosis of T cells. Pretreatment with JFEE and JFEE-C also decreased the expression levels of several surface molecules, including CD69, CD25, and CD40L. Moreover, it was confirmed that JFEE and JFEE-C inhibited T cell activation by downregulating the TGF-β-activated kinase 1 (TAK1)/nuclear kappa-light-chain-enhancer of activated B cells (NF-κB)/mitogen-activated protein kinase (MAPK) signaling pathways. The combination of these extracts with C25-140 intensified the inhibitory effects on IL-2 production and p65 phosphorylation. The oral administration of JFEE and JFEE-C notably weakened AD manifestations, including the infiltration of mast cells and CD4+ cells, epidermis and dermis thicknesses, serum levels of immunoglobulin E (IgE) and thymic stromal lymphopoietin (TSLP), and gene expression levels of T helper (Th) cells-related cytokines in vivo. The underlying mechanisms of the inhibitory effects of JFEE and JFEE-C on AD were related to attenuating T cell activity through NF-κB/MAPK pathways. In conclusion, this study suggested that JFEE and JFEE-C exhibited anti-atopic efficacy by attenuating T cell activity and might possess a curative potential for T cell-mediated diseases.
Collapse
Affiliation(s)
- Ge Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Yue Tong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Jie Xu
- College of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, PR China
| | - Wenjing Zhu
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Rong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Fei Luan
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, PR China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| |
Collapse
|
8
|
Čižmárová B, Hubková B, Tomečková V, Birková A. Flavonoids as Promising Natural Compounds in the Prevention and Treatment of Selected Skin Diseases. Int J Mol Sci 2023; 24:ijms24076324. [PMID: 37047297 PMCID: PMC10094312 DOI: 10.3390/ijms24076324] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Phytochemicals represent a large and diverse group of naturally occurring compounds, bioactive nutrients, or phytonutrients produced by plants, widely found in fruits, vegetables, whole grains products, legumes, beans, herbs, seeds, nuts, tea, and dark chocolate. They are classified according to their chemical structures and functional properties. Flavonoids belong to the phenolic class of phytochemicals with potential solid pharmacological effects as modulators of multiple signal transduction pathways. Their beneficial effect on the human body is associated with their antioxidant, anti-inflammatory, antimutagenic, and anticarcinogenic properties. Flavonoids are also widely used in various nutritional, pharmaceutical, medical, and cosmetic applications. In our review, we discuss the positive effect of flavonoids on chronic skin diseases such as vitiligo, psoriasis, acne, and atopic dermatitis.
Collapse
|
9
|
Nguyen-Ngoc H, Vu-Van T, Pham-Ha-Thanh T, Le-Dang Q, Nguyen-Huu T. Ethnopharmacology, Phytochemistry, and Pharmacological Activities of Spatholobus suberectus Vine Stem. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221142724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Spatholobus suberectus vine stem is an important medicinal material in Chinese, Vietnamese, and Korean traditional medicines. Its decoction has long been used to treat blood disorders, such as anemia and menstrual irregularity, as well as rheumatoid diseases. Previous phytochemical investigations characterized 88 compounds from S suberectus, which mainly belonged to the phenolic class, especially of the flavonoid type. Pharmacological studies showed the beneficial effects of extracts of the plant on the cardiovascular tract, which is ethnopharmacologically relevant to the plant's use in traditional medicine. Besides that, the extracts and isolated compounds also exhibited antimicrobial, anticancer, antiinflammatory, and antioxidant activities. The past study results support the use of S suberectus vine stem in traditional medicine and also revealed new directions of pharmacological effects of this medicinal plant.
Collapse
Affiliation(s)
| | - Tuan Vu-Van
- Faculty of Pharmacy, PHENIKAA University, Hanoi, Vietnam
| | | | - Quang Le-Dang
- Graduate University of Sciences and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | | |
Collapse
|
10
|
Zhang F, Ganesan K, Liu Q, Chen J. A Review of the Pharmacological Potential of Spatholobus suberectus Dunn on Cancer. Cells 2022; 11:cells11182885. [PMID: 36139460 PMCID: PMC9497142 DOI: 10.3390/cells11182885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Spatholobus suberectus Dunn (SSD) has been extensively employed in Traditional Chinese Medicine to treat several ailments. SSD and its active compounds are effective therapeutic agents for treating a variety of diseases with negligible side effects. Therefore, we aimed to investigate its phytochemistry, pharmacology, and potential therapeutic effects exclusively in cancer prevention and treatment. Phytochemical and pharmacological information was collected and arranged in a rational order. SSD has been frequently attributed to having antioxidant, anti-diabetic, anti-inflammatory, hematopoietic, neuroprotective, antimicrobial, and anticancer properties. Evidence has indicated that the bioactive constituents in SSD have attracted increasing scientific attention due to their preventive role in cancers. Further, the present review provides the current information on the health implications of SSD, thus allowing for future clinical trials to explore its restorative benefits. All data of in vitro and animal investigations of SSD, as well as its effect on human health, were obtained from an electronic search and library database. The diverse pharmacological potential of SSD provides an opportunity for preclinical drug discovery, and this comprehensive review strongly indicates that SSD is an excellent anti-tumorigenic agent that modulates or prevents breast cancer.
Collapse
Affiliation(s)
- Feng Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518057, China
| | - Kumar Ganesan
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qingqing Liu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jianping Chen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518057, China
- Correspondence: ; Tel.: +852-3917-6479
| |
Collapse
|
11
|
Dilip Pandkar P, Raosaheb Deshmukh S, Sachdeva V. COVID-19 patient with B Cell Lymphoma co-morbidity managed with co-administration of Ayurvedic formulation. J Ayurveda Integr Med 2022; 13:100632. [PMID: 35975131 PMCID: PMC9372187 DOI: 10.1016/j.jaim.2022.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022] Open
Abstract
‘Renaissance took place in Chaos and plague’. It was COVID-19 pandemic, when world realized ayurveda co-interventions are praiseworthy even in acute, infective and fatal conditions like COVID-19. We report perhaps first case of COVID-19 patient with cancer managed with poly-herbal ayurvedic formulation and integrated approach. In the first wave of COVID-19 (June 2020), a 47 year old male with history of Chronic kidney disease and active B Cell Lymphoma complained of fever, malaise, cattarah and ageusia. He was found positive on RT-PCR which was done promptly and was later treated in home quarantine with antipyretics, Vitamin C and Madhav rasayan a polyherbal preparation containing Piper longum, Glycyrrhiza glabra, Eclipta alba, Achyranthes aspera, Embelia ribes and Aloe vera designed to modulate host response. It was challenging to treat a patient with cancer with immunocompromised status as he had recently finished his chemotherapy cycle (R–CHOP regimen). Patient well tolerated the intervention and recovered symptomatically. He did not developed any respiratory complications and oxygen saturation remained maintained. On 7th day RT-PCR was found to be negative. Plethora of literature is available on anti-viral and immunomodulatory efficacies of Ayurveda herbs based on in vitro studies. Such efficacies can be replicated at patient's level if supported with wisdom of Ayurveda epistemology. Early diagnosis on RT-PCR and early inception of ayurveda medicine and diet interventions might be crucial element for better recovery.
Collapse
Affiliation(s)
- Prasad Dilip Pandkar
- Department of Kriya sharir (Ayurveda Physiology), Bharati Vidyapeeth Deemed University, College of Ayurveda, Pune 411043
| | - Santosh Raosaheb Deshmukh
- Department of Kriya sharir (Ayurveda Physiology), Bharati Vidyapeeth Deemed University, College of Ayurveda, Pune 411043
| | - Vinay Sachdeva
- Department of Kriya sharir (Ayurveda Physiology), Bharati Vidyapeeth Deemed University, College of Ayurveda, Pune 411043
| |
Collapse
|
12
|
A comprehensive review of natural products against atopic dermatitis: Flavonoids, alkaloids, terpenes, glycosides and other compounds. Biomed Pharmacother 2021; 140:111741. [PMID: 34087696 DOI: 10.1016/j.biopha.2021.111741] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/24/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Abstract
Atopic dermatitis (AD) is considered a great challenge for human communities and imposes both physiological and mental burdens on patients. Natural products have widely been used to treat a wide range of diseases, including cancer, gastrointestinal diseases, asthma, neurological disorders, and infections. To seek potential natural products against AD, in the current review, we searched the terms "atopic dermatitis" and "natural product" in Pubmed, Medline, Web of Science,Science Direct, Embase, EBSCO, CINAHL, ACS. The results show that many natural products, especially puerarin, ferulic acid and ginsenosides, cound protect against AD. Meanwhile, we discussed the therapeutic mechanisms and showed that the natural products exert their anti-inflammatory effects by suppressing the quantity and activity of many inflammatory cell types and cytokines, including neutrophils, monocytes, lymphocytes, Langerhans cells, interleukins (ILs, including IL-1α, IL-1β, IL-4), TNF-α, and TSLP, IgE. via inhibition of JAK/STAT, MAPKs and NF-κB signaling pathways, thereby, halting the inflammatory cascade. Future investigations should focus on studies with more reflective of the clinical characteristics and demographics, so as to develop natural products that will be hopefully available for the treatment of human AD disease.
Collapse
|
13
|
Lee HS, Jeong GS. Therapeutic effect of kaempferol on atopic dermatitis by attenuation of T cell activity via interaction with multidrug resistance-associated protein 1. Br J Pharmacol 2021; 178:1772-1788. [PMID: 33555623 DOI: 10.1111/bph.15396] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/28/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Kaempferol is a natural flavonoid widely investigated in various fields due to its antioxidant, anti-cancer, and anti-inflammatory activities, but few studies have shown its inhibitory effect on T cell activation. This study examined the therapeutic potential of kaempferol in atopic dermatitis by modulating T cell activation. EXPERIMENTAL APPROACH Effects of kaempferol on T cell activation and the underlying mechanisms were investigated in Jurkat cells and mouse CD4+ T cells. A model of atopic dermatitis in mice was used to determine its therapeutic potential on T cell-mediated conditions in vivo. Western blots, RT-PCR, pulldown assays and ELISA were used, along with histological analysis of skin. KEY RESULTS Pretreatment with kaempferol reduced CD69 expression and production of inflammatory cytokines including IL-2 from activated Jurkat cells and murine CD4+ T cells without cytotoxicity. Pulldown assays revealed that kaempferol physically binds to MRP-1 in T cells, inhibiting the action of MRP-1. In activated T cells, kaempferol suppressed JNK phosphorylation and the TAK1-IKKα mediated NF-κB pathway. Oral administration of kaempferol to mice showed improved manifestation of atopic dermatitis, a T cell-mediated condition. Western blot results showed that, as in the in vitro studies, decreased phosphorylation of JNK was associated with down-regulated MRP-1 activity in vivo, in the kaempferol-treated mice in the atopic dermatitis model. CONCLUSION AND IMPLICATIONS Kaempferol regulates T cell activation by inhibiting MRP-1 activity in activated T cells, thus showing protective effects against T cell mediated disease in vivo.
Collapse
Affiliation(s)
- Hyun-Su Lee
- College of Pharmacy, Keimyung University, Daegu, Korea
| | | |
Collapse
|