1
|
Zhang W, Shi Y, Oyang L, Cui S, Li S, Li J, Liu L, Li Y, Peng M, Tan S, Xia L, Lin J, Xu X, Wu N, Peng Q, Tang Y, Luo X, Liao Q, Jiang X, Zhou Y. Endoplasmic reticulum stress-a key guardian in cancer. Cell Death Discov 2024; 10:343. [PMID: 39080273 PMCID: PMC11289465 DOI: 10.1038/s41420-024-02110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Endoplasmic reticulum stress (ERS) is a cellular stress response characterized by excessive contraction of the endoplasmic reticulum (ER). It is a pathological hallmark of many diseases, such as diabetes, obesity, and neurodegenerative diseases. In the unique growth characteristic and varied microenvironment of cancer, high levels of stress are necessary to maintain the rapid proliferation and metastasis of tumor cells. This process is closely related to ERS, which enhances the ability of tumor cells to adapt to unfavorable environments and promotes the malignant progression of cancer. In this paper, we review the roles and mechanisms of ERS in tumor cell proliferation, apoptosis, metastasis, angiogenesis, drug resistance, cellular metabolism, and immune response. We found that ERS can modulate tumor progression via the unfolded protein response (UPR) signaling of IRE1, PERK, and ATF6. Targeting the ERS may be a new strategy to attenuate the protective effects of ERS on cancer. This manuscript explores the potential of ERS-targeted therapies, detailing the mechanisms through which ERS influences cancer progression and highlighting experimental and clinical evidence supporting these strategies. Through this review, we aim to deepen our understanding of the role of ER stress in cancer development and provide new insights for cancer therapy.
Collapse
Grants
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- he Research Project of Health Commission of Hunan Province (202203034978, 202202055318, 202203231032, 202109031837, 202109032010, 20201020), Science and Technology Innovation Program of Hunan Province(2023ZJ1122, 2023RC3199, 2023RC1073), Hunan Provincial Science and Technology Department (2020TP1018), the Changsha Science and Technology Board (kh2201054), Ascend Foundation of National cancer center (NCC201909B06) and by Hunan Cancer Hospital Climb Plan (ZX2020001-3, YF2020002)
- the Research Project of Health Commission of Hunan Province (202203034978, 202202055318, 202203231032, 202109031837, 202109032010, 20201020), Science and Technology Innovation Program of Hunan Province(2023ZJ1122, 2023RC3199, 2023RC1073), Hunan Provincial Science and Technology Department (2020TP1018), the Changsha Science and Technology Board (kh2201054), Ascend Foundation of National cancer center (NCC201909B06) and by Hunan Cancer Hospital Climb Plan (ZX2020001-3, YF2020002)
Collapse
Affiliation(s)
- Wenlong Zhang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yidan Shi
- The High School Attached to Hunan Normal University, Changsha, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Shiwen Cui
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shizhen Li
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinyun Li
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Lin Liu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Yun Li
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Qianjin Liao
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
- Department of Oncology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China.
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China.
- Hengyang Medical School, University of South China, Hengyang, Hunan, China.
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China.
| |
Collapse
|
2
|
Slawski J, Jaśkiewicz M, Barton A, Kozioł S, Collawn JF, Bartoszewski R. Regulation of the HIF switch in human endothelial and cancer cells. Eur J Cell Biol 2024; 103:151386. [PMID: 38262137 DOI: 10.1016/j.ejcb.2024.151386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors that reprogram the transcriptome for cells to survive hypoxic insults and oxidative stress. They are important during embryonic development and reprogram the cells to utilize glycolysis when the oxygen levels are extremely low. This metabolic change facilitates normal cell survival as well as cancer cell survival. The key feature in survival is the transition between acute hypoxia and chronic hypoxia, and this is regulated by the transition between HIF-1 expression and HIF-2/HIF-3 expression. This transition is observed in many human cancers and endothelial cells and referred to as the HIF Switch. Here we discuss the mechanisms involved in the HIF Switch in human endothelial and cancer cells which include mRNA and protein levels of the alpha chains of the HIFs. A major continuing effort in this field is directed towards determining the differences between normal and tumor cell utilization of this important pathway, and how this could lead to potential therapeutic approaches.
Collapse
Affiliation(s)
- Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Maciej Jaśkiewicz
- International Research Agenda 3P, Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Anna Barton
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Sylwia Kozioł
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
3
|
Lee PWT, Koseki LR, Haitani T, Harada H, Kobayashi M. Hypoxia-Inducible Factor-Dependent and Independent Mechanisms Underlying Chemoresistance of Hypoxic Cancer Cells. Cancers (Basel) 2024; 16:1729. [PMID: 38730681 PMCID: PMC11083728 DOI: 10.3390/cancers16091729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
In hypoxic regions of malignant solid tumors, cancer cells acquire resistance to conventional therapies, such as chemotherapy and radiotherapy, causing poor prognosis in patients with cancer. It is widely recognized that some of the key genes behind this are hypoxia-inducible transcription factors, e.g., hypoxia-inducible factor 1 (HIF-1). Since HIF-1 activity is suppressed by two representative 2-oxoglutarate-dependent dioxygenases (2-OGDDs), PHDs (prolyl-4-hydroxylases), and FIH-1 (factor inhibiting hypoxia-inducible factor 1), the inactivation of 2-OGDD has been associated with cancer therapy resistance by the activation of HIF-1. Recent studies have also revealed the importance of hypoxia-responsive mechanisms independent of HIF-1 and its isoforms (collectively, HIFs). In this article, we collate the accumulated knowledge of HIF-1-dependent and independent mechanisms responsible for resistance of hypoxic cancer cells to anticancer drugs and briefly discuss the interplay between hypoxia responses, like EMT and UPR, and chemoresistance. In addition, we introduce a novel HIF-independent mechanism, which is epigenetically mediated by an acetylated histone reader protein, ATAD2, which we recently clarified.
Collapse
Affiliation(s)
- Peter Wai Tik Lee
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
| | - Lina Rochelle Koseki
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
| | - Takao Haitani
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan (L.R.K.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
4
|
Oliveira RHDM, Annex BH, Popel AS. Endothelial cells signaling and patterning under hypoxia: a mechanistic integrative computational model including the Notch-Dll4 pathway. Front Physiol 2024; 15:1351753. [PMID: 38455844 PMCID: PMC10917925 DOI: 10.3389/fphys.2024.1351753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Introduction: Several signaling pathways are activated during hypoxia to promote angiogenesis, leading to endothelial cell patterning, interaction, and downstream signaling. Understanding the mechanistic signaling differences between endothelial cells under normoxia and hypoxia and their response to different stimuli can guide therapies to modulate angiogenesis. We present a novel mechanistic model of interacting endothelial cells, including the main pathways involved in angiogenesis. Methods: We calibrate and fit the model parameters based on well-established modeling techniques that include structural and practical parameter identifiability, uncertainty quantification, and global sensitivity. Results: Our results indicate that the main pathways involved in patterning tip and stalk endothelial cells under hypoxia differ, and the time under hypoxia interferes with how different stimuli affect patterning. Additionally, our simulations indicate that Notch signaling might regulate vascular permeability and establish different Nitric Oxide release patterns for tip/stalk cells. Following simulations with various stimuli, our model suggests that factors such as time under hypoxia and oxygen availability must be considered for EC pattern control. Discussion: This project provides insights into the signaling and patterning of endothelial cells under various oxygen levels and stimulation by VEGFA and is our first integrative approach toward achieving EC control as a method for improving angiogenesis. Overall, our model provides a computational framework that can be built on to test angiogenesis-related therapies by modulation of different pathways, such as the Notch pathway.
Collapse
Affiliation(s)
| | - Brian H. Annex
- Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Aleksander S. Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
5
|
Gebert M, Bartoszewska S, Opalinski L, Collawn JF, Bartoszewski R. IRE1-mediated degradation of pre-miR-301a promotes apoptosis through upregulation of GADD45A. Cell Commun Signal 2023; 21:322. [PMID: 37946177 PMCID: PMC10634081 DOI: 10.1186/s12964-023-01349-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023] Open
Abstract
The unfolded protein response is a survival signaling pathway that is induced during various types of ER stress. Here, we determine IRE1's role in miRNA regulation during ER stress. During induction of ER stress in human bronchial epithelial cells, we utilized next generation sequencing to demonstrate that pre-miR-301a and pre-miR-106b were significantly increased in the presence of an IRE1 inhibitor. Conversely, using nuclear-cytosolic fractionation on ER stressed cells, we found that these pre-miRNAs were decreased in the nuclear fractions without the IRE1 inhibitor. We also found that miR-301a-3p targets the proapoptotic UPR factor growth arrest and DNA-damage-inducible alpha (GADD45A). Inhibiting miR-301a-3p levels or blocking its predicted miRNA binding site in GADD45A's 3' UTR with a target protector increased GADD45A mRNA expression. Furthermore, an elevation of XBP1s expression had no effect on GADD45A mRNA expression. We also demonstrate that the introduction of a target protector for the miR-301a-3p binding site in GADD45A mRNA during ER stress promoted cell death in the airway epithelial cells. In summary, these results indicate that IRE1's endonuclease activity is a two-edged sword that can splice XBP1 mRNA to stabilize survival or degrade pre-miR-301a to elevate GADD45A mRNA expression to lead to apoptosis. Video Abstract.
Collapse
Affiliation(s)
- Magdalena Gebert
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
| | - Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Lukasz Opalinski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wrocław, Poland
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Birmingham, AL, 35294, USA
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot- Curie 14a Street, Wrocław, 50-383, Poland.
| |
Collapse
|
6
|
Bartoszewska S, Sławski J, Collawn JF, Bartoszewski R. Dual RNase activity of IRE1 as a target for anticancer therapies. J Cell Commun Signal 2023:10.1007/s12079-023-00784-5. [PMID: 37721642 DOI: 10.1007/s12079-023-00784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023] Open
Abstract
The unfolded protein response (UPR) is a cellular mechanism that protects cells during stress conditions in which there is an accumulation of misfolded proteins in the endoplasmic reticulum (ER). UPR activates three signaling pathways that function to alleviate stress conditions and promote cellular homeostasis and cell survival. During unmitigated stress conditions, however, UPR activation signaling changes to promote cell death through apoptosis. Interestingly, cancer cells take advantage of this pathway to facilitate survival and avoid apoptosis even during prolonged cell stress conditions. Here, we discuss different signaling pathways associated with UPR and focus specifically on one of the ER signaling pathways activated during UPR, inositol-requiring enzyme 1α (IRE1). The rationale is that the IRE1 pathway is associated with cell fate decisions and recognized as a promising target for cancer therapeutics. Here we discuss IRE1 inhibitors and how they might prove to be an effective cancer therapeutic.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a Street, 50-383, Wrocław, Poland
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a Street, 50-383, Wrocław, Poland.
| |
Collapse
|
7
|
Iovino M, Colonval M, Wilkin C, L’homme L, Lassence C, Campas M, Peulen O, de Tullio P, Piette J, Legrand-Poels S. Novel XBP1s-independent function of IRE1 RNase in HIF-1α-mediated glycolysis upregulation in human macrophages upon stimulation with LPS or saturated fatty acid. Front Immunol 2023; 14:1204126. [PMID: 37711626 PMCID: PMC10498766 DOI: 10.3389/fimmu.2023.1204126] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/01/2023] [Indexed: 09/16/2023] Open
Abstract
In obesity, adipose tissue infiltrating macrophages acquire a unique pro-inflammatory polarization, thereby playing a key role in the development of chronic inflammation and Type 2 diabetes. Increased saturated fatty acids (SFAs) levels have been proposed to drive this specific polarization. Accordingly, we investigated the immunometabolic reprogramming in SFA-treated human macrophages. As expected, RNA sequencing highlighted a pro-inflammatory profile but also metabolic signatures including glycolysis and hypoxia as well as a strong unfolded protein response. Glycolysis upregulation was confirmed in SFA-treated macrophages by measuring glycolytic gene expression, glucose uptake, lactate production and extracellular acidification rate. Like in LPS-stimulated macrophages, glycolysis activation in SFA-treated macrophages was dependent on HIF-1α activation and fueled the production of pro-inflammatory cytokines. SFAs and LPS both induced IRE1α endoribonuclease activity, as demonstrated by XBP1 mRNA splicing, but with different kinetics matching HIF-1α activation and the glycolytic gene expression. Interestingly, the knockdown of IRE1α and/or the pharmacological inhibition of its RNase activity prevented HIF-1α activation and significantly decreased glycolysis upregulation. Surprisingly, XBP1s appeared to be dispensable, as demonstrated by the lack of inhibiting effect of XBP1s knockdown on glycolytic genes expression, glucose uptake, lactate production and HIF-1α activation. These experiments demonstrate for the first time a key role of IRE1α in HIF-1α-mediated glycolysis upregulation in macrophages stimulated with pro-inflammatory triggers like LPS or SFAs through XBP1s-independent mechanism. IRE1 could mediate this novel function by targeting other transcripts (mRNA or pre-miRNA) through a mechanism called regulated IRE1-dependent decay or RIDD. Deciphering the underlying mechanisms of this novel IRE1 function might lead to novel therapeutic targets to curtail sterile obesity- or infection-linked inflammation.
Collapse
Affiliation(s)
- Margaud Iovino
- Laboratory of Immunometabolism and Nutrition, GIGA, ULiège, Liège, Belgium
| | - Megan Colonval
- Laboratory of Immunometabolism and Nutrition, GIGA, ULiège, Liège, Belgium
| | - Chloé Wilkin
- Laboratory of Immunometabolism and Nutrition, GIGA, ULiège, Liège, Belgium
| | - Laurent L’homme
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Cédric Lassence
- Laboratory of Virology and Immunology, GIGA, ULiège, Liège, Belgium
| | - Manon Campas
- Clinical Metabolomics Group, CIRM, ULiège, Liege, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA, ULiège, Liège, Belgium
| | | | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA, ULiège, Liège, Belgium
| | | |
Collapse
|
8
|
Gebert M, Sławski J, Kalinowski L, Collawn JF, Bartoszewski R. The Unfolded Protein Response: A Double-Edged Sword for Brain Health. Antioxidants (Basel) 2023; 12:1648. [PMID: 37627643 PMCID: PMC10451475 DOI: 10.3390/antiox12081648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Efficient brain function requires as much as 20% of the total oxygen intake to support normal neuronal cell function. This level of oxygen usage, however, leads to the generation of free radicals, and thus can lead to oxidative stress and potentially to age-related cognitive decay and even neurodegenerative diseases. The regulation of this system requires a complex monitoring network to maintain proper oxygen homeostasis. Furthermore, the high content of mitochondria in the brain has elevated glucose demands, and thus requires a normal redox balance. Maintaining this is mediated by adaptive stress response pathways that permit cells to survive oxidative stress and to minimize cellular damage. These stress pathways rely on the proper function of the endoplasmic reticulum (ER) and the activation of the unfolded protein response (UPR), a cellular pathway responsible for normal ER function and cell survival. Interestingly, the UPR has two opposing signaling pathways, one that promotes cell survival and one that induces apoptosis. In this narrative review, we discuss the opposing roles of the UPR signaling pathways and how a better understanding of these stress pathways could potentially allow for the development of effective strategies to prevent age-related cognitive decay as well as treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Magdalena Gebert
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-134 Gdansk, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-134 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Narutowicza Street, 80-233 Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| |
Collapse
|
9
|
Mawambo G, Oubaha M, Ichiyama Y, Blot G, Crespo-Garcia S, Dejda A, Binet F, Diaz-Marin R, Sawchyn C, Sergeev M, Juneau R, Kaufman RJ, Affar EB, Mallette FA, Wilson AM, Sapieha P. HIF1α-dependent hypoxia response in myeloid cells requires IRE1α. J Neuroinflammation 2023; 20:145. [PMID: 37344842 DOI: 10.1186/s12974-023-02793-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/24/2023] [Indexed: 06/23/2023] Open
Abstract
Cellular adaptation to low oxygen tension triggers primitive pathways that ensure proper cell function. Conditions of hypoxia and low glucose are characteristic of injured tissues and hence successive waves of inflammatory cells must be suited to function under low oxygen tension and metabolic stress. While Hypoxia-Inducible Factor (HIF)-1α has been shown to be essential for the inflammatory response of myeloid cells by regulating the metabolic switch to glycolysis, less is known about how HIF1α is triggered in inflammation. Here, we demonstrate that cells of the innate immune system require activity of the inositol-requiring enzyme 1α (IRE1α/XBP1) axis in order to initiate HIF1α-dependent production of cytokines such as IL1β, IL6 and VEGF-A. Knockout of either HIF1α or IRE1α in myeloid cells ameliorates vascular phenotypes in a model of retinal pathological angiogenesis driven by sterile inflammation. Thus, pathways associated with ER stress, in partnership with HIF1α, may co-regulate immune adaptation to low oxygen.
Collapse
Affiliation(s)
- Gaëlle Mawambo
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 De L'Assomption Boulevard, Montréal, QC, H1T 2M4, Canada
| | - Malika Oubaha
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 De L'Assomption Boulevard, Montréal, QC, H1T 2M4, Canada
- Départment de Sciences Biologiques, Université du Québec À Montréal (UQAM), Montréal, QC, H2X 1L4, Canada
| | - Yusuke Ichiyama
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, QC, H1T 2M4, Canada
| | - Guillaume Blot
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 De L'Assomption Boulevard, Montréal, QC, H1T 2M4, Canada
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, QC, H1T 2M4, Canada
| | - Sergio Crespo-Garcia
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 De L'Assomption Boulevard, Montréal, QC, H1T 2M4, Canada
- School of Optometry, University of Montreal, Montreal, QC, H3T1P1, Canada
| | - Agnieszka Dejda
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 De L'Assomption Boulevard, Montréal, QC, H1T 2M4, Canada
| | - François Binet
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 De L'Assomption Boulevard, Montréal, QC, H1T 2M4, Canada
| | - Roberto Diaz-Marin
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 De L'Assomption Boulevard, Montréal, QC, H1T 2M4, Canada
| | - Christina Sawchyn
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 De L'Assomption Boulevard, Montréal, QC, H1T 2M4, Canada
| | - Mikhail Sergeev
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 De L'Assomption Boulevard, Montréal, QC, H1T 2M4, Canada
| | - Rachel Juneau
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 De L'Assomption Boulevard, Montréal, QC, H1T 2M4, Canada
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - El Bachir Affar
- Department of Medicine, University of Montreal, Montreal, Canada
| | - Frédérick A Mallette
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 De L'Assomption Boulevard, Montréal, QC, H1T 2M4, Canada
| | - Ariel M Wilson
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 De L'Assomption Boulevard, Montréal, QC, H1T 2M4, Canada
| | - Przemyslaw Sapieha
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 De L'Assomption Boulevard, Montréal, QC, H1T 2M4, Canada.
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, QC, H1T 2M4, Canada.
| |
Collapse
|
10
|
Oliveira RHM, Annex BH, Popel AS. Endothelial cells signaling and patterning under hypoxia: a mechanistic integrative computational model including the Notch-Dll4 pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539270. [PMID: 37205581 PMCID: PMC10187169 DOI: 10.1101/2023.05.03.539270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Several signaling pathways are activated during hypoxia to promote angiogenesis, leading to endothelial cell patterning, interaction, and downstream signaling. Understanding the mechanistic signaling differences between normoxia and hypoxia can guide therapies to modulate angiogenesis. We present a novel mechanistic model of interacting endothelial cells, including the main pathways involved in angiogenesis. We calibrate and fit the model parameters based on well-established modeling techniques. Our results indicate that the main pathways involved in the patterning of tip and stalk endothelial cells under hypoxia differ, and the time under hypoxia affects how a reaction affects patterning. Interestingly, the interaction of receptors with Neuropilin1 is also relevant for cell patterning. Our simulations under different oxygen concentrations indicate time- and oxygen-availability-dependent responses for the two cells. Following simulations with various stimuli, our model suggests that factors such as period under hypoxia and oxygen availability must be considered for pattern control. This project provides insights into the signaling and patterning of endothelial cells under hypoxia, contributing to studies in the field.
Collapse
Affiliation(s)
- Rebeca Hannah M Oliveira
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21205, USA
| | - Brian H Annex
- Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21205, USA
| |
Collapse
|
11
|
Molecular Mechanism Underlying Role of the XBP1s in Cardiovascular Diseases. J Cardiovasc Dev Dis 2022; 9:jcdd9120459. [PMID: 36547457 PMCID: PMC9782920 DOI: 10.3390/jcdd9120459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Spliced X-box binding protein-1 (XBP1s) is a protein that belongs to the cAMP-response element-binding (CREB)/activating transcription factor (ATF) b-ZIP family with a basic-region leucine zipper (bZIP). There is mounting evidence to suggest that XBP1s performs a critical function in a range of different cardiovascular diseases (CVDs), indicating that it is necessary to gain a comprehensive knowledge of the processes involved in XBP1s in various disorders to make progress in research and clinical therapy. In this research, we provide a summary of the functions that XBP1s performs in the onset and advancement of CVDs such as atherosclerosis, hypertension, cardiac hypertrophy, and heart failure. Furthermore, we discuss XBP1s as a novel therapeutic target for CVDs.
Collapse
|
12
|
Bartoszewska S, Collawn JF, Bartoszewski R. The Role of the Hypoxia-Related Unfolded Protein Response (UPR) in the Tumor Microenvironment. Cancers (Basel) 2022; 14:4870. [PMID: 36230792 PMCID: PMC9562011 DOI: 10.3390/cancers14194870] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
Despite our understanding of the unfolded protein response (UPR) pathways, the crosstalk between the UPR and the complex signaling networks that different cancers utilize for cell survival remains to be, in most cases, a difficult research barrier. A major problem is the constant variability of different cancer types and the different stages of cancer as well as the complexity of the tumor microenvironments (TME). This complexity often leads to apparently contradictory results. Furthermore, the majority of the studies that have been conducted have utilized two-dimensional in vitro cultures of cancer cells that were exposed to continuous hypoxia, and this approach may not mimic the dynamic and cyclic conditions that are found in solid tumors. Here, we discuss the role of intermittent hypoxia, one of inducers of the UPR in the cellular component of TME, and the way in which intermittent hypoxia induces high levels of reactive oxygen species, the activation of the UPR, and the way in which cancer cells modulate the UPR to aid in their survival. Although the past decade has resulted in defining the complex, novel non-coding RNA-based regulatory networks that modulate the means by which hypoxia influences the UPR, we are now just to beginning to understand some of the connections between hypoxia, the UPR, and the TME.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| |
Collapse
|
13
|
Wang T, Zhou J, Zhang X, Wu Y, Jin K, Wang Y, Xu R, Yang G, Li W, Jiao L. X-box Binding Protein 1: An Adaptor in the Pathogenesis of Atherosclerosis. Aging Dis 2022; 14:350-369. [PMID: 37008067 PMCID: PMC10017146 DOI: 10.14336/ad.2022.0824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Atherosclerosis (AS), the formation of fibrofatty lesions in the vessel wall, is the primary cause of heart disease and stroke and is closely associated with aging. Disrupted metabolic homeostasis is a primary feature of AS and leads to endoplasmic reticulum (ER) stress, which is an abnormal accumulation of unfolded proteins. By orchestrating signaling cascades of the unfolded protein response (UPR), ER stress functions as a double-edged sword in AS, where adaptive UPR triggers synthetic metabolic processes to restore homeostasis, whereas the maladaptive response programs the cell to the apoptotic pathway. However, little is known regarding their precise coordination. Herein, an advanced understanding of the role of UPR in the pathological process of AS is reviewed. In particular, we focused on a critical mediator of the UPR, X-box binding protein 1 (XBP1), and its important role in balancing adaptive and maladaptive responses. The XBP1 mRNA is processed from the unspliced isoform (XBP1u) to the spliced isoform of XBP1 (XBP1s). Compared with XBP1u, XBP1s predominantly functions downstream of inositol-requiring enzyme-1α (IRE1α) and transcript genes involved in protein quality control, inflammation, lipid metabolism, carbohydrate metabolism, and calcification, which are critical for the pathogenesis of AS. Thus, the IRE1α/XBP1 axis is a promising pharmaceutical candidate against AS.
Collapse
Affiliation(s)
- Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Jia Zhou
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Yujie Wu
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| | - Kehan Jin
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yilin Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.
| | - Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Ge Yang
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.
- Correspondence should be addressed to: Dr. Ge Yang, Chinese Academy of Sciences, Beijing, China. , Dr. Wenjing Li, Chinese Academy of Sciences, Beijing, China. ; Dr. Liqun Jiao, Xuanwu Hospital, Capital Medical University, Beijing, China. .
| | - Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.
- Correspondence should be addressed to: Dr. Ge Yang, Chinese Academy of Sciences, Beijing, China. , Dr. Wenjing Li, Chinese Academy of Sciences, Beijing, China. ; Dr. Liqun Jiao, Xuanwu Hospital, Capital Medical University, Beijing, China. .
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
- Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Correspondence should be addressed to: Dr. Ge Yang, Chinese Academy of Sciences, Beijing, China. , Dr. Wenjing Li, Chinese Academy of Sciences, Beijing, China. ; Dr. Liqun Jiao, Xuanwu Hospital, Capital Medical University, Beijing, China. .
| |
Collapse
|
14
|
Guo S, Wehbe A, Syed S, Wills M, Guan L, Lv S, Li F, Geng X, Ding Y. Cerebral Glucose Metabolism and Potential Effects on Endoplasmic Reticulum Stress in Stroke. Aging Dis 2022; 14:450-467. [PMID: 37008060 PMCID: PMC10017147 DOI: 10.14336/ad.2022.0905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Ischemic stroke is an extremely common pathology with strikingly high morbidity and mortality rates. The endoplasmic reticulum (ER) is the primary organelle responsible for conducting protein synthesis and trafficking as well as preserving intracellular Ca2+ homeostasis. Mounting evidence shows that ER stress contributes to stroke pathophysiology. Moreover, insufficient circulation to the brain after stroke causes suppression of ATP production. Glucose metabolism disorder is an important pathological process after stroke. Here, we discuss the relationship between ER stress and stroke and treatment and intervention of ER stress after stroke. We also discuss the role of glucose metabolism, particularly glycolysis and gluconeogenesis, post-stroke. Based on recent studies, we speculate about the potential relationship and crosstalk between glucose metabolism and ER stress. In conclusion, we describe ER stress, glycolysis, and gluconeogenesis in the context of stroke and explore how the interplay between ER stress and glucose metabolism contributes to the pathophysiology of stroke.
Collapse
Affiliation(s)
- Sichao Guo
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Alexandra Wehbe
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Harvard T.H. Chan School of Public Health, USA
| | - Shabber Syed
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Melissa Wills
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Shuyu Lv
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
| | - Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
- Correspondence should be addressed to: Dr. Xiaokun Geng, Beijing Luhe Hospital, Capital Medical University, Beijing, China. E-mail: ; Dr. Yuchuan Ding, Wayne State University School of Medicine, Detroit, MI 48201, USA. E-mail:
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Correspondence should be addressed to: Dr. Xiaokun Geng, Beijing Luhe Hospital, Capital Medical University, Beijing, China. E-mail: ; Dr. Yuchuan Ding, Wayne State University School of Medicine, Detroit, MI 48201, USA. E-mail:
| |
Collapse
|
15
|
Cabaj A, Moszyńska A, Charzyńska A, Bartoszewski R, Dąbrowski M. Functional and HRE motifs count analysis of induction of selected hypoxia-responsive genes by HIF-1 and HIF-2 in human umbilical endothelial cells. Cell Signal 2021; 90:110209. [PMID: 34890779 DOI: 10.1016/j.cellsig.2021.110209] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/12/2021] [Accepted: 11/27/2021] [Indexed: 12/19/2022]
Abstract
We analyzed the effects of selective knockdown of either HIF-1α or HIF-2α on the transcriptional response to hypoxia of human umbilical endothelial cells at two time-points (2 h and 8 h) of hypoxia. We focused on 13 previously identified hypoxia-responsive genes, pre-selected to have different activation kinetics and different proportions of HRE motifs annotated to either HIF-1 or HIF-2 in open promoters - open chromatin DNase-hypersensitive sites (DHS) regions within ±1 kb of the gene start. We report that genes activated by both HIF-1 and 2 tend to be activated earlier than genes activated by HIF-1 only, which, in turn, tend to be activated earlier than genes activated by HIF-2 only. Moreover, for the 13 analyzed genes, we found that the effect of silencing HIF1A on the gene induction by hypoxia is greater for the genes with more HRE motifs annotated to HIF-1 in their promoter open chromatin DHS regions within ±1 kb and also within ±10 kb of the gene start. We corroborated and extended this finding by showing that among 232 genes previously identified as activated by hypoxia, the genes with ChIP-seq peak(s) for HIF-1α within a ±10 kb flank of the gene start contain more HRE motifs annotated to HIF-1 in the DHS regions within this flank than the genes with no ChIP-seq peaks. Also in the whole genome, the DHS regions intersecting ChIP-seq peaks for HIF-1α contain more HRE motifs annotated to HIF-1 than the DHS regions not intersecting the ChIP-seq peaks. This suggests a mechanism, by which higher promoter content of HRE motifs in DHS regions increases HIF-1 binding, which in turn increases gene induction by hypoxia.
Collapse
Affiliation(s)
- Aleksandra Cabaj
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, ul. Pasteura 3, 02-093 Warsaw, Poland
| | - Adrianna Moszyńska
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland
| | - Agata Charzyńska
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, ul. Pasteura 3, 02-093 Warsaw, Poland
| | - Rafał Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland
| | - Michał Dąbrowski
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, ul. Pasteura 3, 02-093 Warsaw, Poland.
| |
Collapse
|
16
|
Gebert M, Sobolewska A, Bartoszewska S, Cabaj A, Crossman DK, Króliczewski J, Madanecki P, Dąbrowski M, Collawn JF, Bartoszewski R. Genome-wide mRNA profiling identifies X-box-binding protein 1 (XBP1) as an IRE1 and PUMA repressor. Cell Mol Life Sci 2021; 78:7061-7080. [PMID: 34636989 PMCID: PMC8558229 DOI: 10.1007/s00018-021-03952-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 02/06/2023]
Abstract
Accumulation of misfolded proteins in ER activates the unfolded protein response (UPR), a multifunctional signaling pathway that is important for cell survival. The UPR is regulated by three ER transmembrane sensors, one of which is inositol-requiring protein 1 (IRE1). IRE1 activates a transcription factor, X-box-binding protein 1 (XBP1), by removing a 26-base intron from XBP1 mRNA that generates spliced XBP1 mRNA (XBP1s). To search for XBP1 transcriptional targets, we utilized an XBP1s-inducible human cell line to limit XBP1 expression in a controlled manner. We also verified the identified XBP1-dependent genes with specific silencing of this transcription factor during pharmacological ER stress induction with both an N-linked glycosylation inhibitor (tunicamycin) and a non-competitive inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) (thapsigargin). We then compared those results to the XBP1s-induced cell line without pharmacological ER stress induction. Using next‐generation sequencing followed by bioinformatic analysis of XBP1-binding motifs, we defined an XBP1 regulatory network and identified XBP1 as a repressor of PUMA (a proapoptotic gene) and IRE1 mRNA expression during the UPR. Our results indicate impairing IRE1 activity during ER stress conditions accelerates cell death in ER-stressed cells, whereas elevating XBP1 expression during ER stress using an inducible cell line correlated with a clear prosurvival effect and reduced PUMA protein expression. Although further studies will be required to test the underlying molecular mechanisms involved in the relationship between these genes with XBP1, these studies identify a novel repressive role of XBP1 during the UPR.
Collapse
Affiliation(s)
- Magdalena Gebert
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdansk, Poland
| | - Aleksandra Sobolewska
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdansk, Poland
| | - Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Aleksandra Cabaj
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - David K Crossman
- Department of Genetics, Heflin Center for Genomic Science, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Jarosław Króliczewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdansk, Poland
| | - Piotr Madanecki
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdansk, Poland
| | - Michał Dąbrowski
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdansk, Poland.
| |
Collapse
|
17
|
Hansda AK, Goswami R. 17-β estradiol signalling affects cardiovascular and cancer pathogenesis by regulating the crosstalk between transcription factors and EC-miRNAs. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Triazoloacridone C-1305 impairs XBP1 splicing by acting as a potential IRE1α endoribonuclease inhibitor. Cell Mol Biol Lett 2021; 26:11. [PMID: 33730996 PMCID: PMC7968329 DOI: 10.1186/s11658-021-00255-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Inositol requiring enzyme 1 alpha (IRE1α) is one of three signaling sensors in the unfolding protein response (UPR) that alleviates endoplasmic reticulum (ER) stress in cells and functions to promote cell survival. During conditions of irrevocable stress, proapoptotic gene expression is induced to promote cell death. One of the three signaling stressors, IRE1α is an serine/threonine-protein kinase/endoribonuclease (RNase) that promotes nonconventional splicing of XBP1 mRNA that is translated to spliced XBP1 (XBP1s), an active prosurvival transcription factor. Interestingly, elevated IRE1α and XBP1s are both associated with poor cancer survival and drug resistance. In this study, we used next-generation sequencing analyses to demonstrate that triazoloacridone C-1305, a microtubule stabilizing agent that also has topoisomerase II inhibitory activity, dramatically decreases XBP1s mRNA levels and protein production during ER stress conditions, suggesting that C-1305 does this by decreasing IRE1α’s endonuclease activity.
Collapse
|
19
|
Bartoszewski R, Dabrowski M, Jakiela B, Matalon S, Harrod KS, Sanak M, Collawn JF. SARS-CoV-2 may regulate cellular responses through depletion of specific host miRNAs. Am J Physiol Lung Cell Mol Physiol 2020; 319:L444-L455. [PMID: 32755307 DOI: 10.1152/ajplung.00252.2020] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cold viruses have generally been considered fairly innocuous until the appearance of the severe acute respiratory coronavirus 2 (SARS-CoV-2) in 2019, which caused the coronavirus disease 2019 (COVID-19) global pandemic. Two previous viruses foreshadowed that a coronavirus could potentially have devastating consequences in 2002 [severe acute respiratory coronavirus (SARS-CoV)] and in 2012 [Middle East respiratory syndrome coronavirus (MERS-CoV)]. The question that arises is why these viruses are so different from the relatively harmless cold viruses. On the basis of an analysis of the current literature and using bioinformatic approaches, we examined the potential human miRNA interactions with the SARS-CoV-2's genome and compared the miRNA target sites in seven coronavirus genomes that include SARS-CoV-2, MERS-CoV, SARS-CoV, and four nonpathogenic coronaviruses. Here, we discuss the possibility that pathogenic human coronaviruses, including SARS-CoV-2, could modulate host miRNA levels by acting as miRNA sponges to facilitate viral replication and/or to avoid immune responses.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Michal Dabrowski
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Bogdan Jakiela
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Marek Sanak
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|